
1. Introduction
Substantial uncertainties remain in predicting global vegetation productivity and the connected land carbon sink 
in the future (Anav et  al.,  2015; Heimann & Reichstein,  2008). In recent years, our understanding of global 
dynamics in gross primary productivity (GPP) is improving through the use of newer satellite products more 
closely linked to the photosynthetic process. For example, sun-induced fluorescence (SIF) is being linked to GPP 
at different spatial and temporal scales (e.g., reviewed by Frankenberg & Berry, 2018; Mohammed et al., 2019; 
Porcar-Castell et al., 2014) and incorporated into terrestrial biosphere and dynamic vegetation models to im-
prove GPP predictions (Bacour et al., 2019; Forkel et al., 2019; Lee et al., 2015; MacBean et al., 2018; Thum 
et al., 2017). Both SIF and near–infrared reflectance of vegetation (NIRV, Badgley et al., 2017) have been identi-
fied as promising proxies for GPP via state-of-the-art studies comparing them to remote sensing based productiv-
ity estimates like FLUXCOM GPP (GPPFC, e.g., in Badgley et al., 2017; Badgley et al., 2019). These approaches 
compare time series directly, and as such naturally focus on dominant seasonal dynamics, which comprise most of 
the signal variance over large parts of the world (Linscheid et al., 2020; Mahecha, Fuerst, et al., 2010). Yet, GPP 
varies on time scales from subdaily, over seasonal, to interannual and longer scales (Baldocchi, 2019; Mahecha 
et al., 2007; Stoy et al., 2009). Daily or seasonal relationships may not be transferable to the interpretation of 
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Plain Language Summary How ecosystems will develop in the future is still difficult to predict, 
in part because the factors that influence ecosystems over several years or decades may differ from those 
influencing them in the course of a day or a year. Several satellites monitor vegetation growth on Earth 
and report, for example, leaf greenness or fluorescence. Fluorescence is often superior in tracking seasonal 
vegetation dynamics, but when it comes to understanding the long-term imprint of climate, it remains to 
be clarified how different data products relate to each other. In this study, we compare how much changes 
in interannual and longer vegetation activity are captured by different satellite products. We find that the 
relationship between satellite proxies for vegetation differs between monthly, yearly and long-term scales. These 
findings may help to better understand and predict vegetation growth and carbon uptake from the atmosphere in 
the future.
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interannual and longer time scales. Before drawing conclusions on trends or long-term variability from seasonally 
dominated relations, it is important to test whether the observed relations are time-scale-invariant. To test this 
hypothesis, we present a systematic comparison of vegetation proxies across time scales in this study.

Different processes govern plant productivity across time scales. When using SIF as a proxy for photosynthesis, 
for example, studies find that it represents different physiological processes depending on the temporal and spa-
tial scale considered (see e.g., Magney et al., 2020). At leaf to ecosystem level on daily to biweekly temporal res-
olution, chlorophyll fluorescence can, for example, track reduction of photosynthesis due to plant stress responses 
(e.g., Ač et al., 2015; Castro et al., 2020; Flexas et al., 2002; Shekhar et al., 2020; Wieneke et al., 2018, but see 
also Wohlfahrt et al., 2018) or can be dominated by canopy structure or absorbed photosynthetically active radia-
tion (Verma et al., 2017; K. Yang et al., 2018; X. Yang et al., 2015). On seasonal scales, SIF shows a strong link to 
phenology-driven changes in chlorophyll content and absorbed photosynthetically active radiation (APAR, Mag-
ney et al., 2019; Wieneke et al., 2018; K. Yang et al., 2018), but can be a better proxy for photosynthetic activity 
than reflectance-based proxies, for example, in evergreen forest with winter dormancy (Magney et  al.,  2019; 
Walther et al., 2016). Consequently, a relationship derived between SIF and GPP at the daily scale does not equal 
their seasonal relationship (Zhang et al., 2016), and neither of them would necessarily be applicable to derive or 
predict the SIF-GPP relation at interannual and longer time scales. In other words, the relationship between GPP, 
vegetation proxies, and climate can be expected to differ substantially across time scales. A global quantitative 
assessment of this variation is to our knowledge missing.

A variety of vegetation proxies is available today and used to study plant phenology, physiology, and their rela-
tion to GPP. When comparing such proxies, it is important to note that they represent different aspects of plant 
physiology. For example, GPPFC and SIF approximate photosynthesis-related fluxes of carbon and energy (Badg-
ley et al., 2017; Frankenberg & Berry, 2018), while normalized difference vegetation index (NDVI), enhanced 
vegetation index (EVI), or leaf area index (LAI) represent vegetation states related to greenness or leaf area of 
standing vegetation, and hence photosynthetic capacity (Huete, 1997; Tucker & Sellers, 1986). Further differenc-
es exist by design, where, for example, NDVI and EVI are bounded variables, while SIF is not confined by an 
upper boundary. NIRV can be calculated based on radiance, in which case it behaves more like a flux variable, or 
reflectance, in which case it is bounded and unitless like EVI or NDVI. These differences lead to known nonlinear 
relationships between proxies: One prominent example is the nonlinear GPP-NDVI relation over evergreen forest 
with winter dormancy (e.g., Magney et al., 2019), as well as at high GPP values, caused by saturation of NDVI 
over densely vegetated areas (Frankenberg et al., 2011).

