# Characterization of Time Delay Interferometry combinations for the LISA instrument noise

# Olaf Hartwig\*

Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Callinstraße 38, 30167 Hannover, Germany

# Martina Muratore<sup>†</sup>

Dipartimento di Fisica, Universita di Trento and Trento Institute for Fundamental Physics and Application / INFN, 38123 Povo, Trento, Italy (Dated: May 16, 2020)

# Abstract

Time delay interferometry (TDI) is a post-processing technique used in the Laser Interferometer Space Antenna (LISA) to reduce laser frequency noise by building an equal-arm interferometer via combining time-shifted raw phase measurements. Many so-called 2nd generation TDI variables have been found that sufficiently suppress laser frequency noise considering realistic LISA orbital dynamics.

In this paper, we want to investigate the relationships between these different TDI channels to understand the optimal approach for recovering all information from the raw phase measurements. It is already well known from the literature that the entire space of TDI solutions can be generated out of the 4 combinations  $\alpha$ ,  $\beta$ ,  $\gamma$ , and  $\zeta$ , at least under the approximation of three different but constant constellation arms (1st generation TDI). We apply this result to a core subset of the 2nd generation combinations reported in the literature, for which we compute explicitly how they can be approximated in terms of these 4 generators and show numerically that these approximations are accurate enough to model the noises not suppressed by TDI. Finally, we identify multiple possible 2nd generation representatives of  $\alpha$ ,  $\beta$ ,  $\gamma$ , and  $\zeta$ , and discuss which might be ideal to use for the LISA data analysis. In addition, we demonstrate that newly found variants of the variable  $\zeta$  significantly out-perform the ones previously known from the literature.

 $<sup>^*</sup>$  contact: olaf.hartwig@aei.mpg.de

<sup>†</sup> contact: martina.muratore@unitn.it

#### 1. INTRODUCTION

Gravitational waves (GWs) are predicted by General Relativity and were first observed in 2016 by the two ground-based interferometers LIGO [1]. They can be detected by laser interferometers which recover the Doppler shift that a passing GW causes on the frequency of the laser beam.

The Laser Interferometer Space Antenna (LISA), which is the 3rd large mission (L3) of the ESA program Cosmic Vision has the goal of detecting gravitational waves with frequencies in the mHz regime by tracking the relative distance between two free-falling test masses (TMs), hosted in distant spacecraft, using laser interferometry [2].

The constellation is designed to have three identical spacecraft in a triangular formation which are separated by 2.5 million km, with six active laser links connecting them. The orbits are chosen to have a constellation forming a triangle as equilateral as possible. However, due to celestial dynamics, the arms differ from each other by  $\pm 1\%$  and the satellites have a relative drift of up to  $10\,\mathrm{m\,s^{-1}}$ . As a consequence, the LISA interferometers will have unequal and time-varying arm-lengths, such that they will be strongly affected by laser frequency noise. Thus, to compensate for this noise we apply a post-processing technique called time-delay interferometry (TDI). This post-processing technique combines on ground the raw phase meter data by properly time-shifting them in order to build an equivalent equal arm interferometer, insensitive to laser frequency noise. Many such data combinations are possible, such as the Michelson-like interferometer X or the Sagnac combination  $\alpha$  [3].

One approach to find TDI data combinations is geometric TDI, first introduced in [4]. This approach was recently revisited in [5], where new combinations of signals which fulfil the frequency noise suppression requirements were found. In particular, [5] reports 174 combinations of 16-links and 12 of 12-links while in [4], only 48 of 16-links and none of 12-links were advertised<sup>1</sup>. These combinations could be reduced to a subset of 35 of 16-links and 3 of 12-links, if one considers as equal combinations that differ by any permutation of the satellites.

Moreover, additional combinations of 14-links that were missing in the previous catalogue are reported in [6], where it is illustrated that the total number of combinations could be

<sup>&</sup>lt;sup>1</sup> We call a 'link' the one-way Doppler measurement between two of the LISA spacecraft. Note that [4] also includes solutions of up to 24 links, which were not investigated in [5].

reduce to a subset of 28 of 16-links, 3 of 14-links and 3 of 12-links, if one considers as equal combinations that differ only by any permutations of satellites or a time reversal symmetry. Including these symmetries, the set grows to a total of 210 distinct combinations up to 16 links.

On the other hand, the space of possible TDI solutions can also be described and constructed algebraically, at least under certain assumptions [7]. It turns out that the entire space of 1st generation TDI (three unequal and constant interferometer arms) can be generated out of 4 combinations [8], while for 1.5th generation TDI variables, 6 fundamental variables are needed [9]. Conversely, the general algebraic problem of second generation TDI (meaning linearly evolving arms) is up to date still unsolved [7].

Lacking a theorem guaranteeing that all 2nd generation variables can be constructed from a finite set of generators, the question arises if some of the 210 combinations contain redundant information and if we are able to find a minimum set of TDI variables containing all the relevant information we need to perform the LISA data analysis. To this end, we remark that for the purpose of estimating the coupling of non-suppressed effects, like gravitational waves and most secondary noise sources<sup>2</sup>, it is usually sufficient to study TDI under the assumption of 1st generation TDI. The reason is that while small mismatches and dynamic changes in the armlengths have to be taken into account when we aim to reduce laser frequency noise (by several orders of magnitude) they only cause very small corrections to the expressions for the non-suppressed effects.

Although it is often considered sufficient to use '0th generation' TDI (meaning three constant and equal arms) to perform data analysis, recent studies showed that neglecting the percent level static arm-length mismatches can in some cases bring large errors when modelling the instrument response to non-suppressed noises and GW signals [6]. On the other hand, considering three unequal arms was sufficient there to accurately predict the result of numerical simulations performed taking the full orbital dynamics into account.

In the rest of the paper, we do a follow up of [6], studying algebraic relationships between the new TDI combinations presented there under the same assumption of 1st generation

<sup>&</sup>lt;sup>2</sup> Secondary noises such as test mass and readout noise are not suppressed in the output of TDI combinations, but only modulated by differences of the large delays applied when constructing the combination.

TDI to investigate which TDI channels should be suggested for the LISA data analysis.

The rest of the article is divided in three sections. In section 2, we report the core combinations found in [6] and we illustrate how we can highlight similarities between them by simplifying these combinations under the assumptions of 1st generation TDI. Moreover, we compute explicitly how each of these simplified combinations is related to the four generators of first generation TDI,  $\alpha$ ,  $\beta$ ,  $\gamma$  and  $\zeta$ , and discuss the implications for LISA data analysis. We then demonstrate numerically in section 3.1 that the decompositions of 2nd generation variables into the 1st generation generators are good approximations for the secondary noises. We run simulations without laser frequency noise, which allows us to compute the first generation variables, whereas we keep readout noise and test-mass acceleration noise enabled. These simulations show that the approximations are valid to within 3 to 5 orders of magnitude, depending on the Fourier frequency and TDI variable considered. We also discuss pros and cons of different sets of second generation variables that we can use to represent the first generation generators  $\alpha$ ,  $\beta$ ,  $\gamma$  and  $\zeta$ .

Moreover, we demonstrate numerically in section 3.2 that the previously described approximations remain valid also in the presence of laser noise. We show that a set of four 2nd generation combinations can be used to generate the instrument noise response of the channel X as an example, with a relative error of less than  $\approx 10^{-2}$  to  $10^{-5}$ , again depending on the Fourier frequency considered.

In addition, we analyse the laser noise suppression capabilities of the second generation  $\zeta$  variables given in [7] with respect to the new second generation  $\zeta$  variables found in [6]. The latter show to suppress laser noise several orders of magnitude more than the former and far below the level of secondary noises. Conversely, the residual laser noise of the previously known  $\zeta$  variable would present a significant noise contribution to the full LISA noise budget.

Finally, we report our conclusion and future perspective in section 4.

# 2. GENERATORS OF FIRST GENERATION TDI AND APPLICATION TO GEOMETRIC TDI

The formalism of geometric TDI [4, 5] allows to understand physically the properties of TDI combinations, and more practically, enables a systematic search for 2nd generation TDI

combinations.

We report in table I the list of the 34 core combinations<sup>3</sup> found in [6]. We express them in terms of time shifts applied to the intermediary TDI variables  $\eta_{ij}$ , using the notation described in appendix A.

The  $\eta_{ij}$  are constructed in post-processing from the raw measurements provided by the spacecraft, and correspond to direct tracking of the distance between the two TMs in a LISA link [11]. These virtual measurements contain the difference between the laser frequency fluctuations  $\phi_i$  and  $\phi_j$  of the local and received laser beams, respectively, where the received beam enters with a time delay by the light travel time  $d_{ij}(\tau)$ :

$$\eta_{ij}(\tau) = \phi_j(\tau - d_{ij}(\tau)) - \phi_i(\tau) + N_{ij}(\tau). \tag{1}$$

While the laser noise terms  $\phi_j$  and  $\phi_i$  will be strongly suppressed in post-processing, the  $N_{ij}$  term summarises any effects not fully suppressed by TDI. In particular,  $N_{ij}$  contains unavoidable secondary noises, such as acceleration noise of the TMs and noise introduced by the optical metrology system, as well as gravitational waves. Note that this is a simplified model for the LISA measurements, see e.g. [11] for a more detailed description.

We now want to study how these non-suppressed effects appear in the 34 core TDI combinations, and how many of these combinations we need to extract all information contained in our raw measurements. To this end, we want to express all variables in terms of a finite set of generators. As we introduced, the algebraic problem of second generation TDI is to date still unsolved [7], such that no set of generators is known for this case. Instead, we study these TDI combinations under the assumptions of first generation TDI since, as already proposed in [7] and empirically demonstrated in [6], this is sufficient to describe the instrumental noise and GW signal response. It is important to stress that in practice, we cannot use first generation TDI variables in the actual data analysis, since they don't suppress the laser noise sufficiently.

To avoid confusion, we will use a different notation for the six non-commutative delay operators of second generation, as used in table I, and the three commutative delay operators

<sup>&</sup>lt;sup>3</sup> Note that these 34 core combinations can be used to generate all 210 variables presented as supplementary material in [6] by applying the appropriate symmetries and index permutations [10, 11]. In particular, the core combinations  $C_1^{16}$ ,  $C_4^{16}$ ,  $C_5^{16}$ ,  $C_6^{16}$ ,  $C_7^{16}$ ,  $C_8^{16}$ ,  $C_{21}^{16}$  and  $C_{22}^{16}$  can be used to generate all 48 variables presented in [4].

of first generation TDI. For the latter, we take inspiration from the literature, e.g. [7], and will denote the operators applying the corresponding delays by x, y and z. They act on any time dependent function f(t) via

$$xf(t) = f(t - x^d), \quad yf(t) = f(t - y^d) \quad \text{and} \quad zf(t) = f(t - z^d),$$
 (2)

where we compute the delays as

$$x^{d} = \text{mean} \left[ \frac{d_{23}(t) + d_{32}(t)}{2} \right]$$
 (3a)

$$y^{d} = \text{mean} \left[ \frac{d_{31}(t) + d_{13}(t)}{2} \right]$$
 (3b)

$$z^{d} = \operatorname{mean}\left[\frac{d_{12}(t) + d_{21}(t)}{2}\right],\tag{3c}$$

with  $d_{ij}(t)$  as the time series of time varying delays estimated from the orbits for a photon received on spacecraft i and emitted from spacecraft j. Since we have three satellites, i and j can take the values 1, 2 or 3, with  $i \neq j$ . Then mean[...] denotes a time average over the timespan of interest (usually a couple of hours), such that  $x^d$ ,  $y^d$  and  $z^d$  are indeed constants.

The corresponding advancements are denoted by  $x^{-1}$ ,  $y^{-1}$  and  $z^{-1}$ , and act as

$$x^{-1}f(t) = f(t+x^d), \quad y^{-1}f(t) = f(t+y^d) \quad \text{and} \quad z^{-1}f(t) = f(t+z^d).$$
 (4)

We can map all second-generation variables presented in table I to first generation variables by replacing

$$\mathbf{D}_{12} = \mathbf{D}_{21} = z, \quad \mathbf{D}_{23} = \mathbf{D}_{32} = x, \quad \mathbf{D}_{31} = \mathbf{D}_{13} = y,$$
 (5a)

$$\mathbf{A}_{12} = \mathbf{A}_{21} = z^{-1}, \quad \mathbf{A}_{23} = \mathbf{A}_{32} = x^{-1}, \quad \mathbf{A}_{31} = \mathbf{A}_{13} = y^{-1}.$$
 (5b)

As known from the literature, see e.g., [7], one important result for 1st generation TDI is that all TDI variables can be constructed from just four generators. One possible set of generators are the 3 Sagnac variables  $\alpha$ ,  $\beta$ ,  $\gamma$  together with the fully symmetric Sagnac  $\zeta$ 

# [3]. These are given in our notation as:

$$\alpha = \eta_{12} + z\eta_{23} + zx\eta_{31} - \eta_{13} - y\eta_{32} - yz\eta_{21}$$
(6a)

$$\beta = \eta_{23} + x\eta_{31} + xy\eta_{12} - \eta_{21} - z\eta_{13} - zy\eta_{32} \tag{6b}$$

$$\gamma = \eta_{31} + y\eta_{12} + yz\eta_{23} - \eta_{32} - x\eta_{21} - xz\eta_{13} \tag{6c}$$

$$\zeta = x\eta_{12} + y\eta_{23} + z\eta_{31} - x\eta_{13} - z\eta_{32} - y\eta_{21}. \tag{6d}$$

In the interpretation of geometric TDI,  $\alpha$ ,  $\beta$  and  $\gamma$  are simple two-beam interferometers, while  $\zeta$  is a 6 beam interferometer, where each spacecraft emits and receives two beams. Following [7], we are therefore able to write each first generation TDI combination as

$$TDI_k = A_k'\alpha + B_k'\beta + C_k'\gamma + D_k'\zeta, \tag{7}$$

where  $\mathrm{TDI}_k$  is the k'th combination in table I after simplifying it using eqs. (5a) and (5b), while  $A'_k, B'_k, C'_k, D'_k$  are polynomials of the delay operators x, y and z. This means that under the assumptions of first generation TDI, all information we can extract from any of the combinations given in table I is, in principle, already contained in these four generators  $\alpha, \beta, \gamma$  and  $\zeta$ .

Note that solutions to eq. (7) are not necessarily unique, since  $\alpha, \beta, \gamma$  and  $\zeta$  have a time-delay relationship to each other [7]:

$$(1 - xyz)\zeta = (x - yz)\alpha + (y - xz)\beta + (z - xy)\gamma.$$
(8)

As argued in [7], the term (1 - xyz) appearing in front of  $\zeta$  in this equation theoretically does not impact the signal to noise ratio, such that one could consider just  $\alpha$ ,  $\beta$  and  $\gamma$  for the astrophysical data analysis. However, we will argue in section 3.1 that terms like this (1 - xyz) can have subtle impacts on the data analysis, such that we consider all four generators for our analysis.  $\zeta$  in particular is known to be insensitive to GWs at low frequencies, and is therefore of interest for characterizing the instrument [3].

Before explicitly solving eq. (7) for all core variables, we further simplify the expressions by applying an overall time shift<sup>4</sup>  $E_k$  to each expression given in table I, such that we solve

<sup>&</sup>lt;sup>4</sup> We determine  $E_k$  by collecting the common factors in front of each  $\eta_{ij}$  in table I after we used eqs. (5a) and (5b) to simplify the combinations from 2nd to 1st generation TDI.

the following equation instead of eq. (7):

$$E_k \text{ TDI}_k = A_k \alpha + B_k \beta + C_k \gamma + D_k \zeta. \tag{9}$$

We solve eq. (9) for each value of k using the computer software Mathematica. Since each of the six  $\eta_{ij}$  is independent, eq. (9) can be read as a system of six linear equations, which we first solve for four real coefficients  $A_k$ ,  $B_k$ ,  $C_k$  and  $D_k$ . Note that the actual solutions to eq. (9) are only those for which  $A_k$ ,  $B_k$ ,  $C_k$  and  $D_k$  are also valid polynomials in x, y and z. In particular, we must not allow solutions containing the inverse of a multi term polynomial such as, e.g., 1/(x-yz).

