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ABSTRACT

Machine-learning interatomic potentials, such as Gaussian Approximation Potentials (GAPs), constitute a powerful class of surrogate
models to computationally involved first-principles calculations. At a similar predictive quality but significantly reduced cost, they could
leverage otherwise barely tractable extensive sampling as in global surface structure determination (SSD). This efficiency is jeopar-
dized though, if an a priori unknown structural and chemical search space as in SSD requires an excessive number of first-principles
data for the GAP training. To this end, we present a general and data-efficient iterative training protocol that blends the creation
of new training data with the actual surface exploration process. Demonstrating this protocol with the SSD of low-index facets of
rutile IrO, and RuO,, the involved simulated annealing on the basis of the refining GAP identifies a number of unknown termi-
nations even in the restricted sub-space of (1 x 1) surface unit cells. Particularly in an O-poor environment, some of these, then
metal-rich terminations, are thermodynamically most stable and are reminiscent of complexions as discussed for complex ceramic

materials.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0071249

I. INTRODUCTION

Machine-learning (ML) interatomic potentials trained with
first-principles data promise steep advances for the predictive-
quality modeling and simulation of molecules and materials.' '’ At
a computational cost that is significantly reduced compared to direct
first-principles calculations, such ML potentials allow us to address
larger system sizes or perform more extensive dynamical simula-
tions and sampling. While typically not as cost efficient as classical
force fields with a fixed functional form, they straightforwardly allow
us to include reactivity and, most importantly, can seamlessly be
improved by additional training data.'!

This versatility also has its downsides though. With the ML
potential itself completely void of any physics, the training data
need to adequately cover the structural and chemical space of
interest. Depending on the application, the underlying multiple first-
principles calculations for the training data could then themselves
start to become a computational bottleneck. The latter is, e.g., partic-
ularly pronounced for surface science or interfacial applications such

as heterogeneous catalysis or batteries. Therefore, training struc-
tures may necessarily extend to large supercell calculations, which
even on an efficient semi-local density functional theory (DFT) level
may constitute a formidable computational burden. This calls for
data-efficient training protocols that achieve a reliable ML potential
with a minimum number of DFT training data (of tractable system
sizes).

A further complication in this respect is that the targeted chem-
ical space may actually not be known a priori at the beginning of a
study. Take the example of surface structure determination (SSD)
that we want to specifically pursue here. We would like to use an ML
potential to afford global structure determination techniques and
identify unknown, possibly complex surface structures with non-
bulk-like coordinations and chemical composition. If we do not
know these structures beforehand, how can we make sure our train-
ing set covers all relevant local geometric and compositional motifs,
while simultaneously being of minimum size?

The obvious solution to this challenge is to resort to itera-
tive training protocols.”” While exploring new parts of chemical
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space, some form of uncertainty quantification will allow the ML
potential to realize that it requires new pertinent training data.
Corresponding new first-principles calculations will (ideally auto-
matically) be initiated and the potential will be retrained. By now,
a number of such iterative learning strategies have been reported,
e.g., for elementary carbon or silicon,"”” ' binary bulk materials
such as zirconia,'” nanoparticles,lz‘l‘\“w and even for selected surface
morphologies.”” While conceptionally all similar, technical differ-
ences between these approaches extend from the ML model used
(e.g., full or sparse kernel regression and neural networks) over the
way the uncertainty is measured (e.g., committee/ensemble meth-
ods, Bayesian uncertainty, or dissimilarity to existing training data)
to the way the automatized protocol is tailored to the targeted appli-
cation [e.g., learning of the full potential energy surface (PES) or
only of parts of it, with same or variable accuracy]. In this con-
text, we here present and detail a two-stage highly data-efficient
training protocol specifically geared toward surface structure deter-
mination and based on sparse Gaussian process regression (GPR).
It consists of an initial bootstrapping, in which the existing domain
knowledge on the system of interest is used to generate a suitable
preliminary training set and arrive at a rudimentary ML poten-
tial that satisfactorily describes key physical properties. In a second
stage, this training set is iteratively augmented and the potential is
refined. Importantly, this refinement stage uses simulated annealing
(SA) on the ML potential energy surface to efficiently sample the
complex phase space of surface structures and identify new train-
ing structures as those that exceed a critical dissimilarity to those
already computed at the first-principles level before. In this way,
the training gets intimately intermingled with the actual global opti-
mization process, and the evolving, minimum-size training set is
ideally tailored to identify candidate structures that can subsequently
be compared within an ab initio thermodynamics surface phase
diagram.”"*

We specifically demonstrate this approach by developing Gaus-
sian Approximation Potentials (GAPs)"*’ for the surface struc-
ture determination of low-index rutile IrO, and RuQO, facets. Both
oxides are known as active oxidation catalysts in thermal cataly-
sis and electrocatalysis, but equally known for their propensity to
undergo surface structural and compositional changes under oper-
ating conditions.”” ** In preceding work by some of us,'” a GAP
based surface structure determination could already identify hith-
erto unknown, so-called surface complexions for some IrO, facets.
The iterative training of the potential was largely manual though and
involved the addition of training structures based on visual inspec-
tion or the random addition of nanoparticle and high-temperature
structures for a perceived training set diversity. Unsatisfied with
this, we here revisit the problem with our automated training pro-
tocol that after the initial bootstrapping does not require any further
human decision making. In turn, the bootstrapping set itself consists
of those reference structures (bulk, molecular, and canonical surface
terminations) that would always have been explicitly computed by
first-principles in a surface structure determination project anyway.
Gratifyingly, this new protocol identifies exactly the same complex-
ions as the laboriously developed GAP potential before. Moreover,
the transferability of the protocol is demonstrated by the applica-
tion to RuOs. In our preceding work, we had simply recomputed the
identified IrO, complexions for this iso-structural oxide to demon-
strate their stability. Intriguingly, the new protocol not only confirms
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this but also reveals that RuO; surfaces, in fact, exhibit an even wider
variety of these novel surface terminations.

