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CONSPECTUS: The ongoing revolution of the natural sciences by the advent of machine
learning and artificial intelligence sparked significant interest in the material science community
in recent years. The intrinsically high dimensionality of the space of realizable materials makes
traditional approaches ineffective for large-scale explorations. Modern data science and
machine learning tools developed for increasingly complicated problems are an attractive
alternative. An imminent climate catastrophe calls for a clean energy transformation by
overhauling current technologies within only several years of possible action available. Tackling
this crisis requires the development of new materials at an unprecedented pace and scale. For
example, organic photovoltaics have the potential to replace existing silicon-based materials to a
large extent and open up new fields of application. In recent years, organic light-emitting diodes
have emerged as state-of-the-art technology for digital screens and portable devices and are
enabling new applications with flexible displays. Reticular frameworks allow the atom-precise
synthesis of nanomaterials and promise to revolutionize the field by the potential to realize
multifunctional nanoparticles with applications from gas storage, gas separation, and electrochemical energy storage to
nanomedicine. In the recent decade, significant advances in all these fields have been facilitated by the comprehensive application
of simulation and machine learning for property prediction, property optimization, and chemical space exploration enabled by
considerable advances in computing power and algorithmic efficiency.
In this Account, we review the most recent contributions of our group in this thriving field of machine learning for material science.
We start with a summary of the most important material classes our group has been involved in, focusing on small molecules as
organic electronic materials and crystalline materials. Specifically, we highlight the data-driven approaches we employed to speed up
discovery and derive material design strategies. Subsequently, our focus lies on the data-driven methodologies our group has
developed and employed, elaborating on high-throughput virtual screening, inverse molecular design, Bayesian optimization, and
supervised learning. We discuss the general ideas, their working principles, and their use cases with examples of successful
implementations in data-driven material discovery and design efforts. Furthermore, we elaborate on potential pitfalls and remaining
challenges of these methods. Finally, we provide a brief outlook for the field as we foresee increasing adaptation and implementation
of large scale data-driven approaches in material discovery and design campaigns.
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■ INTRODUCTION
The tremendous rise of data science andmachine learning (ML)
in the last decades led to the suggestion that it constitutes the
fourth pillar of science.5 While data has always been at the heart
of research, current hardware enables its utilization at an
unprecedented scale.5 Accordingly, our group, the Matter Lab,
has been usingML extensively to accelerate the discovery of new
materials, especially for clean energy technologies to combat
climate catastrophe and enable innovative technologies.
In this Account, we define discovery as observing a previously

unknown natural phenomenon or object,6,7 and design as
rationally devising an object based on a particular plan.8

Typically, discovery precedes and inspires materials design, as
design requires at least minimal knowledge of the necessary
features. Therefore, large scale discovery helps to speed up the
establishment of material design principles, i.e., heuristics to
realize particular designs, because they enable identifying
patterns in known matter with desired properties. In turn,
successful design catalyzes the realization of new materials by
restricting the search space to only themost promising regions in
subsequent campaigns.
Herein, we review our work on organic electronic materials,

crystalline materials, and data-driven methodologies for
materials discovery and design, particularly high-throughput
virtual screening, supervised learning, inverse molecular design,
and Bayesian optimization. Moreover, we formulate general
strategies for data-driven materials design our lab has adopted
over the years and show how to implement them using ML.
Finally, investigating these approaches critically, we propose
typical use cases and highlight unsolved challenges.

■ APPLICATIONS

Organic Electronic Materials

One of our research foci has been organic electronic materials.9

Compared to silicon-based electronics, they offer several
advantages, including low cost, low density, high mechanical
flexibility and toughness, low energy consumption, and easy
processability. Further, chemical derivatization is well-estab-
lished, making the accessible candidate space vast.
Accordingly, solar cells have experienced a remarkable surge

because of the vast energy available from the sun and increasing
efforts against a climate catastrophe. Organic photovoltaics10