In more general terms, satellite-based proxies of vegetation capture different aspects of plant physiology and phe-
nology depending on their design, as well as their temporal and spatial scale of observation. Thus, differentiating 
the relation of satellite-based vegetation proxies between shorter and longer temporal scales could add to better 
understanding the evolution of GPP dynamics in the future. In a previous study, we characterized major temporal 
modes of vegetation variability in NDVI time series, and found that correlations between NDVI and climate 
variables could even invert between time scales (Linscheid et al., 2020). We here extend this time scale analysis 
to several newer vegetation proxies to understand their relations across time scales, and how these change with 
climate and land cover. We decompose time series by Discrete Fast Fourier Transform (FFT) and extract subsig-
nals at subseasonal, seasonal and multiannual time scales. We investigate when and how linear relations between 
vegetation proxies differ between subseasonal, seasonal and multiannual time scales globally: We determine 
time-scale specific slopes between GOME-2 SIF, FLUXCOM GPP (GPPFC), MODIS NIRV, GIMMS NDVI, and 
MODIS EVI. We then test how slopes vary in relation to time scale, land cover and climate to infer when and 
where scale-specific slopes should be considered for better understanding dynamics of vegetation productivity. 
We corroborate our findings for site-scale GPP estimates from 14 FLUXNET sites and with an ensemble of SIF 
products.

2. Methods
2.1. Global Datastes

We compared global datasets of satellite–based vegetation proxies. Of the data-driven FLUXCOM RS GPP 
product (GPPFC) we used the full ensemble mean monthly data (Jung et  al.,  2020; Tramontana et  al.,  2016). 
Throughout the text, we explicitly differentiate between this data set approximating global GPP (abbreviated as 
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GPPFC) and instances where we refer in more general terms to actual/true gross primary productivity (abbreviated 
as GPP). For sun-induced fluorescence (SIF), we used data from GOME–2 SIF retrievals originally at monthly 
temporal and 0.5° spatial resolution (GFZ, Köhler et al., 2015). Enhanced vegetation index (EVI, Huete, 1997) 
from the BRDF-corrected MODIS MCD43C4.006 reflectances were used (Didan,  2015), originally at daily 
temporal and 0.05° spatial resolution. Near-infrared reflectance of vegetation (NIRV) was also calculated based 
on BRDF-corrected MODIS MCD43C4.006 reflectances after Badgley et  al.  (2017). Normalized Difference 
Vegetation Index (NDVI) was retrieved from GIMMS 3g v1 (NCAR, 2018; Pinzon & Tucker, 2014; Tucker & 
Sellers, 1986; Tucker et al., 2005), originally at biweekly temporal and 1/12° spatial resolution. The overlapping 
period of all products were the years 2007–2015. For comparability with climate datasets, the vegetation data 
were resampled by weighted averaging to monthly temporal and 0.5° spatial resolution where necessary.

We additionally employed an ensemble of SIF datasets including NASA GOME–2 SIF MetOp–A v28 level3 
(Joiner et al., 2014), the KNMI SIFTER L2 v2 product (Kooreman et al., 2020; van Schaik et al., 2020) and a 
calculation of a SIF daily integral from instantaneous GFZ GOME–2 SIF mentioned above. These estimates of 
daily SIF were derived from the instantaneous soundings using the daily integral of the cosine of the sun zenith 
angle scaled by the cosine of the sun angle at the observation time (Frankenberg et al., 2011).

We investigated global patterns of time-scale specific slopes in relation to land cover and climate, as well as along 
aridity and temperature gradients. To this end, we used several categorical maps to split the data set. If not already 
at the correct resolution, datasets were aggregated to 0.5° spatial and, if applicable, monthly temporal resolution. 
A map of Koeppen-Geiger climate zones (Kottek et al., 2006) was obtained through splitting by first letter of the 
classification (A, equatorial, B, arid, C, warm temperate, D, snow), or additionally by second letter to account 
for precipitation seasonality (W, S, f, s, w, m). A map of land cover type was calculated from the synergistic land 
cover product SYNMAP land cover fractions (Jung et al., 2006). To retain only the most homogenous pixels for 
each land cover type, data below 70th quantile and below 40% land cover fraction was discarded for each major 
land cover type. We also used SynMap to calculate the fraction of vegetation cover and fraction of tree cover per 
pixel. As temperature data set, we used ERAinterim v2 air temperature (Dee et al., 2011) and calculated mean 
temperature over the whole time period. The aridity index, a measure of relative water- or energy limitation of 
a system, was calculated as the ratio of surface net radiation (SNR) and total precipitation (TP). It was calculat-
ed from ERA5 TP and mean daily SNR for each time step via the formula aridity = 30*SNR/2.45*TP (Allen 
et al., 1998). Subsequently data were temporally aggregated by median over the whole time period. For all plots 
showing results summarized by category or binning, data were only displayed if at least 30 pixels remained in 
the respective bin.