We describe in appendix C how to retrieve the equivalent expressions for the remaining 174 combinations of the full set of TDI variables from these core combinations.

#### 2.1. Discussion

Many of the variables are given as one of the generators  $\alpha$ ,  $\beta$ ,  $\gamma$  or  $\zeta$  with a single difference of delays in front (e.g.,  $C_1^{12} \approx (1-xyz)\alpha$  and  $C_{28}^{16} \approx (y^2-z^2)\zeta$ ). This implies that there are multiple choices of second generation representatives of the first generation generators given in eq. (6a) to eq. (6d). Indeed, each of these representatives response to GWs and noise can be computed by applying different frequency domain transfer functions to the response of the first generation variables. As argued in [7], these transfer functions do not impact the SNR in theory, such that any of them could be used in the data analysis. However, since in practice TDI variables are computed numerically with finite dynamic range and sampling rate, some variables might have better SNR around some singular frequencies, and might also have other advantages. We will discuss some of these points in section 3.1.

In addition, we observe that  $C_4^{16}$ ,  $C_{24}^{16}$  and  $C_{28}^{16}$  contain an overall difference term (y-z) or  $(y^2-z^2)$ . These terms are vanishing if all delays are assumed equal (i.e., assume x=y=z) as explicitly shown for the '0th generation' expressions in table II. This means that when we take the real LISA orbital dynamics into account, the secondary noises as well as the astrophysical signal will be strongly suppressed in these variables. However, they are not

exactly vanishing, which highlights that the assumption of equal arms is not sufficient to accurately model the response of some variables.

Furthermore, since the  $\zeta$  combinations has the special properties of being less sensitive to gravitational waves compared to  $\alpha$ ,  $\beta$  and  $\gamma$ , at least at low frequencies, we would expect this property to extend to  $C_3^{12}$ ,  $C_3^{14}$ ,  $C_{26}^{16}$ ,  $C_{27}^{16}$  and  $C_{28}^{16}$ , which are directly related to the first generation  $\zeta$ . This could make these variables useful for characterising the instrumental noise in the presence of a GW signal, and to distinguish a stochastic GW background from the noise, as discussed in [6]. Note that, as shown in fig. 4, these combinations suppress laser noise to the same level as all other variables, contrary to the second generation version of  $\zeta$  proposed in [7].

# 3. NUMERICAL SIMULATIONS

We run two simulations using LISA Instrument<sup>5</sup> to verify our statement that the decompositions shown in table II are good approximations for the secondary noises. In both simulations, all noise time series are generated at a high sampling rate of 16 Hz and then filtered and decimated to a lower measurement rate of 4 Hz. The filter is a digital symmetrical FIR filter build from a Kaiser windowing function, with a transition band extending from 1.1 Hz to 2.9 Hz and a minimum attenuation above 2.9 Hz of 320 dB.

In the first simulation, we disable laser noise, which allows us to use the first generation generators  $\alpha$ ,  $\beta$ ,  $\gamma$  and  $\zeta$ . We simulate readout noise and test-mass acceleration noise, as they are the main noise contributors of the instrumental noise after TDI, and use realistic orbits provided by ESA to compute the light travel times. This allows us to directly test the validity of the decomposition given in table II for all the combinations.

In the second set of simulations, we simulate laser noise as well, such that we are restricted to use only the second generation variables. We then show that the relationships given in table II remain valid by constructing a version of  $C_1^{16}$  out of  $C_{27}^{16}$  and the three cyclic permutations of  $C_1^{12}$ .

<sup>&</sup>lt;sup>5</sup> LISA Instrument is a time-domain LISA simulator developed by J.-B. Bayle inside the LISA Consortium. See [11, 13?] for a detailed description of its simulation model.

All TDI combination are computed using PyTDI<sup>6</sup>.

#### 3.1. Simulations without laser noise

We simulate  $10^5$  samples of LISA data with the aforementioned parameters, and compute the response of all TDI combinations given in table I. Here, we use the time-varying light travel times  $d_{ij}(t)$  output by the simulation to compute the exact response of the variable given realistic orbits.

We then compute the constant delays  $x^d$ ,  $y^d$  and  $z^d$  using eqs. (3a) to (3c), and use them to construct the generators of first generation TDI as given in section 2. This allows us to use the expressions given in table II to construct the approximate versions of all TDI combinations. We can then study the time-domain residual between the exact and approximate version of each variable.

As an example, we plot in fig. 1 the amplitude spectral density (ASD) of the TDI combinations  $C_1^{12}$ ,  $C_3^{12}$ ,  $C_1^{14}$ ,  $C_1^{16}$ , and  $C_{24}^{16}$  as given in table I. In addition, we also plot the ASD of the time-domain residual between them and their expressions in terms of  $\alpha$ ,  $\beta$ ,  $\gamma$  and  $\zeta$  from table II. We observe that the residuals for all variables are at a similar level, about four to five orders of magnitude below the actual secondary noise levels of  $C_1^{12}$ ,  $C_3^{12}$ ,  $C_1^{14}$  and  $C_1^{16}$ , such that the expressions given in table II should provide good approximations of the secondary noises.

Looking at the plot, we see that the combinations show to have different noise shapes, in particular, their spectra have an unequal number of zeros. This can be explained by referring to the column of table II which shows the approximation in case of equal arms ('0th' generation). We see that all variables contain a difference term of the form  $(1 - D^N)$ , where D is the single delay operator of '0th' generation TDI, acting as  $Df(t) = f(t - \bar{d})$ , with  $\bar{d} \approx 8.3 \,\mathrm{s}$  as the arm length. In the frequency domain, this term corresponds to a transfer function of the form  $2 \left| \sin(\pi f N \bar{d}) \right|$ , with zeros at frequencies  $f = (Nd)^{-1}$ .

For example,  $C_1^{16}$  has N=4, thus shows to have zeros starting at  $f\approx 30\,\mathrm{mHz}$ . It is then followed by  $C_1^{12}$  with N=3,  $C_1^{14}$  with N=2 and  $C_3^{12}$  with N=1.

<sup>&</sup>lt;sup>6</sup> PyTDI is a python package designed to compute TDI combinations, developed mainly by M. Staab and J.-B. Bayle inside the LISA consortium.

 $C_{24}^{16}$  behaves differently, since it is exactly vanishing when assuming equal arms. However, it is not vanishing in the assumption of 1st generation TDI, where it contains a difference term  $z^2 - y^2$ . This corresponds to a frequency domain transfer function of  $2\left|\sin\left(2\pi f(z^d-y^d)\right)\right|$ , which has zeros outside of the LISA band, at  $f=0.5(z^d-y^d)^{-1}\approx 5\,\mathrm{Hz}$ . This explains why the blue curve describing  $C_{24}^{16}$  in fig. 1 appears at a lower level then those of  $C_1^{12}$ ,  $C_3^{12}$ ,  $C_1^{14}$  and  $C_1^{16}$ , since the transfer function starts suppressing the output for frequencies below  $5\,\mathrm{Hz}$ , whereas for the others, the roll-of starts only around  $5\times 10^{-2}\,\mathrm{Hz}$ . Note that this lower noise level might imply that this variable is more susceptible to errors due to the finite numerical precision of our data.

On the other hand, as already argued in [4], zeros inside the LISA band can also negatively impact the data analysis, even though they affect both signal and noise equally. Indeed, while the signal to noise ratio is theoretically unchanged, in practice, our data has finite dynamic range, such that the zeros are 'filled' by numerical noise, causing a degradation of SNR close to the zeros. It is therefore potentially beneficial to use TDI combinations with as few zeros as possible.

We now want to compare different possible 2nd generation versions of the generator  $\alpha$ . As argued above, these differ by the differential time delays applied to them, which correspond to frequency domain transfer functions of the form  $2|\sin(\pi f\delta)|$ , with  $\delta$  as the differences of the applied delays. At low frequencies, we can expand this transfer function to first order in  $\delta$ , to get a simple factor  $2\pi f\delta$ , which represents a derivative combined with a rescaling by  $\delta$ . Thus, it is interesting to compare the different possible second generation versions of  $\alpha$  to the derivative of the first generation version. We plot in fig. 2 the combinations  $C_1^{12}$ ,  $C_2^{12}$ ,  $C_1^{14}$ ,  $C_3^{16}$  and  $C_{24}^{16}$ , all rescaled by their respective  $\delta$ , compared to the two-point derivative of  $\alpha$  (labelled  $\dot{\alpha}$ ). We observe that as expected, all curves coincide at low frequencies, while the different number of zeros determines the deviations at high frequencies. In particular, we observe that  $C_{24}^{16}$  seems to approximate  $\dot{\alpha}$  very well across the whole frequency band. However, even if fig. 1 shows that the approximation reported in table II holds within 3 orders of magnitude, we are not able to demonstrate that  $C_{24}^{16}$  agrees to  $\dot{\alpha}$  to this precision. The reason is that the two-point derivative we used to compute  $\dot{\alpha}$  has a time difference of  $1/f_s = 0.25 \, \mathrm{s}$ , that is different to the one of  $C_{24}^{16}$ , which is  $2(z^d - y^d) \approx 0.2 \, \mathrm{s}$ . We discuss this

FIG. 1. Secondary noises in  $C_1^{12}$ ,  $C_3^{12}$ ,  $C_1^{14}$ ,  $C_1^{16}$  and  $C_{24}^{16}$  compared to the residual between the approximation given in table II and their exact expression given in table I.



in detail in appendix B.

As a proof of concept that the decompositions presented in table II are still applicable when we include laser noise in the simulation, we want to linearly combine multiple second generation variables to construct the variable  $C_1^{16}$  (known in the literature as TDI X). The previously discussed set of variables without zeros in the LISA band seem to be good candidates to use in this construction. However, we remark that the two cyclic permutations of  $C_{24}^{16}$  contain the time differences  $2(x^d-z^d)$  and  $2(y^d-z^d)$ , respectively, such that including  $C_{24}^{16}$  itself, we get finite difference approximations of  $\dot{\alpha}$ ,  $\dot{\beta}$  and  $\dot{\gamma}$  with unequal time differences. The same argument holds for  $C_{28}^{16}$ , which approximates  $\dot{\zeta}$ . This limits our ability in using linear combinations of these variables to build other variables in the table, as discussed in appendix B and illustrated in fig. 6.

On the other hand, as visible in table II, the variables  $C_1^{12}$  (plus its cyclic permutations  $\hat{C}_1^{12}$  and  $\hat{C}_1^{12}$ ) and  $C_{27}^{16}$  all have the same time shift factor (1-xyz) applied to them. This allows us to linearly combine them without introducing additional errors, as we demonstrate in the next section.

FIG. 2. Second generation variables as approximation of the derivative of  $\alpha$ .  $C_1^{12}$ ,  $C_2^{12}$ ,  $C_1^{14}$ ,  $C_3^{16}$  and  $C_{24}^{16}$  are rescaled by the numerical value of the difference of delays applied in table II. Combinations with larger delay differences have more zeros inside the LISA band.



#### 3.2. Simulations including laser noise

Let us define a short-hand notation for the second generation representatives of the variables  $\alpha$ ,  $\beta$ ,  $\gamma$  and  $\zeta$  chosen for this example:

$$\tilde{\alpha} \equiv C_1^{12} \tag{10a}$$

$$\tilde{\beta} \equiv \hat{C}_1^{12} \tag{10b}$$

$$\tilde{\gamma} \equiv \hat{\hat{C}}_1^{12} \tag{10c}$$

$$\tilde{\zeta} \equiv x C_{27}^{16}.\tag{10d}$$

Applying the factor (1-xyz) to the expression given for  $C_1^{16}$  in table II, we see that

$$(1 - xyz)C_1^{16} \approx (1 - y^2z^2)(1 - xyz)(\alpha - z\beta - y\gamma + yz\zeta)$$
(11a)

$$\approx (1 - y^2 z^2) \left( \tilde{\alpha} - z \tilde{\beta} - y \tilde{\gamma} + y z \tilde{\zeta} \right). \tag{11b}$$

To verify that eq. (11b) is accurate, we compute the exact version of  $C_1^{16}$  given in table I numerically, and apply the additional factor (1-xyz) to the resulting laser-noise free variable. We compare it to the approximated version on the right hand side of eq. (11b), where we compute  $\tilde{\alpha}$ ,  $\tilde{\beta}$ ,  $\tilde{\gamma}$  and  $\tilde{\zeta}$  as given in eqs. (10a) to (10d).

Figure 3 shows that the noise level of the simulated data (in orange) is well explained by the analytical model describing the secondary noises (in dotted grey). For clarity the approximated solution of  $(1 - xyz)C_1^{16}$  is omitted as we cannot appreciate the difference with respect to the exact solution on this scale. We show instead that the residual noise between the left- and right-hand side of eq. (11b) is several orders of magnitude below the secondary noises. This same principle could easily be applied to any of the variables given in table II.

However, since all information is already contained in  $\alpha$ ,  $\beta$ ,  $\gamma$  and  $\zeta$ , it should be enough in practice to compute a single set of second generation versions of them, without a need to construct other variables (such as  $C_1^{16}$ ) out of them.

Note that the second generation versions of  $\zeta$  considered here, such as  $C_{27}^{16}$  or  $C_{28}^{16}$ , are different from the second generation  $\zeta$  proposed in [7]. Figure 4 compares the residual laser noise for the 1st and 2nd generation  $\zeta$  variable from the literature with that in  $C_{27}^{16}$  and  $C_{28}^{16}$ . For reference, we also p

lot a typical  $1 \text{ pm}/\sqrt{\text{Hz}}$  noise allocation<sup>7</sup>. We see that both  $C_{27}^{16}$  and  $C_{28}^{16}$  reduce laser noise far below the level of the previously known variables (and the requirements), as also demonstrated by theoretical calculation in [5].