(OPVs) could replace commercial silicon-based devices if their
power conversion efficiencies (PCEs) surpassed 10% and their
lifetimes exceeded several thousands of hours. Notably, state-of-

the-art OPVs reach 18% PCE in laboratory devices.11 The
Harvard Clean Energy Project (CEP) was initiated to find
photoactive organic materials with high efficiencies.12 Starting
from 26 building blocks, selected based on expert knowledge to
maximize performance and synthesizability,13 107 potential
donors were generated. They were evaluated using high-
throughput virtual screening (HTVS, vide inf ra) via increasingly
expensive property predictions. First, the library was assessed
using linear descriptor models constructed from experimental
data. Subsequently, electronic structure calculations were
performed, and PCEs were estimated using the Scharber
model with a fullerene as acceptor.14 That way, about 1000
candidates with estimated PCEs of 11% and higher were
identified.
Additionally, statistical analysis of the top-performing

molecules revealed design principles for photoactive donors
identifying building blocks more likely to exhibit high perform-
ance. Notably, the screening efforts led to the experimental
characterization of an organic crystal with one of the highest
reported hole mobilities reported at the time.15 Subsequently,
extending the CEP to nonfullerene acceptors, over 51 000
candidates were generated based on 107 expertly chosen
fragments.16 More sophisticated property calibration with
Gaussian processes and a modified Scharber model improved
PCE predictions with a well-studied electron donor. Overall,
838 molecules with predicted PCEs of 8% or larger were found.
Moreover, statistical analysis of the candidate structures was
performed with respect to both Morgan fingerprints and the
building blocks, establishing a general architecture for non-
fullerene acceptors.
Similarly, organic light-emitting diodes17 (OLEDs) have

found wide adoption in small displays, are becoming prevalent in
screens and lighting applications, and are entering the market in
flexible displays. Thermally activated delayed fluorescence
(TADF) emitters have become the main OLED class because
of their high quantum efficiency, operational stability, and low
cost. Their essential property is a small energy gap between the
first excited singlet and triplet states so that energetically favored
but nonemissive triplet excitons can be upconverted to emissive
singlet excitons. Based on knowledge about the TADF
mechanism, our group carried out HTVS of emitters covering
106 candidates (Figure 1).1 Key methodology included efficient
quantum chemistry, calibrated against experiment via supervised
learning (vide inf ra). Linear regression and neural networks were
used for property predictions across the entire space.
Exploration was performed iteratively using a neural network

to predict the most promising candidates, which were then
simulated, minimizing evaluations. Not only were known
emitters rediscovered, but new structures were also uncovered.
Additionally, the systematic exploration exposed both estab-
lished property trade-offs and unknown property limits.
Moreover, the best leads were evaluated by human experts
concerning synthesizability and novelty. Consequently, themost
promising molecules after both computer and human-based
evaluations were synthesized and incorporated into devices
leading to high external quantum efficiencies of over 20%. This
study serves as a prototype for the entire data-driven discovery
pipeline from defining the candidate space to device integration.
Finally, renewable energy like wind and solar is intermittent,

requiring large storage capacities to meet consumer demands.
Redox-flow batteries (RFBs) resolve that by separating energy
from power, enabling large grids to store immense amounts of
energy scalable to varying demand loads.18 Organic RFBs19
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(ORFBs) represent a sensible advancement, as redox-active
organic electrolytes are tunable and cheaper than inorganic
alternatives.20 To identify ideal organic electrolytes, our group
performed HTVS of quinones, which are well-known for their
single-electron redox pairs.21 The screening spanned 1710
single- and double-electron redox pairs to validate existing
studies and find new redox couples.
The results indicated that quinone-exclusive electrolytes were

promising aqueous ORFBs and revealed that functionalizations
near the carbonyl groups largely affected redox potential and
those away largely affected solubility. Subsequently, several
experimental studies verified these predictions.22,23 However,
decomposition was found to deteriorate battery capacity
irreversibly.24 Hence, our group performed combined computa-
tional and experimental studies on the decomposition of
quinones in aqueous environments.18 HTVS was performed
for over 140 000 redox pairs, including decomposition product
analysis. The results identified a trade-off between redox
potential, with a maximum near 0.95 V, close to experimental
results at 0.85 V,25 and stability. These results provide roadmaps
for future studies, which are ongoing in our group, as the trade-
off suggests that electrolyte stability must be considered.

