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Abstract

Time delay interferometry (TDI) is a post-processing technique used in the Laser Interferometer

Space Antenna (LISA) to reduce laser frequency noise by building an equal-arm interferometer via

combining time-shifted raw phase measurements. Many so-called 2nd generation TDI variables

have been found that sufficiently suppress laser frequency noise considering realistic LISA orbital

dynamics.

In this paper, we want to investigate the relationships between these different TDI channels to

understand the optimal approach for recovering all information from the raw phase measurements.

It is already well known from the literature that the entire space of TDI solutions can be generated

out of the 4 combinations α, β, γ, and ζ, at least under the approximation of three different but

constant constellation arms (1st generation TDI). We apply this result to a core subset of the 2nd

generation combinations reported in the literature, for which we compute explicitly how they can

be approximated in terms of these 4 generators and show numerically that these approximations

are accurate enough to model the noises not suppressed by TDI. Finally, we identify multiple

possible 2nd generation representatives of α, β, γ, and ζ, and discuss which might be ideal to use

for the LISA data analysis. In addition, we demonstrate that newly found variants of the variable

ζ significantly out-perform the ones previously known from the literature.
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1. INTRODUCTION

Gravitational waves (GWs) are predicted by General Relativity and were first observed

in 2016 by the two ground-based interferometers LIGO [1]. They can be detected by laser

interferometers which recover the Doppler shift that a passing GW causes on the frequency

of the laser beam.

The Laser Interferometer Space Antenna (LISA), which is the 3rd large mission (L3) of the

ESA program Cosmic Vision has the goal of detecting gravitational waves with frequencies

in the mHz regime by tracking the relative distance between two free-falling test masses

(TMs), hosted in distant spacecraft, using laser interferometry [2].

The constellation is designed to have three identical spacecraft in a triangular formation

which are separated by 2.5 million km, with six active laser links connecting them. The

orbits are chosen to have a constellation forming a triangle as equilateral as possible. How-

ever, due to celestial dynamics, the arms differ from each other by ±1% and the satellites

have a relative drift of up to 10m s−1. As a consequence, the LISA interferometers will

have unequal and time-varying arm-lengths, such that they will be strongly affected by laser

frequency noise. Thus, to compensate for this noise we apply a post-processing technique

called time-delay interferometry (TDI). This post-processing technique combines on ground

the raw phase meter data by properly time-shifting them in order to build an equivalent

equal arm interferometer, insensitive to laser frequency noise. Many such data combinations

are possible, such as the Michelson-like interferometer X or the Sagnac combination α [3].

One approach to find TDI data combinations is geometric TDI, first introduced in [4].

This approach was recently revisited in [5], where new combinations of signals which fulfil

the frequency noise suppression requirements were found. In particular, [5] reports 174

combinations of 16-links and 12 of 12-links while in [4], only 48 of 16-links and none of

12-links were advertised1. These combinations could be reduced to a subset of 35 of 16-links

and 3 of 12-links, if one considers as equal combinations that differ by any permutation of

the satellites.

Moreover, additional combinations of 14-links that were missing in the previous catalogue

are reported in [6], where it is illustrated that the total number of combinations could be

1 We call a ’link’ the one-way Doppler measurement between two of the LISA spacecraft. Note that [4] also

includes solutions of up to 24 links, which were not investigated in [5].
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reduce to a subset of 28 of 16-links, 3 of 14-links and 3 of 12-links, if one considers as equal

combinations that differ only by any permutations of satellites or a time reversal symmetry.

Including these symmetries, the set grows to a total of 210 distinct combinations up to 16

links.

On the other hand, the space of possible TDI solutions can also be described and con-

structed algebraically, at least under certain assumptions [7]. It turns out that the entire

space of 1st generation TDI (three unequal and constant interferometer arms) can be gen-

erated out of 4 combinations [8], while for 1.5th generation TDI variables, 6 fundamental

variables are needed [9]. Conversely, the general algebraic problem of second generation

TDI (meaning linearly evolving arms) is up to date still unsolved [7].

Lacking a theorem guaranteeing that all 2nd generation variables can be constructed

from a finite set of generators, the question arises if some of the 210 combinations contain

redundant information and if we are able to find a minimum set of TDI variables contain-

ing all the relevant information we need to perform the LISA data analysis. To this end,

we remark that for the purpose of estimating the coupling of non-suppressed effects, like

gravitational waves and most secondary noise sources2, it is usually sufficient to study TDI

under the assumption of 1st generation TDI. The reason is that while small mismatches and

dynamic changes in the armlengths have to be taken into account when we aim to reduce

laser frequency noise (by several orders of magnitude) they only cause very small corrections

to the expressions for the non-suppressed effects.

Although it is often considered sufficient to use ’0th generation’ TDI (meaning three con-

stant and equal arms) to perform data analysis, recent studies showed that neglecting the

percent level static arm-length mismatches can in some cases bring large errors when mod-

elling the instrument response to non-suppressed noises and GW signals [6]. On the other

hand, considering three unequal arms was sufficient there to accurately predict the result of

numerical simulations performed taking the full orbital dynamics into account.

In the rest of the paper, we do a follow up of [6], studying algebraic relationships between

the new TDI combinations presented there under the same assumption of 1st generation

2 Secondary noises such as test mass and readout noise are not suppressed in the output of TDI combina-

tions, but only modulated by differences of the large delays applied when constructing the combination.
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TDI to investigate which TDI channels should be suggested for the LISA data analysis.

The rest of the article is divided in three sections. In section 2, we report the core com-

binations found in [6] and we illustrate how we can highlight similarities between them by

simplifying these combinations under the assumptions of 1st generation TDI. Moreover, we

compute explicitly how each of these simplified combinations is related to the four generators

of first generation TDI, α, β, γ and ζ , and discuss the implications for LISA data analysis.

We then demonstrate numerically in section 3.1 that the decompositions of 2nd genera-

tion variables into the 1st generation generators are good approximations for the secondary

noises. We run simulations without laser frequency noise, which allows us to compute the

first generation variables, whereas we keep readout noise and test-mass acceleration noise

enabled. These simulations show that the approximations are valid to within 3 to 5 orders

of magnitude, depending on the Fourier frequency and TDI variable considered. We also

discuss pros and cons of different sets of second generation variables that we can use to

represent the first generation generators α, β, γ and ζ .

Moreover, we demonstrate numerically in section 3.2 that the previously described approx-

imations remain valid also in the presence of laser noise. We show that a set of four 2nd

generation combinations can be used to generate the instrument noise response of the chan-

nel X as an example, with a relative error of less than ≈ 10−2 to 10−5, again depending on

the Fourier frequency considered.