2.2. Datasets for FLUXNET Site-Scale Analysis

For an analysis at FLUXNET sites, site-scale estimates of GPP from eddy covariance came from the FLUXNET 
2015 collection, with standard ONEFlux processing (Pastorello et al., 2020). GPP estimates were derived via the 
daytime NEE partitioning method (Lasslop et al., 2010) with standard MDS gap filling and quality control (Pas-
torello et al., 2020). Sites were selected to have long time series, which maximized eddy covariance and MODIS 
data availability as described below.

We extracted BRDF-corrected MODIS surface reflectances from the MCD43A4 product at 500m pixel size and 
daily sampling (Schaaf & Wang, 2015b). The accompanying MCD43A2 product (Schaaf & Wang, 2015a) was 
used for quality control. Both data sets were reprojected to a regular grid at the tower locations. Quality checks 
reject data points with the BRDF_Albedo_Band_Quality_Band1-7 > 2 and BRDF_Albedo_LandWatertype > 2 
and allow only observations where the flag Snow_BRDF_Albedo indicates snowfree conditions. From these 
quality filtered surface reflectances, spectral indices EVI, NDVI, and NIRv are computed for the pixel containing 
a tower.

MODIS and GPP datasets were aggregated to monthly resolution and processed analogously to global datasets 
(see below for details). We identified 14 Fluxnet sites running over the whole MODIS period, where enough 
MODIS data was available in the pixel containing the tower to represent the inherent seasonal cycle and inter-
annual variability and ensure proper representation of seasonal and multiannual dynamics, and where gapfilling 
did not introduce artificial interannual variability. These sites were: AU-Tum, BE-Vie, CA-TP4, DK-Sor, FI-Hyy, 
FR-Pue, IT-Col, RU-Fyo, US-MMS, US-Me2, US-PFa, US-Ton, US-UMB, and US-Var.
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2.3. Decomposition and Regression

All analyses were performed within the Earth System Data Lab framework (ESDL.jl, Mahecha et al., 2020) using 
the Julia programming language (Bezanson et al., 2017). Time series were gapfilled per pixel in two steps: first 
using a fourth order polynomial, subsequently filling remaining gaps at the ends of each time series with values 
from the mean annual cycle. Most gaps occurred in northern latitudes (Figure S1). Time series were decomposed 
based on Discrete Fast Fourier transform (FFT, Brockwell & Davis, 2006), followed by binning of frequencies 
into subseasonal, seasonal, and multiannual bands as previously described (Linscheid et al., 2020). Briefly, for 
each pixel the mean and linear trend are removed from the time series. The remaining signal is decomposed by 
FFT and binned as follows: seasonal signals are reconstructed from frequencies of 0.9–1.1 years and two sea-
sonal harmonics (0.5 and 0.33 years), the subseasonal (or short term) bands contain the remaining frequencies 
<0.9 years, and the multiannual band contains all frequencies >1.1 years (interannual and longer scales). When 
using FFT, the first and second harmonic of the seasonal cycle (0.5 and 0.33 years) carry residual information 
necessary to recreate a good representation of a seasonal cycle and are hence included in the seasonal band here. 
All remaining (i.e., not overlapping) frequencies <0.9 years are then attributed to the subseasonal signal. Each 
subsignal still contains the same number of data points as the original time series, that is, time scales are not 
attained by data aggregation, but separated by partitioning of different frequency bands. Summing all extracted 
subsignals, trend, and mean for each point in time returns the original signal. FFT could only be performed on 
pixels without missing data points. Gapfilled data points were masked following the FFT decomposition step to 
base subsequent analyses only on original data points.

To quantify time-scale specific relations between variables, we performed pixelwise standard major axis regres-
sion (SMA, also known as total least squares regression, TLS), for each pairwise combination of variables at each 
of the extracted time scales. SMA is needed given that both variables are expected to contain errors and the meth-
od minimizes errors in both x and y direction (Legendre & Legendre, 2012). Thus, the slope is hardly affected 
by the correlation: The SMA slopes are identical then to the first principal component of a bivariate data set. In 
SMA, slopes do not depend on which variable is the predictor, that is, slopeSMA (GPP vs. SIF) = 1/slopeSMA (SIF 
vs. GPP). For each pairwise comparison of vegetation proxies, the naming convention follows the order y-axis 
versus x-axis, that is, the first variable is plotted on the y-axis, the second on the x-axis (e.g., SIF-GPPFC means 
GPPFC is plotted on the x-axis, SIF on the y–axis). With GPPFC plotted on the x-axis, high slopes indicate high 
sensitivity of the respective proxy to changes in GPPFC (a change in y with change in x), while slopes close to zero 
indicate low sensitivity (little change of y with change in x).