<sup>&</sup>lt;sup>7</sup> The overall noise allocation given for the interferometric readout given in [14] is  $10 \,\mathrm{pm}/\sqrt{\mathrm{Hz}}$ . It is common to compare individual noise sources to a more conservative requirement, such that no single noise source uses up the whole allocated noise level. In addition, we applied the readout noise TDI transfer function for the second generation  $\zeta$  variable given in the literature [7]. Note that we omit the usual relaxation of the requirement towards low frequencies, to compensate for the fact that the simulation assumes laser frequency noise to be a white noise accross the whole frequency band.

|                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name                        | Expression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $C_1^{12}$                  | $-\left(D_{13}D_{32}-D_{12}D_{23}D_{31}D_{13}D_{32}\right)\eta_{21}+\left(D_{12}D_{23}-D_{13}D_{32}D_{21}D_{12}D_{23}\right)\eta_{31}+\left(D_{12}-D_{13}D_{32}D_{21}D_{12}\right)\eta_{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ~ ı                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                             | $+\left(1-\mathbf{D}_{13}\mathbf{D}_{32}\mathbf{D}_{21}\right)\eta_{12}-\left(\mathbf{D}_{13}-\mathbf{D}_{12}\mathbf{D}_{23}\mathbf{D}_{31}\mathbf{D}_{13}\right)\eta_{32}-\left(1-\mathbf{D}_{12}\mathbf{D}_{23}\mathbf{D}_{31}\right)\eta_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $C_2^{12}$                  | $\left(\mathbf{A}_{23}\mathbf{A}_{31}-\mathbf{D}_{21}\mathbf{A}_{13}\mathbf{A}_{31}\right)\eta_{12}+\left(\mathbf{A}_{23}\mathbf{A}_{31}\mathbf{D}_{12}-\mathbf{D}_{21}\mathbf{A}_{13}\mathbf{A}_{31}\mathbf{D}_{12}\right)\eta_{23}+\left(\mathbf{D}_{21}\mathbf{A}_{13}-\mathbf{D}_{21}\mathbf{A}_{13}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{D}_{23}\right)\eta_{31}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                             | $-\left(1-\mathbf{A}_{23}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{D}_{23}\mathbf{D}_{32}\right)\eta_{21}-\left(\mathbf{A}_{23}-\mathbf{A}_{23}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{D}_{23}\right)\eta_{32}-\left(\mathbf{A}_{23}\mathbf{A}_{31}-\mathbf{D}_{21}\mathbf{A}_{13}\mathbf{A}_{31}\right)\eta_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $C_3^{12}$                  | $(\mathbf{D}_{32}\mathbf{D}_{23}\mathbf{A}_{31} - \mathbf{D}_{31}\mathbf{A}_{12}\mathbf{D}_{23}\mathbf{A}_{31})\eta_{13} - (\mathbf{D}_{31}\mathbf{A}_{12} - \mathbf{D}_{31}\mathbf{A}_{12}\mathbf{D}_{23}\mathbf{A}_{31}\mathbf{D}_{12})\eta_{21} + (-\mathbf{D}_{32}\mathbf{D}_{23}\mathbf{A}_{31} + \mathbf{D}_{31}\mathbf{A}_{12}\mathbf{D}_{23}\mathbf{A}_{31})\eta_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                             | $-\left(\mathbf{D}_{32}-\mathbf{D}_{31}\mathbf{A}_{12}\right)\eta_{23}+\left(1-\mathbf{D}_{32}\mathbf{D}_{23}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{A}_{23}\right)\eta_{31}-\left(1-\mathbf{D}_{32}\mathbf{D}_{23}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{A}_{23}\right)\eta_{32}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $C_1^{14}$                  | $-\left(\mathbf{A}_{23}\mathbf{A}_{31}-\mathbf{D}_{21}\mathbf{D}_{12}\mathbf{A}_{23}\mathbf{A}_{31}\right)\eta_{13}+\left(-\mathbf{D}_{21}\mathbf{D}_{12}\mathbf{A}_{23}\mathbf{A}_{31}+\mathbf{A}_{23}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{D}_{23}\mathbf{D}_{31}-\mathbf{D}_{21}+\mathbf{A}_{23}\mathbf{A}_{31}\right)\eta_{12}-\left(1-\mathbf{A}_{23}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{D}_{23}\mathbf{D}_{31}\mathbf{D}_{12}\right)\eta_{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                             | $+\left(\mathbf{A}_{23}\mathbf{A}_{31}\mathbf{D}_{12}-\mathbf{D}_{21}\mathbf{D}_{12}\mathbf{A}_{23}\mathbf{A}_{31}\mathbf{D}_{12}\right)\eta_{23}+\left(\mathbf{A}_{23}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{D}_{23}-\mathbf{D}_{21}\mathbf{D}_{12}\mathbf{A}_{23}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{D}_{23}\right)\eta_{31}-\left(\mathbf{A}_{23}-\mathbf{D}_{21}\mathbf{D}_{12}\mathbf{A}_{23}\right)\eta_{32}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| C14                         | $-(\mathbf{D}_{23}\mathbf{A}_{31} - \mathbf{D}_{21}\mathbf{D}_{12}\mathbf{D}_{23}\mathbf{A}_{31})  \eta_{13} - (\mathbf{D}_{23}\mathbf{A}_{31}\mathbf{A}_{12}\mathbf{A}_{23} - \mathbf{D}_{21}\mathbf{D}_{12}\mathbf{D}_{23}\mathbf{A}_{31})  \eta_{12} + (-\mathbf{D}_{21}\mathbf{A}_{23}\mathbf{A}_{31}\mathbf{A}_{12}\mathbf{A}_{23}\mathbf{D}_{31})  \eta_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $C_2^{14}$                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                             | $-\left(-D_{21}D_{12}D_{23}A_{31}A_{12}+D_{23}A_{31}A_{12}-D_{23}A_{31}A_{12}A_{23}D_{31}D_{12}+1\right)\eta_{21}+\left(D_{23}A_{31}A_{12}A_{23}-D_{21}D_{12}D_{23}A_{31}A_{12}A_{23}\right)\eta_{31}+\left(1-D_{21}D_{12}\right)\eta_{23}A_{31}A_{12}A_{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $C_3^{14}$                  | $-\left(D_{23}A_{31}-D_{21}D_{12}D_{23}A_{31}\right)\eta_{33}-\left(D_{23}A_{31}D_{12}A_{23}-D_{21}D_{12}D_{23}A_{31}D_{12}A_{23}\right)\eta_{32}+\left(-D_{21}D_{12}D_{23}A_{31}+D_{22}A_{31}D_{12}A_{23}D_{31}-D_{21}+D_{23}A_{31}\right)\eta_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C3                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                             | $-\left(1-\mathbf{D}_{23}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{A}_{23}\mathbf{D}_{31}\mathbf{D}_{12}\right)\eta_{21}+\left(\mathbf{D}_{23}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{A}_{23}-\mathbf{D}_{21}\mathbf{D}_{12}\mathbf{D}_{23}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{A}_{23}\right)\eta_{31}+\left(1-\mathbf{D}_{21}\mathbf{D}_{12}\right)\eta_{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $C_1^{16}$                  | $\left(-D_{13}D_{31}D_{12}D_{21}+D_{12}D_{21}D_{13}D_{31}D_{13}D_{31}-D_{13}D_{31}+1\right)\eta_{12}-\left(-D_{12}D_{21}D_{13}D_{31}+D_{13}D_{31}D_{12}D_{21}D_{12}D_{21}-D_{12}D_{21}+1\right)\eta_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| O <sub>1</sub>              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                             | $+\left(-D_{13}D_{31}D_{12}D_{21}D_{12}+D_{12}D_{21}D_{13}D_{31}D_{13}D_{31}D_{12}-D_{13}D_{31}D_{12}+D_{12}\right)\eta_{21}-\left(-D_{12}D_{21}D_{13}D_{31}D_{13}+D_{13}D_{31}D_{12}D_{21}D_{12}D_{21}D_{13}-D_{12}D_{21}D_{13}+D_{13}\right)\eta_{31}D_{12}D_{13}D_{13}D_{12}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{13}D_{1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $C_{2}^{16}$                | $\left(\mathbf{D}_{12}\mathbf{D}_{21}\mathbf{D}_{13}\mathbf{D}_{32}\mathbf{D}_{23}\mathbf{D}_{31} - \mathbf{D}_{13}\mathbf{D}_{32}\mathbf{D}_{21}\mathbf{D}_{12}\mathbf{D}_{21} - \mathbf{D}_{13}\mathbf{D}_{32}\mathbf{D}_{21} + 1\right)\eta_{12} + \left(\mathbf{D}_{12}\mathbf{D}_{21}\mathbf{D}_{13}\mathbf{D}_{32}\mathbf{D}_{23}\mathbf{D}_{31}\mathbf{D}_{12} - \mathbf{D}_{13}\mathbf{D}_{32}\mathbf{D}_{21}\mathbf{D}_{12} + \mathbf{D}_{12} - \mathbf{D}_{13}\mathbf{D}_{32}\right)\eta_{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| - 2                         | , , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                             | $+\left(\mathbf{D}_{12}\mathbf{D}_{21}\mathbf{D}_{13}\mathbf{D}_{32}\mathbf{D}_{23}-\mathbf{D}_{13}\mathbf{D}_{32}\mathbf{D}_{21}\mathbf{D}_{12}\mathbf{D}_{21}\mathbf{D}_{12}\mathbf{D}_{23}\right)\eta_{31}+\left(\mathbf{D}_{12}\mathbf{D}_{21}\mathbf{D}_{13}\mathbf{D}_{32}-\mathbf{D}_{13}\mathbf{D}_{32}\mathbf{D}_{21}\mathbf{D}_{12}\mathbf{D}_{21}\mathbf{D}_{12}\right)\eta_{23}-\left(\mathbf{D}_{13}-\mathbf{D}_{12}\mathbf{D}_{21}\mathbf{D}_{13}\right)\eta_{32}-\left(1-\mathbf{D}_{12}\mathbf{D}_{21}\right)\eta_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $C_3^{16}$                  | $\left(-D_{13}D_{32}D_{21}D_{12}D_{21}+D_{12}D_{23}D_{31}-D_{13}D_{32}D_{21}+1\right)\eta_{12}-\left(-D_{12}D_{23}D_{31}D_{12}D_{21}D_{13}D_{32}+D_{13}D_{32}D_{21}D_{12}-D_{12}D_{23}D_{31}D_{12}+D_{13}D_{32}\right)\eta_{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                             | $+(D_1,D_2,-D_2,D_3,D_4,D_4,D_4,D_4,D_4,D_4,D_4,D_4,D_4,D_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -10                         | $+ \left(\mathbf{D}_{12}\mathbf{D}_{23} - \mathbf{D}_{13}\mathbf{D}_{32}\mathbf{D}_{21}\mathbf{D}_{12}\mathbf{D}_{21}\mathbf{D}_{12}\mathbf{D}_{23}\right)\eta_{31} - \left(\mathbf{D}_{13} - \mathbf{D}_{12}\mathbf{D}_{23}\mathbf{D}_{31}\mathbf{D}_{12}\mathbf{D}_{21}\mathbf{D}_{13}\right)\eta_{32} - \left(1 - \mathbf{D}_{12}\mathbf{D}_{23}\mathbf{D}_{31}\mathbf{D}_{12}\mathbf{D}_{21}\right)\eta_{13} + \left(\mathbf{D}_{12} - \mathbf{D}_{13}\mathbf{D}_{32}\mathbf{D}_{21}\mathbf{D}_{12}\mathbf{D}_{21}\mathbf{D}_{12}\right)\eta_{23} \\ \left(\mathbf{A}_{12}\mathbf{A}_{21}\mathbf{A}_{13}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{D}_{21} + \mathbf{A}_{12}\mathbf{A}_{21}\mathbf{A}_{13}\mathbf{A}_{31} - \mathbf{A}_{12}\mathbf{A}_{21} - \mathbf{A}_{13}\mathbf{A}_{31}\mathbf{A}_{13}\mathbf{A}_{31}\right)\eta_{12} + \left(-\mathbf{A}_{13}\mathbf{A}_{31}\mathbf{A}_{13}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{D}_{21} - \mathbf{A}_{12}\mathbf{A}_{21}\mathbf{A}_{13}\mathbf{A}_{31} + \mathbf{A}_{13}\mathbf{A}_{31}\mathbf{A}_{31}\right)\eta_{13} \\ + \left(\mathbf{A}_{12}\mathbf{A}_{21}\mathbf{A}_{13}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{D}_{21} - \mathbf{A}_{12}\mathbf{A}_{21}\mathbf{A}_{13}\mathbf{A}_{31} + \mathbf{A}_{13}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\right)\eta_{13} \\ + \left(\mathbf{A}_{12}\mathbf{A}_{21}\mathbf{A}_{13}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{D}_{21} + \mathbf{A}_{12}\mathbf{A}_{21}\mathbf{A}_{13}\mathbf{A}_{31} - \mathbf{A}_{12}\mathbf{A}_{21} - \mathbf{A}_{13}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\right)\eta_{13} \\ + \left(\mathbf{A}_{12}\mathbf{A}_{21}\mathbf{A}_{13}\mathbf{A}_{31}\mathbf{A}_{13}\mathbf{A}_{31} + \mathbf{A}_{13}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\right)\eta_{13} \\ + \left(\mathbf{A}_{12}\mathbf{A}_{21}\mathbf{A}_{13}\mathbf{A}_{31}\mathbf{A}_{13}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\right)\eta_{13} \\ + \left(\mathbf{A}_{12}\mathbf{A}_{21}\mathbf{A}_{13}\mathbf{A}_{31}\mathbf{A}_{13}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\right)\eta_{13} \\ + \left(\mathbf{A}_{12}\mathbf{A}_{21}\mathbf{A}_{13}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}\mathbf{A}_{31}$                                |