In addition, we analyse the laser noise suppression capabilities of the second generation ζ

variables given in [7] with respect to the new second generation ζ variables found in [6]. The

latter show to suppress laser noise several orders of magnitude more than the former and

far below the level of secondary noises. Conversely, the residual laser noise of the previously

known ζ variable would present a significant noise contribution to the full LISA noise bud-

get.

Finally, we report our conclusion and future perspective in section 4.

2. GENERATORS OF FIRST GENERATION TDI AND APPLICATION TO GE-

OMETRIC TDI

The formalism of geometric TDI [4, 5] allows to understand physically the properties of

TDI combinations, and more practically, enables a systematic search for 2nd generation TDI
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combinations.

We report in table I the list of the 34 core combinations3 found in [6]. We express them

in terms of time shifts applied to the intermediary TDI variables ηij , using the notation

described in appendix A.

The ηij are constructed in post-processing from the raw measurements provided by the

spacecraft, and correspond to direct tracking of the distance between the two TMs in a LISA

link [11]. These virtual measurements contain the difference between the laser frequency

fluctuations φi and φj of the local and received laser beams, respectively, where the received

beam enters with a time delay by the light travel time dij(τ):

ηij(τ) = φj(τ − dij(τ))− φi(τ) +Nij(τ). (1)

While the laser noise terms φj and φi will be strongly suppressed in post-processing, the

Nij term summarises any effects not fully suppressed by TDI. In particular, Nij contains

unavoidable secondary noises, such as acceleration noise of the TMs and noise introduced

by the optical metrology system, as well as gravitational waves. Note that this is a simplifed

model for the LISA measurements, see e.g. [11] for a more detailed description.

We now want to study how these non-suppressed effects appear in the 34 core TDI com-

binations, and how many of these combinations we need to extract all information contained

in our raw measurements. To this end, we want to express all variables in terms of a finite

set of generators. As we introduced, the algebraic problem of second generation TDI is

to date still unsolved [7], such that no set of generators is known for this case. Instead,

we study these TDI combinations under the assumptions of first generation TDI since, as

already proposed in [7] and empirically demonstrated in [6], this is sufficient to describe

the instrumental noise and GW signal response. It is important to stress that in practice,

we cannot use first generation TDI variables in the actual data analysis, since they don’t

suppress the laser noise sufficiently.

To avoid confusion, we will use a different notation for the six non-commutative delay

operators of second generation, as used in table I, and the three commutative delay operators

3 Note that these 34 core combinations can be used to generate all 210 variables presented as supplementary

material in [6] by applying the appropriate symmetries and index permutations [10, 11]. In particular,

the core combinations C16

1 , C16

4 , C16

5 , C16

6 , C16

7 , C16

8 , C16

21 and C16

22 can be used to generate all 48 variables

presented in [4].
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of first generation TDI. For the latter, we take inspiration from the literature, e.g. [7], and

will denote the operators applying the corresponding delays by x, y and z. They act on any

time dependent function f(t) via

xf(t) = f(t− xd), yf(t) = f(t− yd) and zf(t) = f(t− zd), (2)

where we compute the delays as

xd = mean

[

d23(t) + d32(t)

2

]

(3a)

yd = mean

[

d31(t) + d13(t)

2

]

(3b)

zd = mean

[

d12(t) + d21(t)

2

]

, (3c)

with dij(t) as the time series of time varying delays estimated from the orbits for a photon

received on spacecraft i and emitted from spacecraft j. Since we have three satellites, i

and j can take the values 1, 2 or 3, with i 6= j. Then mean[. . . ] denotes a time average

over the timespan of interest (usually a couple of hours), such that xd, yd and zd are indeed

constants.

The corresponding advancements are denoted by x−1, y−1 and z−1, and act as

x−1f(t) = f(t+ xd), y−1f(t) = f(t+ yd) and z−1f(t) = f(t+ zd). (4)

We can map all second-generation variables presented in table I to first generation vari-

ables by replacing

D12 = D21 = z, D23 = D32 = x, D31 = D13 = y, (5a)

A12 = A21 = z−1, A23 = A32 = x−1, A31 = A13 = y−1. (5b)

As known from the literature, see e.g., [7], one important result for 1st generation TDI

is that all TDI variables can be constructed from just four generators. One possible set of

generators are the 3 Sagnac variables α, β, γ together with the fully symmetric Sagnac ζ
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[3]. These are given in our notation as:

α = η12 + zη23 + zxη31 − η13 − yη32 − yzη21 (6a)

β = η23 + xη31 + xyη12 − η21 − zη13 − zyη32 (6b)

γ = η31 + yη12 + yzη23 − η32 − xη21 − xzη13 (6c)

ζ = xη12 + yη23 + zη31 − xη13 − zη32 − yη21. (6d)

In the interpretation of geometric TDI, α, β and γ are simple two-beam interferometers,

while ζ is a 6 beam interferometer, where each spacecraft emits and receives two beams.

Following [7], we are therefore able to write each first generation TDI combination as

TDIk = A′
kα +B′

kβ + C ′
kγ +D′

kζ, (7)

where TDIk is the k’th combination in table I after simplifying it using eqs. (5a) and (5b),

while A′
k, B

′
k, C

′
k, D

′
k are polynomials of the delay operators x, y and z. This means that

under the assumptions of first generation TDI, all information we can extract from any of

the combinations given in table I is, in principle, already contained in these four generators

α, β, γ and ζ .

Note that solutions to eq. (7) are not necessarily unique, since α, β, γ and ζ have a

time-delay relationship to each other [7]:

(1− xyz)ζ = (x− yz)α+ (y − xz)β + (z − xy)γ. (8)

As argued in [7], the term (1 − xyz) appearing in front of ζ in this equation theoretically

does not impact the signal to noise ratio, such that one could consider just α, β and γ

for the astrophysical data analysis. However, we will argue in section 3.1 that terms like

this (1 − xyz) can have subtle impacts on the data analysis, such that we consider all

four generators for our analysis. ζ in particular is known to be insensitive to GWs at low

frequencies, and is therefore of interest for characterizing the instrument [3].

Before explicitly solving eq. (7) for all core variables, we further simplify the expressions

by applying an overall time shift4 Ek to each expression given in table I, such that we solve

4 We determine Ek by collecting the common factors in front of each ηij in table I after we used eqs. (5a)

and (5b) to simplify the combinations from 2nd to 1st generation TDI.
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the following equation instead of eq. (7):

Ek TDIk = Akα +Bkβ + Ckγ +Dkζ. (9)

We solve eq. (9) for each value of k using the computer software Mathematica. Since each

of the six ηij is independent, eq. (9) can be read as a system of six linear equations, which

we first solve for four real coefficients Ak, Bk, Ck and Dk. Note that the actual solutions to

eq. (9) are only those for which Ak, Bk, Ck and Dk are alsso valid polynomials in x, y and z.