For each variable pair, the numerical value of their slope depends on the variable units and order of magnitude, 
and thus cannot be directly compared across pairs. To compare slopes of different variable pairs, and identify 
regions with varying slopes across time scales, we thus computed the ratio of the slopes of multi-annual signals 
to the slope of seasonal signals at each pixel (slopema/slopeseas). These slope ratios are unitless and thus compara-
ble across variable pairs, and indicate where slopes are higher at seasonal or multiannual time scales. The slope 
ratios illustrate the relative partitioning of variance between seasonal and multiannual signals (for illustration 
see Figure S2). For convenient interpretation, we summarize the analysis as log10 (abs (slopema/slopeseas)), so 
that logarithmic slope ratios below zero (blue in the figures) indicate that slopes are higher in the seasonal than 
multiannual band: This originates from relatively less multiannual variability captured in the y-variable than in 
the x-variable; that is, the “sensitivity” of y to x is higher on seasonal scale (Figure S2a). Conversely, positive 
slope ratios (red in the figures) indicate higher multi-annual slopes and thus relatively higher multiannual than 
seasonal sensitivity of y to x (Figure S2b).

2.4. Data Filtering

We applied strict filtering to mask pixels that could cause spurious results. Signals with very small amplitude 
(low spectral power in this time scale) could cause aberrant slopes or slope ratios. For each variable, we thus 
masked all pixels where the amplitude of the decomposed signal accounted for less than 5% of the original sig-
nal. For the same reason, we further removed pixels accounting for the 4% most extreme amplitude ratios for 
each variable pair (retaining quantiles 0.02–0.98 of their global distribution). SMA regression should only be 
computed when a significant correlation between variables exists (Legendre & Legendre, 2012); we therefore 
masked all pixels where the correlation significance showed a p-value > 0.1, where correlation significance was 
computed by One-Sample Z-Test. For comparison across variable pairs, we then combined the pairwise masks 
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into a common mask, only retaining pixels that passed for all variable pairs and all time scales. This mask retained 
26% of vegetated land pixels (Figure S3).

3. Results and Discussion
3.1. Relations Between EO Proxies Change Across Time Scales

Time series of NDVI, EVI, NIRV, SIF, and GPPFC were decomposed at each pixel to extract modes representing 
subseasonal, seasonal, and multiannual time scales of variability. As illustrated in Figure 1, these subsignals 
all contain a certain variability on their respective scale. Spectral approaches have been shown to extract major 
modes of variability from ecological time series (Katul et al., 2001; Mahecha et al., 2007; Stoy et al., 2009) and 
allow analysis of scale-specific variability by, for example, removing the effects of confounding factors varying 
on a seasonal time scale from an instantaneous relationship (Mahecha, Reichstein, Carvalhais, et al., 2010).

We first illustrate the calculation of scale-specific slopes in a comparison between SIF and GPPFC (Figure 1, 
Figure S4), where we find global patterns highlighting differential slopes across time scales. With GPPFC on the 
x-axis as chosen here, higher slope values indicate a larger change (higher “sensitivity”) of the y-variable (here: 
SIF) to changes in GPPFC. Overall, spatial patterns of slope intensity differ between the seasonal and multiannual 
time scale (Figure 1c). Except for south-western Australia, slopes are positive, and highest in northern North 
America, northern Eurasia, Europe, as well as subtropical Africa and South America.

Much uncertainty in prediction of GPP dynamics is associated with interannual variability of GPP. Some of this 
uncertainty may be alleviated by better characterizing and constraining predictions of multiannual GPP dynam-
ics with observations. We thus here choose to focus on vegetation variability on multiannual time scales, and 
how and where multiannual relations between proxies differ from seasonal relations. In order to compare slopes 