| $C_4^{16}$                  | $(\mathbf{A}_{12}\mathbf{A}_{21}\mathbf{A}_{13}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{D}_{21} + \mathbf{A}_{12}\mathbf{A}_{21}\mathbf{A}_{13}\mathbf{A}_{31} - \mathbf{A}_{12}\mathbf{A}_{21} - \mathbf{A}_{13}\mathbf{A}_{31}\mathbf{A}_{13}\mathbf{A}_{31})\eta_{12} + (-\mathbf{A}_{13}\mathbf{A}_{31}\mathbf{A}_{13}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{D}_{21} - \mathbf{A}_{12}\mathbf{A}_{21}\mathbf{A}_{13}\mathbf{A}_{31} + \mathbf{A}_{13}\mathbf{A}_{31}\mathbf{A}_{13}\mathbf{A}_{31})\eta_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             | $-\left(-A_{12}A_{21}A_{13}A_{31}D_{12}-A_{12}A_{21}A_{13}A_{31}D_{12}D_{21}D_{12}+A_{13}A_{31}A_{13}A_{31}D_{12}+A_{12}\right)\eta_{21}+\left(-A_{13}A_{31}A_{13}A_{31}D_{12}D_{21}D_{13}-A_{12}A_{21}A_{13}+A_{13}A_{31}A_{13}+A_{13}\right)\eta_{31}+A_{12}A_{12}A_{13}A_{13}A_{13}A_{13}D_{12}D_{21}D_{12}+A_{13}A_{21}A_{13}A_{21}D_{12}D_{21}D_{12}+A_{13}A_{21}A_{21}A_{21}A_{21}A_{22}+A_{22}A_{21}A_{22}+A_{22}A_{22}A_{22}+A_{22}A_{22}A_{22}+A_{22}A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22}+A_{22}A_{22$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C16                         | $ \frac{\left(\begin{array}{ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $C_5^{16}$                  | $(-\boldsymbol{D}_{12}\boldsymbol{D}_{21}\boldsymbol{A}_{13}\boldsymbol{A}_{31}+\boldsymbol{A}_{13}\boldsymbol{A}_{31}\boldsymbol{D}_{12}\boldsymbol{D}_{21}\boldsymbol{D}_{13}\boldsymbol{D}_{31}+\boldsymbol{A}_{13}\boldsymbol{A}_{31}-1)\boldsymbol{\eta}_{12}-(-\boldsymbol{A}_{13}\boldsymbol{A}_{31}\boldsymbol{D}_{12}\boldsymbol{D}_{21}-\boldsymbol{D}_{12}\boldsymbol{D}_{21}\boldsymbol{A}_{13}\boldsymbol{A}_{31}+\boldsymbol{D}_{12}\boldsymbol{D}_{21}\boldsymbol{A}_{13}\boldsymbol{A}_{31}\boldsymbol{D}_{12}\boldsymbol{D}_{21}+\boldsymbol{A}_{13}\boldsymbol{A}_{31})\boldsymbol{\eta}_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                             | $-\left(D_{12}D_{21}A_{13}A_{31}D_{12}-A_{13}A_{31}D_{12}D_{21}D_{13}D_{31}D_{12}-A_{13}A_{31}D_{12}+D_{12}\right)\eta_{21}-\left(-A_{13}A_{31}D_{12}D_{21}D_{13}+D_{12}D_{21}A_{13}A_{31}D_{12}D_{21}D_{13}-D_{12}D_{21}A_{13}+A_{13}\right)\eta_{31}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $C_6^{16}$                  | $(A_{13}A_{32}D_{21}D_{12}D_{23}D_{31} - D_{12}D_{21}A_{13}A_{32}D_{21} + A_{13}A_{32}D_{21} - 1)\eta_{12} - (-A_{13}A_{32}D_{21}D_{12}D_{23}D_{31}D_{12} + D_{12}D_{21}A_{13}A_{32} + D_{12} - A_{13}A_{32})\eta_{21} + A_{13}A_{32}D_{21}D_{21}D_{22}D_{23}D_{31}D_{12} + D_{12}D_{21}A_{13}A_{32} + D_{12}D_{21}A_{13}A_{32}D_{21}D_{22}D_{33}D_{31}D_{12} + D_{12}D_{21}A_{13}A_{32}D_{21}D_{22}D_{33}D_{31}D_{22}D_{33}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{31}D_{32}D_{32}D_{31}D_{32}D_{32}D_{31}D_{32}D_{31}D_{32}D_{32}D_{31}D_{32}D_{32}D_{31}D_{32}D_{32}D_{32}D_{31}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D_{32}D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| C <sub>6</sub>              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                             | $-\left(-\mathbf{A}_{13}\mathbf{A}_{32}\mathbf{D}_{21}\mathbf{D}_{12}\mathbf{D}_{23}+\mathbf{D}_{12}\mathbf{D}_{21}\mathbf{A}_{13}\mathbf{A}_{32}\mathbf{D}_{21}\mathbf{D}_{12}\mathbf{D}_{23}-\mathbf{D}_{12}\mathbf{D}_{21}\mathbf{A}_{13}+\mathbf{A}_{13}\right)\eta_{31}-\left(-\mathbf{A}_{13}\mathbf{A}_{32}\mathbf{D}_{21}\mathbf{D}_{12}-\mathbf{D}_{12}\mathbf{D}_{21}\mathbf{A}_{13}\mathbf{A}_{32}+\mathbf{D}_{12}\mathbf{D}_{21}\mathbf{A}_{13}\mathbf{A}_{32}\mathbf{D}_{21}\mathbf{D}_{12}+\mathbf{A}_{13}\mathbf{A}_{32}\right)\eta_{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $C_7^{16}$                  | $(\mathbf{A}_{23}\mathbf{A}_{31}\mathbf{A}_{13}\mathbf{D}_{32}\mathbf{D}_{21} - \mathbf{D}_{21}\mathbf{A}_{13}\mathbf{A}_{31}\mathbf{A}_{13}\mathbf{D}_{32}\mathbf{D}_{21} + \mathbf{D}_{21}\mathbf{A}_{13}\mathbf{A}_{31} - \mathbf{A}_{23}\mathbf{A}_{31})\eta_{13} - (-\mathbf{A}_{23}\mathbf{A}_{31}\mathbf{A}_{13}\mathbf{D}_{32}\mathbf{D}_{21}\mathbf{D}_{13}\mathbf{D}_{32} + \mathbf{D}_{21}\mathbf{A}_{13}\mathbf{A}_{31}\mathbf{A}_{13}\mathbf{D}_{32} - \mathbf{A}_{23}\mathbf{A}_{31}\mathbf{A}_{13}\mathbf{D}_{32} + 1)\eta_{21}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{23}\mathbf{A}_{2$                                                     |
| 07                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                             | $+\left(-\mathbf{D}_{21}\mathbf{A}_{13}\mathbf{A}_{31}\mathbf{A}_{13}\mathbf{D}_{32}\mathbf{D}_{21}\mathbf{D}_{13}+\mathbf{D}_{21}\mathbf{A}_{13}\mathbf{A}_{31}\mathbf{A}_{13}+\mathbf{D}_{21}\mathbf{A}_{13}-\mathbf{A}_{23}\mathbf{A}_{31}\mathbf{A}_{13}\right)\eta_{31}-\left(-\mathbf{A}_{23}\mathbf{A}_{31}\mathbf{A}_{13}\mathbf{D}_{32}\mathbf{D}_{21}\mathbf{D}_{13}+\mathbf{D}_{21}\mathbf{A}_{13}\mathbf{A}_{31}\mathbf{A}_{13}-\mathbf{A}_{23}\mathbf{A}_{31}\mathbf{A}_{13}\right)\eta_{32}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $C_8^{16}$                  | $\left(\mathbf{A}_{13}\mathbf{D}_{32}\mathbf{D}_{21}\mathbf{D}_{13}\mathbf{D}_{31}+\mathbf{A}_{13}\mathbf{D}_{32}\mathbf{D}_{21}-\mathbf{D}_{13}\mathbf{D}_{32}\mathbf{D}_{21}\mathbf{A}_{13}\mathbf{D}_{32}\mathbf{D}_{21}-1\right)\eta_{13}+\left(\mathbf{A}_{13}\mathbf{D}_{32}\mathbf{D}_{21}\mathbf{D}_{13}\mathbf{D}_{31}\mathbf{D}_{13}\mathbf{D}_{32}-\mathbf{D}_{13}\mathbf{D}_{32}\mathbf{D}_{21}\mathbf{A}_{13}\mathbf{D}_{32}-\mathbf{D}_{13}\mathbf{D}_{32}\right)\eta_{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                             | $-\left(-\mathbf{A}_{13}\mathbf{D}_{32}\mathbf{D}_{21}\mathbf{D}_{13}-\mathbf{D}_{13}\mathbf{D}_{32}\mathbf{D}_{21}\mathbf{A}_{13}+\mathbf{D}_{13}\mathbf{D}_{32}\mathbf{D}_{21}\mathbf{A}_{13}\mathbf{D}_{32}\mathbf{D}_{21}\mathbf{D}_{13}+\mathbf{A}_{13}\right)\eta_{31}+\left(\mathbf{A}_{13}\mathbf{D}_{32}\mathbf{D}_{21}\mathbf{D}_{13}\mathbf{D}_{31}\mathbf{D}_{13}-\mathbf{D}_{13}\mathbf{D}_{32}\mathbf{D}_{21}\mathbf{A}_{13}+\mathbf{A}_{13}-\mathbf{D}_{13}\right)\eta_{32}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $C_9^{16}$                  | $\left(\mathbf{A}_{21}\mathbf{A}_{12}\mathbf{A}_{23}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{D}_{21}+\mathbf{A}_{21}\mathbf{A}_{12}\mathbf{A}_{23}\mathbf{A}_{31}-\mathbf{A}_{23}\mathbf{A}_{31}\mathbf{A}_{13}\mathbf{A}_{32}\mathbf{D}_{21}-\mathbf{A}_{21}\right)\eta_{12}-\left(-\mathbf{A}_{21}\mathbf{A}_{12}\mathbf{A}_{23}\mathbf{A}_{31}\mathbf{D}_{12}-\mathbf{A}_{21}\mathbf{A}_{12}\mathbf{A}_{23}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{D}_{21}\mathbf{D}_{12}+\mathbf{A}_{21}\mathbf{A}_{12}+\mathbf{A}_{23}\mathbf{A}_{31}\mathbf{A}_{13}\mathbf{A}_{32}\right)\eta_{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                             | $+\left(\mathbf{A}_{23}\mathbf{A}_{31}\mathbf{A}_{13}\mathbf{A}_{32}-\mathbf{A}_{23}\mathbf{A}_{31}\mathbf{A}_{13}\mathbf{A}_{32}\mathbf{D}_{21}\mathbf{D}_{12}\right)\eta_{23}+\left(\mathbf{A}_{23}\mathbf{A}_{31}\mathbf{A}_{13}-\mathbf{A}_{23}\mathbf{A}_{31}\mathbf{A}_{13}\mathbf{A}_{32}\mathbf{D}_{21}\mathbf{D}_{12}\mathbf{D}_{23}\right)\eta_{31}+\left(\mathbf{A}_{23}\mathbf{A}_{31}-\mathbf{A}_{21}\mathbf{A}_{12}\mathbf{A}_{23}\mathbf{A}_{31}\right)\eta_{13}+\left(\mathbf{A}_{23}-\mathbf{A}_{21}\mathbf{A}_{12}\mathbf{A}_{23}\right)\eta_{32}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| C16                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $C_{10}^{16}$               | $(\mathbf{A}_{23}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{D}_{21}\mathbf{D}_{13}\mathbf{D}_{31} - \mathbf{D}_{21}\mathbf{D}_{12}\mathbf{A}_{23}\mathbf{A}_{32}\mathbf{D}_{21} - \mathbf{D}_{21} + \mathbf{A}_{23}\mathbf{A}_{31})\eta_{12} - (-\mathbf{A}_{23}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{D}_{21}\mathbf{D}_{13}\mathbf{D}_{31}\mathbf{D}_{12} + \mathbf{D}_{21}\mathbf{D}_{12}\mathbf{A}_{23}\mathbf{A}_{32} - \mathbf{A}_{23}\mathbf{A}_{31}\mathbf{D}_{12} + 1)\eta_{21}\mathbf{D}_{22}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{2$                                                     |
|                             | $+\left(\mathbf{A}_{23}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{D}_{21}\mathbf{D}_{13}-\mathbf{D}_{21}\mathbf{D}_{12}\mathbf{A}_{23}\mathbf{A}_{32}\mathbf{D}_{21}\mathbf{D}_{12}\mathbf{D}_{23}\right)\eta_{31}-\left(\mathbf{A}_{23}\mathbf{A}_{31}-\mathbf{A}_{23}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{D}_{21}\right)\eta_{13}+\left(\mathbf{D}_{21}\mathbf{D}_{12}\mathbf{A}_{23}\mathbf{A}_{32}-\mathbf{D}_{21}\mathbf{D}_{12}\mathbf{A}_{23}\mathbf{A}_{32}\mathbf{D}_{21}\mathbf{D}_{12}\right)\eta_{23}-\left(\mathbf{A}_{23}-\mathbf{D}_{21}\mathbf{D}_{12}\mathbf{A}_{23}\right)\eta_{32}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $C_{11}^{16}$               | $-(\textbf{A}_{31}-\textbf{A}_{31}\textbf{D}_{12}\textbf{D}_{23}\textbf{D}_{32}\textbf{D}_{21})\eta_{13}-(-\textbf{A}_{31}\textbf{D}_{12}\textbf{D}_{23}\textbf{D}_{32}\textbf{D}_{21}\textbf{D}_{13}\textbf{D}_{22}-\textbf{A}_{31}\textbf{D}_{12}\textbf{D}_{22}\textbf{D}_{32}+\textbf{D}_{32}\textbf{D}_{21}\textbf{A}_{13}\textbf{D}_{32}+\textbf{D}_{22})\eta_{21}+(\textbf{A}_{31}\textbf{D}_{12}-\textbf{D}_{32}\textbf{D}_{21}\textbf{A}_{13}\textbf{D}_{22}\textbf{D}_{21}\textbf{D}_{12})\eta_{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $C_{11}$                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                             | $+\left(\mathbf{D}_{32}\mathbf{D}_{21}\mathbf{A}_{13}-\mathbf{D}_{32}\mathbf{D}_{21}\mathbf{A}_{13}\mathbf{D}_{32}\mathbf{D}_{21}\mathbf{D}_{12}\mathbf{D}_{23}\right)\eta_{31}-\left(-\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{D}_{23}\mathbf{D}_{22}\mathbf{D}_{21}\mathbf{D}_{13}-\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{D}_{23}+\mathbf{D}_{32}\mathbf{D}_{21}\mathbf{A}_{13}+1\right)\eta_{32}+\left(\mathbf{A}_{31}-\mathbf{D}_{32}\mathbf{D}_{21}\mathbf{A}_{13}\mathbf{D}_{32}\mathbf{D}_{21}\right)\eta_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $C_{12}^{16}$               | $-\left(D_{12}D_{23}A_{31}A_{13}D_{32}D_{21}-A_{13}A_{31}D_{12}D_{23}D_{31}-D_{12}D_{23}A_{31}+A_{13}A_{31}\right)\eta_{13}-\left(D_{12}D_{23}A_{31}A_{13}D_{32}-A_{13}A_{31}D_{12}D_{23}D_{31}D_{13}D_{32}\right)\eta_{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ~ 12                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                             | $-(D_{12}D_{23}A_{31}A_{13}D_{32}D_{21}D_{13}-A_{13}A_{31}D_{12}D_{23}-D_{12}D_{23}A_{31}A_{13}+A_{13})\eta_{31}-(D_{12}D_{23}A_{31}A_{13}-A_{13}A_{31}D_{12}D_{23}D_{31}D_{13})\eta_{32}-(D_{12}-A_{13}A_{31}D_{12})\eta_{23}-(1-A_{13}A_{31})\eta_{12}-(1-A_{13}A_{31})\eta_{12}-(1-A_{13}A_{31}D_{12}D_{23}A_{31}A_{13}-A_{13}A_{31}D_{12}D_{23}A_{31}A_{13}-A_{13}A_{31}D_{12}D_{23}A_{31}A_{13}-A_{13}A_{31}D_{12}D_{23}A_{31}A_{13}-A_{13}A_{31}D_{12}D_{23}A_{31}A_{13}-A_{13}A_{31}D_{12}D_{23}A_{31}A_{13}-A_{13}A_{31}D_{12}D_{23}A_{31}A_{13}-A_{13}A_{31}D_{12}D_{23}A_{31}A_{13}-A_{13}A_{31}D_{12}D_{23}A_{31}A_{13}-A_{13}A_{31}D_{12}D_{23}A_{31}A_{13}-A_{13}A_{31}D_{12}D_{23}A_{31}A_{13}-A_{13}A_{31}D_{12}D_{23}A_{31}A_{13}-A_{13}A_{31}D_{12}D_{23}A_{31}A_{13}-A_{13}A_{31}D_{12}D_{23}A_{31}A_{13}-A_{13}A_{31}D_{12}D_{23}A_{31}A_{13}-A_{13}A_{13}D_{12}D_{23}A_{31}A_{13}-A_{13}A_{13}D_{12}D_{23}A_{31}A_{13}-A_{13}A_{13}D_{12}D_{23}A_{31}D_{12}D_{23}A_{31}A_{13}-A_{13}A_{13}D_{12}D_{23}A_{31}D_{12}D_{23}A_{31}D_{12}D_{23}A_{31}D_{12}D_{23}A_{31}D_{12}D_{23}A_{31}D_{12}D_{23}A_{31}D_{12}D_{23}A_{31}D_{12}D_{23}A_{31}D_{12}D_{23}A_{31}D_{12}D_{23}A_{31}D_{12}D_{23}A_{31}D_{12}D_{23}A_{31}D_{12}D_{23}A_{31}D_{12}D_{23}A_{31}D_{12}D_{23}A_{31}D_{12}D_{23}A_{31}D_{12}D_{23}A_{31}D_{12}D_{23}A_{31}D_{12}D_{23}A_{31}D_{12}D_{23}A_{31}D_{12}D_{23}A_{31}D_{12}D_{23}A_{31}D_{12}D_{23}A_{31}D_{12}D_{23}A_{31}D_{12}D_{23}A_{31}D_{12}D_{23}A_{31}D_{12}D_{23}A_{31}D_{12}D_{23}A_{31}D_{12}D_{23}A_{31}D_{12}D_{23}A_{31}D_{12}D_{23}A_{31}D_{12}D_{23}A_{31}D_{12}D_{23}A_{31}D_{12}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $C_{13}^{16}$               | $-\left(D_{31}A_{12}A_{23}A_{31}-A_{32}D_{21}D_{12}A_{23}A_{31}\right)\eta_{13}-\left(A_{32}D_{21}D_{12}A_{23}A_{31}-D_{31}A_{12}A_{23}A_{31}D_{12}D_{21}-D_{31}A_{12}A_{23}A_{31}+A_{32}D_{21}\right)\eta_{12}+\left(A_{32}-A_{32}D_{21}D_{12}A_{23}A_{31}D_{12}\right)\eta_{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                             | $= (-D_{01}A_{12}A_{22}A_{23}A_{23}D_{12}D_{12}D_{12}D_{12}D_{12}D_{12}A_{23}A_{23}D_{12}+D_{12}A_{23}A_{23}D_{12}+D_{12}A_{23}D_{12}D_{12}A_{23}A_{23}D_{12}D_{12}D_{12}D_{12})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10                          | $-\left(-D_{31}A_{12}A_{23}A_{31}D_{12}D_{21}D_{12}-D_{31}A_{12}A_{23}A_{31}D_{12}+D_{31}A_{12}+A_{32}\right)\eta_{21}+\left(1-A_{32}D_{21}D_{12}A_{23}A_{31}D_{12}D_{23}\right)\eta_{31}-\left(D_{31}A_{12}A_{23}-A_{32}D_{21}D_{12}A_{23}\right)\eta_{32}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $C_{14}^{16}$               | $(\mathbf{D}_{23}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{D}_{21}\mathbf{D}_{13}\mathbf{D}_{31} - \mathbf{D}_{21}\mathbf{D}_{12}\mathbf{D}_{23}\mathbf{D}_{32}\mathbf{D}_{21} - \mathbf{D}_{21} + \mathbf{D}_{23}\mathbf{A}_{31})\eta_{12} - (-\mathbf{D}_{23}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{D}_{21}\mathbf{D}_{13}\mathbf{D}_{31}\mathbf{D}_{12} + \mathbf{D}_{21}\mathbf{D}_{12}\mathbf{D}_{23}\mathbf{D}_{32} - \mathbf{D}_{23}\mathbf{A}_{31}\mathbf{D}_{12} + 1)\eta_{21}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{2$                                                     |