In particular, we must not allow solutions containing the inverse of a multi term polynomial

such as, e.g., 1/(x− yz).

We describe in appendix C how to retrieve the equivalent expressions for the remaining

174 combinations of the full set of TDI variables from these core combinations.

2.1. Discussion

Many of the variables are given as one of the generators α, β, γ or ζ with a single differ-

ence of delays in front (e.g., C12
1 ≈ (1−xyz)α and C16

28 ≈ (y2−z2)ζ). This implies that there

are multiple choices of second generation representatives of the first generation generators

given in eq. (6a) to eq. (6d). Indeed, each of these representatives response to GWs and noise

can be computed by applying different frequency domain transfer functions to the response

of the first generation variables. As argued in [7], these transfer functions do not impact the

SNR in theory, such that any of them could be used in the data analysis. However, since in

practice TDI variables are computed numerically with finite dynamic range and sampling

rate, some variables might have better SNR around some singular frequencies, and might

also have other advantages. We will discuss some of these points in section 3.1.

In addition, we observe that C16
4 , C16

24 and C16
28 contain an overall difference term (y−z) or

(y2− z2). These terms are vanishing if all delays are assumed equal (i.e., assume x = y = z)

as explicitly shown for the ’0th generation’ expressions in table II. This means that when

we take the real LISA orbital dynamics into account, the secondary noises as well as the

astrophysical signal will be strongly suppressed in these variables. However, they are not
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exactly vanishing, which highlights that the assumption of equal arms is not sufficient to

accurately model the response of some variables.

Furthermore, since the ζ combinations has the special properties of being less sensitive

to gravitational waves compared to α, β and γ, at least at low frequencies, we would expect

this property to extend to C12
3 , C14

3 , C16
26 , C

16
27 and C16

28 , which are directly related to the first

generation ζ . This could make these variables useful for characterising the instrumental

noise in the presence of a GW signal, and to distinguish a stochastic GW background from

the noise, as discussed in [6]. Note that, as shown in fig. 4, these combinations suppress

laser noise to the same level as all other variables, contrary to the second generation version

of ζ proposed in [7].

3. NUMERICAL SIMULATIONS

We run two simulations using LISA Instrument
5 to verify our statement that the

decompositions shown in table II are good approximations for the secondary noises. In

both simulations, all noise time series are generated at a high sampling rate of 16 Hz and

then filtered and decimated to a lower measurement rate of 4 Hz. The filter is a digital

symmetrical FIR filter build from a Kaiser windowing function, with a transition band

extending from 1.1Hz to 2.9Hz and a minimum attenuation above 2.9Hz of 320 dB.

In the first simulation, we disable laser noise, which allows us to use the first generation

generators α, β, γ and ζ . We simulate readout noise and test-mass acceleration noise, as

they are the main noise contributors of the instrumental noise after TDI, and use realistic

orbits provided by ESA to compute the light travel times. This allows us to directly test

the validity of the decomposition given in table II for all the combinations.

In the second set of simulations, we simulate laser noise as well, such that we are restricted

to use only the second generation variables. We then show that the relationships given

in table II remain valid by constructing a version of C16
1 out of C16

27 and the three cyclic

permutations of C12
1 .

5
LISA Instrument is a time-domain LISA simulator developed by J.-B. Bayle inside the LISA Consor-

tium. See [11, 13? ] for a detailed description of its simulation model.
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All TDI combination are computed using PyTDI6.

3.1. Simulations without laser noise

We simulate 105 samples of LISA data with the aforementioned parameters, and compute

the response of all TDI combinations given in table I. Here, we use the time-varying light

travel times dij(t) output by the simulation to compute the exact response of the variable

given realistic orbits.

We then compute the constant delays xd, yd and zd using eqs. (3a) to (3c), and use them

to construct the generators of first generation TDI as given in section 2. This allows us to

use the expressions given in table II to construct the approximate versions of all TDI com-

binations. We can then study the time-domain residual between the exact and approximate

version of each variable.

As an example, we plot in fig. 1 the amplitude spectral density (ASD) of the TDI combi-

nations C12
1 , C12

3 , C14
1 , C16

1 , and C16
24 as given in table I. In addition, we also plot the ASD

of the time-domain residual between them and their expressions in terms of α, β, γ and ζ

from table II. We observe that the residuals for all variables are at a similar level, about

four to five orders of magnitude below the actual secondary noise levels of C12
1 , C12

3 , C14
1

and C16
1 , such that the expressions given in table II should provide good approximations of

the secondary noises.

Looking at the plot, we see that the combinations show to have different noise shapes,

in particular, their spectra have an unequal number of zeros. This can be explained by

referring to the column of table II which shows the approximation in case of equal arms

(’0th’ generation). We see that all variables contain a difference term of the form (1−DN),

where D is the single delay operator of ’0th’ generation TDI, acting as Df(t) = f(t − d̄),

with d̄ ≈ 8.3 s as the arm length. In the frequency domain, this term corresponds to a

transfer function of the form 2
∣

∣

∣
sin

(

πfNd̄
)

∣

∣

∣
, with zeros at frequencies f = (Nd)−1.

For example, C16
1 has N = 4, thus shows to have zeros starting at f ≈ 30mHz. It is then

followed by C12
1 with N = 3, C14

1 with N = 2 and C12
3 with N = 1.

6 PyTDI is a python package designed to compute TDI combinations, developed mainly by M. Staab and

J.-B. Bayle inside the LISA consortium.
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C16
24 behaves differently, since it is exactly vanishing when assuming equal arms. How-

ever, it is not vanishing in the assumption of 1st generation TDI, where it contains a

difference term z2 − y2. This corresponds to a frequency domain transfer function of

2
∣

∣

∣
sin

(

2πf(zd − yd)
)

∣

∣

∣
, which has zeros outside of the LISA band, at f = 0.5(zd−yd)−1 ≈ 5Hz.

This explains why the blue curve describing C16
24 in fig. 1 appears at a lower level then those

of C12
1 , C12

3 , C14
1 and C16

1 , since the transfer function starts suppressing the output for

frequencies below 5Hz, whereas for the others, the roll-of starts only around 5× 10−2Hz.

Note that this lower noise level might imply that this variable is more susceptible to errors

due to the finite numerical precision of our data.

On the other hand, as already argued in [4], zeros inside the LISA band can also neg-

atively impact the data analysis, even though they affect both signal and noise equally.

Indeed, while the signal to noise ratio is theoretically unchanged, in practice, our data has

finite dynamic range, such that the zeros are ’filled’ by numerical noise, causing a degrada-

tion of SNR close to the zeros. It is therefore potentially beneficial to use TDI combinations

with as few zeros as possible.