Figure 1. Workflow illustration based on comparison of GPPFC and SIF. (a) Example of time series decomposition (FFT) of Fluxcom GPP (GPPFC) and GOME–2 sun-
induced fluorescence (SIF) for a pixel in Spain (Lon −5.77, Lat 39.94) into subseasonal, seasonal and multannual signals, (b) standard major axis (SMA) regression 
of the signals in panel (a), (c) global map of pixelwise slopes for seasonal and multiannual signals. Positive slopes are shown in purple, negative slopes in orange. (d) 
The logarithmic slope ratio of multiannual over seasonal slopes (bottom). Ratios of slopes are shown as log10 (absolute [slopema/slopeseas]), that is, red means higher 
(absolute) slope in the multiannual band, blue means higher (absolute) slope in the seasonal band. Logarithmic slope ratios below zero (blue in the figures) indicate that 
slopes are higher in the seasonal than multiannual band. This originates from relatively less multiannual variability captured in the y-variable than in the x-variable; that 
is, the sensitivity of SIF to GPPFC is higher on seasonal scale. Conversely, positive slope ratios (red in the figures) indicate higher multiannual slopes and thus relatively 
higher multi–annual than seasonal sensitivity of SIF to GPPFC (see also Figure S2). Slope units are (mW sr−1 nm−1/gC d−1); gC: gram Carbon.
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between time scales, we calculated the ratio between multiannual and seasonal slopes for each grid cell (Fig-
ure 1d), indicating where slopes are higher at the seasonal or multiannual time scale. In drier regions of the globe, 
seasonal slopes between SIF and GPPFC are generally higher (or similar to) multiannual slopes (blue regions), 
while multiannual slopes are higher in wetter regions (red regions). Overall, we find that slopes between SIF and 
GPPFC vary with time scale, and their ratios show spatial patterns related to climate and land cover as elaborated 
in the next paragraph (Figure 2).

Specifically, slopes between SIF and GPPFC vary with land cover type, as well as along gradients of temperature 
and aridity. Slope patterns along tree cover and vegetation cover are similar across scales (though different in 
magnitude, Figure 2a), while marked differences exist for climate and land cover splits across time scales (Fig-
ures 2b and 2c). The largest slopes are found between subseasonal signals, especially for the more arid, as well 
as warm and relatively humid climates, and nontree vegetation (Figures 2a–2c), indicating a higher variability 
of SIF, or lower variability of GPPFC, in these regions and thus a higher sensitivity of SIF to GPPFC. A marked 
exception are evergreen trees in KG class A (Figure 2c), but note that most pixels in this class belong to seasonally 

Figure 2. Time-scale specific slopes between sun-induced fluorescence (SIF) and GPPFC split by climate and land cover. Mean slopes split by (a) Fractional vegetation 
cover and tree cover, (b) mean air temperature and aridity, (c) SynMap land cover type and Koeppen-Geiger climate classification. Darker colors indicate higher slopes. 
(d–f) same splits as in (a–c). but displaying logarithmic slope ratios of multiannual over seasonal scale. Colors represent area-weighted mean values per class of pixels. 
Slope ratios are shown as log10 (absolute [slopema/slopeseas]), that is, red means higher (absolute) slope in the multiannual band, blue means higher (absolute) slope in 
the seasonal band. At least 30 nonmissing values were required per bin, otherwise bins were masked (indicated by hatching). A, equatorial climate; B, arid climate; C, 
warm temperate climate; D, snow climate; Tree_dec, deciduous tree cover; Tree_evg, evergreen tree cover.
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dry ecosystems (As, Aw), while fully humid tropics could not be assessed due to too few pixels remaining after 
filtering. Chen et al. (2020) previously identified decreasing GPP/SIF ratios from cold-and-wet to hot-and-dry 
climate, concluding that moisture availability critically influences the GPP/SIF ratio via effects on stomatal 
conductance. Our results corroborate this pattern for the subseasonal scale, but not clearly for longer time scales: 
Seasonal and multiannual slopes are generally lower and more uniform than short-term slopes. Seasonal and 
multiannual slopes are additionally high in temperate, rather arid climate. SIF thus appears generally as a more 
sensitive proxy for GPPFC in more arid, nontree ecosystems, as well as tropical evergreen forests that experience 
a dry season. SIF may have a higher inherent noise level than other vegetation proxies, thus short-term relations 
could be diverging due to different noise levels especially in low-productivity ecosystems. We are however using 
SMA to compute slopes, which is less sensitive to noise than regular linear regression. Additionally, we see high 
sensitivities between SIF and GPPFC also for evergreen trees and crops, two potentially very productive ecosystem 
types. In complex canopies, a decrease in canopy escape ratio of fluorescence could additionally cause lower 
observed SIF relative to observed GPP (Chen et al., 2020; Guan et al., 2016), and thus lower slopes.

Ecosystem–specific slopes between SIF and GPPFC have been reported previously between different land cover 
types (Damm et al., 2015; Guanter et al., 2012; Parazoo et al., 2014; Wood et al., 2017) or covarying with climate 
(Chen et al., 2020). On the other hand, within the same land cover type, previous studies at eddy covariance sites 
have found consistent slopes between GPPFC and SIF for hourly, daily, weekly and up to quarterly aggregation 
windows (Damm et al., 2015; Magney et al., 2019; Turner et al., 2020; Wood et al., 2017). At the longer tem-
poral scales assessed here, we do not generally find this time scale consistency: Seasonal slopes are higher than 
multiannual slopes for nontree ecosystems of all climate types (Figures 2d and 2f, blue colors) and generally in 
more arid climates (Figures 2e and 2f), while either higher or similar for crops, grasses and shrubs (Figure 2f, 
red and white areas). In all other areas, multiannual slopes are higher than seasonal slopes, indicating a higher 
sensitivity of SIF to GPPFC on multiannual than seasonal scale. This may be interpreted as SIF capturing rela-
tively more multiannual variability than GPPFC in semiarid and nontree ecosystems. Note, however, potential 
shortcomings in long-term SIF retrievals and GPPFC IAV: Long-term SIF dynamics should be interpreted with 
caution, as trends derived from SIF signals have been attributed to sensor drift rather than vegetation dynamics 
(Zhang et al., 2018, but note we do not assess trends here). Several other known issues exist, including a swath 
width adjustment for GOME–2 in July 2013 which may affect analyses of the full-length time series (Parazoo 
et al., 2019; van Schaik et al., 2020). To minimize effects of biases introduced by the SIF retrieval, we repeated 
the same analysis with an ensemble of SIF products and found similar results across all of them (Figure S5).