Crystalline Materials

Crystalline energy storage materials with high energy density at
low cost are cornerstones of renewable energy applications. For
instance, multivalent calcium ion batteries26 (CIBs) improve
upon monovalent lithium-ion counterparts through increased
capacities and higher material abundance while maintaining
comparable operating voltages.27 However, the development of
CIBs is hindered by the failure of traditional graphite and
calcium metal anodes due to difficulties in intercalation and the
lack of efficient electrolytes. Recently, a high voltage (4.45 V)
CIB cell using tin as the anode was reported to achieve a
remarkable cyclability (over 300 cycles).28

Importantly, designing CIB anodes with improved perform-
ance requires a thorough exploration of the alloying space as
calcium mixes with many elements. Hence, our group
constructed a workflow to discover novel multivalent CIBs.29

First, the tin electrochemical calciation reaction was investigated
computationally and the reaction driving force as a function of
calcium content was simulated. This exploration allowed the
identification of threshold voltages governing the calciation
limits. Consequently, a four-step screening strategy was adopted
to look for high-performance CIB anodes. First, 357 metal−
calcium binary and ternary compounds were identified from the
Inorganic Crystal Structure Database (ICSD)30 and further
filtered to 115 candidates with existing decalciated metal/
metalloid or binary intermetallic compounds. The calciation
voltage profiles were calculated, and two threshold calciation
voltages were defined, one stricter, based on the tin−calcium
system, and the other more relaxed to account for potential
differences in the driving force requirements. For each
threshold, the maximum capacities, output voltages, volume
expansions, and energy densities of the respective material were
determined. Finally, metal−calcium systems with higher energy
density than tin−calcium were identified, in which metalloids
(Si, As, Sb, Ge), post-transition metals (Al, Pb, Cu, Cd, CdCu2,
Ga, Bi, In, Tl, Hg), and noble metals (Ag, Pt, Pd, Au) showed
promise as alloying candidates for CIB anodes and calls for
further experimental validations.
Additionally, reticular frameworks31 (RFs), which include

metal−organic frameworks (MOFs), are crystalline porous
materials with high internal surface area and high stability and
can be used for gas storage, gas separation, and electrochemical
energy storage. They are constructed via self-assembly of
molecular building blocks and exhibit a near-infinite combina-
torial space, complicating their systematic exploration.

Figure 1. Inverse design workflow for thermally activated delayed fluorescence organic emitters from selecting fragments to device integration and
testing.
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Recently, our group developed an invertible and efficient RF
representation (Figure 2).2,32 MOF fragments were extracted
from the computation-ready, experimental (CoRE) MOF
database33 and augmented randomly with common functional
groups. Furthermore, we added sets of multiconnected metal or
organic nodes and sets of known MOF topologies generating a
data set with around 2 × 106 MOF structures. Moreover,
property simulations were performed for a random subset of
about 40 000 MOF structures. The supramolecular variational
autoencoder (SmVAE) with a MOF structure encoder-decoder,
property predictionmodel, and framework generation algorithm
was constructed with these structures (Figure 2), which can
locate high performing MOFs through property optimization in
the latent space. We demonstrated its capabilities for automatic
design by proposing top candidates for gas separation adsorbent
materials. We believe that the MOFs discovered are highly
competitive against the best-performing MOFs/zeolites ever
reported. Currently, their performance was validated using
computational methods. Nevertheless, experimental verification
is under way. Furthermore, the as-built platform can be applied
to various supramolecular systems (e.g., covalent-organic
frameworks, coordination polymers, etc.) and applications
(e.g., batteries, catalysis, drug delivery).

■ METHODOLOGY

High-Throughput Virtual Screening (HTVS)