We now want to compare different possible 2nd generation versions of the generator α. As

argued above, these differ by the differential time delays applied to them, which correspond

to frequency domain transfer functions of the form 2
∣

∣sin(πfδ)
∣

∣, with δ as the differences of

the applied delays. At low frequencies, we can expand this transfer function to first order in

δ, to get a simple factor 2πfδ, which represents a derivative combined with a rescaling by

δ. Thus, it is interesting to compare the different possible second generation versions of α

to the derivative of the first generation version. We plot in fig. 2 the combinations C12
1 , C12

2 ,

C14
1 , C16

3 and C16
24 , all rescaled by their respective δ, compared to the two-point derivative

of α (labelled α̇). We observe that as expected, all curves coincide at low frequencies, while

the different number of zeros determines the deviations at high frequencies. In particular,

we observe that C16
24 seems to approximate α̇ very well across the whole frequency band.

However, even if fig. 1 shows that the approximation reported in table II holds within 3

orders of magnitude, we are not able to demonstrate that C16
24 agrees to α̇ to this precision.

The reason is that the two-point derivative we used to compute α̇ has a time difference of

1/fs = 0.25 s, that is different to the one of C16
24 , which is 2(zd − yd) ≈ 0.2 s. We discuss this
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FIG. 1. Secondary noises in C12
1 , C12

3 , C14
1 , C16

1 and C16
24 compared to the residual between the

approximation given in table II and their exact expression given in table I.
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exact
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exact

C12
1 residual

C12

3
residual

C14
1 residual

C16

1
residual

C16

24 residual

in detail in appendix B.

As a proof of concept that the decompositions presented in table II are still applicable

when we include laser noise in the simulation, we want to linearly combine multiple second

generation variables to construct the variable C16
1 (known in the literature as TDI X).

The previously discussed set of variables without zeros in the LISA band seem to be good

candidates to use in this construction. However, we remark that the two cyclic permutations

of C16
24 contain the time differences 2(xd−zd) and 2(yd−zd), respectively, such that including

C16
24 itself, we get finite difference approximations of α̇, β̇ and γ̇ with unequal time differences.

The same argument holds for C16
28 , which approximates ζ̇. This limits our ability in using

linear combinations of these variables to build other variables in the table, as discussed in

appendix B and illustrated in fig. 6.

On the other hand, as visible in table II, the variables C12
1 (plus its cyclic permutations Ĉ12

1

and
ˆ̂
C12

1 ) and C16
27 all have the same time shift factor (1−xyz) applied to them. This allows

us to linearly combine them without introducing additional errors, as we demonstrate in the

next section.
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FIG. 2. Second generation variables as approximation of the derivative of α. C12
1 , C12

2 , C14
1 ,

C16
3 and C16

24 are rescaled by the numerical value of the difference of delays applied in table II.

Combinations with larger delay differences have more zeros inside the LISA band.
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24/(2y
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3.2. Simulations including laser noise

Let us define a short-hand notation for the second generation representatives of the

variables α, β, γ and ζ chosen for this example:

α̃ ≡ C12
1 (10a)

β̃ ≡ Ĉ12
1 (10b)

γ̃ ≡ ˆ̂
C12

1 (10c)

ζ̃ ≡ xC16
27 . (10d)

Applying the factor (1− xyz) to the expression given for C16
1 in table II, we see that

(1− xyz)C16
1 ≈

(

1− y2z2
)

(1− xyz)(α− zβ − yγ + yzζ) (11a)

≈
(

1− y2z2
)

(

α̃− zβ̃ − yγ̃ + yzζ̃
)

. (11b)
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To verify that eq. (11b) is accurate, we compute the exact version of C16
1 given in table I

numerically, and apply the additional factor (1−xyz) to the resulting laser-noise free variable.

We compare it to the approximated version on the right hand side of eq. (11b), where we

compute α̃, β̃, γ̃ and ζ̃ as given in eqs. (10a) to (10d).

Figure 3 shows that the noise level of the simulated data (in orange) is well explained

by the analytical model describing the secondary noises (in dotted grey). For clarity the

approximated solution of (1 − xyz)C16
1 is omitted as we cannot appreciate the difference

with respect to the exact solution on this scale. We show instead that the residual noise

between the left- and right-hand side of eq. (11b) is several orders of magnitude below the

secondary noises. This same principle could easily be applied to any of the variables given

in table II.

However, since all information is already contained in α, β, γ and ζ , it should be enough

in practice to compute a single set of second generation versions of them, without a need to

construct other variables (such as C16
1 ) out of them.

Note that the second generation versions of ζ considered here, such as C16
27 or C16

28 , are

different from the second generation ζ proposed in [7]. Figure 4 compares the residual laser

noise for the 1st and 2nd generation ζ variable from the literature with that in C16
27 and C16

28 .

For reference, we also p

lot a typical 1 pm/
√
Hz noise allocation7. We see that both C16

27 and C16
28 reduce laser

noise far below the level of the previously known variables (and the requirements), as also

demonstrated by theoretical calculation in [5].

7 The overall noise allocation given for the interferometric readout given in [14] is 10 pm/
√
Hz. It is common

to compare individual noise sources to a more conservative requirement, such that no single noise source

uses up the whole allocated noise level. In addition, we applied the readout noise TDI transfer function

for the second generation ζ variable given in the literature [7]. Note that we omit the usual relaxation

of the requirement towards low frequencies, to compensate for the fact that the simulation assumes laser

frequency noise to be a white noise accross the whole frequency band.
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Name Expression

C12
1 − (D13D32 −D12D23D31D13D32) η21 + (D12D23 −D13D32D21D12D23) η31 + (D12 −D13D32D21D12) η23

+ (1−D13D32D21) η12 − (D13 −D12D23D31D13) η32 − (1−D12D23D31) η13

C12
2 (A23A31 −D21A13A31) η12 + (A23A31D12 −D21A13A31D12) η23 + (D21A13 −D21A13A31D12D23) η31

− (1−A23A31D12D23D32) η21 − (A23 −A23A31D12D23) η32 − (A23A31 −D21A13A31) η13

C12
3 (D32D23A31 −D31A12D23A31) η13 − (D31A12 −D31A12D23A31D12) η21 + (−D32D23A31 +D31A12D23A31) η12

− (D32 −D31A12) η23 + (1−D32D23A31D12A23) η31 − (1−D32D23A31D12A23) η32

C14
1 − (A23A31 −D21D12A23A31) η13 + (−D21D12A23A31 +A23A31D12D23D31 −D21 +A23A31) η12 − (1−A23A31D12D23D31D12) η21

+ (A23A31D12 −D21D12A23A31D12) η23 + (A23A31D12D23 −D21D12A23A31D12D23) η31 − (A23 −D21D12A23) η32

C14
2 − (D23A31 −D21D12D23A31) η13 − (D23A31A12A23 −D21D12D23A31A12A23) η32 + (−D21 +D23A31A12A23D31) η12

− (−D21D12D23A31A12 +D23A31A12 −D23A31A12A23D31D12 + 1) η21 + (D23A31A12A23 −D21D12D23A31A12A23) η31 + (1−D21D12) η23

C14
3 − (D23A31 −D21D12D23A31) η13 − (D23A31D12A23 −D21D12D23A31D12A23) η32 + (−D21D12D23A31 +D23A31D12A23D31 −D21 +D23A31) η12