|                             | $+\left(D_{23}A_{31}D_{12}D_{21}D_{13}-D_{21}D_{12}D_{23}D_{32}D_{21}D_{12}A_{23}\right)\eta_{31}-\left(D_{23}A_{31}-D_{23}A_{31}D_{12}D_{21}\right)\eta_{13}-\left(D_{21}D_{12}D_{23}-D_{21}D_{12}D_{23}D_{32}D_{21}D_{12}A_{23}\right)\eta_{32}+\left(1-D_{21}D_{12}\right)\eta_{23}-\left(1-D_{21}D_{12}D_{23}D_{21}D_{21}D_{22}D_{23}D_{21}D_{21}D_{22}D_{23}D_{21}D_{21}D_{22}D_{23}D_{21}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{22}D_{2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| C16                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $C_{15}^{16}$               | $\left(\mathbf{D}_{13}\mathbf{A}_{32}\mathbf{A}_{21}\mathbf{A}_{12}\mathbf{D}_{23}\mathbf{D}_{31}-\mathbf{A}_{12}\mathbf{A}_{21}\mathbf{D}_{13}\mathbf{D}_{32}\mathbf{D}_{21}+\mathbf{A}_{12}\mathbf{A}_{21}-\mathbf{D}_{13}\mathbf{A}_{32}\mathbf{A}_{21}\right)\eta_{12}+\left(\mathbf{D}_{13}\mathbf{A}_{32}\mathbf{A}_{21}\mathbf{A}_{12}\mathbf{D}_{23}\mathbf{D}_{31}\mathbf{D}_{12}-\mathbf{A}_{12}\mathbf{A}_{21}\mathbf{D}_{13}\mathbf{D}_{32}-\mathbf{D}_{13}\mathbf{A}_{32}\mathbf{A}_{21}\mathbf{A}_{12}+\mathbf{A}_{12}\right)\eta_{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                             | $+\left(\mathbf{D}_{13}\mathbf{A}_{32}\mathbf{A}_{21}\mathbf{A}_{12}\mathbf{D}_{23}-\mathbf{A}_{12}\mathbf{A}_{21}\mathbf{D}_{13}\mathbf{D}_{32}\mathbf{D}_{21}\mathbf{D}_{12}\mathbf{A}_{23}\right)\eta_{31}-\left(\mathbf{D}_{13}\mathbf{A}_{32}-\mathbf{D}_{13}\mathbf{A}_{32}\mathbf{A}_{21}\mathbf{A}_{12}\right)\eta_{23}-\left(\mathbf{A}_{12}\mathbf{A}_{21}\mathbf{D}_{13}-\mathbf{A}_{12}\mathbf{A}_{21}\mathbf{D}_{13}\mathbf{D}_{32}\mathbf{D}_{21}\mathbf{D}_{12}\mathbf{A}_{23}\right)\eta_{32}+\left(1-\mathbf{A}_{12}\mathbf{A}_{21}\right)\eta_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $C_{16}^{16}$               | $(D_{23}D_{32}A_{21}A_{12}A_{23} - D_{21}D_{12}D_{23}A_{31}A_{12}A_{21}D_{13})\eta_{31} + (D_{21}D_{12}D_{23}A_{31} - D_{21}D_{12}D_{23}A_{31}A_{12}A_{21})\eta_{13} + (D_{23}D_{22}A_{21}A_{12}A_{23}D_{31} + D_{21}D_{12}D_{23}A_{31}A_{12}A_{21} - D_{21})\eta_{12}A_{23}A_{31}A_{12}A_{21} + (D_{21}D_{22}D_{23}A_{31}A_{22}A_{21}A_{21}A_{22}A_{21}A_{22}A_{22}A_{21}A_{22}A_{21}A_{22}A_{21}A_{22}A_{21}A_{22}A_{22}A_{21}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{22}A_{2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0 16                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                             | $-\left(-\mathbf{D}_{23}\mathbf{D}_{32}\mathbf{A}_{21}\mathbf{A}_{12}\mathbf{A}_{23}\mathbf{D}_{31}\mathbf{D}_{12}-\mathbf{D}_{21}\mathbf{D}_{12}\mathbf{D}_{23}\mathbf{A}_{31}\mathbf{A}_{12}+\mathbf{D}_{23}\mathbf{D}_{32}\mathbf{A}_{21}\mathbf{A}_{12}+1\right)\eta_{21}+\left(\mathbf{D}_{23}-\mathbf{D}_{23}\mathbf{D}_{32}\mathbf{A}_{21}\mathbf{A}_{12}\mathbf{A}_{23}\right)\eta_{32}+\left(1-\mathbf{D}_{21}\mathbf{D}_{12}\right)\eta_{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $C_{17}^{16}$               | $-\left(-\mathbf{A}_{13}\mathbf{A}_{31}\mathbf{A}_{12}-\mathbf{A}_{12}\mathbf{A}_{23}\mathbf{A}_{31}\mathbf{A}_{12}\mathbf{D}_{23}\mathbf{D}_{31}\mathbf{D}_{12}+\mathbf{A}_{12}\mathbf{A}_{23}\mathbf{A}_{31}\mathbf{A}_{12}+\mathbf{A}_{12}\right)\eta_{21}-\left(\mathbf{A}_{12}\mathbf{A}_{23}-\mathbf{A}_{13}\mathbf{A}_{31}\mathbf{A}_{12}\mathbf{D}_{23}\mathbf{D}_{31}\mathbf{D}_{12}\mathbf{A}_{23}\right)\eta_{32}+\left(\mathbf{A}_{12}\mathbf{A}_{23}\mathbf{A}_{31}\mathbf{A}_{12}\mathbf{D}_{23}\mathbf{D}_{31}\right)\eta_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -1                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                             | $+\left(-\mathbf{A}_{13}\mathbf{A}_{31}\mathbf{A}_{12}\mathbf{D}_{23}-\mathbf{A}_{13}\mathbf{A}_{31}\mathbf{A}_{12}\mathbf{D}_{23}\mathbf{D}_{31}\mathbf{D}_{12}\mathbf{A}_{23}+\mathbf{A}_{12}\mathbf{A}_{23}\mathbf{A}_{31}\mathbf{A}_{12}\mathbf{D}_{23}+\mathbf{A}_{13}\right)\eta_{31}+\left(\mathbf{A}_{13}\mathbf{A}_{31}-\mathbf{A}_{12}\mathbf{A}_{23}\mathbf{A}_{31}\right)\eta_{13}-\left(\mathbf{A}_{13}\mathbf{A}_{31}\mathbf{A}_{12}-\mathbf{A}_{12}\mathbf{A}_{23}\mathbf{A}_{31}\mathbf{A}_{12}\right)\eta_{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $C_{18}^{16}$               | $\left(\mathbf{D}_{13}\mathbf{D}_{31}\mathbf{D}_{12}\mathbf{A}_{23}-\mathbf{D}_{12}\mathbf{D}_{23}\mathbf{D}_{31}\mathbf{A}_{12}\mathbf{A}_{23}\right)\eta_{32}+\left(-\mathbf{D}_{13}\mathbf{D}_{31}\mathbf{D}_{12}\mathbf{A}_{23}\mathbf{A}_{31}+\mathbf{D}_{12}\mathbf{D}_{23}\mathbf{D}_{31}\mathbf{A}_{12}\mathbf{A}_{23}\mathbf{D}_{31}-\mathbf{D}_{13}\mathbf{D}_{31}+1\right)\eta_{12}-\left(1-\mathbf{D}_{13}\mathbf{D}_{31}\mathbf{D}_{12}\mathbf{A}_{23}\mathbf{A}_{31}\right)\eta_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 1                         | $+\left(D_{12}-D_{13}D_{31}D_{12}A_{23}A_{31}D_{12}\right)\eta_{23}-\left(D_{13}D_{31}D_{12}A_{23}A_{31}D_{12}D_{23}-D_{12}D_{23}D_{31}A_{12}A_{23}-D_{12}D_{23}+D_{13}\right)\eta_{31}-\left(D_{12}D_{23}D_{31}A_{12}-D_{12}D_{23}D_{31}A_{12}A_{23}D_{31}D_{12}\right)\eta_{21}+\left(D_{12}D_{23}D_{31}A_{12}A_{23}-D_{12}D_{23}D_{31}A_{12}A_{23}-D_{12}D_{23}D_{31}A_{12}A_{23}-D_{12}D_{23}D_{31}A_{12}A_{23}-D_{12}D_{23}D_{31}A_{12}A_{23}-D_{12}D_{23}D_{31}A_{12}A_{23}-D_{12}D_{23}D_{31}A_{12}A_{23}-D_{12}D_{23}D_{31}A_{12}A_{23}-D_{12}D_{23}D_{31}A_{12}A_{23}-D_{12}D_{23}D_{31}A_{12}A_{23}-D_{12}D_{23}D_{31}A_{12}A_{23}-D_{12}D_{23}D_{31}A_{12}A_{23}-D_{12}D_{23}D_{31}A_{12}A_{23}-D_{12}D_{23}D_{31}A_{12}A_{23}-D_{12}D_{23}D_{31}A_{12}A_{23}-D_{12}D_{23}D_{31}A_{12}A_{23}-D_{12}D_{23}D_{31}A_{12}A_{23}-D_{12}D_{23}D_{31}A_{12}A_{23}-D_{12}D_{23}D_{31}A_{12}A_{23}-D_{12}D_{23}D_{31}A_{12}A_{23}-D_{12}D_{23}D_{31}A_{12}A_{23}-D_{12}D_{23}D_{31}A_{12}A_{23}-D_{12}D_{23}D_{31}A_{12}A_{23}-D_{12}D_{23}D_{31}A_{12}A_{23}-D_{12}D_{23}D_{31}A_{12}A_{23}-D_{12}D_{23}D_{23}-D_{12}D_{23}D_{23}-D_{12}D_{23}D_{23}-D_{12}D_{23}D_{23}-D_{12}D_{23}D_{23}-D_{12}D_{23}-D_{12}D_{23}-D_{12}D_{23}-D_{12}D_{23}-D_{12}D_{23}-D_{12}D_{23}-D_{12}D_{23}-D_{12}D_{23}-D_{12}D_{23}-D_{12}D_{23}-D_{12}D_{23}-D_{12}D_{23}-D_{12}D_{23}-D_{12}D_{23}-D_{12}D_{23}-D_{12}D_{23}-D_{12}D_{23}-D_{12}D_{23}-D_{12}D_{23}-D_{12}D_{23}-D_{12}D_{23}-D_{12}D_{23}-D_{12}D_{23}-D_{12}D_{23}-D_{12}D_{23}-D_{12}D_{23}-D_{12}D_{23}-D_{12}D_{23}-D_{12}D_{23}-D_{12}D_{23}-D_{12}D_{23}-D_{12}D_{23}-D_{12}D_{23}-D_{12}D_{23}-D_{12}D_{23}-D_{12}-D_{12}D_{23}-D_{12}-D_{12}D_{23}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}-D_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C16                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $C_{19}^{16}$               | $\left(\mathbf{A}_{23}\mathbf{A}_{31}-\mathbf{D}_{21}\mathbf{A}_{13}\mathbf{D}_{32}\mathbf{D}_{23}\mathbf{A}_{31}\right)\eta_{12}+\left(-\mathbf{D}_{21}\mathbf{A}_{13}\mathbf{D}_{32}\mathbf{D}_{23}\mathbf{A}_{31}\mathbf{D}_{12}+\mathbf{A}_{23}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{D}_{23}\mathbf{D}_{32}+\mathbf{A}_{23}\mathbf{A}_{31}\mathbf{D}_{12}-\mathbf{D}_{21}\mathbf{A}_{13}\mathbf{D}_{32}\right)\eta_{23}+\left(\mathbf{D}_{21}\mathbf{A}_{13}-\mathbf{D}_{21}\mathbf{A}_{13}\mathbf{D}_{32}\mathbf{D}_{23}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{D}_{23}\right)\eta_{31}+\left(\mathbf{D}_{21}\mathbf{A}_{13}\mathbf{D}_{32}\mathbf{D}_{23}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{D}_{23}\right)\eta_{23}+\left(\mathbf{D}_{21}\mathbf{A}_{13}\mathbf{D}_{32}\mathbf{D}_{23}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{D}_{23}\right)\eta_{31}+\left(\mathbf{D}_{21}\mathbf{A}_{13}\mathbf{D}_{32}\mathbf{D}_{23}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{D}_{23}\right)\eta_{23}+\left(\mathbf{D}_{21}\mathbf{A}_{13}\mathbf{D}_{32}\mathbf{D}_{23}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{D}_{23}\right)\eta_{23}+\left(\mathbf{D}_{21}\mathbf{A}_{13}\mathbf{D}_{32}\mathbf{D}_{23}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{D}_{23}\mathbf{D}_{33}\mathbf{D}_{13}\mathbf{D}_{12}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{$ |
|                             | $-\left(-\mathbf{A}_{23}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{D}_{23}\mathbf{D}_{32}\mathbf{D}_{23}-\mathbf{A}_{23}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{D}_{23}+\mathbf{D}_{21}\mathbf{A}_{13}+\mathbf{A}_{23}\right)\eta_{32}-\left(1-\mathbf{A}_{23}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{D}_{23}\mathbf{D}_{32}\mathbf{D}_{23}\mathbf{D}_{32}\right)\eta_{21}-\left(\mathbf{A}_{23}\mathbf{A}_{31}-\mathbf{D}_{21}\mathbf{A}_{13}\mathbf{D}_{32}\mathbf{D}_{23}\mathbf{A}_{31}\right)\eta_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $C_{20}^{16}$               | $-\left(D_{23}A_{31}D_{12}D_{21}A_{13}D_{32}-A_{23}A_{31}D_{12}D_{23}D_{32}-A_{23}A_{31}D_{12}+1\right)\eta_{23}+\left(D_{23}A_{31}D_{12}D_{21}A_{13}-D_{23}A_{31}D_{12}D_{21}A_{13}D_{32}D_{23}\right)\eta_{31}-\left(A_{23}A_{31}-D_{23}A_{31}\right)\eta_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C <sub>20</sub>             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                             | $-\left(\mathbf{D}_{23}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{D}_{21}\mathbf{A}_{13}-\mathbf{A}_{23}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{D}_{23}\mathbf{D}_{32}\mathbf{D}_{23}-\mathbf{A}_{23}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{D}_{23}+\mathbf{A}_{23}\right)\eta_{32}-\left(\mathbf{D}_{23}\mathbf{A}_{31}\mathbf{D}_{12}-\mathbf{A}_{23}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{D}_{23}\mathbf{D}_{32}\mathbf{D}_{23}-\mathbf{A}_{23}\mathbf{A}_{31}\right)\eta_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $C_{21}^{16}$               | $(-\mathbf{D}_{32}\mathbf{A}_{21}\mathbf{A}_{13}\mathbf{D}_{32}\mathbf{D}_{21}\mathbf{D}_{12}\mathbf{A}_{23} - \mathbf{D}_{31}\mathbf{A}_{12}\mathbf{A}_{21}\mathbf{A}_{13} + \mathbf{D}_{32}\mathbf{A}_{21}\mathbf{A}_{13} + 1)\eta_{31} - (-\mathbf{D}_{32}\mathbf{A}_{21}\mathbf{A}_{13}\mathbf{D}_{32}\mathbf{D}_{21}\mathbf{D}_{12}\mathbf{A}_{23} - \mathbf{D}_{31}\mathbf{A}_{12}\mathbf{A}_{21}\mathbf{A}_{13} + \mathbf{D}_{32}\mathbf{A}_{21}\mathbf{A}_{13} + 1)\eta_{32}\mathbf{D}_{21}\mathbf{D}_{12}\mathbf{A}_{23} - \mathbf{D}_{31}\mathbf{A}_{12}\mathbf{A}_{21}\mathbf{A}_{13} + \mathbf{D}_{32}\mathbf{A}_{21}\mathbf{A}_{13} + 1)\eta_{32}\mathbf{D}_{21}\mathbf{D}_{22}\mathbf{D}_{23}\mathbf{D}_{21}\mathbf{D}_{22}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}D$                                                                         |