Il. METHODS
A. Gaussian approximation potentials

GAPs are a widely used class of interatomic ML potentials,
based on Gaussian process regression. A detailed description is pro-
vided in the literature."”** For self-containment, we, therefore,
provide here only a brief introduction to the formalism, emphasizing
the aspects most relevant to this project.

1. Interatomic potential

The GAPs used herein are based on the combination of two-
body (2B) and many-body (MB) contributions. This means that
we calculate the total energy Egap of a system from its atomic
coordinates X, as

Mg
Egap(Xa) = Z‘S%B > cmaskas(ijs m)

o om=l
Exp
0 MJV[B
+ Z5MB Z CmMBAMB (X X0 - (1)
i m=1
Emp

Here, the first sum in E»p goes over all pairs of atoms i,/, and the
first sum in Eyvp goes over each atom i. The second sum in each term
goes over a set of Mp/mp representative data points (the sparse set,
see below) and contains the regression coefficients ¢,28/mp and the
respective kernel functions k;g/mp. The latter are used to measure
the similarity between two geometric descriptors (representations),
which are computed from Xn. In the 2B case, these are simply
interatomic distances rj;. In the MB case, these are vectorial rep-
resentations of the atomic environment y;, based on the Smooth

Overlap of Atomic Positions (SOAP)."”” A more detailed descrip-
tion of the kernel functions and representations used herein is given
below. The final yet undefined parameters in Eq. (1) are 6,5 and dums,
which are used to specify the expected relative weighting of the two
energy contributions.

While a full MB description of the interatomic potential is, in
principle, possible, the explicit inclusion of a 2B term has been found
to lead to significantly more stable and data-efficient potentials.'’
The reason is that, due to its high flexibility, the high-dimensional
representation used for the MB contribution extrapolates much
more poorly than a simple 2B potential. The weighting specified by
the & parameters can, therefore, be used to switch between a less
flexible but more robust potential with a strong 2B character and
a highly flexible MB potential.

Assuming a given choice of kernel and representation (and
a training database), this leaves the determination of the regres-
sion coefficients ¢ and c¢ums. In GAPs, these are obtained by
minimizing the regularized least-squares loss function,

- 2
(=3 I F)
n=1

Oy
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Here, R is a Tikhonov regularization term (see Ref. 35 for details), y,
are reference data points (in the present case, total energies and force
components on all atoms of the training structures), and o, is an
inverse weighting factor for a given data point. y(Xy) indicates the
GAP prediction for the property y,, given the atomic coordinates Xn
based on the coefficients cu28 and M. Specifically, this means that
energies are predicted according to Eq. (1) and force components by
taking the corresponding derivative.

The role of the regularization term R is to penalize large
regression coefficients, which indicate overfitting. As increasing
the magnitude of 0, increases the relative contribution of R to
the loss function, these parameters are often called regularization
strengths (particularly if a single parameter is used for all data
points). Alternatively, they can be interpreted as the uncertainty
associated with a given data point or the expected accuracy of
the GAP. In other words, larger values of 0, lead to a smoother
potential, while smaller values lead to a more precise fit of the train-
ing set. Furthermore, using different values of 0, for energies and
forces allows adjusting the weight of these properties in the loss
function.

2. Kernels and representations

The central components in the GAP energy expression of
Eq. (1) are the kernel functions k;p and kmp and the corresponding
geometric representations. Kernel functions are simply a similarity
measure between representations usually ranging from 0 (not simi-
lar at all) to 1 (identical). In this sense, an intuitive explanation of a
GAP model is that it predicts the energy of a configuration accord-
ing to its similarity to other configurations in the training set. Since
this similarity is defined by the choice of representations and kernels,
these are critical to the performance of the model.

For the two-body contribution, the representation of a pair
of atoms is simply its interatomic distance rj, and a squared
exponential (Gaussian) kernel is used as a similarity measure,

2
kg (rijy tm) = exp(— Lj rnl ) (3)

2
2053

Inspecting Eq. (1), this means that E,p is a pair potential, which con-
sists of Mg Gaussians of width o2 centered at the sparse points r,
(see below). Note that, in order to ensure size extensivity and favor-
able computational scaling, the two-body potential is constrained to
be short-ranged. To this end, the cutoff parameter rcu 28 is defined.

For the MB contribution to the potential, the SOAP represen-
tation and kernel are used. The main idea of SOAP is to generate
a rotationally and permutationally invariant fingerprint of the local
atomic environment within a sphere of radius rcusoap around a
given central atom i. To this end, the environment is represented
as a smooth density function p, which is obtained by smearing out
the atomic positions of all atoms in the environment with Gaus-
sian functions of width gsoap. This density is then expanded with
a set of basis functions centered on i, consisting of spherical har-
monics and orthogonal radial functions. Finally, the corresponding
expansion coefficients are transformed into the rotationally invari-
ant power spectrum and collected in a normalized vector x;, which
is the SOAP representation.

ARTICLE scitation.org/journalljcp

As a similarity measure, the SOAP representation is typically
used with low-order polynomial kernels so that

ke (X Xn) = (s Xon)' (4)

Herein, we use { = 2 throughout. To fully define the SOAP represen-
tation, the number of radialjand angular basis functions (#max and
Imax) needs to be speciﬁed.l‘z’

3. Sparsification

An essential aspect of GAP models is that they use a sparse
variant of Gaussian process regression (GPR). This is important
because the training cost of full GPR models scales cubically with
the number of training data points N (and the prediction cost lin-
early). This quickly becomes prohibitive for large training sets, in
particular, when also training on forces (where each force com-
ponent on each atom inside a training structure provides one
data point). Sparse GPR models still use the full training set in
the loss function, Eq. (2), but only use a sparse set of M <N
data points in the energy expression Eq. (1). In this manner, the
training costs are substantially reduced and the energy predic-
tion cost becomes formally independent of the training set size.
Of course, this means that the sparse points need to be suitably
selected.