Similarly, interannual variability of GPP in FLUXCOM RS is likely underestimated, and more uncertain than 
seasonal fluxes (Jung et al., 2020; Tramontana et al., 2016). An underestimated multiannual GPPFC signal would 
impact the slopes and slope ratios calculated here: With smaller than expected changes in GPPFC (on the x-ax-
is), for equal change in the y variable, multiannual slopes would be artificially increased. Additionally, differ-
ences across land cover classes may be scale-dependent and/or in part be due to biases in GPP products (Sun 
et al., 2018; Turner et al., 2020). We thus expand our analysis to several other vegetation proxies in the next 
section and compare the above results to an analysis of site-level FluxNet GPP estimates.

3.2. Comparison of Time-Scale Specific Relations Across Vegetation Proxies

To test whether the conclusions drawn above are generalizable using other vegetation proxies, we further com-
pared EVI, NIRV and NDVI as observed satellite proxies against each other, and against SIF and GPPFC (Fig-
ures S6–S14). For SIF versus GPPFC, we found that slopes were highest on subseasonal scales. In comparison, 
relations of NDVI, NIRV, and EVI with GPPFC show the highest slopes in the multiannual band. NIRV, EVI and 
NDVI are slightly more sensitive to GPPFC on subseasonal than seasonal scales which is somewhat unexpected, 
because GPP would generally vary more on shorter time scales (hourly-weekly scales, e.g., caused by fluctuating 
land-surface temperature and radiation), while EVI and NDVI vary more slowly. Since the datasets are at monthly 
resolution, this expectation raised by studies operating on subdaily to weekly scale may simply not be visible 
here. Additionally, SIF and GPPFC carry information on actual photosynthetic activity, while the vegetation indi-
ces mostly carry information on phenology. A multiplication of EVI, NIRV, and NDVI with photosynthetically 
active radiation (PAR) would produce estimates of photosynthetic activity more similar to SIF or GPP, and could 
change their variance captured especially on the seasonal scale, which could also influence their scale-specific 
slopes toward SIF and GPPFC. NIRV and EVI show the most homogeneous slopes with GPPFC along gradients 
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of land cover and tree cover fraction (Figure S15), without the previously observed, systematically higher slopes 
for pixels with tree cover <10%. This may encourage generalizability of a NIRV-GPPFC relationship across time 
scales, yet this homogeneity was diminished when partitioning by climate and land cover class (Figures S16–
S17). Overall, our results underscore that proxies such as SIF representing ecosystem fluxes capture short-term 
(subseasonal) variability well, while state variables are more representative of productivity variability on longer 
time scales. Additionally, SIF shows similar agreement with GPPFC on the longer time scales as EVI and NIRV.

For slope ratios across the variable pairs (Figure 3, Figures S18–S28), a gradient emerges: Slope ratios are high-
est with GPPFC on the x-axis (Figure 3, left column) due to GPPFC generally capturing less multiannual relative 
to seasonal variability than the other vegetation proxies, causing higher multiannual than seasonal slopes. This 

Figure 3. Pairwise slope ratios for all combinations of variables split by fraction of vegetation cover and fraction of tree cover. The naming convention follows 
“y-variable versus x-variable.” Ratios of slopes are shown as log10 (absolute [slopema/slopeseas]), that is, red means higher (absolute) slope in the multiannual band, blue 
means higher (absolute) slope in the seasonal band. At least 30 nonmissing values were required per bin, otherwise bins were masked (indicated by hatching). EVI, 
enhanced vegetation index; GPPFC, FLUXCOM gross primary productivity estimate; NDVI, normalized difference vegetation index; NIRv, near-infrared reflectance of 
vegetation; SIF, sun-induced fluorescence.
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pattern is stronger with NDVI than previously seen for SIF, but similar for EVI and NIRV. The difference between 
tree and nontree vegetation is most pronounced in the NDVI-GPPFC relationship, possibly related to saturation 
effects of NDVI at high GPP in forest ecosystems, which could dampen seasonal slopes and thus create higher 
slope ratios at higher tree cover fraction. Similarly, a less pronounced seasonal cycle of NDVI than GPPFC in 
evergreens would also have this effect.