| 21                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                             | $+\left(D_{31}A_{12}A_{21}A_{13}D_{32}D_{21}-D_{31}A_{12}A_{21}-D_{32}A_{21}A_{13}D_{32}D_{21}+D_{32}A_{21}\right)\eta_{12}-\left(-D_{31}A_{12}A_{21}A_{13}D_{32}-D_{31}A_{12}A_{21}A_{13}D_{32}D_{21}D_{12}+D_{31}A_{12}+D_{32}A_{21}A_{13}D_{32}\right)\eta_{21}-\eta_{12}A_{12}A_{12}A_{12}A_{13}D_{32}D_{21}D_{12}+D_{31}A_{12}A_{12}A_{13}D_{32}D_{21}+D_{31}A_{12}A_{12}A_{13}D_{32}D_{21}+D_{31}A_{12}A_{13}D_{32}D_{21}+D_{31}A_{12}A_{12}A_{13}D_{32}D_{32}D_{31}+D_{32}A_{21}A_{13}D_{32}D_{32}D_{31}+D_{32}A_{21}A_{13}D_{32}D_{32}D_{31}+D_{32}A_{21}A_{13}D_{32}D_{32}D_{31}+D_{32}A_{21}A_{13}D_{32}D_{32}D_{31}+D_{32}A_{21}A_{13}D_{32}D_{32}D_{31}+D_{32}A_{21}A_{13}D_{32}D_{32}D_{31}+D_{32}A_{21}A_{13}D_{32}D_{32}D_{31}+D_{32}A_{21}A_{13}D_{32}D_{32}D_{31}+D_{32}A_{21}A_{13}D_{32}D_{32}D_{31}+D_{32}A_{21}A_{13}D_{32}D_{32}D_{31}+D_{32}A_{21}A_{21}A_{21}D_{32}D_{32}D_{32}D_{31}+D_{32}A_{31}A_{32}D_{32}D_{31}+D_{32}A_{31}A_{32}D_{32}D_{31}+D_{32}A_{31}A_{32}D_{32}D_{31}+D_{32}A_{31}A_{32}D_{32}D_{31}+D_{32}A_{31}A_{32}D_{32}D_{31}+D_{32}A_{31}A_{32}D_{32}D_{31}+D_{32}A_{31}A_{32}D_{32}D_{31}+D_{32}A_{31}A_{32}D_{32}D_{31}+D_{32}A_{31}A_{32}D_{32}D_{31}+D_{32}A_{31}A_{32}D_{32}D_{31}+D_{32}A_{31}A_{32}D_{32}D_{31}+D_{32}A_{31}A_{32}D_{32}D_{32}+D_{32}A_{31}A_{32}D_{32}D_{32}+D_{32}A_{31}A_{32}D_{32}+D_{32}A_{31}A_{32}D_{32}+D_{32}A_{31}A_{32}D_{32}+D_{32}A_{31}A_{32}D_{32}+D_{32}A_{31}A_{32}D_{32}+D_{32}A_{31}A_{32}D_{32}+D_{32}A_{31}A_{32}+D_{32}A_{31}A_{32}+D_{32}A_{31}A_{32}+D_{32}A_{31}A_{32}+D_{32}A_{31}A_{32}+D_{32}A_{31}A_{32}+D_{32}A_{31}A_{32}+D_{32}A_{31}A_{32}+D_{32}A_{31}+D_{32}A_{31}+D_{32}A_{31}+D_{32}A_{31}+D_{32}A_{31}+D_{32}A_{31}+D_{32}A_{31}+D_{32}A_{31}+D_{32}A_{31}+D_{32}A_{31}+D_{32}A_{31}+D_{32}A_{32}+D_{32}A_{31}+D_{32}A_{31}+D_{32}A_{31}+D_{32}A_{31}+D_{32}A_{31}+D_{32}A_{31}+D_{32}A_{31}+D_{32}A_{31}+D_{32}A_{31}+D_{32}A_{31}+D_{32}A_{31}+D_{32}A_{31}+D_{32}A_{31}+D_{32}A_{31}+D_{32}A_{31}+D_{32}A_{31}+D_{32}A_{31}+D_{32}A_{31}+D_{32}A_{31}+D_{32}A_{31}+D_{32}A_{31}+D_{32}A_{31}+D_{32}A_{31}+D_{32}A_{31}+D_{32}A_{31}+D_{32}A_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $C_{22}^{16}$               | $\left(\mathbf{A}_{13}\mathbf{D}_{32}\mathbf{A}_{21}\mathbf{A}_{12}\mathbf{A}_{23}\mathbf{D}_{31} + \mathbf{D}_{12}\mathbf{D}_{21}\mathbf{A}_{13}\mathbf{D}_{32}\mathbf{A}_{21} - \mathbf{A}_{13}\mathbf{D}_{32}\mathbf{A}_{21} - 1\right)\eta_{12} - \left(-\mathbf{A}_{13}\mathbf{D}_{32}\mathbf{A}_{21}\mathbf{A}_{12}\mathbf{A}_{23}\mathbf{D}_{31}\mathbf{D}_{12} + \mathbf{A}_{13}\mathbf{D}_{32}\mathbf{A}_{21}\mathbf{A}_{12} - \mathbf{D}_{12}\mathbf{D}_{21}\mathbf{A}_{13}\mathbf{D}_{32}\mathbf{A}_{21}\mathbf{A}_{12} + \mathbf{D}_{12}\right)\eta_{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1                           | $-\left(-\mathbf{A}_{13}\mathbf{D}_{32}\mathbf{A}_{21}\mathbf{A}_{12}\mathbf{A}_{23}+\mathbf{D}_{12}\mathbf{D}_{21}\mathbf{A}_{13}\mathbf{D}_{32}\mathbf{A}_{21}\mathbf{A}_{12}\mathbf{A}_{23}-\mathbf{D}_{12}\mathbf{D}_{21}\mathbf{A}_{13}+\mathbf{A}_{13}\right)\eta_{31}+\left(-\mathbf{A}_{13}\mathbf{D}_{32}\mathbf{A}_{21}\mathbf{A}_{12}\mathbf{A}_{23}+\mathbf{D}_{12}\mathbf{D}_{21}\mathbf{A}_{13}\mathbf{D}_{32}\mathbf{A}_{21}\mathbf{A}_{12}\mathbf{A}_{23}-\mathbf{D}_{12}\mathbf{D}_{21}\mathbf{A}_{13}+\mathbf{A}_{13}\right)\eta_{32}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| COLE                        | (a) 10 22 21 127-20 - 1127-217-10 - 217-217-20 - 1127-217-10 - 10) 101 + ( 1157-227-217-127-23 + 1227-217-132-23 + 1227-217-127-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 1227-217-132-23 + 127-217-132-23 + 127-217-132-23 + 127-217-132-23 + 127-217-127-127-127-127-127-127-127-127-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $C_{23}^{16}$               | $\left(\mathbf{A}_{21}\mathbf{A}_{12}\mathbf{D}_{23}\mathbf{A}_{31}+\mathbf{A}_{21}\mathbf{A}_{12}\mathbf{D}_{23}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{D}_{21}-\mathbf{D}_{23}\mathbf{A}_{31}\mathbf{A}_{13}\mathbf{D}_{32}\mathbf{D}_{21}-\mathbf{A}_{21}\right)\eta_{12}-\left(-\mathbf{A}_{21}\mathbf{A}_{12}\mathbf{D}_{23}\mathbf{A}_{31}\mathbf{D}_{12}-\mathbf{A}_{21}\mathbf{A}_{12}\mathbf{D}_{23}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{D}_{21}\mathbf{D}_{12}+\mathbf{A}_{21}\mathbf{A}_{12}+\mathbf{D}_{23}\mathbf{A}_{31}\mathbf{A}_{13}\mathbf{D}_{32}\right)\eta_{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                             | $+\left(\mathbf{D}_{23}\mathbf{A}_{31}\mathbf{A}_{13}-\mathbf{D}_{23}\mathbf{A}_{31}\mathbf{A}_{13}\mathbf{D}_{32}\mathbf{D}_{21}\mathbf{D}_{12}\mathbf{A}_{23}\right)\eta_{31}-\left(\mathbf{D}_{23}\mathbf{A}_{31}\mathbf{A}_{13}-\mathbf{D}_{23}\mathbf{A}_{31}\mathbf{A}_{13}\mathbf{D}_{32}\mathbf{D}_{21}\mathbf{D}_{12}\mathbf{A}_{23}\right)\eta_{32}+\left(\mathbf{D}_{23}\mathbf{A}_{31}\mathbf{A}_{13}\mathbf{D}_{22}\mathbf{D}_{21}\mathbf{D}_{12}\mathbf{A}_{23}\right)\eta_{22}+\left(\mathbf{D}_{23}\mathbf{A}_{31}\mathbf{A}_{13}\mathbf{D}_{22}\mathbf{D}_{21}\mathbf{D}_{12}\mathbf{A}_{23}\right)\eta_{22}+\left(\mathbf{D}_{23}\mathbf{A}_{31}\mathbf{A}_{13}\mathbf{D}_{22}\mathbf{D}_{21}\mathbf{D}_{12}\mathbf{A}_{23}\right)\eta_{22}+\left(\mathbf{D}_{23}\mathbf{A}_{31}\mathbf{D}_{32}\mathbf{D}_{21}\mathbf{D}_{12}\mathbf{D}_{23}\mathbf{D}_{21}\mathbf{D}_{12}\mathbf{D}_{23}\mathbf{D}_{21}\mathbf{D}_{12}\mathbf{D}_{23}\mathbf{D}_{21}\mathbf{D}_{12}\mathbf{D}_{23}\mathbf{D}_{21}\mathbf{D}_{23}\mathbf{D}_{21}\mathbf{D}_{23}\mathbf{D}_{21}\mathbf{D}_{23}\mathbf{D}_{21}\mathbf{D}_{23}\mathbf{D}_{21}\mathbf{D}_{23}\mathbf{D}_{21}\mathbf{D}_{23}\mathbf{D}_{21}\mathbf{D}_{23}\mathbf{D}_{21}\mathbf{D}_{23}\mathbf{D}_{21}\mathbf{D}_{23}\mathbf{D}_{21}\mathbf{D}_{23}\mathbf{D}_{21}\mathbf{D}_{23}\mathbf{D}_{21}\mathbf{D}_{23}\mathbf{D}_{21}\mathbf{D}_{23}\mathbf{D}_{21}\mathbf{D}_{23}\mathbf{D}_{21}\mathbf{D}_{23}\mathbf{D}_{21}\mathbf{D}_{23}\mathbf{D}_{21}\mathbf{D}_{23}\mathbf{D}_{21}\mathbf{D}_{23}\mathbf{D}_{21}\mathbf{D}_{23}\mathbf{D}_{21}\mathbf{D}_{23}\mathbf{D}_{21}\mathbf{D}_{23}\mathbf{D}_{21}\mathbf{D}_{23}\mathbf{D}_{21}\mathbf{D}_{23}\mathbf{D}_{21}\mathbf{D}_{23}\mathbf{D}_{21}\mathbf{D}_{23}\mathbf{D}_{21}\mathbf{D}_{23}\mathbf{D}_{21}\mathbf{D}_{23}\mathbf{D}_{21}\mathbf{D}_{23}\mathbf{D}_{21}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}_{23}\mathbf{D}$       |
| $C_{24}^{16}$               | $(A_{13}A_{32}A_{31} - A_{12}A_{32}B_{31}A_{12}A_{21})\eta_{12} - (A_{13}A_{32}A_{31} - A_{12}A_{32}B_{31}A_{12}A_{21})\eta_{13} - (A_{12}A_{32}B_{31}A_{12}A_{21})\eta_{22} - (A_{13}A_{32}A_{31} - A_{12}A_{32}B_{31}A_{12}A_{21})\eta_{23} - (A_{12}A_{32}B_{31}A_{12}A_{21})\eta_{23} - (A_{12}A_{32}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\cup_{24}$                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                             | $+\left(\mathbf{A}_{13}\mathbf{A}_{32}-\mathbf{A}_{13}\mathbf{A}_{32}\mathbf{A}_{21}\mathbf{D}_{13}\mathbf{D}_{31}\mathbf{A}_{12}\right)\eta_{23}+\left(-\mathbf{A}_{13}\mathbf{A}_{32}\mathbf{A}_{21}\mathbf{D}_{13}\mathbf{D}_{31}\mathbf{A}_{12}\mathbf{D}_{23}+\mathbf{A}_{12}\mathbf{A}_{23}-\mathbf{A}_{13}\mathbf{A}_{32}\mathbf{A}_{21}\mathbf{D}_{13}+\mathbf{A}_{13}\right)\eta_{31}-\left(\mathbf{A}_{12}\mathbf{A}_{23}-\mathbf{A}_{12}\mathbf{A}_{23}\mathbf{D}_{31}\mathbf{A}_{12}\mathbf{A}_{21}\mathbf{D}_{13}\right)\eta_{32}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $C_{25}^{16}$ -             | $-\left(D_{12}A_{23}A_{32}-D_{13}A_{32}A_{23}A_{31}D_{12}D_{23}D_{32}\right)\eta_{21}-\left(D_{12}A_{23}A_{32}D_{21}A_{13}D_{32}-D_{13}A_{32}A_{21}A_{31}D_{12}-D_{12}A_{23}A_{32}+D_{13}A_{32}\right)\eta_{23}+\left(D_{12}A_{23}A_{32}D_{21}A_{13}-D_{12}A_{23}A_{32}D_{21}A_{13}D_{32}D_{23}\right)\eta_{31}-\left(D_{12}A_{23}A_{22}D_{21}A_{13}D_{22}D_{23}D_{23}\right)\eta_{23}+\left(D_{12}A_{23}A_{22}D_{21}A_{13}D_{22}D_{23}D_{23}\right)\eta_{23}-\left(D_{12}A_{23}A_{22}D_{21}A_{13}D_{22}D_{23}D_{23}\right)\eta_{23}-\left(D_{12}A_{23}A_{22}D_{21}A_{13}D_{22}D_{23}D_{23}\right)\eta_{23}-\left(D_{12}A_{23}A_{22}D_{21}A_{13}D_{22}D_{23}D_{23}\right)\eta_{23}-\left(D_{12}A_{23}A_{22}D_{21}A_{13}D_{22}D_{23}D_{23}\right)\eta_{23}-\left(D_{12}A_{23}A_{22}D_{21}A_{13}D_{22}D_{23}D_{23}\right)\eta_{23}-\left(D_{12}A_{23}A_{22}D_{21}A_{13}D_{22}D_{23}D_{23}\right)\eta_{23}-\left(D_{12}A_{23}A_{22}D_{21}A_{13}D_{22}D_{23}D_{23}\right)\eta_{23}-\left(D_{12}A_{23}A_{22}D_{21}A_{13}D_{22}D_{23}D_{23}\right)\eta_{23}-\left(D_{12}A_{23}A_{22}D_{21}A_{13}D_{22}D_{23}D_{23}\right)\eta_{23}-\left(D_{12}A_{23}A_{22}D_{21}A_{13}D_{22}D_{23}D_{23}\right)\eta_{23}-\left(D_{12}A_{23}A_{22}D_{21}A_{13}D_{22}D_{23}D_{23}\right)\eta_{23}-\left(D_{12}A_{23}A_{22}D_{21}A_{13}D_{22}D_{23}D_{23}\right)\eta_{23}-\left(D_{12}A_{23}A_{22}D_{21}A_{13}D_{22}D_{23}D_{23}\right)\eta_{23}-\left(D_{12}A_{23}A_{22}D_{21}A_{13}D_{22}D_{23}D_{23}\right)\eta_{23}-\left(D_{12}A_{23}A_{22}D_{21}A_{13}D_{22}D_{23}D_{23}\right)\eta_{23}-\left(D_{12}A_{23}A_{22}D_{21}A_{13}D_{22}D_{23}D_{23}\right)\eta_{23}-\left(D_{12}A_{23}A_{22}D_{21}A_{13}D_{22}D_{23}D_{23}\right)\eta_{23}-\left(D_{12}A_{23}A_{22}D_{21}A_{13}D_{22}D_{23}D_{23}\right)\eta_{23}-\left(D_{12}A_{23}A_{22}D_{21}A_{13}D_{22}D_{23}D_{23}\right)\eta_{23}-\left(D_{12}A_{23}A_{22}D_{21}A_{13}D_{22}D_{23}D_{23}\right)\eta_{23}-\left(D_{12}A_{23}A_{22}D_{21}A_{13}D_{22}D_{23}D_{23}\right)\eta_{23}-\left(D_{12}A_{23}A_{22}D_{21}A_{13}D_{22}D_{23}D_{23}\right)\eta_{23}-\left(D_{12}A_{23}A_{22}D_{21}A_{13}D_{22}D_{23}D_{23}\right)\eta_{23}-\left(D_{12}A_{23}A_{22}D_{21}A_{13}D_{22}D_{23}D_{23}\right)\eta_{23}-\left(D_{12}A_{23}A_{22}D_{21}A_{23}D_{22}D_{23}D_{23}\right)\eta_{23}-\left(D_{12}A_{23}A_{22}D_{21}A_{23}D_{22}D_{23}D_{23}\right)\eta_{23}-\left(D_{12}A_{23}A_{22}D_{21}D_{21}D_{22}D_{22}D_{23}D_{23}\right)\eta_{23}-\left(D_{12}A_{23}D_{22}D_{22}D_{23}D_{23}D_{23}D_{23}\right)\eta_{23}-\left$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| - 25                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                             | $+\left(-\mathbf{D}_{12}\mathbf{A}_{23}\mathbf{A}_{32}\mathbf{D}_{21}\mathbf{A}_{13}+\mathbf{D}_{13}\mathbf{A}_{32}\mathbf{A}_{23}\mathbf{A}_{31}\mathbf{D}_{12}\mathbf{D}_{23}+\mathbf{D}_{12}\mathbf{A}_{23}-\mathbf{D}_{13}\mathbf{A}_{32}\mathbf{A}_{23}\right)\eta_{32}+\left(\mathbf{D}_{13}\mathbf{A}_{32}\mathbf{A}_{23}\mathbf{A}_{31}-1\right)\eta_{12}+\left(1-\mathbf{D}_{13}\mathbf{A}_{32}\mathbf{A}_{23}\mathbf{A}_{31}\right)\eta_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $C_{26}^{16}$               | $-\left(D_{31}A_{12}D_{23}A_{31}-D_{32}D_{21}D_{12}D_{23}A_{31}\right)\eta_{13}+\left(-D_{32}D_{21}D_{12}D_{23}A_{31}+D_{31}A_{12}D_{23}A_{31}D_{12}D_{21}+D_{31}A_{12}D_{23}A_{31}-D_{32}D_{21}\right)\eta_{12}+\left(D_{31}A_{12}-D_{32}D_{21}D_{12}\right)\eta_{23}+\left(D_{31}A_{12}D_{23}A_{31}-D_{32}D_{21}D_{12}D_{23}A_{31}-D_{32}D_{21}D_{12}D_{23}A_{31}\right)\eta_{13}+\left(D_{31}A_{12}D_{23}A_{31}-D_{32}D_{21}D_{12}D_{23}A_{31}-D_{32}D_{21}D_{12}D_{23}A_{31}-D_{32}D_{21}D_{12}D_{23}A_{31}-D_{32}D_{21}D_{12}D_{23}A_{31}-D_{32}D_{21}D_{21}D_{22}D_{23}A_{31}-D_{32}D_{21}D_{22}D_{23}D_{21}D_{22}D_{23}D_{21}D_{22}D_{23}D_{21}D_{22}D_{23}D_{21}D_{22}D_{23}D_{23}D_{22}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{23}D_{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| - 20                        | $-\left(-D_{31}A_{12}D_{23}A_{31}D_{12}D_{21}D_{12}D_{23}A_{31}D_{12}+D_{31}A_{12}D_{23}A_{31}D_{12}+D_{31}A_{12}+D_{32}D_{21}D_{12}D_{23}A_{31}D_{12}A_{23}\right)\eta_{31}-\left(1-D_{32}D_{21}D_{12}D_{23}A_{31}D_{12}A_{23}\right)\eta_{32}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                             | -1 - 1 + 2 + 3 + 3 + 1 + 3 + 3 + 4 + 3 + 4 + 3 + 4 + 4 + 3 + 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $C_{27}^{16}$               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $C_{27}^{16}$               | $-\left(D_{12}A_{23}-D_{13}D_{31}D_{12}D_{23}A_{31}D_{12}A_{23}\right)\eta_{32}+\left(-D_{13}D_{31}D_{12}D_{23}A_{31}+D_{12}A_{23}D_{31}A_{12}D_{23}D_{31}-D_{13}D_{31}+1\right)\eta_{12}-\left(1-D_{13}D_{31}D_{12}D_{23}A_{31}\right)\eta_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                             | $-\left(D_{12}A_{23}-D_{13}D_{31}D_{12}D_{23}A_{31}D_{12}A_{23}\right)\eta_{32}+\left(-D_{13}D_{31}D_{12}D_{23}A_{31}+D_{12}A_{23}D_{31}A_{12}D_{23}D_{31}-D_{13}D_{31}+1\right)\eta_{12}-\left(1-D_{13}D_{31}D_{12}D_{23}A_{31}\right)\eta_{13}\\-\left(D_{13}D_{31}D_{12}-D_{12}A_{23}D_{31}A_{12}\right)\eta_{23}-\left(D_{13}D_{31}D_{12}D_{23}A_{31}D_{12}A_{23}-D_{12}A_{23}D_{31}A_{12}D_{23}-D_{12}A_{23}+D_{13}\right)\eta_{31}-\left(D_{12}A_{23}D_{31}A_{12}-D_{12}A_{23}D_{31}A_{12}\right)\eta_{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $C_{27}^{16}$ $C_{28}^{16}$ | $-\left(D_{12}A_{23}-D_{13}D_{31}D_{12}D_{23}A_{31}D_{12}A_{23}\right)\eta_{32}+\left(-D_{13}D_{31}D_{12}D_{23}A_{31}+D_{12}A_{23}D_{31}A_{12}D_{23}D_{31}-D_{13}D_{31}+1\right)\eta_{12}-\left(1-D_{13}D_{31}D_{12}D_{23}A_{31}\right)\eta_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                             | $-\left(D_{12}A_{23}-D_{13}D_{31}D_{12}D_{23}A_{31}D_{12}A_{23}\right)\eta_{32}+\left(-D_{13}D_{31}D_{12}D_{23}A_{31}+D_{12}A_{23}D_{31}A_{12}D_{23}D_{31}-D_{13}D_{31}+1\right)\eta_{12}-\left(1-D_{13}D_{31}D_{12}D_{23}A_{31}\right)\eta_{13}\\-\left(D_{13}D_{31}D_{12}-D_{12}A_{23}D_{31}A_{12}\right)\eta_{23}-\left(D_{13}D_{31}D_{12}D_{23}A_{31}D_{12}A_{23}-D_{12}A_{23}D_{31}A_{12}D_{23}-D_{12}A_{23}+D_{13}\right)\eta_{31}-\left(D_{12}A_{23}D_{31}A_{12}-D_{12}A_{23}D_{31}A_{12}\right)\eta_{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