For the two-body potential, this is achieved by placing the
sparse points on a regular grid between zero and the cutoff length
Teut2B. For the high dimensional MB potential, such a grid would
be extremely inefficient, however. If the training set is reason-
ably small (i.e., on the order of 1000 unique atomic environ-
ments per element), all atomic environments can be used as sparse
points instead. For larger training sets, the most diverse environ-
ments of each species are selected using CUR decomposition.”
Note that even if all environments are used, a GAP is always a
sparse GPR model, as the full GPR model would use a regres-
sion coefficient for every single force component in the training
set. This becomes prohibitive even for fairly small training sets so
that training a GPR model on forces, in practice, always requires
sparsification.

4. Kernel distance

In addition to being a crucial ingredient of the GAPs them-
selves, the SOAP kernel can also be used for selecting new training
structures for the iterative training scheme described below. To
obtain a data-efficient approach, it is important to ensure that the
structures that are iteratively added to the training set are maximally
different from training configurations already present in the set. As
discussed above, SOAP measures the similarity of atomic environ-
ments and not of complete configurations of atoms, however. It is,
therefore, common to use the averaged or matched similarities of
the environments in two configurations for such a selection task.' "’
While this is very useful for comparing and mapping structures,”
such global comparisons can overshadow the presence of a single
unusual atomic environment, in an otherwise similar configuration.
This is particularly prominent in surface applications, where inside
the employed supercells, a dominant fraction of bulk-like atoms is
always present in the inner layers of the slab. We, therefore, rather
define the similarity of configurations A and B (where B could also
be a group of different configurations) by the minimal similarity
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kms (x5 x;,) between two atoms a € A and b € B, where only iden-
tical species are compared. For convenience, we further convert this
similarity provided by the SOAP kernel into a kernel distance using

k(A,B) = \/ 2~ 2min(kus (x,-%,))- )
beB

where a larger distance (A, B) indicates more dissimilar structures.

B. Density functional theory calculations
1. Computational settings

To achieve a predictive-quality GAP, all training data for
both metallic oxides are computed with first-principles semi-local
DFT using the revised Perdew-Burke-Erzerhof (RPBE)*’ func-
tional to treat electronic exchange and correlation. The periodic
boundary condition calculations are performed using a plane-
wave basis set together with SGI15 optimized norm-conserving
Vanderbilt pseudopotentials®’ as implemented in the Quantu-
mEspresso software package.”’ The kinetic cutoff energy for the
expansion of the wave function and the charge density are set
to 80 and 320 Ry, respectively, and Brillouin zone integrations
are performed with a uniform reciprocal distance of 0.02 A",
This generates (11 x 11 x 16) k-point grids for both rutile IrO,
and RuO; bulk unit cells and corresponding grids for the vari-
ous surface supercell calculations. Optimized lattice parameters for
both the oxides are obtained by minimizing the stress tensor and
all internal degrees of freedom iteratively until the external pres-
sure falls below 0.5 kbar. Geometry optimization for the surface
calculations employed Broyden-Fletcher-Goldfarb-Shanno (BFGS)
minimization'*** until residual changes in total energy and all force
components fell below 1.4 x107> meV and 0.3 meV/A, respec-
tively. At these computational settings, convergence tests detailed
in the supplementary material demonstrate a high degree of con-
vergence of the key quantities entering the GAP potential training,
i.e., surface free energies to within 5 meV/atom and forces to within
50 meV/A.

2. Supercell setups

All five symmetry-inequivalent low-index surfaces (hkl) of
rutile IrO; and RuO; are modeled via a supercell approach.”*”
Each slab model exposes a (1 x 1) surface unit cell and contains
at least seven trilayers of MO, units (see Table S1 for a detailed
list). A minimum vacuum region of 15 A thickness prevents inter-
actions between periodic slabs. Truncation at different planes in the
(hkl) crystal orientation generally gives rise to one metal-rich, one
stoichiometric, and one oxygen-rich termination for all considered
facets. One exception is (111), where two different stoichiometric
terminations arise. Likewise, for the (001) facet, layered trunca-
tion leads only to a stoichiometric termination. Here, we, therefore,
also consider one termination with an oxygen vacancy and one ter-
mination with an excess oxygen at the very top layer to build a
metal-rich and oxygen-rich termination for this orientation, respec-
tively. Under strongly oxidizing conditions, the rutile surfaces are,
furthermore, known to stabilize peroxo-type surface moieties.”"”
One such peroxo-termination for each facet is also considered, with
all structures further detailed in the supplementary material.
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3. Ab initio thermodynamics

In order to determine the relative stability of different sur-
face structures in thermodynamic equilibrium with a surrounding
oxygen-containing gas phase, we adopt the ab initio thermodynam-

ics approach’"”” and calculate the surface free energy ys(fffl)’a of a
given crystallographic orientation (hkl) and termination o as
(nklyo 1 (hkl),o (hkl),o
YSurf - A(hk]) [Gsurf - Zni #’:I (6)

Here, Gs(fff’)’” is the Gibbs free energy of the surface system with sur-

(hkl)

face area A" and y; is the chemical potential of various species i

[i =Ir (or Ru) and O] present in the system. n,.(hkl)’a is the number of

atoms of species i within the periodic supercell of the slab model.
Assuming the surface to be in thermodynamic equilibrium with
the respective bulk MO, (M = Ir or Ru) phase, we can connect the
chemical potentials of metal (¢,,) and oxygen (u) to the Gibbs free
energy of MO, bulk, Gyo, bulk = M + 2po. The chemical potential
of oxygen is instead set by the equilibrium with the surrounding
gas phase. It is calculated as po = %Eo2 + Apo, with Eo, being the
total energy of an isolated O, molecule including zero point energy
(ZPE) contributions” and the relative chemical potential Ay, allow-
ing to connect to finite temperature and pressure (T, p).“”‘lz In
the difference in Eq. (6), the condensed-phase Gibbs free energies
are approximated by the DFT-computed total energies.”' The final
working equation to determine the surface free energies, thus, reads

(hkl).o 1 (hkl),o  (hkl).o
Ysurf (A‘uo) - 2 A (hkD) [Esurf — M

o o 1
gt )

Enmo, buk

C. Molecular dynamics simulations
1. Simulation details

All GAP based molecular dynamics (MD) simulations are
performed with the LAMMPS code’® and using the velocity Ver-
let algorithm as the time integrator.”” The periodic boundary con-
dition simulation cells contain (1 x 1) symmetric slabs with at least
seven trilayers (see Table S1 for all unit-cell lattice vectors and slab
thicknesses), separated by at least 15 A vacuum.