Virtual screening34 denotes a selection process of candidate
materials. Chemicals, either generated on-the-fly or from
databases, are subject to simulations that estimate application-
specific properties. Candidates failing computational tests are
rejected, with the proviso that predicted performance is likely
translatable to experimental performance. Thus, HTVS is a
technique that reduces large candidate spaces to a manageable
set of promising materials (Figure 3). In our search for new
TADF emitters (vide supra),1 the candidate space was narrowed
down by 5 orders of magnitude via HTVS. Importantly, HTVS
on large chemical spaces is inverse molecular design (vide inf ra)

because, rather than designing structures directly, the computa-
tional tests and the candidate space are designed, which leads to
the final hits based on the predicted properties.35 Moreover, it
can provide the basis for both generative and supervised models
(vide inf ra), as they all rely on validated data.
Accordingly, HTVS is a powerful accelerator because

computer simulation can be significantly less expensive than
the respective experiments.34 The continuing growth in
computational power, which will soon reach the exascale, has
made virtual screening highly scalable as it is embarrassingly
parallel. Although HTVS is at least almost 20 years old,36 it only
recently started transforming materials science by advances in
the accuracy and efficiency of density functional theory
(DFT).37 Besides computational cost, the main appeal of DFT
was the possibility to tailor functional parameters to reproduce
experiments, which increased its predictive power significantly.
For instance, linear response time-dependent DFT (TD-

DFT) is accurate and computationally inexpensive for excited
state properties. More importantly, it is robust, can be used in a
black-box manner, and is readily deployed in simulations of tens
of thousands of molecules with minimal failure rates.14

However, one pernicious failure mode of TD-DFT is the
description of excited states with significant double-excitation
character, which is, inter alia, important in describing molecules
with inverted singlet−triplet gaps,38,39 such as the INVEST
emitters recently described by our group.40 Nevertheless, as
computing power is increasing, more sophisticated ab initio
approaches can be used in HTVS, allowing one to tackle ever
more complicated problems and new material classes.
Yet, the impact of HTVS has been hampered by the difficulty

in scaling the experimental confirmation of candidates,1 as
simulations feasible for high-throughput are still largely
qualitative for condensed-phase properties.41 A loose screen
that accounts for computational inaccuracies minimizes false
negatives, but the high cost of experimental validation means
that almost all candidates must be rejected. The accuracy of
computational screening can be maximized by implementing

Figure 2. Automated reticular framework (RF) discovery platform using the supramolecular variational autoencoder (SmVAE). We construct the
intermediate representation, RFcode, using unique, decomposed nets as a tuple of edges, vertices, and topologies. We consider the edges as SMILES,
while vertices and topologies are categorical variables from known structures. SmVAE is a multicomponent variational autoencoder encoding and
decoding each part of the RFcode separately (xedge → x̃edge, xRFcom → x ̃RFcom). Structures are converted into/back from RFcode using the
deconstructor/reconstructor, then transferred into continuous vectors (z). To organize the latent space based on properties, we add a supervised
model to predict properties (y ̃property) based on labeled data (y). Data from ref 2.
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self-correcting filters such as checking whether simulations
showed proper convergence catching false positives early on in
the workflow. Nevertheless, ultimately, improvements in the
experimental throughput are essential, calling for self-driving
laboratories and closed-loop experimentation.42,43

AI-Powered Inverse Molecular Design

Inverse molecular design35 starts at the desired properties and
explores the chemical space to identify molecules optimizing
them. Recently, various ML techniques have been employed to
improve inverse molecular design, motivated by advances both
on the algorithmic (powerful ML libraries) and the hardware
sides (GPU improvements for large neural networks).
Importantly, inverse molecular design approaches can be
separated roughly into two classes: model-based ML algorithms
and evolutionary techniques.
Model-based ML algorithms for inverse design models use

neural networks to learn patterns in molecular structures from
existing data. After training, these models suggest newmolecules
covering important chemical features from the data set. Several
methodologies exist. Herein we will discuss variational
autoencoders (VAEs) and generative adversarial networks
(GANs) because our group, to the best of our knowledge, was
the first to apply these tools in chemistry. VAEs (Figure 4a) are
capable of forming continuous (latent) spaces from discrete
representations. They are trained to minimize the combined
losses of latent space smoothness and input reconstruction
enabling gradient-based optimization in the latent space. For
inverse design, the latent space of VAEs is coupled with a
property estimation model using supervised learning (vide
inf ra).44 Consequently, the latent space is arranged based on the
property values allowing for a direct search of desired materials.
GANs (Figure 4b) are generative models with joint training of
two competing networks, a generator, and a discriminator. The
generator produces examples from a high dimensional (often
Gaussian) space, attempting to fool the discriminator, which
tries to distinguish generated samples from reference structures.
For molecules, our group proposed a sequential GAN
(ORGAN), where the model is trained using reinforcement
learning.45 Desired molecular properties are used as a reward for
generating good structures.
Notably, both VAEs and GANs are trained in a supervised