TABLE I. List of the 34 core combinations found in [6] expressed in terms of time shifts applied to the intermediary TDI variables  $\eta_{ij}$ .

|               | Timeshift       | Expression '1st' gen                                                                  | Timeshift | Expression '0th' gen                                                           |
|---------------|-----------------|---------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------|
| $C_1^{12}$    | 1               | $(1-xyz)\alpha$                                                                       | 1         | $(1-D^3)\alpha$                                                                |
| $C_2^{12}$    | $xy^2$          | $(y-xz)\alpha$                                                                        | $D^2$     | $(1-D)\alpha$                                                                  |
| $C_3^{12}$    | yz              | $(y-xz)\zeta$                                                                         | D         | $(1-D)\zeta$                                                                   |
| $C_1^{14}$    | xy              | $(1-z^2) \alpha$                                                                      | $D^2$     | $(1-D^2) \alpha$                                                               |
| $C_2^{14}$    | yz              | $(1-z^2) \gamma$                                                                      | $D^2$     | $(1-D^2)\gamma$                                                                |
| $C_3^{14}$    | y               | $\left(1-z^2\right)\zeta$                                                             | D         | $(1-D^2)\zeta$                                                                 |
| $C_1^{16}$    | 1               | $(1 - y^2 z^2) (\alpha - z\beta - y\gamma + yz\zeta)$                                 | 1         | $(1-D^4)(\alpha-D\beta-D\gamma+D^2\zeta)$                                      |
| $C_2^{16}$    | 1               | $\frac{\left(1 - xyz^3\right)\alpha - z(1 - xyz)\beta}{\left(1 - xyz^3\right)\alpha}$ | 1         | $\frac{\left(1-D^{5}\right)\alpha-(D-D^{4})\beta}{\left(1-D^{5}\right)\alpha}$ |
| $C_3^{16}$    | 1               | $(1-xyz^3) \alpha$                                                                    | 1         | $(1-D^5) \alpha$                                                               |
| $C_4^{16}$    | $y^4z^2$        | $(y^2 - z^2)(\alpha - z\beta - y\gamma + yz\zeta)$                                    | $D^6$     | 0                                                                              |
| $C_5^{16}$    | $y^2$           | $(1-z^2)(\alpha-z\beta-y\gamma+yz\zeta)$                                              | $D^2$     | $(1 - D^2) (\alpha - D\beta - D\gamma + D^2\zeta)$                             |
| $C_6^{16}$    | xy              | $(1-z^2)(z\alpha-\beta)$                                                              | $D^2$     | $(1-D^2)(D\alpha-\beta)$                                                       |
| $C_7^{16}$    | $xy^3$          | $(y-xz)(y\alpha-\gamma)$                                                              | $D^3$     | $(1-D)(D\alpha-\gamma)$                                                        |
| $C_8^{16}$    | y               | $(1 - xyz)(y\alpha - \gamma)$                                                         | D         | $(1-D^3)(D\alpha-\gamma)$                                                      |
| $C_9^{16}$    | $x^2y^2z^2$     | $(xy-z^3)\alpha + (z^2-xyz)\beta$                                                     | $D^4$     | $(1-D)\left(\alpha+\beta\right)$                                               |
| $C_{10}^{16}$ | $x^2y$          | $(x-yz^3)\alpha + (yz^2 - xz)\beta$                                                   | $D^2$     | $(1-D^3)\alpha + (D^2-D)\beta$                                                 |
| $C_{11}^{16}$ | $\frac{y}{y^2}$ | $\left(1-x^2z^2\right)\alpha$                                                         | D         | $(1-D^4)\alpha$                                                                |
| $C_{12}^{16}$ |                 | $(1-xyz)\alpha + (xz-y)\gamma$                                                        | $D^2$     | $(1-D^3)\alpha + (D^2 - D)\gamma$                                              |
| $C_{13}^{16}$ | $x^2yz$         | $(xy-z^3)\alpha$                                                                      | $D^2$     | $(1-D)\alpha$                                                                  |
| $C_{14}^{16}$ | y               | $(xyz^2 - z)\gamma + (1 - xyz^3)\zeta$                                                | D         | $(D^4 - D) \gamma + (1 - D^5) \zeta$                                           |
| $C_{15}^{16}$ | $xz^2$          | $(xy-z)\gamma + (1-xyz)\zeta$                                                         | $D^3$     | $(D^2 - D)\gamma + (1 - D^3)\zeta$                                             |
| $C_{16}^{16}$ | $yz^2$          | $(xy-z^3)\gamma + (z^2 - xyz)\zeta$                                                   | D         | $(1-D)\left(\gamma+\zeta\right)$                                               |
| $C_{17}^{16}$ | $xy^2z^2$       | $(y-xz)\beta$                                                                         | $D^4$     | $(1-D)\beta$                                                                   |
| $C_{18}^{16}$ | x               | $(x-yz)\alpha$                                                                        | 1         | $(1-D)\alpha$                                                                  |
| $C_{19}^{16}$ | $xy^2$          | $(y-x^3z)\alpha$                                                                      | $D^2$     | $(1-D^3)\alpha$                                                                |
| $C_{20}^{16}$ | $xy^2$          | $(y-x^3z)\alpha + (x^2z-xy)\zeta$                                                     | $D^2$     | $(1-D^3)\alpha + (D^2-D)\zeta$                                                 |
| $C_{21}^{16}$ | $yz^2$          | $(xz-y)(\gamma-z\zeta)$                                                               | $D^2$     | $(D-1)(\gamma-D\zeta)$                                                         |
| $C_{22}^{16}$ | $yz^2$          | $(1-z^2)(\gamma-z\zeta)$                                                              | $D^3$     | $(1-D^2)(\gamma-D\zeta)$                                                       |
| $C_{23}^{16}$ | $y^{2}z^{2}$    | $(xz^2 - yz) \gamma + (y - xz^3) \zeta$                                               | $D^3$     | $(D^2 - D)\gamma + (1 - D^3)\zeta$                                             |
| $C_{24}^{16}$ | $xyz^3$         | $(z^2-y^2)\alpha$                                                                     | $D^5$     | 0                                                                              |
| $C_{25}^{16}$ | $x^2y$          | $(y-xz)\alpha+(z-xy)\zeta$                                                            | $D^2$     | $(1-D)(\alpha+\zeta)$                                                          |
| $C_{26}^{16}$ | yz              | $(y-xz^3)\zeta$                                                                       | D         | $(1-D^3)\zeta$                                                                 |
| $C_{27}^{16}$ | $\frac{x}{2}$   | $(1-xyz)\zeta$                                                                        | D         | $(1-D^3)\zeta$                                                                 |
| $C_{28}^{16}$ | $y^3z$          | $(y^2-z^2)\zeta$                                                                      | $D^4$     | 0                                                                              |