2. Simulated annealing

For the combined global geometry optimization and iterative
identification of new structural motifs for GAP training, we employ
a SA protocol. Exploiting the small volumetric thermal expansion
coefficients for both IrO; and RuQ,,* the SA is carried outata 1 fs
time step within a canonical ensemble and only relies on an efficient
Berendsen thermostat.”’ In the SA, the temperature is first raised
from 200 to 1000 K for 500 ps. After that, the system is quenched
back to 200 K within another 500 ps, i.e., we apply a constant heating
and cooling rate of 1.6 K/ps. The initial GAP V generated from the
bootstrapping set (see below) still offers only a poor description of
the potential energy surface, which is why for the SA in the very first
refinement step we chose to only heat up to 500 K with a decreased
heating and cooling rate of 0.8 K/ps.
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The resulting finite temperature structure after each SA is
finally fully optimized through conjugate gradient minimization
with the same convergence threshold as used for the DFT calcu-
lations. For the surface structures contained in the initial training
set, these optimized structures are obtained by minimization starting
from the bulk-truncated geometries.

I1l. RESULTS AND DISCUSSION

A. Data-efficient simultaneous GAP training
and surface exploration protocol

1. Bootstrapping

Our iterative GAP training protocol starts with a bootstrapping
step, in which we assemble an initial dataset to establish a prelim-
inary potential. This first GAP V should fulfill certain minimum
criteria regarding the anticipated chemistry of the targeted system
and application. One guideline is, thus, to select training struc-
tures that optimally convey this chemistry and (largely) cure obvious
teething problems such as non-physical atomic pair potentials or the
(concomitant) instability of key reference structures. In view of data
efficiency, another guideline is to select training structures that pro-
vide maximum information (e.g., in the form of symmetry-allowed
forces on atoms) at a minimum DFT computational cost (e.g., for
small supercell structures).

To the least, the GAP V, should cover the bulk reference states
of the species in the system, i.e., here crystalline rutile MO, and
the gas-phase O, dimer. Next to the mandatory atomic energies
(in the case of oxygen provided as 1/2 of the O, energy), our ini-
tial training set, therefore, contains O, dimer data at varying O-O
bond lengths that extend over the attractive, equilibrium, and repul-
sive parts of the DFT O-O binding energy curve. Analogously, it
contains rutile MO, bulk unit cells at compressed, optimized, and
decompressed DFT lattice parameters, as well as with displaced
internal coordinates.

With a view on the intended surface structure determination, a
final category of structures is spanned by different (1 x 1) termina-
tions of all five rutile low-index facets, each time in a bulk-truncated
geometry and in the DFT optimized geometry. Specifically, we
include the 21 structures that result from systematically consider-
ing metal-rich, stoichiometric, and O-rich terminations, as well as
terminations with an additional peroxo (-OO) group for all facets.
The exact geometries of all structures in the, thus, resulting ini-
tial training set for both RuO, and IrO; are provided in an online
repository.”’

2. Hyperparameter selection

As outlined in Sec. 1T, training a GAP requires selecting a series
of hyperparameters. Most prominently, these are the §-weights con-
trolling the relative contributions of 2B and MB terms in Eq. (1) and
the regularization parameters o, in Eq. (2). Herein, we use separate
parameters o and of for energies and forces, respectively. Addi-
tionally, GAP requires the definition of the number of sparse points
Mg, Mug. There are also a number of hyperparameters related to
the choice of representations and kernels. In particular, both 2B
potential and SOAP use a cutoff radius (rcut,28, 7cu,soap) for atomic
interactions and both use a Gaussian broadening to control the
smoothness of the representation (028, 0soap). Finally, SOAP uses a
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set of radial and angular basis functions to expand the atomic envi-
ronment, the number of which is controlled by the parameters #max
and lnax.

The selection of these parameters is challenging in iterative
training schemes. While it is possible to optimize the parameters on
the bootstrapping set, it is unclear whether this choice is transfer-
able to the larger training sets subsequently generated. Fortunately,
reasonable heuristics and physical insight can be applied to mitigate
this issue. For example, the weighting of 2B and MB contributions is
estimated from the residual error of a pure two-body potential fit on
the bootstrapping set. Here, it is important to note that these weights
828, Omp are priors, which are multiplied with the regression coeffi-
cients in Eq. (1). This means that the actual contributions of the MB
and 2B terms can deviate from these priors, if this allows minimizing
the loss function (within the flexibility afforded by the regulariza-
tion). Consequently, it is not necessary to redetermine the & values
every time the training set is increased. Similarly, the regularization
parameters o and of are chosen to balance between overfitting and
underfitting (see Fig. S6).

Meanwhile, the cutoff parameters rcy,28 and reus0ap are related
to the characteristic length scale of interatomic interactions in the
material. These interactions result from a complex interplay of
short-ranged chemical bonds, mid-ranged polarization and van der
Waals effects, and long-ranged Coulomb interactions. It is, there-
fore, not a priori possible to decide on an appropriate cutoff length.
Fortunately, the locality of interactions in a given material can be
estimated by analyzing the induced forces on a reference atom when
atoms at increasing distances are displaced in DFT calculations.'® A
corresponding locality test for IrO, detailed in the supplementary
material motivates using cutoffs of rcur2B = reur,50AP = Feut = 5 Ain
this study.