way. Hence, they rely on existing data and mimic their
distribution. Thus, they are limited in the exploration of the
chemical space as compared to evolutionary techniques such as

genetic algorithms (GAs, cf. Figure 4c). As its name implies, GAs
are inspired by natural evolution. An initial population seeds the
algorithm, each member being evaluated. The top-performing
members proceed to the next iteration and the worst members
are removed or replaced by better offspring. For inverse
molecular design, the fitness function corresponds to the
determination of desired molecular properties.
In contrast to deep learning-based models, GAs are not biased

by user-defined data sets. Therefore, they are superior in
unbiased explorations.3 Recently, we have shown that GAs
augmented with neural networks to estimate the similarity of a
molecule with a given data set can explore specific structural
classes without the large data requirements of GANs and VAEs.
Additionally, neural network-based learning was used to detect
and avoid local minima trapping the GA to amplify exploration
by avoiding convergence.3 Notably, this shows that ML-based
inverse design techniques can be effectively combined with
evolutionary algorithms.
Importantly, in all these approaches, molecular representation

plays a crucial role. Molecular graphs are used for computational
efficiency, as they avoid conformations. Simplified Molecular
Input Line Entry System (SMILES)46 strings are commonly
used as a flat encoding of molecular graphs. However, they have
a complex structure making a large fraction of molecules
decoded from arbitrary SMILES invalid. This problem was
solved recently by our group in a fundamental way by replacing
SMILES with SELFIES (Self-Referencing Embedded Strings),47

which is available on GitHub.48 SELFIES is a 100% valid
molecular string representation suitable as input for any inverse-
design algorithm that outperformed alternative approaches in
many benchmarks, such as validity and diversity of generated
molecules, molecular density in the latent space of VAEs, or
molecular optimization tasks with GAs.3

Bayesian Optimization

Several tasks across chemistry can be framed as optimization
problems, where controllable parameters optimizing a desired
objective are sought. For materials, such optimizations are
challenging, as they are typically high-dimensional, nonconvex,
and subject to noise and the objectives are expensive to evaluate.
Suitable optimization strategies ought to be sample-efficient,
global, and noise-tolerant. That is, they need to identify optimal
parameter choices with as few measurements as possible, be able
to escape local minima, and mitigate the detrimental effect of
noise. A plethora of experiment planning strategies for

Figure 3. High-throughput virtual screening starts from a large space of candidates (e.g., generated combinatorically, as illustrated). Using virtual
screening, most candidates are eliminated, such that fewer (more expensive and time-consuming) experimental tests can be performed.
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optimization are currently available,49 from traditional design of
experiment to evolutionary and heuristic approaches. Among
these, Bayesian optimization50 (BO) has emerged as the strategy
that best meets these requirements.
BO is an experiment planning algorithm that, in contrast to

most other approaches, uses an ML model to learn from
previous observations before suggesting the next iteration
(Figure 5a).50 In its most widely adopted form, BO employs
techniques such as Gaussian processes to build a surrogatemodel
that captures the features of the underlying objective function.
Based on this surrogate, an acquisition function is defined, which
determines the strategy used to propose new experiments
(Figure 5b). Just like BO formulations using different ML
models exist, various acquisition functions have been developed.
Due to the use of an ML model, BO is sample-efficient. It is also
noise-tolerant, as these models explicitly account for it. Finally,
BO is a global approach that balances the exploitation of the best
local optima identified with the exploration of unprobed areas of
parameter space.
Typical BO approaches are inherently sequential and require

heavy computations for each iteration. Therefore, BO can be
unduly expensive when used in conjunction with high-
throughput evaluations. Thus, our group has developed Phoenics