− (1−D23A31D12A23D31D12) η21 + (D23A31D12A23 −D21D12D23A31D12A23) η31 + (1−D21D12) η23

C16
1 (−D13D31D12D21 +D12D21D13D31D13D31 −D13D31 + 1) η12 − (−D12D21D13D31 +D13D31D12D21D12D21 −D12D21 + 1) η13

+ (−D13D31D12D21D12 +D12D21D13D31D13D31D12 −D13D31D12 +D12) η21 − (−D12D21D13D31D13 +D13D31D12D21D12D21D13 −D12D21D13 +D13) η31

C16
2 (D12D21D13D32D23D31 −D13D32D21D12D21 −D13D32D21 + 1) η12 + (D12D21D13D32D23D31D12 −D13D32D21D12 +D12 −D13D32) η21

+ (D12D21D13D32D23 −D13D32D21D12D21D12D23) η31 + (D12D21D13D32 −D13D32D21D12D21D12) η23 − (D13 −D12D21D13) η32 − (1−D12D21) η13

C16
3 (−D13D32D21D12D21 +D12D23D31 −D13D32D21 + 1) η12 − (−D12D23D31D12D21D13D32 +D13D32D21D12 −D12D23D31D12 +D13D32) η21

+ (D12D23 −D13D32D21D12D21D12D23) η31 − (D13 −D12D23D31D12D21D13) η32 − (1−D12D23D31D12D21) η13 + (D12 −D13D32D21D12D21D12) η23

C16
4 (A12A21A13A31D12D21 +A12A21A13A31 −A12A21 −A13A31A13A31) η12 + (−A13A31A13A31D12D21 −A12A21A13A31 +A13A31 +A13A31A13A31) η13

− (−A12A21A13A31D12 −A12A21A13A31D12D21D12 +A13A31A13A31D12 +A12) η21 + (−A13A31A13A31D12D21D13 −A12A21A13 +A13A31A13 +A13) η31

C16
5 (−D12D21A13A31 +A13A31D12D21D13D31 +A13A31 − 1) η12 − (−A13A31D12D21 −D12D21A13A31 +D12D21A13A31D12D21 +A13A31) η13

− (D12D21A13A31D12 −A13A31D12D21D13D31D12 −A13A31D12 +D12) η21 − (−A13A31D12D21D13 +D12D21A13A31D12D21D13 −D12D21A13 +A13) η31

C16
6 (A13A32D21D12D23D31 −D12D21A13A32D21 +A13A32D21 − 1) η12 − (−A13A32D21D12D23D31D12 +D12D21A13A32 +D12 −A13A32) η21

− (−A13A32D21D12D23 +D12D21A13A32D21D12D23 −D12D21A13 +A13) η31 − (−A13A32D21D12 −D12D21A13A32 +D12D21A13A32D21D12 +A13A32) η23

C16
7 (A23A31A13D32D21 −D21A13A31A13D32D21 +D21A13A31 −A23A31) η13 − (−A23A31A13D32D21D13D32 +D21A13A31A13D32 −A23A31A13D32 + 1) η21

+ (−D21A13A31A13D32D21D13 +D21A13A31A13 +D21A13 −A23A31A13) η31 − (−A23A31A13D32D21D13 +D21A13A31A13 −A23A31A13 +A23) η32

C16
8 (A13D32D21D13D31 +A13D32D21 −D13D32D21A13D32D21 − 1) η13 + (A13D32D21D13D31D13D32 −D13D32D21A13D32 +A13D32 −D13D32) η21

− (−A13D32D21D13 −D13D32D21A13 +D13D32D21A13D32D21D13 +A13) η31 + (A13D32D21D13D31D13 −D13D32D21A13 +A13 −D13) η32

C16
9 (A21A12A23A31D12D21 +A21A12A23A31 −A23A31A13A32D21 −A21) η12 − (−A21A12A23A31D12 −A21A12A23A31D12D21D12 +A21A12 +A23A31A13A32) η21

+ (A23A31A13A32 −A23A31A13A32D21D12) η23 + (A23A31A13 −A23A31A13A32D21D12D23) η31 + (A23A31 −A21A12A23A31) η13 + (A23 −A21A12A23) η32

C16
10 (A23A31D12D21D13D31 −D21D12A23A32D21 −D21 +A23A31) η12 − (−A23A31D12D21D13D31D12 +D21D12A23A32 −A23A31D12 + 1) η21

+ (A23A31D12D21D13 −D21D12A23A32D21D12D23) η31 − (A23A31 −A23A31D12D21) η13 + (D21D12A23A32 −D21D12A23A32D21D12) η23 − (A23 −D21D12A23) η32

C16
11 − (A31 −A31D12D23D32D21) η13 − (−A31D12D23D32D21D13D32 −A31D12D23D32 +D32D21A13D32 +D32) η21 + (A31D12 −D32D21A13D32D21D12) η23

+ (D32D21A13 −D32D21A13D32D21D12D23) η31 − (−A31D12D23D32D21D13 −A31D12D23 +D32D21A13 + 1) η32 + (A31 −D32D21A13D32D21) η12

C16
12 − (D12D23A31A13D32D21 −A13A31D12D23D31 −D12D23A31 +A13A31) η13 − (D12D23A31A13D32 −A13A31D12D23D31D13D32) η21

− (D12D23A31A13D32D21D13 −A13A31D12D23 −D12D23A31A13 +A13) η31 − (D12D23A31A13 −A13A31D12D23D31D13) η32 − (D12 −A13A31D12) η23 − (1−A13A31) η12

C16
13 − (D31A12A23A31 −A32D21D12A23A31) η13 − (A32D21D12A23A31 −D31A12A23A31D12D21 −D31A12A23A31 +A32D21) η12 + (A32 −A32D21D12A23A31D12) η23

− (−D31A12A23A31D12D21D12 −D31A12A23A31D12 +D31A12 +A32) η21 + (1−A32D21D12A23A31D12D23) η31 − (D31A12A23 −A32D21D12A23) η32

C16
14 (D23A31D12D21D13D31 −D21D12D23D32D21 −D21 +D23A31) η12 − (−D23A31D12D21D13D31D12 +D21D12D23D32 −D23A31D12 + 1) η21