Given the cutoff, the remaining SOAP parameters (0s0AP, #max
and Im.x) determine how the atomic environment within the cut-
off radius is described. As a general rule of thumb, we choose the
number of radial functions (#max) to be twice the number of angular
functions (Imax), as it has been shown that using larger radial band
limits than angular band limits generally leads to better accuracy for
a given computational cost.”> Herein, we find essentially converged
performance on the bootstrapping set with #1max = 8 and Imax = 4 (see
the supplementary material). The full set of hyperparameters used is
compiled in Table I.

3. Assessment of initial GAP Vo

As intended, the initial GAP V) trained with the bootstrapping
set displays stable reference structures. The optimum O, dimer dis-
tance exactly matches the DFT value of 1.22 A, and the optimum
bulk MO lattice parameters are within 0.5% of the corresponding
DFT parameters. The O, binding energy and MO, bulk cohesive
energies are reproduced within 16 and 25 meV/atom, respectively.

Gratifyingly, this local stability also extends already to most of
the (1 x 1) low-index surface structures contained in the bootstrap-
ping set. Figure 1 compiles the absolute differences of surface free

energies |ys(:ffl)’°| computed with DFT and the preliminary GAP V)
for these surfaces. Shown are the data not only for the (necessar-
ily identical) bulk-truncated geometries but also after optimizing
the structures on the respective potential energy surface (PES).
This means that starting from the bulk-truncated surface geome-
try, the GAP structure is optimized on the GAP PES, while the

J. Chem. Phys. 155, 244107 (2021); doi: 10.1063/5.0071249
Published under an exclusive license by AIP Publishing

185, 244107-5


https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0071249
https://www.scitation.org/doi/suppl/10.1063/5.0071249
https://www.scitation.org/doi/suppl/10.1063/5.0071249

The Journal

of Chemical Physics

TABLE I. GAP hyperparameters employed in this work.
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feut (A) om(A) 028(eV) Mg osoar(A) fmax Inax Om(eV) Msoap oe(eV) or(eV/A)
IrO, 5.0 1.0 0.362 25 0.6 8 4 0.100 2000 0.001 0.01
RuO, 5.0 1.0 0.326 25 0.6 8 4 0.086 2000 0.001 0.01

DFT structure is optimized on the DFT PES, here and later always
fully relaxing the entire slab.”’ Figure 1 also compares the structural
similarity of the two resulting minimum structures for each of the
16 IrO; surfaces as quantified by their kernel distance x. With the
notable exception of the (101) metal-rich termination, «x is smaller
than 0.075 throughout, indicating a high similarity of the corre-
sponding PES basins. We, thus, achieve already at this stage a highly
satisfactory description of these PES parts of highest relevance for
structure determination, as also evidenced by the consistently low
error in the GAP surface free energies. Even the structurally and
energetically much dissimilar GAP minimum structure for the (101)
metal-rich termination does actually not reveal a major shortcom-
ing of the initial GAP. Instead, it is, in fact, already a first success of
the global structure determination to which we will return in more
detail below.

Nevertheless and not surprisingly, the initial GAP is not per-
fect though. This is prominently reflected by a complete instability
of the five peroxo terminated surfaces contained in the bootstrap-
ping set. Upon GAP relaxation of the corresponding bulk-truncated
geometries, the peroxo group always detaches to form an O, dimer.
To analyze this problem and generally obtain insight into gener-
ated GAPs, we found an analysis of atom pair potentials (or atom
binding energy curves) as shown in Fig. 2 to be a useful tool.
This analysis is based on the number of local environments in the
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FIG. 1. Absolute difference of IrO, surface free energies |y$§0"’| computed by

DFT and with the initial GAP V, for 16 different facets and (1 x 1) terminations
contained in the bootstrapping training set. Shown are the data for the bulk-
truncated geometries (red crosses) and optimized geometries (blue crosses). In
the latter case, the optimization is performed on the corresponding potential energy
surface, and the DFT and GAP structures compared are, thus, not necessarily the
same. The shown kernel distance «prreap, cf. Eq. (5), provides a measure for this
structural dissimilarity (green rhombuses). Analogous results for RuO, are shown
in Fig. S8.

current training set that actually conveys information of specific
two-body distances between the atomic species. Contrasting this
number as done in Fig. 2 with the predicted binding energy curves
between two atomic species (here M-M, M-O, and O-0) readily
discloses a possible lack of relevant information. Precisely, in dis-
tance ranges for which current training structures do not provide
data, these binding curves tend to exhibit non-physical behavior,
e.g., numerous minima or a lacking repulsive wall at short dis-
tances. Assessing the two-body distances contained in potential new
training structures then shows whether they actually provide data
on hitherto undersampled distance ranges. This provides a man-
ual way to identify most meaningful new training structures, before
the computationally demanding DFT calculations are actually initi-
ated. In the present case, this type of analysis led us, for instance, to
include the five peroxo terminations into the bootstrapping set in the
first place, as they convey important information on shorter O-O
distances. As apparent from Fig. 2, there is still a lack of relevant
structural information at O-O distances around and above 1.5 A,
which is precisely the range relevant for the surface peroxo groups.
The O-O pair potential correspondingly shows a non-physical form
in this range, rationalizing why the peroxo groups decay into the
more stable O, dimer within this initial GAP V. In contrast, the
relevant range of Ir-O and Ir-Ir distances is sampled quite well by
the structures in the bootstrapping set. Correspondingly, the Ir-O

Binding energy(eV) Data points

0 1 2 3 4 5
Atomic distance (A)

FIG. 2. Atom pair potential analysis for the initial GAP V;. (Bottom) GAP pre-
dicted binding energy as a function of distance between two Ir atoms, two O atoms,
and an Ir-0O atom pair. (Top) Number of local environments in the bootstrapping
training set that provide corresponding two-body distances in their representation.
Analogous results for RuO, are shown in Fig. S9.
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and Ir-Ir pair potentials predicted by the GAP V| potential also look
reasonable. The Ir-O potential shows one clearly defined minimum
around distances corresponding to equilibrium distances in bulk
IrO,. As the bootstrapping training set does not include Ir metal
structures, the Ir-Ir pair potential instead is purely repulsive. This
reflects the obvious fact that the training structures generally tailor
the GAP for the intended application, and at least in its present form,
this initial GAP V would not be transferable to e.g., address oxide
reduction to the parent metal.

