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Figure S1. Predictive skill of the regression:
Interannual variations of the sea–air CO2 flux estimated by the multi-linear regression using all pCO2 data (orange) and by test regressions
with artificial 5-year data gaps (Sect. 2.3, black) as in the example in Fig. 5 (middle). For clarity, the test runs are only shown during their
respective data gaps, i.e., the reconstructed flux variations only.

The figure demonstrates that the predictive skill illustrated in Fig. 5 (middle) holds generally for all parts of the ocean and other 5-year data
gaps. In some cases (especially in regions south of 45� S), the long-term mean cannot completely be reconstructed without the respective
discarded data, but the year-to-year variability mostly stays the same. This means that no particular pCO2 data point is causing features in
the flux variability and the sensitivities �i estimated by the multi-linear regression by its own.
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Figure S2. Testing the mutual independence of the explanatory variables in the regression:
Estimated sensitivities of the internal DIC flux against non-seasonal variations in SST, dSST/dt, and u2. Left: Base case (using all of SST,
dSST/dt, and u2) as in Fig. 4. Right: Three test regressions each using the respective one of the explanatory variables only.

The sensitivity patterns from the three test regressions using individual explanatory variables (right) are similar to the base case using
all three together (left), especially for the sensitivity against dSST/dt (top row). This could not be the case if there would be substantial
collinearity between the explanatory variables. We conclude that the sensitivities can be estimated rather independently from each other.
The sensitivities against SST (middle) and u2 (bottom), when used individually, are slightly increased, which may indicate a small amount of
collinearity between these two.
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Figure S3. Contributions to the secular carbon flux trend:
Linear 1960–2019 trends of the regression terms related to
SST (red) and u2 (light blue) from Fig. 3 (base case of
the multi-linear regression, solid bars) and various uncertainty
cases (Table 2, hashed bars). The trends in the regression
terms (contributions to the ocean-internal DIC flux) cause
contributions to the trends in sea–air CO2 flux of very similar
strength (not shown). The error bars give the formal error of the
slope calculated from 5-year flux averages as in Fig. 10. The
uncertainty case RegrNoDecad has been omitted here because
it artificially lacks any trends in SST and u2 by construction.
The uncertainty case RegrAddU4 has been omitted as well
because a large part of the wind-related trend is contained in the
additional u4 regression term and would thus be invisible here.
The regression term related to dSST/dt is not shown because it
has very small trends (see Fig. 3).

The rising SST causes some trend towards less CO2 source
in the tropics (mainly in the tropical Pacific) due to the
negative �SST sensitivies estimated there (Fig. 4, middle). Some
smaller trends are also found in the other latitudunal bands.
The estimated trend gets more negative when using SST data
from NOAA-ER (RegrSSTNOAA) rather than Hadley EN,
which is related to a jump in SST values in the NOAA-ER
reconstruction. Also the use of wind speed data from NCEP
(RegrU2NCEP) changes the estimated trend, pointing to some
statistical dependence between the regression terms related to
SST and u2. We are not confident that the estimated SST-
related trend reflects a real mechanism, but rather assume that
the response of fint to a secular temperature trend is not well
described by the �SST sensitivies determined in the regression by
variability on the ENSO time scale. For example, ENSO-related
SST variations originate from changes in upwelling which also
affects carbon fluxes, while the secular SST trend is rather
caused by heat uptake from the atmosphere.

Wind-related trends are small in all latitudunal bands except for
the Southern Ocean, where the secular increase in wind speeds
leads to more and more CO2 outgassing. When using NCEP
wind speed data (RegrU2NCEP), the estimated trend is larger
than in the base case using JRA55-do wind speeds. Again, we
also see some cross effect when using the alternative SST data
set (RegrSSTNOAA). The trend estimate in the Southern Ocean
is further affected by mixed-layer depth (MLDq2, MLDx2).
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Figure S4. Results of the uncertainty cases:
Yearly sea–air CO2 flux as in Fig. 6 estimated by the multi-linear regression (base case, orange) and the uncertainty cases listed in Sect. 2.2.
The cases with the largest impact on interannual variability (RegrSSTNOAA, RegrU2NCEP, RegrAddpaCO2, RegrNoDecad) are plotted
explicitly in different colors. As the cases related to gas exchange (GasexLow, GasexHigh, GasexU1, GasexU3) shift the long-term mean
of the flux, the range of this shift has been indicated by the length of the vertical orange bars just to the right of each panel for clarity. Due to
their rather small impact, the remaining uncertainty cases (RegrAdddSSTdt2, RegrAddU4, RegrLoose, RegrShort, MLDq2, MLDx2) have
been subsumed into the pale orange band depicting their envelope.
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Figure S5. Impact of the chosen a-priori correlation lengths:
Sensitivities of fint to changes in the explanatory variables as in Fig. 4 estimated by the base case (left, identical to Fig. 4) and by the
uncertainty case RegrShort with a shorter a-priori correlation length scales in the 3 regression terms where any decadal variability from the
3 explanatory variables has been removed (right).