+ (D23A31D12D21D13 −D21D12D23D32D21D12A23) η31 − (D23A31 −D23A31D12D21) η13 − (D21D12D23 −D21D12D23D32D21D12A23) η32 + (1−D21D12) η23

C16
15 (D13A32A21A12D23D31 −A12A21D13D32D21 +A12A21 −D13A32A21) η12 + (D13A32A21A12D23D31D12 −A12A21D13D32 −D13A32A21A12 +A12) η21

+ (D13A32A21A12D23 −A12A21D13D32D21D12A23) η31 − (D13A32 −D13A32A21A12) η23 − (A12A21D13 −A12A21D13D32D21D12A23) η32 + (1−A12A21) η13

C16
16 (D23D32A21A12A23 −D21D12D23A31A12A21D13) η31 + (D21D12D23A31 −D21D12D23A31A12A21) η13 + (D23D32A21A12A23D31 +D21D12D23A31A12A21 −D23D32A21 −D21) η12

− (−D23D32A21A12A23D31D12 −D21D12D23A31A12 +D23D32A21A12 + 1) η21 + (D23 −D23D32A21A12A23) η32 + (1−D21D12) η23

C16
17 − (−A13A31A12 −A12A23A31A12D23D31D12 +A12A23A31A12 +A12) η21 − (A12A23 −A13A31A12D23D31D12A23) η32 + (A12A23A31A12D23D31 −A13A31A12D23D31) η12

+ (−A13A31A12D23 −A13A31A12D23D31D12A23 +A12A23A31A12D23 +A13) η31 + (A13A31 −A12A23A31) η13 − (A13A31A12 −A12A23A31A12) η23

C16
18 (D13D31D12A23 −D12D23D31A12A23) η32 + (−D13D31D12A23A31 +D12D23D31A12A23D31 −D13D31 + 1) η12 − (1−D13D31D12A23A31) η13

+ (D12 −D13D31D12A23A31D12) η23 − (D13D31D12A23A31D12D23 −D12D23D31A12A23 −D12D23 +D13) η31 − (D12D23D31A12 −D12D23D31A12A23D31D12) η21

C16
19 (A23A31 −D21A13D32D23A31) η12 + (−D21A13D32D23A31D12 +A23A31D12D23D32 +A23A31D12 −D21A13D32) η23 + (D21A13 −D21A13D32D23A31D12D23) η31

− (−A23A31D12D23D32D23 −A23A31D12D23 +D21A13 +A23) η32 − (1−A23A31D12D23D32D23D32) η21 − (A23A31 −D21A13D32D23A31) η13

C16
20 − (D23A31D12D21A13D32 −A23A31D12D23D32 −A23A31D12 + 1) η23 + (D23A31D12D21A13 −D23A31D12D21A13D32D23) η31 − (A23A31 −D23A31) η13

− (D23A31D12D21A13 −A23A31D12D23D32D23 −A23A31D12D23 +A23) η32 − (D23A31D12 −A23A31D12D23D32D23D32) η21 + (A23A31 −D23A31) η12

C16
21 (−D32A21A13D32D21D12A23 −D31A12A21A13 +D32A21A13 + 1) η31 − (−D32A21A13D32D21D12A23 −D31A12A21A13 +D32A21A13 + 1) η32

+ (D31A12A21A13D32D21 −D31A12A21 −D32A21A13D32D21 +D32A21) η12 − (−D31A12A21A13D32 −D31A12A21A13D32D21D12 +D31A12 +D32A21A13D32) η21

C16
22 (A13D32A21A12A23D31 +D12D21A13D32A21 −A13D32A21 − 1) η12 − (−A13D32A21A12A23D31D12 +A13D32A21A12 −D12D21A13D32A21A12 +D12) η21

− (−A13D32A21A12A23 +D12D21A13D32A21A12A23 −D12D21A13 +A13) η31 + (−A13D32A21A12A23 +D12D21A13D32A21A12A23 −D12D21A13 +A13) η32

C16
23 (A21A12D23A31 +A21A12D23A31D12D21 −D23A31A13D32D21 −A21) η12 − (−A21A12D23A31D12 −A21A12D23A31D12D21D12 +A21A12 +D23A31A13D32) η21

+ (D23A31A13 −D23A31A13D32D21D12A23) η31 − (D23A31A13 −D23A31A13D32D21D12A23) η32 + (D23A31 −A21A12D23A31) η13 − (1−A21A12) η23

C16
24 (A13A32A21 −A12A23D31A12A21) η12 − (A13A32A21 −A12A23D31A12A21) η13 − (−A12A23D31A12A21D13D32 −A13A32A21D13D31A12 +A12A23D31A12 +A12) η21

+ (A13A32 −A13A32A21D13D31A12) η23 + (−A13A32A21D13D31A12D23 +A12A23 −A13A32A21D13 +A13) η31 − (A12A23 −A12A23D31A12A21D13) η32

C16
25 − (D12A23A32 −D13A32A23A31D12D23D32) η21 − (D12A23A32D21A13D32 −D13A32A23A31D12 −D12A23A32 +D13A32) η23 + (D12A23A32D21A13 −D12A23A32D21A13D32D23) η31

+ (−D12A23A32D21A13 +D13A32A23A31D12D23 +D12A23 −D13A32A23) η32 + (D13A32A23A31 − 1) η12 + (1−D13A32A23A31) η13

C16
26 − (D31A12D23A31 −D32D21D12D23A31) η13 + (−D32D21D12D23A31 +D31A12D23A31D12D21 +D31A12D23A31 −D32D21) η12 + (D31A12 −D32D21D12) η23

− (−D31A12D23A31D12D21D12 −D31A12D23A31D12 +D31A12 +D32) η21 + (1−D32D21D12D23A31D12A23) η31 − (1−D32D21D12D23A31D12A23) η32

C16
27 − (D12A23 −D13D31D12D23A31D12A23) η32 + (−D13D31D12D23A31 +D12A23D31A12D23D31 −D13D31 + 1) η12 − (1−D13D31D12D23A31) η13

− (D13D31D12 −D12A23D31A12) η23 − (D13D31D12D23A31D12A23 −D12A23D31A12D23 −D12A23 +D13) η31 − (D12A23D31A12 −D12A23D31A12D23D31D12) η21

C16
28 − (A12D23A31D12A23 −A13A31D12D23A31D12A23) η32 + (−A13A31D12D23A31 +A12D23A31 +A12D23A31D12A23A31 −A13A31) η12 + (A12 −A13A31D12) η23

+ (A13A31D12D23A31 −A12D23A31 −A12D23A31D12A23A31 +A13A31) η13 + (A13 −A13A31D12D23A31D12A23) η31 − (A12 −A12D23A31D12A23A31D12) η21