4. Iterative refinement

While the atom pair potential analysis provides leads toward
a manual addition of further training structures, we rather seek
to establish a generic protocol that depends less on the chemical
insight of the researcher. In a second stage of our training proto-
col, we, thus, refine the initial GAP V) in an iterative process. To
ensure a high data efficiency, this process is specifically tailored for
the intended use of surface structure determination. This use case
requires a sufficiently precise representation of the PES basins that
act as funnels into the distinct local minima, while the remaining
PES only needs to be known to the extent that it shall not contain
barriers between basins that are insurmountable by typical global
optimization and PES exploration techniques. To some extent, we,
thus, trade versatility for data efficiency and concentrate on exclu-
sively identifying new meta-stable surface structures (PES minima)
as additional training structures for the GAP. Obviously though, this
concept is readily adapted to other use cases, notably, e.g., by selec-
tively including transition states into the training when aiming for
kinetics.

This specific basin-focused ansatz intrinsically blurs the lines
between the iterative GAP training and the actual global geometry
optimization, since the identified “novel” training structures are
themselves already the sought-after, new, and dissimilar surface
structures beyond the conventional terminations that were already
included in the bootstrapping set. Here, we illustrate this concept
by specifically exploring the chemical space of all low-index sur-
face structures with (1 x 1) surface unit-cell periodicity. As detailed
below, we reach a high data efficiency for this sub-space, iden-
tifying an intriguing, unknown class of surface structures termed
complexions after having computed a minimum number of addi-
tional DFT structures. In future work, the final GAP trained this
way could serve as a starting point for the exploration of larger sur-
face unit-cell reconstructions, then iteratively adding corresponding
structures to the training set. An additional challenge at this stage
will arise when such structures extend over surface unit cells that are
no longer tractable with direct DFT calculations, and thus, appro-
priate smaller models containing the same structural motifs need
to be found for the training. One important aspect to this end
could be the here pursued multi-task learning, i.e., training the GAP
simultaneously for all five low-index facets. This creates a vari-
ety of structural motives already within the small (1 x 1) surface
unit cells that otherwise would potentially have to be learned in
larger surface unit cells when training the GAP only on a single
facet.

For the present exploration of the chemical space of low-index
(1 x 1) structures, we implement the iterative refinement process by
executing the steps summarized in Fig. 3 at every refinement step s.
Parallel SA runs based on the GAP V,_;, which resulted from step
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s — 1, are spawned for the 16 different surface types shown in Fig. 1.
As the geometric details of the initial surface structure from which a
SA is started are lost in the heating phase, we use these 16 different
SAs primarily to sample the structural space of different chemical
compositions and always start from the respective bulk-truncated
terminations for simplicity. Note that our interest is here more in
O-poor environments where the new complexions form (see below).
This is why we do not further consider the highly O-rich peroxo
terminations included in the bootstrapping set, but seek to obtain
training data for short O-O distances otherwise.

After cooldown and optimization, we then arrive at 16 new

GAP basin candidates Bcgfll,)’a(s) in each refinement step s. Each

candidate is compared to all previously identified basins {B"*"}
of the same Miller index (hkl) and termination ¢ using the kernel
distance «, cf. Eq. (5). Figure 4 shows the evolution of x during six
selected SA runs in the first refinement step s = 1, where {B"")o}
consists for each (hkl, o) only of the corresponding bulk-truncated
and DFT-optimized surface structure contained in the initial boot-
strapping set. In two of the shown SA runs (as well as in the other ten
not-shown ones), k decreases back to essentially zero after cooldown
and the subsequent geometry optimization, indicating that the can-
didate structure has collapsed back into the known basin from the
bootstrapping set. In contrast, in four runs, finite values x > 0.075
remain during cooldown and optimization. Visual inspection, cf.
Fig. 4, reveals that in all four cases, a new PES basin with a distinct
structure has been found. Based on this experience in the first refine-
ment step, we employ kit = 0.075 as a system-specific parameter
for all later steps s > 1 and classify a GAP basin candidate as hith-
erto not known, if it exhibits a k > kit with respect to all previously
assembled basins {B"7}.

Every new GAP basin candidate is subsequently subjected to

a DFT optimization to obtain DFT basin candidate BCl()};kTI)’U(s). If
this does not lead to any significant structural changes with respect

to BC(G}XCIZ,)’O(S), here and henceforth indicated again by a similar-
ity measure k < Kcrit, then there is no need to consider both similar
structures in the GAP training, and only the new DFT basin struc-
ture BCg}le)’”(s) is added to the pool of known basins {B}. If there
is a significant structural difference and the DFT basin structure was
not known, then both the GAP basin candidate BC((}}ZCQ‘J(S) and the

DFT basin candidate Bcgﬁ)’o(s) are added to the pool. If, instead,

there is a significant structural difference between BC((;}Z(II,)’“(S) and

BCI()}g(Tl)’"(s), but BC]()};le)’”(s) was already known, then the current
GAP potential V; provides apparently only an insufficient represen-
tation of this known basin. Since the DFT basin is already contained
in the pool of known basins, only the new GAP basin candidate
BCU%D7 (s) is added in this case.