From left to right in Figure 3, slope ratios decrease with GPPFC, SIF, EVI, and NDVI as x-variable, linked to a 
decreasing amount of multiannual relative to seasonal variability captured with NDVI > EVI, NIRV, SIF > GP-
PFC (Figure 3, Figure S28). Despite the general shift toward higher multiannual slopes with GPPFC as x-variable, 
global patterns along gradients of aridity, temperature and vegetation type were similar across pairs of vegetation 
proxies, with exception of NIRV versus EVI, two datasets previously shown to be closely linked (e.g., Doughty 
et al., 2021). Our analysis thus indicates that differences in subseasonal, seasonal, and multiannual relations exist 
across satellite-based proxies of plant productivity. The overall finding that relations between vegetation proxies 
differ across time scales emphasizes the potential of differentiating multiannual and seasonal vegetation dynam-
ics in understanding long-term vegetation growth and productivity.

3.3. Comparison With FLUXNET Site-Scale GPP

The analyses outlined above pointed to scale-specific slopes between vegetation proxies (Figure 3), but can-
not rule out an effect of biased GPPFC interannual variability on the scale-specific slope comparison (Figures 1 
and 2). Additionally, FLUXCOM GPP is an upscaled product and comparison to site-level GPP estimates may be 
advantageous. We thus additionally conducted an analysis at 14 long-running FLUXNET sites where more direct 
measurements of ecosystem carbon fluxes are available from the start of the MODIS data period (see Figure S29 
for an example). In this data set, multiannual differed from seasonal slopes in about half of the cases (Figure S30). 
We compared these results to our global results by extracting data for each nearest 0.5° pixel from the global 
map (Figures S31–S32). Slope ratios differed between site- and pixel-level, with pixel-level slope ratios showing 
higher scale-specificity of slopes than site-level data (Figure S31). The site-level results corroborate that differ-
ences can exist in the relation between GPP and different vegetation proxies across time scales, albeit suggesting 
a lower magnitude of the effect than the results above based on global gridded datasets. They also highlight, that 
in particular the aggregated FLUXCOM product misses out on variability on longer time-scale compared to site 
level observation (Figure S31). To what extent this is intrinsic to the machine learning ensemble approach or 
caused by the spatial aggregation to 0.5° will need further study.

4. Limitations and Outlook
This study investigates broad-scale global relations between satellite-based proxies of vegetation productivity, 
with an emphasis on seasonal and longer time scales. The coarse spatial and temporal resolution of the datasets 
does not allow us to capture processes below monthly time scales or below ecosystem spatial scale. Based on 
the overlapping data period of eight years, the multiannual relations captured here represent multiannual, but not 
multidecadal dynamics in plant productivity. Due to the short time series, a finer spectral separation especially of 
long-term modes of variability was not meaningful, but could with longer time series provide additional insight 
into covariation of vegetation with climatic modes of multiannual to decadal variability. Furthermore, vegetation 
proxies derived from MODIS are not independent of each other, which may affect our results. However, a number 
of different, independent data sources used here overall point to similar conclusions: for example, analyses based 
on FLUXNET GPP partially supported our results at local scale based on a MODIS-independent potential GPP 
estimate.

4.1. Global Coverage

Most of the tropics are masked in our analysis due to constraints set by the data itself. Data coverage in tropical 
areas is often sparse, a general issue seen for optical remote sensing due to factors such as cloud cover impacting 
satellite retrievals. In our case, this affects especially the all-vs-all comparison including EVI, NIRV, and NDVI 
(Figure 3). One advantage of SIF retrievals is their reduced sensitivity to cloud cover, which allows better cover-
age of measurements over tropical forests. In our analysis of SIF versus GPPFC (Figures 1c and 1d), more pixels in 
tropical climate are retained and do also show scale-specific slope ratios (Figure 1d). Hence, the effect observed 
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elsewhere is probably also relevant in the tropics, although its quantification would require a more detailed anal-
ysis and employ a different set of data. Efforts to provide harmonized, analysis-ready high-resolution data cubes 
for tropical regions are under way and form an important basis for such analyses (Estupinan-Suarez et al., 2021), 
for example, strengthening our knowledge on seasonality of tropical vegetation (Estupinan-Suarez et al., 2021). 
With the era of extended radar-based biomass measurements and continuous extension of TROPOMI SIF time 
series, we hope that more analyses on high quality data retrieved over the tropics will become possible over the 
next years.