TABLE I. List of the 34 core combinations found in [6] expressed in terms of time shifts applied

to the intermediary TDI variables ηij.
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Name Timeshift Expression ’1st’ gen Timeshift Expression ’0th’ gen

C12
1 1 (1− xyz)α 1 (1−D3)α

C12
2 xy2 (y − xz)α D2 (1−D)α

C12
3 yz (y − xz)ζ D (1−D)ζ

C14
1 xy

(

1− z2
)

α D2
(

1−D2
)

α

C14
2 yz

(

1− z2
)

γ D2
(

1−D2
)

γ

C14
3 y

(

1− z2
)

ζ D
(

1−D2
)

ζ

C16
1 1

(

1− y2z2
)

(α− zβ − yγ + yzζ) 1
(

1−D4
) (

α−Dβ −Dγ +D2ζ
)

C16
2 1

(

1− xyz3
)

α− z(1 − xyz)β 1
(

1−D5
)

α− (D −D4)β

C16
3 1

(

1− xyz3
)

α 1
(

1−D5
)

α

C16
4 y4z2 (y2 − z2)(α− zβ − yγ + yzζ) D6 0

C16
5 y2

(

1− z2
)

(α− zβ − yγ + yzζ) D2
(

1−D2
) (

α−Dβ −Dγ +D2ζ
)

C16
6 xy

(

1− z2
)

(zα− β) D2
(

1−D2
)

(Dα− β)

C16
7 xy3 (y − xz)(yα− γ) D3 (1−D)(Dα− γ)

C16
8 y (1− xyz)(yα− γ) D (1−D3)(Dα− γ)

C16
9 x2y2z2

(

xy − z3
)

α+
(

z2 − xyz
)

β D4 (1−D) (α+ β)

C16
10 x2y

(

x− yz3
)

α+
(

yz2 − xz
)

β D2
(

1−D3
)

α+
(

D2 −D
)

β

C16
11 y

(

1− x2z2
)

α D
(

1−D4
)

α

C16
12 y2 (1− xyz)α+ (xz − y)γ D2 (1−D3)α+ (D2 −D)γ

C16
13 x2yz

(

xy − z3
)

α D2 (1−D)α

C16
14 y

(

xyz2 − z
)

γ +
(

1− xyz3
)

ζ D
(

D4 −D
)

γ +
(

1−D5
)

ζ

C16
15 xz2 (xy − z)γ + (1− xyz)ζ D3 (D2 −D)γ + (1−D3)ζ

C16
16 yz2

(

xy − z3
)

γ +
(

z2 − xyz
)

ζ D (1−D) (γ + ζ)

C16
17 xy2z2 (y − xz)β D4 (1−D)β

C16
18 x (x− yz)α 1 (1−D)α

C16
19 xy2

(

y − x3z
)

α D2
(

1−D3
)

α

C16
20 xy2

(

y − x3z
)

α+
(

x2z − xy
)

ζ D2
(

1−D3
)

α+
(

D2 −D
)

ζ

C16
21 yz2 (xz − y)(γ − zζ) D2 (D − 1)(γ −Dζ)

C16
22 yz2

(

1− z2
)

(γ − zζ) D3
(

1−D2
)

(γ −Dζ)

C16
23 y2z2

(

xz2 − yz
)

γ +
(

y − xz3
)

ζ D3
(

D2 −D
)

γ +
(

1−D3
)

ζ

C16
24 xyz3

(

z2 − y2
)

α D5 0

C16
25 x2y (y − xz)α + (z − xy)ζ D2 (1−D)(α+ ζ)

C16
26 yz

(

y − xz3
)

ζ D
(

1−D3
)

ζ

C16
27 x (1− xyz)ζ D (1−D3)ζ

C16
28 y3z (y2 − z2)ζ D4 0

TABLE II. Decomposition of variables from table I into generators of first generation TDI. Only valid

in the approximation of three unequal constant arms. ’Timeshift’ denotes the delay to be applied to the

combination constructed from the algorithm given in [5], i.e., the factor E in eq. (9). We also report how

these expression further simply if one assumes all arms to be equal (0th generation TDI), i.e., when assuming

x = y = z ≡ D. Note that some variables cancel exactly under this assumption.
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FIG. 3. Secondary noise levels in (1−xyz)C16
1 compared to the residual between the approximation

given in eq. (11b) and the exact expression given in table I. Laser noise is included in the simulation,

but fully suppressed by TDI. In addition, we give an analytical estimate of the expected level of

the secondary noise levels and we report the 1 pm noise requirement curve as well.
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FIG. 4. Laser noise residuals for 1st and 2nd generation ζ from the literature compared to C16
27 ,

C16
28 and the 1 pm allocation. C16

27 and C16
28 perform significantly better than the previously known

second generation ζ, for which the residual laser noise level is above the 1 pm curve (computed

accounting for the TDI transfer function). The residuals we see for C16
27 and C16

28 are typically

explained by numerical noise, the arm-length mismatch, aliasing and interpolation errors [11].
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4. CONCLUSION

We have shown explicitly how all 34 second generation core TDI combinations up to

16 links presented in the literature can be expressed in terms of the four first-generation

variables α, β, γ and ζ . We also provide the symmetry rules extending these results to all

210 distinct combinations up to 16 links.

We have verified numerically that these expressions are valid to within 3-5 orders of

magnitude, such that a set of four second generation versions of α, β, γ and ζ should be

sufficient for the purpose of instrumental noise characterisation.

One possible set are the combinations α̃, β̃, γ̃ and ζ̃, as introduced in section 3.2. While

α̃, β̃ and γ̃ are already known from the literature, ζ̃ (as well as the other variants of ζ in

table II) is new, and significantly more capable of suppressing laser noise then the second

generation ζ proposed before [7]. Since the first generation ζ is known to be insensitive

to GWs at low frequencies, we expect this property to transfer to all its second generation

counterparts, making them useful as noise monitors for the LISA mission, as explored in [6].

However, as already discussed in [4–6], other combinations might have practical advan-

tages: some, such as C16
6 ,C16

7 ,C16
8 , C16

21 and C16
22 , use just 4 out of the full 6 laser links, such

that they are unaffected in case of a loss of one or two inter-satellite links. Others, such

as the Michelson-like combinations C16
1 , C16

4 and C16
5 , use just 4 inter-satellite links and in

addition just 2 constellation arms, thus they remain available in case of a complete failure

of one of the LISA arms.

Moreover, as we illustrated in fig. 1, the typical singularities present in the transfer function

of all second generation TDI variables appear at different frequencies for the different com-

binations. This might allow some combinations to be more favourable for detecting signals

close to the singular frequencies of other variables.