As shown in Fig. 3, this iterative process is repeated until no
further new basin candidate is added to the pool in refinement step
s. At this point, we declare the training protocol as converged and
conclude that all relevant energetically low-lying PES minima in the
sampled sub-space of (1 x 1) surface unit cells have been found.
Note that this situation arises only when no unknown basins are
found, and the last GAP refinement V,_; — V; has not led to any
significant structural relaxation of previously found GAP basins.
In the present application to the rutile oxides, this convergence is
quickly reached in s = 12 iterations. The final pool of known basins
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FIG. 3. Flowchart of the iterative GAP training protocol.

contains an additional 80 structures for IrO, and 63 structures for
RuO; beyond the 32 surface structures already contained in the
bootstrapping set. Of these, 53 (IrO;) viz., 43 (RuO;) correspond
to DFT optimized geometries, with the remaining ones correspond-
ing to GAP optimized geometries. All structures are provided in an
online repository.”

Adding a GAP optimized geometry to the training set requires
only a DFT single-point calculation. Compared to this, the DFT
geometry optimization of a (1 x 1) surface structure required to
add a DFT optimized geometry to the training set is computation-
ally much more demanding. In this respect, the fact that for the
exploration of the sub-space of all low-index (1 x 1) surface struc-
tures, only 53 (IrO;) viz., 43 (RuO;) such optimizations are needed
attests to the high data efficiency of our approach. While this does,
in fact, not constitute any significant computational burden on mod-
ern supercomputing architectures, we, nevertheless, chose to further
increase the computational efficiency of our approach by threshold-
ing the costs for these DFT geometry optimizations. For this, any
optimization is stopped, if relaxation is not achieved within the first

20 geometry steps. In this case, we simply employ the last geometry

as a sufficient proxy for BCI()thTI)’” (s) for the purpose of differentiating

known and unknown basins. Further increases in efficiency could be
reached by performing the SAs only for subsets of all surface orien-
tations and terminations, e.g., selected on the basis of farthest point
sampling of structural dissimilarity of all acquired basins at the time.
Yet, all of this will only start to play a role when extending the global

geometry optimization to larger surface unit cells and will be the
topic of future work in our group.

B. Novel structures and surface phase diagram

As mentioned above, the iterative refinement blends GAP
training with the actual surface structure exploration, i.e., the
basins accumulated in the final GAP training pool constitute at
the same time the result of the SA-based global geometry opti-
mization. It is worthwhile to emphasize the elegant efficiency of
this approach: The extensive energy and force evaluations under-
lying the SA PES exploration are performed at the undemanding
GAP level, while novel identified basins are immediately validated
by computationally less demanding DFT geometry optimization as
part of the training protocol. Every DFT basin contained in the
final pool of GAP training structures is, therefore, already intrin-
sically validated at the first-principles level. Of course, not all of
these meta-stable PES minima are physically really relevant. Many
are likely energetically rather unfavorable and were only added to
the training pool to pinpoint specific structural motives for the
GAP.

Thermodynamically relevant is instead at best only the lowest-
energy structure within each (hkl),o class, i.e., defined facet ori-
entation and surface stoichiometry. In this respect, the resulting
pool of structures is highly intriguing and underscores impressively
the necessity of global geometry optimization for reliable surface
structure determination. Even though the sub-space of structures
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panel) Side views illustrating the identified new structures (Ir atoms drawn as larger blue spheres and O atoms as smaller red spheres). Shown for all four cases are the
initial training structure, the structure obtained after cooldown, and the structures obtained after the final GAP and DFT geometry optimization (see main text). The x values
of these optimized geometries are additionally highlighted in the left panel as correspondingly colored stars (GAP PES minimum) and crosses (DFT PES minimum).
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FIG. 5. Unconventional and energetically more stable (1 x 1) IrO, surface structures identified during the GAP training and surface exploration protocol. Top row: side view
of the conventional (hkl), o termination resulting from truncating the bulk oxide-layering sequence and subsequent DFT geometry optimization. Bottom row: side view of
the identified most stable structure, with the relative difference in surface free energy stated explicitly [see main text for the (101) metal-rich termination]. Ir atoms are drawn
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results for RuO, are shown in Fig. S10.
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with (1 x 1) surface unit cells was initially only chosen for the
methodological development of the training and exploration proto-
col, energetically lower-lying terminations are, in fact, identified for
eight (IrO;) and seven (RuQO,) of the 16 (hkl),o classes. In other
words, even within the restricted structural possibilities of these
small unit cells, more stable alternatives to the conventionally con-
sidered simple truncations of the bulk oxide-layering sequence are
for both oxides found in about half of the cases.

As detailed for IrO; in Fig. 5, these unconventional structures
extend over metal-rich and stoichiometric surface compositions,
and are in many cases energetically significantly more stable than
their conventionally considered bulk-layered counterparts. Partly,
the new structures are somewhat obvious and may, thus, potentially
also have been tested as part of a human-devised set of trial candi-
date structures. This concerns notably open structures such as those
of the (001) metal-rich or (111) stoichiometric class, where termi-
nal O atoms do not occupy the (relaxed) sites corresponding to the
next layer in the bulk-layering sequence, but instead to the second
next one. However, especially for the (101) metal-rich and (111)
metal-rich class, the novel structures with their concomitant strong
energetic lowerings are quite counter-intuitive and had never been
reported in the literature before our preceding work.!’ Once under-
stood, they are conceptually straightforward, too, though. They
correspond to a reordering of the layering sequence, in which a
terminal metal layer swaps its position with an oxygen layer and,
thereby, achieves a higher O-coordination for its metal atoms.

For the (101) metal-rich termination, the concomitant stabi-
lization is, in fact, so strong that the conventional termination is
not even a local minimum on the DFT PES anymore. It relaxes
barrierlessly into the reordered structure, which is why we state
the relative energy lowering in Fig. 5 with respect to the artifi-
cial bulk-truncated and unrelaxed conventional termination. For
IrO,, this conventional termination is spuriously (meta-)stabilized
when only relaxing a finite number of outermost slab layers (and
freezing innermost slab layers) as is typically done in DFT geom-
etry optimization. As this was also done in the creation of the
bootstrapping training set, this conventional (101) metal-rich ter-
mination is part of the IrO, set. As noted above, the entire slab
is instead flexible in the GAP SA runs and subsequent DFT opti-
mizations, and even the preliminary GAP V, then immediately led
to this new structure, as reflected by the high kernel distance x
for this (101) metal-rich class in Fig. 1. In contrast, for RuO,, the
conventional termination is never meta-stable, even if only a few
outermost layers are relaxed during the DFT geometry optimization,
of. Fig. S8.