TABLE II. Decomposition of variables from table I into generators of first generation TDI. Only valid in the approximation of three unequal constant arms. 'Timeshift' denotes the delay to be applied to the combination constructed from the algorithm given in [5], i.e., the factor E in eq. (9). We also report how these expression further simply if one assumes all arms to be equal (0th generation TDI), i.e., when assuming  $x = y = z \equiv D$ . Note that some variables cancel exactly under this assumption.

FIG. 3. Secondary noise levels in  $(1-xyz)C_1^{16}$  compared to the residual between the approximation given in eq. (11b) and the exact expression given in table I. Laser noise is included in the simulation, but fully suppressed by TDI. In addition, we give an analytical estimate of the expected level of the secondary noise levels and we report the 1 pm noise requirement curve as well.



FIG. 4. Laser noise residuals for 1st and 2nd generation  $\zeta$  from the literature compared to  $C_{27}^{16}$ ,  $C_{28}^{16}$  and the 1 pm allocation.  $C_{27}^{16}$  and  $C_{28}^{16}$  perform significantly better than the previously known second generation  $\zeta$ , for which the residual laser noise level is above the 1 pm curve (computed accounting for the TDI transfer function). The residuals we see for  $C_{27}^{16}$  and  $C_{28}^{16}$  are typically explained by numerical noise, the arm-length mismatch, aliasing and interpolation errors [11].



#### 4. CONCLUSION

We have shown explicitly how all 34 second generation core TDI combinations up to 16 links presented in the literature can be expressed in terms of the four first-generation variables  $\alpha, \beta, \gamma$  and  $\zeta$ . We also provide the symmetry rules extending these results to all 210 distinct combinations up to 16 links.

We have verified numerically that these expressions are valid to within 3-5 orders of magnitude, such that a set of four second generation versions of  $\alpha, \beta, \gamma$  and  $\zeta$  should be sufficient for the purpose of instrumental noise characterisation.

One possible set are the combinations  $\tilde{\alpha}$ ,  $\tilde{\beta}$ ,  $\tilde{\gamma}$  and  $\tilde{\zeta}$ , as introduced in section 3.2. While  $\tilde{\alpha}$ ,  $\tilde{\beta}$  and  $\tilde{\gamma}$  are already known from the literature,  $\tilde{\zeta}$  (as well as the other variants of  $\zeta$  in table II) is new, and significantly more capable of suppressing laser noise then the second generation  $\zeta$  proposed before [7]. Since the first generation  $\zeta$  is known to be insensitive to GWs at low frequencies, we expect this property to transfer to all its second generation counterparts, making them useful as noise monitors for the LISA mission, as explored in [6].

However, as already discussed in [4–6], other combinations might have practical advantages: some, such as  $C_6^{16}$ ,  $C_7^{16}$ ,  $C_8^{16}$ ,  $C_{21}^{16}$  and  $C_{22}^{16}$ , use just 4 out of the full 6 laser links, such that they are unaffected in case of a loss of one or two inter-satellite links. Others, such as the Michelson-like combinations  $C_1^{16}$ ,  $C_4^{16}$  and  $C_5^{16}$ , use just 4 inter-satellite links and in addition just 2 constellation arms, thus they remain available in case of a complete failure of one of the LISA arms.

Moreover, as we illustrated in fig. 1, the typical singularities present in the transfer function of all second generation TDI variables appear at different frequencies for the different combinations. This might allow some combinations to be more favourable for detecting signals close to the singular frequencies of other variables.

In particular, another possible set of combinations we found are  $C_{28}^{16}$  and the cyclic permutations of  $C_{24}^{16}$ , for which these singularities appear outside the LISA band. On the other hand, the small delay differences appearing in them might cause numerical instabilities. The next best option in terms of number of in-band zeros would be the set of  $C_2^{12}$ , its cyclic permutations and  $C_3^{12}$ .

Last but not least, combinations with multiple measurements require shorter segments of

data to compute a single data point of the TDI combination. For instance, each of the two beams of  $C_1^{12}$  require summation of the light travel time for 6 consecutive links, or about  $6 \times 8.33 \,\mathrm{s} \approx 50 \,\mathrm{s}$ . The beams of  $C_2^{12}$ , on the other hand, use only up to 4 links at a time, corresponding to just  $4 \times 8.33 \,\mathrm{s} \approx 33 \,\mathrm{s}$ .

To conclude, further studies are needed to give a final recommendation which combinations should be used for the data analysis pipeline. In particular, we plan to analyse the sensitivity of these TDI channels with respect to GWs to be able to compute their signal to noise ratio (SNR) and understand what kind of information we can recover through each channel. Moreover, we did not investigate the case of 1.5 generation TDI using 6 generators, as we notice that the 1st generation was enough to accurately reproduce the response of all core TDI variables with respect to instrumental noise. Still, it might be valuable as a follow up study to see if we can extract additional information in this case.

# 5. ACKNOWLEGEMENT

We thank the LISA Trento group for the fruitful discussion, in particular S. Vitale and D. Vetrugno. We also want to thank M. Staab from the AEI in Hannover for the useful comments on improving this manuscript. M.M thanks the Agenzia Spaziale Italiana and the Laboratorio Nazionale di Fisica Nucleare for supporting this work. O.H. gratefully acknowledges support by the Deutsches Zentrum für Luft- und Raumfahrt (DLR, German Space Agency) with funding from the Federal Ministry for Economic Affairs and Energy based on a resolution of the German Bundestag (Project Ref. No. 500Q1601 and 500Q1801).

# Appendix A: Time shift operators

This paper makes use of time shift operators. They act on time dependent functions by evaluating them at another time. We thus define the following notations related to time-shift operators and TDI combinations:

- Delay operator:  $D_{ij}\phi_j(\tau) = \phi_j(\tau d_{ij}(\tau)).$ 
  - Given a time of reception  $\tau$  of a beam on spacecraft i, evaluates the phase  $\phi_j$  of that beam at the time of emission at spacecraft j, which we write as  $\tau d_{ij}(\tau)$ . Note that depending on what frame  $\phi_j(\tau)$  is defined in, the computation of  $d_{ij}$  can include a change in reference frames, and clock offsets.
- Advancement operator:  $A_{ij}\phi_j(\tau) = \phi_j(\tau + a_{ij}(\tau))$ . Given a time of emission  $\tau$  of a beam from spacecraft j, evalutes the phase  $\phi_j$  of that beam at the time of reception on spacecraft i, which we write as  $\tau + a_{ij}(\tau)$ . Fulfills  $D_{ij}A_{ji}\phi_i(t) = \phi_i(t)$ .
- Multiple Delay operators:  $D_{ij}D_{jk}\phi_k(\tau) = \phi_k(\tau d_{ij}(\tau) d_{jk}(\tau d_{ij}(\tau)).$
- Multiple Delay and Advancement operators:  $A_{ni}D_{ij}D_{jk}\phi_k(\tau) = \phi_k(\tau + a_{ni}(\tau) d_{ij}(\tau + a_{ni}(\tau)) d_{jk}(\tau + a_{ni}(\tau) d_{ij}(\tau + a_{ni}(\tau)))$ .

# Appendix B: Numerical approximations of $\dot{\alpha}$

We want here to evaluate how accurately we can approximate the derivative of  $\alpha$ .

Figure 5 shows the comparison between the two point finite difference of  $\alpha$ , which we denote by  $\dot{\alpha}_{2p}$ , and the expression of  $C_{24}^{16}$  reported in table II. The plot shows also the residuals between the two numerical computations and a model which explains their values. While the computations agree within three orders of magnitudes at low frequencies, the error increases towards higher frequencies where the residuals reach about one order of magnitude below the actual value.

This behaviour of the residuals can be explained by two separate effects. For the high frequencies range, we have to take into account the inequality between the time differences,  $\delta$ , we consider to approximate the derivative of  $\alpha$  in  $\dot{\alpha}_{2p}$  and  $C_{24}^{16}$ , respectively.

FIG. 5. Comparison between the estimation of a two-point finite difference derivative of  $\alpha$  and  $C_{24}^{16}$ .



In both cases, we have a finite difference of the form  $\frac{\alpha(t) - \alpha(t - \delta)}{\delta}$  which we can expand to first order in  $\delta$  to get:

$$\frac{\alpha(t) - \alpha(t - \delta)}{\delta} \approx \dot{\alpha}(t) - \frac{\delta}{2}\ddot{\alpha}(t), \tag{B1}$$

where  $\delta = 2(y^d - z^d)$  for  $C_{24}^{16}$  and  $\delta = 1/f_s$  for  $\dot{\alpha}_{2p}$ , while  $f_s = 4$  Hz is the sampling frequency. Thus the difference between the two approximated derivatives will be given by:

$$\frac{C_{24}^{16}}{2(y^d - z^d)} - f_s \dot{\alpha}_{2p}(t) \approx \left(\frac{1}{2f_s} - y^d + z^d\right) \ddot{\alpha}(t).$$
 (B2)

In the frequency domain, the additional derivative corresponds to a factor  $2\pi f$ , which explains the increase of the residuals at high Fourier frequencies.

Regarding the low frequencies, the residuals that we see are explained by the error that we make in estimating the  $C_{24}^{16}$  variable out of the TDI  $\alpha$  first generation as visible from fig. 1. We estimate it by rescaling the PSD of  $\dot{\alpha}$  by the ratio between the residual estimated in fig. 1 and the actual PSD of  $C_{24}^{16}$ .

The same reasoning holds for  $\dot{\beta}$ ,  $\dot{\gamma}$  using the cyclic permutations of  $C_{24}^{16}$ , and  $\dot{\zeta}$  using  $C_{28}^{16}$ .

FIG. 6. Comparison between the two-point derivative of the combination  $C_1^{16}$  in table I and the version built out of rescaled versions of  $C_{24}^{16}$ , its cyclic permutations, and  $C_{28}^{16}$ , which represent  $\dot{\alpha}$ ,  $\dot{\gamma}$ ,  $\dot{\beta}$ , and  $\dot{\zeta}$ , respectively.



We can then use these variables in place of  $\alpha$ ,  $\beta$ ,  $\gamma$  and  $\zeta$  to build an approximate version of the derivative of  $C_1^{16}$ , using the expression given in table II. Figure 6 shows the comparison between  $\dot{C}_1^{16}$  computed using a two-point derivative and the version computed using  $C_{24}^{16}$ ,  $\hat{C}_{24}^{16}$ ,  $\hat{C}_{24}^{16}$  and  $C_{28}^{16}$ , as well as the relative difference between the two calculations. We can see how the residuals are two orders of magnitude lower than the variable we are trying to compute and that they increase at higher frequencies. This is in accordance to the two complementary models described above.

# Appendix C: Symmetries

In this paper, we study only the core combinations from which other variables can be constructed. We summarize here how to apply these symmetries to the decompositions presented in table II.

# 1. Cyclic permutatation

A cyclic permutation maps the spacecraft indices from  $1 \mapsto 2 \mapsto 3 \mapsto 1$ . This corresponds to the following mappings in table II:

- Map  $\alpha \mapsto \beta \mapsto \gamma \mapsto \alpha$ ,
- Map  $x \mapsto y \mapsto z \mapsto x$ ,
- Leave the fully symmetric  $\zeta$  unchanged.

# 2. Mirror symmetry

A mirror symmetry exchanges the role of two spacecraft, for example  $2 \leftrightarrow 3$ . This corresponds to the following mappings in table II:

- Exchange  $\beta \leftrightarrow \gamma$ ,
- Exchange  $y \leftrightarrow z$ ,
- Flip the sign of all combinations.

Similar rules apply for the reflections involving spacecraft  $1 \leftrightarrow 3$  and  $1 \leftrightarrow 2$ , which leave either  $\beta$  and y or  $\gamma$  and z unchanged, respectively.

#### 3. Time reversal symmetry

The action of a time reversal of the combination is less obvious than the previous two symmetries. Note that a time reversal is equivalent to one of the other two symmetries for most variables. For the ones were this is not the case  $(C_1^{14}, C_{11}^{16}, C_{15}^{16}, C_{17}^{16}, C_{21}^{16}, C_{22}^{16}, C_{24}^{16})$  and  $C_{28}^{16}$ , cf. [6]), we computed the corresponding expression to verify if these variables bring additional information. It turns out that in the approximations of this paper, a time reversal reduces to one of the other symmetries in most cases, plus an additional overall time shift and sign flip. The exceptions are  $C_{21}^{16}$  and  $C_{22}^{16}$ , whose time reversed versions  $C_{21}^{\text{tr},16}$  and  $C_{22}^{\text{tr},16}$ 

have the decompositions

$$x^2 y z C_{21}^{\text{tr,16}} = (y - xz)(z\gamma - \zeta),$$
 (C1)

$$xz^2 C_{22}^{\text{tr},16} = (z^2 - 1)(z\gamma - \zeta).$$
 (C2)

# REFERENCES

- B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration),
   Phys. Rev. Lett. 116, 061102 (2016).
- [2] P. A.-S. et all, "Laser interferometer space antenna," (2017), arXiv:1702.00786 [astro-ph.IM].
- [3] J. W. Armstrong, F. B. Estabrook, and M. Tinto, The Astrophysical Journal **527**, 814 (1999).
- [4] M. Vallisneri, Phys. Rev. D72, 042003 (2005), [Erratum: Phys. Rev.D76,109903(2007)], arXiv:gr-qc/0504145 [gr-qc].
- [5] M. Muratore, D. Vetrugno, and S. Vitale, Classical and Quantum Gravity 37, 185019 (2020).
- [6] M. Muratore, D. Vetrugno, S. Vitale, and O. Hartwig, "Time delay interferometry combinations as instrument noise monitors for lisa," (2021), arXiv:2108.02738 [gr-qc].
- [7] M. Tinto and S. Dhurandhar, Living Reviews in Relativity 24 (2021), 10.1007/s41114-020-00029-6.
- [8] S. V. Dhurandhar, K. R. Nayak, and J.-Y. Vinet, Phys. Rev. D 65, 102002 (2002).
- [9] K. Rajesh Nayak and J. Y. Vinet, (2004), 10.1103/PhysRevD.70.102003.
- [10] M. Muratore, Time delay interferometry for LISA science and instrument characterization, Ph.D. thesis, University of Trento (2021).
- [11] O. Hartwig, Instrumental modelling and noise reduction algorithms for the laser interferometer space antenna, Ph.D. thesis, Leibniz Universität Hannover (2021).
- [12] M. Tinto and S. V. Dhurandhar, Living Reviews in Relativity 8 (2005), 10.12942/lrr-2005-4.
- [13] J.-B. Bayle, Simulation and Data Analysis for LISA: Instrumental Modeling, Time-Delay Interferometry, Noise-Reduction Performance Study, and Discrimination of Transient Gravitational Signals, Ph.D. thesis, Université de Paris (2019).
- [14] P. Amaro-Seoane et al. (LISA Collaboration), Laser Interferometer Space Antenna, Tech. Rep. (ESA, 2017) arXiv.org:1702.00786 [astro-ph].