In particular, another possible set of combinations we found are C16
28 and the cyclic permu-

tations of C16
24 , for which these singularities appear outside the LISA band. On the other

hand, the small delay differences appearing in them might cause numerical instabilities.

The next best option in terms of number of in-band zeros would be the set of C12
2 , its cyclic

permutations and C12
3 .

Last but not least, combinations with multiple measurements require shorter segments of
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data to compute a single data point of the TDI combination. For instance, each of the two

beams of C12
1 require summation of the light travel time for 6 consecutive links, or about

6 × 8.33 s ≈ 50 s. The beams of C12
2 , on the other hand, use only up to 4 links at a time,

corresponding to just 4× 8.33 s ≈ 33 s.

To conclude, further studies are needed to give a final recommendation which combina-

tions should be used for the data analysis pipeline. In particular, we plan to analyse the

sensitivity of these TDI channels with respect to GWs to be able to compute their signal

to noise ratio (SNR) and understand what kind of information we can recover through each

channel. Moreover, we did not investigate the case of 1.5 generation TDI using 6 generators,

as we notice that the 1st generation was enough to accurately reproduce the response of all

core TDI variables with respect to instrumental noise. Still, it might be valuable as a follow

up study to see if we can extract additional information in this case.
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Appendix A: Time shift operators

This paper makes use of time shift operators. They act on time dependent functions by

evaluating them at another time. We thus define the following notations related to time-shift

operators and TDI combinations:

• Delay operator: Dijφj(τ) = φj(τ − dij(τ)).

Given a time of reception τ of a beam on spacecraft i, evaluates the phase φj of that

beam at the time of emission at spacecraft j, which we write as τ − dij(τ). Note that

depending on what frame φj(τ) is defined in, the computation of dij can include a

change in reference frames, and clock offsets.

• Advancement operator: Aijφj(τ) = φj(τ + aij(τ)).

Given a time of emission τ of a beam from spacecraft j, evalutes the phase φj of that

beam at the time of reception on spacecraft i, which we write as τ + aij(τ). Fulfills

DijAjiφi(t) = φi(t).

• Multiple Delay operators: DijDjkφk(τ) = φk(τ − dij(τ)− djk(τ − dij(τ)).

• Multiple Delay and Advancement operators: AniDijDjkφk(τ) = φk(τ+ani(τ)−dij(τ+

ani(τ))− djk(τ + ani(τ)− dij(τ + ani(τ)))).

Appendix B: Numerical approximations of α̇

We want here to evaluate how accurately we can approximate the derivative of α.

Figure 5 shows the comparison between the two point finite difference of α, which we

denote by α̇2p, and the expression of C16
24 reported in table II. The plot shows also the

residuals between the two numerical computations and a model which explains their values.

While the computations agree within three orders of magnitudes at low frequencies, the error

increases towards higher frequencies where the residuals reach about one order of magnitude

below the actual value.

This behaviour of the residuals can be explained by two separate effects. For the high

frequencies range, we have to take into account the inequality between the time differences,

δ, we consider to approximate the derivative of α in α̇2p and C16
24 , respectively.
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FIG. 5. Comparison between the estimation of a two-point finite difference derivative of α and

C16
24 .
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In both cases, we have a finite difference of the form α(t)−α(t−δ)
δ

which we can expand to first

order in δ to get:
α(t)− α(t− δ)

δ
≈ α̇(t)− δ

2
α̈(t), (B1)

where δ = 2(yd−zd) for C16
24 and δ = 1/fs for α̇2p, while fs = 4Hz is the sampling frequency.

Thus the difference between the two approximated derivatives will be given by:

C16
24

2(yd − zd)
− fsα̇2p(t) ≈

(

1

2fs
− yd + zd

)

α̈(t). (B2)

In the frequency domain, the additional derivative corresponds to a factor 2πf , which ex-

plains the increase of the residuals at high Fourier frequencies.

Regarding the low frequencies, the residuals that we see are explained by the error that we

make in estimating the C16
24 variable out of the TDI α first generation as visible from fig. 1.

We estimate it by rescaling the PSD of α̇ by the ratio between the residual estimated in

fig. 1 and the actual PSD of C16
24 .

The same reasoning holds for β̇, γ̇ using the cyclic permutations of C16
24 , and ζ̇ using C16

28 .
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FIG. 6. Comparison between the two-point derivative of the combination C16
1 in table I and the

version built out of rescaled versions of C16
24 , its cyclic permutations, and C16

28 , which represent α̇,

γ̇, β̇, and ζ̇, respectively.
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We can then use these variables in place of α, β, γ and ζ to build an approximate version

of the derivative of C16
1 , using the expression given in table II. Figure 6 shows the comparison

between Ċ16
1 computed using a two-point derivative and the version computed using C16

24 ,

Ĉ16
24 ,

ˆ̂
C16

24 and C16
28 , as well as the relative difference between the two calculations. We can

see how the residuals are two orders of magnitude lower than the variable we are trying

to compute and that they increase at higher frequencies. This is in accordance to the two

complementary models described above.

Appendix C: Symmetries

In this paper, we study only the core combinations from which other variables can be

constructed. We summarize here how to apply these symmetries to the decompositions

presented in table II.
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1. Cyclic permutatation

A cyclic permutation maps the spacecraft indices from 1 7→ 2 7→ 3 7→ 1. This corresponds

to the following mappings in table II:

• Map α 7→ β 7→ γ 7→ α,

• Map x 7→ y 7→ z 7→ x,

• Leave the fully symmetric ζ unchanged.

2. Mirror symmetry

A mirror symmetry exchanges the role of two spacecraft, for example 2 ↔ 3. This

corresponds to the following mappings in table II:

• Exchange β ↔ γ,

• Exchange y ↔ z,

• Flip the sign of all combinations.

Similar rules apply for the reflections involving spacecraft 1 ↔ 3 and 1 ↔ 2, which leave

either β and y or γ and z unchanged, respectively.

3. Time reversal symmetry

The action of a time reversal of the combination is less obvious than the previous two

symmetries. Note that a time reversal is equivalent to one of the other two symmetries for

most variables. For the ones were this is not the case (C14
1 , C16

11 , C
16
15 , C

16
17 , C

16
21 , C

16
22 , C

16
24 and

C16
28 , cf. [6]), we computed the corresponding expression to verify if these variables bring

additional information. It turns out that in the approximations of this paper, a time reversal

reduces to one of the other symmetries in most cases, plus an additional overall time shift

and sign flip. The exceptions are C16
21 and C16

22 , whose time reversed versions Ctr,16
21 and Ctr,16

22
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have the decompositions

x2yzCtr,16
21 = (y − xz)(zγ − ζ), (C1)

xz2Ctr,16
22 = (z2 − 1)(zγ − ζ). (C2)
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