Whether or not the identified, novel lower-energy structures
play a role thermodynamically depends on the environment to
which the oxide is exposed. Here, we specifically consider an oxy-
gen atmosphere. Figure 6 correspondingly shows the surface phase
diagram for IrO, and RuO; in the explored sub-space of (1 x 1)
surface structures as a function of the oxygen chemical potential
of this surrounding gas phase. Within the ab initio thermodynam-
ics approach,”"** such a surface phase diagram is constructed by
computing the surface free energy, ygfffl)’a(Ayo) of Eq. (7) for each
DFT-optimized basin and plotting for each Ay, only the lowest
energy one for each of the five facets. In the specific case of the
here explored (1 x 1) structures, the lines in the resulting sur-
face phase diagram are easily read. A positive slope indicates the
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FIG. 6. DFT surface free energies ys(uh:')"’ of the five symmetry-inequivalent low-

index facets of IrO; (top) and RuO, (bottom) in a pure oxygen atmosphere. In the
top x axis, the dependence on the oxygen chemical potential Ay, is translated into
a temperature scale at 0.2 bar pressure (the oxygen partial pressure in air). Shown
is for each facet only the surface free energy of the most stable termination at
each chemical potential. Each kink in the corresponding line indicates, therefore,
the change to a different termination with a different stoichiometry. The dashed
lines indicate the surface free energies when only considering the conventional
(relaxed) bulk oxide-layered terminations (see main text).

stability of a metal-rich termination in the corresponding range of
oxygen chemical potentials, a horizontal line indicates the stability
of a stoichiometric termination, and a negative slope indicates the
stability of an O-rich termination. Any kink in the continuous line
representing one facet orientation, therefore, reflects a change to a
more stable termination with a different stoichiometry.

As apparent from Fig. 6, quite some changes are induced
by the novel structures as compared to the surface phase dia-
gram when only considering the conventional bulk oxide-layered
terminations.'””’ Notably, this extends to O-poor conditions, where
the novel metal-rich (101) structure results as, by far, most stable
for both oxides. For IrO;, this intriguing result (and first-principles
prediction) has been validated by experimental work on crystals
grown under corresponding O-poor conditions.'” Detailed surface
science characterization confirmed the dominance of the (101) facet
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and the specific geometry of this novel structure. Accompanying
calculations showed that no further stability gains can be reached
by a reordering of deeper layers. This places this novel structure
close to so-called complexions as discussed for complex ceramic
materials.”” These complexions possess a thermodynamically deter-
mined equilibrium thickness on the order of nanometers, but are
thin versions of neither a known 3D bulk phase nor a reconstructed
surface layer. In this preceding work, a recomputation of this com-
plexed (101) metal-rich termination for RuO, suggested that this
novel structure should also be stabilized for this oxide. As seen in
Fig. 6, we can now confirm this on the basis of the proper sur-
face exploration performed for this material. At the same time, it
is also for RuO, that the literature already tells that the surface
phase diagrams on the basis of the sub-space of (1 x 1) surface
unit cells cannot yet be complete: The deactivation of this cata-
lyst for CO oxidation had been assigned to the formation of a
¢(2 x 2) reconstruction of the (010) facet.’* Extending the data-
efficient GAP training and exploration protocol to such larger sur-
face unit cells correspondingly forms the natural next topic of our
work.

IV. CONCLUSIONS AND OUTLOOK

We have presented a protocol for surface structure determina-
tion through a surrogate ML potential that achieves high efficiency
with regard to the required first-principles calculations by mixing
the potential training and surface exploration. In an iterative pro-
cess, the employed GAP identifies novel structures through exten-
sive SA-based sampling of the potential energy surface and is refined
by adding sufficiently dissimilar structures to its training pool. In its
construction, this protocol is aimed for general usage. Here, we have
illustrated it with the application to surface structure determination
of low-index facets of rutile IrO, and RuO; within the sub-space of
structures with (1 x 1) surface unit cells. Intriguingly, already in this
restricted space, a number of non-intuitive low-energy structures
are identified that would potentially have escaped the more tradi-
tional approach of testing a set of candidate structures devised by
the researcher.

The obvious next step in developing an automatized work-
flow for surface structure determination in less restricted structural
spaces would be to consider larger surface unit cells, e.g., to address
some known surface reconstruction. For tractable unit-cell sizes, the
present protocol should, in principle, be readily applicable. For one,
one would only face concomitantly larger computational costs for
each required DFT training structure. More problematic is the larger
range of different possible surface stoichiometries, as the actual sur-
face composition is generally not known, even if the surface unit
cell is. For the here considered sub-space of (1x 1) structures,
this compositional range comprised metal-rich, stoichiometric, and
oxygen-rich compositions. Many more relative compositions would
have to be considered for general (m x n) surface unit cells in
the present approach rooted on separate, canonical PES sampling.
Ultimately, grand-canonical schemes could become appealing, but
would have to be appropriately integrated into the GAP train-
ing. A final grand challenge arises in the context of completely
unbiased surface structure determination extending over surface
unit cells of unknown size and shape. To the least, schemes will
need to be developed that extract those local environments and
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geometric motives deemed important for the ML potential train-
ing into surface unit cells that can still be accessed by first-principles
calculations.

SUPPLEMENTARY MATERIAL

See the supplementary material for the details of DFT con-
vergence tests, bulk-truncated surface structures, hyperparameter
selections for regularization parameters and the cutoff radius, and
results for RuO,.
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