4.2. Data and Method Limitations

We employ linear statistical methods to allow comparison across time scales based on slope ratios. SMA regres-
sion is used since it is less affected by noise than regular linear regression and minimizes errors in both x and y 
direction. In order to minimize spurious results, we further apply strict filtering criteria like a correlation signifi-
cance filter, amplitude filter, and discarding the most extreme slope ratios. Despite comparing several ensembles 
of satellite-based vegetation proxies and different sources of GPP estimates, uncertainties remain: Slopes are 
more uncertain in areas of low ecosystem productivity and at multi–annual scales as exemplified by their high-
er confidence intervals (Figures S4, S6–S14). We conducted significance tests to determine whether medians 
of slope ratio distributions were significantly different from zero and found a consistent general shift between 
proxies (Figures S18–S27). Despite stringent filtering applied, it can be difficult to fully tell physiological effects 
apart from data characteristics. Overall, observational capacities are not yet at a stage of allowing us to draw 
uniformly clear quantitative conclusions on scale-specific relations of vegetation proxies across temporal scales. 
Still the different analyses all suggest the importance of scale-specific sensitivities in understanding vegetation 
productivity over time.

Processes on different time scales can interact in, for example, additive or multiplicative ways (Wu et al., 2008). 
A prominent example is data heteroskedasticity across seasons, where the variance among deseasonalized daily 
GPP values is higher during the main growing period compared to other times of the year (Lasslop et al., 2008; 
Menzer et al., 2013); in that case, the seasonal time scale affects the variance of the daily time scale. With regard 
to different vegetation proxies, one could assume that data for GPP and other fluxes contain multiplicative effects 
such as the one described, while more slowly changing state variables such as NDVI would not show this behav-
ior. This still needs to be assessed for the relation between seasonal and multiannual bands. We did not assess the 
interaction between time scales here, but such analyses may hold additional useful information for time-scale-re-
solved understanding of GPP and should be pursued in the future. More detailed analyses on uncertainties in the 
decomposition technique would be necessary, for example, in the form of Iterative Amplitude Adjusted Fourier 
Transform (IAAFFT, Mahecha, Reichstein, Jung, et al., 2010; Schreiber & Schmitz, 1996) to test linearity or 
nonlinearity of the time series and the uncertainty of its retrieval.

4.3. Implications for Long-Term Vegetation Dynamics

State-of-the-art terrestrial biosphere models (TBMs) are often calibrated and evaluated on complete time series, 
which tend to be dominated by dynamics of the seasonal cycle. This may compromise their ability to capture 
short term, as well as interannual, and longer relations (Mahecha, Reichstein, Jung, et al., 2010). While most var-
iables investigated here are not directly calculated within TBMs, our findings should still be valid as vegetation 
indices such as NDVI strongly correlate with fPAR or LAI, and can be calculated from fPAR model outputs via 
radiative transfer models (RTMs). Direct calculation of SIF within land surface models has also been performed 
(e.g., Thum et al., 2017), but is still not at a standard operational level in most TBMs. To improve representation 
of inter-annual vegetation variability in TBMs, they should be analyzed for their representation of longer-term 
GPP dynamics, and whether potentially seasonally dominated model parameterization are valid for estimating 
long–term carbon balances (Braswell et al., 2005; Mahecha, Reichstein, Jung, et al., 2010). Recent results of 
spectral Granger causality analysis based on CMIP5 models for example, indicate a partial over-estimation of 
climate controls on vegetation dynamics at inter–annual scales in the models compared to observations (Claessen 
et al., 2019).

Newer methodology also holds promise for improved modeling of dynamic systems with multiscale properties. 
Seen from a multiple linear regression perspective, differentiated relations at inter- and multiannual time scales 
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would need to explicitly be addressed in model training, optimization and evaluation steps (Mahecha, Reichstein, 
Jung, et al., 2010) to test how much predictability of interannual variability in vegetation productivity can be 
improved this way versus addressing missing long–term drivers. Machine-learning-based methods can implic-
itly learn relationships at different scales or frequencies (Cao et al., 2020; Mendez-Jimenez & Cardenas-Mon-
tes, 2018) and may be a promising complementary approach to address time-scale dependencies in vegetation 
productivity dynamics and their drivers.

5. Conclusion
Previous studies have found constant linear scaling between vegetation proxies at time scales from hours to 
several months. We investigate this relationship at seasonal to multiannual scale and find that relations between 
vegetation proxies can diverge between these longer time scales. We find time-scale specific slopes between 
variables with different magnitude, but consistently for the ensemble of vegetation proxies tested here. Across 
satellite-based proxies, ratios of multi–annual to seasonal slopes vary between vegetation types, and along gra-
dients of tree cover and climate. We find a gradient of multiannual relative to seasonal variability captured with 
NDVI > EVI, NIRV, SIF > GPPFC at the spatial and temporal resolution tested here. State-of-the-art approaches 
often investigate integral time series where diurnal or seasonal cycles dominate. Our study indicates that season-
al relationships do not generally hold at shorter and interannual scales. Thus, understanding and prediction of 
longer-term dynamics in GPP may need to explicitly take into account the multiannual signal components and 
their relations to Earth observation based predictors.
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