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Abstract We report the design and synthesis of a strong, chiral, en-
antiopure sulfoxide-based C–H acid. Single-crystal X-ray analysis con-
firms the proposed structure and its absolute configuration. The new
motif shows a high acidity and activity in Brønsted and Lewis acid cata-
lyzed transformations. So far, only little to no enantioselectivities were
achieved.
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Chiral binaphthyl-derived acids have shown great suc-

cess in asymmetric Lewis and Brønsted acid catalysis,1 es-

pecially confined variants.2 However, their catalytic activity

is inherently limited by the electron-rich binaphthyl sys-

tem, which also limits their acidity and catalytic reactivity.

With both enantiomers readily available, chiral sulfur-ste-

reogenic sulfoxides are attractive ligands in transition-met-

al catalysis.3 In organocatalysis, a stereogenic sulfur has

been either a contributing factor or exclusively responsible

for high enantioselectivities when using weakly acidic chi-

ral urea- or thiourea-derived catalysts.3,4 We envisioned a

new, tris(triflyl)methane (2)5-inspired motif with the acidic

proton very close to the stereogenic sulfur atom, which we

hypothesized could lead to efficient asymmetric induction.

These considerations led to the design of 1, expected to be a

very strong C–H acid, with two triflyl (SO2CF3) groups6 and

one chiral sulfoxide moiety (Scheme 1A). Indeed, a synthe-

sis was developed, from commercially available iodide 3,

Scheme 1  Design (A), synthesis (B), and application (C) of the chiral, 
enantiopure sulfoxide C–H acid. TMP = 2,2,6,6-tetramethylpiperidine.

TfTf

Tf F2
C

C
F2

S
RR

C
F2

F3C

O

Tf

Tf

F2
C

C
F2

I

i)   Na2S2O4, 
     NaHCO3

ii)  H2SO4

iii) SOCl2
C
F2

F3C
F2
C

C
F2

S
C
F2

F3C
Cl

O

32% yield for major diastereomer (shown)
23% yield for minor diastereomer (not shown)

n-BuLi,
–78 °C → RT,

THF

OHN

O

ON

O
F2
C

C
F2

S
SS

C
F2

F3C

O

Ph

Ph

H2CTf2,
TMP•MgCl•LiCl

–78 °C → RT,
then H2SO4

1
(57% yield,
e.r. = 99:1)

A

B

C

O

OMe

O

H

O

OMe

OSiMe2t-Bu 1 (5 mol%)

solvent (0.2 M),
 –78 °C → RT

9
racemic product

solvent: CH2Cl2 or Et2O

t-BuMe2Si

OH

SiMe3

1 (5 mol%)

solvent (0.2 M), 
–78 °C → RT,

then aq. HCl (1 M) 11
racemic product

solvent: CH2Cl2 or toluene

HPh

O

14
44% yield

racemic product

1 (0.5 mol%)

CHCl3 (0.5 M),
–60 °C

OSiEt3
+

Ph

O

H

O
Et3Si

13
(1.0 equiv)

+

10
(2.0 equiv)

7

12

+

8
(2.0 equiv)

7

12

3 4

5

6

(1)

(2)

(3)

(60% yield over three steps)
© 2021. The Author(s). Synlett 2021, 32, 45–47
Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany

http://orcid.org/0000-0001-8470-1063
http://orcid.org/0000-0002-9804-599X


46

D. Höfler et al. ClusterSynlett
which was converted into a diastereomeric mixture of two

oxazolidinones 6 by following reported procedures.7 The

major diastereomer (6a) was separated by flash chromatog-

raphy and converted into the desired enantiopure sulfoxide

acid 1 by treatment with bis(triflyl)methane in the pres-

ence of a strong base followed by H2SO4 acidification.8 With

the desired C–H acid 1 in hand, we were able to assign its

absolute configuration by X-ray single-crystal structure

analysis of its hydroxonium hydrate (see Supporting Infor-

mation).9

Further, an experimental pKip value of –12.5 ± 0.5 (in

1,2-dichloroethane, relative to picric acid) was determined

for 1. The corresponding free-ion pKa value for a molecule

of this size is expected to be essentially the same.10 This

acidity corresponds to a pKa of around 0 in acetonitrile.11

Therefore, to the best of our knowledge, sulfoxide 1 can be

considered to be the strongest enantiopure Brønsted acid

that has been prepared so far. We applied acid 1 as a cata-

lyst in a variety of different reactions including two

Mukaiyama aldolizations and a Hosomi–Sakurai allylation

(Scheme 1C). Although the catalytic activity was promising,

little to no enantioselectivity was observed in all cases. In

the future, further modifications of this easily accessible

motif to increase its enantiodiscrimination are envisioned

as well as its potential applications as an anionic ligand in

transition-metal catalysis.
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