Even though the flux variability hardly changes when using shorter a-priori correlation lengths for adjusting the sensitivities (RegrShort

being part of the narrow uncertainty band in Fig. S4), the spatial patterns of the underlying sensitivities (�i) notably become more patchy,
especially for �SST (middle right) and �u2 (bottom right). As best seen in the wind speed sensitivity (bottom), the patches sometimes align
with areas of temporally more dense data constraints, for example at the locations of the Tropical Atmosphere Ocean (TAO) mooring array
along the Equator in the Pacific. Clearly, patterns resembling the density of observation are unlikely to be true. As the actual sensitivities
estimated for these “data hotspots” are quite similar across these locations (and as the regionally integrated fluxes do not change much
either), spreading out the sensitivities into the intermediate areas by the longer correlations, as done in our base case, seems to be justified
and more appropriate.
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Figure S6. Impact of secular trends in the explanatory variables:
Sensitivities of fint to changes in the explanatory variables as in Fig. 4 estimated by the base case (left, identical to Fig. 4) and by the
uncertainty case RegrNoDecad where any decadal variability (including any secular trend) has been removed from the 3 explanatory
variables (right).
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Figure S7. Using chlorophyll
concentration as additional
explanatory variable:
Left: Interannual variations of
the sea–air CO2 flux estimated
by the explicitly interannual
mapping (green), a multi-linear
regression with the base set of
explanatory variables (orange), and
a regression using chlorophyll-a
concentration from the GlobColour
project (Maritorena et al., 2010) as
additional explanatory variable (run
RegrAddChl_98r19, magenta).
Both regression runs are done
over the period 1998–2019 only
when chlorophyll-a data are
available. Right: For the test
regression involving chlorophyll-a
concentration, contributions of the
various explanatory variables to
the interannual variations of the
ocean-internal DIC sources/sinks
as in Fig. 3.

The addition of chlorophyll
concentration as explanatory
variable is seen to cause only small
changes in the total interannual
variations (magenta vs. orange,
left). The largest devations occur
in the Southern Ocean (bottom),
but they do not obviously increase
the similarity with the explicitly
interannual estimate (green).

Correspondingly, the contributions
from the chlorophyll regression
term are mostly small compared
to the other contributions (right).
The most prominent feature of the
chlorophyll contribution is a large
spike in the Southern Ocean in
early 2011, from a corresponding
spike in the chlorophyll data set. It
translates into a notable reduction
in the sea–air CO2 flux (bottom
left). We assume the spike to be an
artifact in the chlorophyll data set.
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Figure S8. Using heat flux as alternative explanatory variable:
Interannual sea–air CO2 flux variations estimated by the explicitly interannual estimation (green), the multi-linear regression (here only
regressing over 1985–2009, orange), and the multi-linear regression using heat flux (taken from the OAFlux project Yu and Weller, 2007) as
explanatory variable instead of dSST/dt (run RegrHeat_85r09, magenta).

We tested heat flux as an alternative explanatory variable replacing dSST/dt because heat flux is related to the amount of exchange between
the mixed layer and deeper water. However, without dSST/dt the multi-linear regression is not able to represent the timing of El Niño events
in the tropical Pacific correctly. This is consistent with the dominance of the dSST/dt regression term in the tropical Pacific (Fig. 3), which
has a temporal pattern quite different from that of heat flux. In the other regions, heat flux does not seem to pick up interannual signals from
the pCO2 data either.

The spatial pattern of the heat flux sensitivity is markedly different from that of dSST/dt. In particular, it is more patchy and comprises both
positive and negative sign (Fig. S9 below).
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Figure S9. Left: Sensitivity of fint to changes in dSST/dt estimated by the base case (as Fig. 4, but regression only run over 1985–2009 to be
consistent with heat flux case as in Fig. S8); Right: Sensitivity of fint to changes in heat flux (Q), estimated by a test case replacing dSST/dt
by heat flux as one of the explanatory variables (heat flux is only available over 1985–2009).
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Figure S10. Interannual variations of the sea–air CO2 flux estimated by a multi-linear regression using NCEP-based squared wind speeds
as in the base case (orange), using CCMP-based squared wind speeds (violet), and wind stress curl calculated from CCMP wind speeds
(magenta). All regressions have been done over 1988–2018 only.

Wind stress curl may be a better predictor for ocean-internal DIC sources and sinks than squared wind speed, because it is related to Ekman
pumping/suction. We therefore also tried replacing squared wind speed by wind stress curl. For the technical reason of its finer resolution,
we used gridded wind data from CCMP v2.0 (Cross-Calibrated Multi-Platform, Atlas et al., 2011) to calculate the wind stress curl. This
gives us the additional opportunity to test the uncertainty inherited from the wind speed data set. Unfortunately, CCMP wind speeds are only
available over 1988–2018.

In some regions, the interannual variations of the sea–air CO2 flux changes notably when replacing NCEP winds by CCMP winds (orange
vs. violet). This very likely reflects the influence of the wind speed product on gas exchange. In contrast, the CO2 flux variations calculated
from squared wind speed or the wind stress curl (violet vs. magenta) are not much different. However, the spatial pattern of the sensitivity
against wind stress curl is more patchy than the sensitivity against squared wind speed (not shown). This is probably related to the fact that
the wind stress curl can have both positive and negative sign, while the squared wind speed is always positive.
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Figure S11. Interannual variations of the sea–air CO2 flux estimated by a multi-linear regression using sea-surface salinity (SSS) and its
temporal derivative (dSSS/dt) as additional explanatory variables (magenta). SSS data have been taken from Hadley EN.4.2.1 (g10) (Good
et al., 2013).

There is little change in the sea–air flux from the addition of the two explanatory variables in most regions. The largest changes are found
in the northern Atlantic (related to the SSS explanatory variable, not shown). It remains open whether this represents a real signal or some
artifact in the SSS data due for example to problems from fouling.

Internally, however, the presence of the dSSS/dt explanatory variable takes away some variability from the dSST/dt explanatory variable
in some regions, e.g., the tropical Pacific (not shown). In the sea–air flux above, this is visible indirectly from the slight changes in the
extrapolation to the earlier decades in this region.