(Figure 5c), a linear-scaling BO approach that supports parallel
experiments.4 Phoenics employs Bayesian neural networks
(BNNs) to build a kernel density estimate of the objective
function, and its acquisition function allows for selection of
batches of evaluations to be run in parallel. Importantly, Phoenics
is suitable for the optimization of continuous parameters, such as
temperature and concentration. To also optimize categorical
parameters, such as the choice of solvent, we developed Gryf f in
(Figure 5d), which uses categorical kernel densities that can be
relaxed to continuous ones.51 In addition, Gryf f in allows for
expert knowledge, in the form of descriptors for each categorical
choice, to be provided to improve the optimization efficiency.
Often, multiple competing objectives are present in materials
science. Chimera (Figure 5e) is a general-purpose approach to
multiobjective optimization.52 It allows defining a hierarchy of
objective preferences, which are combined into a single function
to be optimized with any algorithm of choice.
Importantly, all the aforementioned algorithms can be

combined with automated laboratories to enable autonomous
experimentation.42 These self-driving platforms are able to
execute closed-loop workflows for the self-optimization of
materials and processes. However, this requires robust software
connections between automated hardware and experiment

Figure 4. Inverse molecular design based on desired properties (F), with variational autoencoders (VAEs, a), generative adversarial networks (GANs,
b), and genetic algorithms (GAs, c). Adapted with permission from ref 44. Copyright 2018 American Chemical Society.
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planning methods. ChemOS is a flexible, modular, open source
and portable Python package that provides this interface between
experiment planning and automated experiments.53,54 Accord-
ingly, in our laboratory, we have deployed ChemOS, together
with Phoenics, Gryf f in, and Chimera, for the autonomous
optimization of manufacturing processes of thin-film materi-
als,55 multicomponent polymer OPV blends,56 and reaction
conditions of stereoselective Suzuki coupling.57

Supervised Learning

The costs associated with property measurement, from both
experiments and simulations, are a major obstacle to the
widespread expansion of HTVS, optimization, and inverse
design. All of these techniques require some form of data
acquisition, i.e., simulations, measurements, or data mining.
However, adapting experimental design to suit the needs of
automated protocols is challenging, despite self-driving
approaches likely being overall cost-effective. The promise of
accurate and practically free inference of new results from
existing data via supervised learning is a major driver of the
ongoing ML revolution in the physical sciences.58

Supervised learning requires a data set of features and labels.59

For molecular property prediction, this data set contains
molecules in a specific representation (features) and their
corresponding properties (labels). First, the data set is split into
three, training, validation and holdout sets. The model is trained
stepwise on the training set, usually by gradient descent or
related algorithms. In general, hyperparameters, i.e., choice of
features, training set, and model architecture, influence

predictive performance. These hyperparameters are optimized
by maximizing prediction accuracy on the validation set.
Eventually, model performance is evaluated via prediction
accuracy for the holdout set, and the final model can be used to
predict properties for unlabeled molecules. The entire workflow
is illustrated in Figure 6. Our group developed several model
architectures for supervised learning of molecular properties,
most notably graph convolutional neural networks.60,61

Importantly, supervised learning has been used successfully
for materials discovery. For example, our group used the CEP
data set for property prediction.62 After training on more than
200 000molecules, a neural network predicted the result of DFT
calculations consistently at a fraction of the computational
expense. Additionally, our group applied this approach to reduce
the number of simulations in HTVS significantly, with training
on a set of similar size.1 Moreover, our group also used Gaussian
process regression to calibrate for systematic errors in DFT.16

Crucially, in these studies, ML algorithms, representations,
acquisition of training data, and validation procedures for
models were tightly integrated with an understanding of the
problem space, as opposed to sole reliance on existing data from
various sources. We believe these considerations are key when it
comes to the practical application of ML in chemistry.
Moreover, fruitful applications of supervised learning in

materials science start from well-defined scientific goals. In
contrast, the excitement brought upon by ML has generated
many studies that focus on learning performance rather than
scientific objectives. Generally, this is based on the (debatable
and often unsupported) idea that performance metrics on one

Figure 5. (a) General pseudocode for Bayesian optimization. (b) Visualization of Bayesian optimization of an objective function (red curve) using
Gaussian processes. (c) Examples of continuous-valued parameters compatible with Phoenics, along with a sample surrogate model and acquisition
functions generated by the algorithm. Adapted with permission from ref 4. Copyright 2018 American Chemical Society. (d) Depiction of the
representation of a categorical variable in Gryf f in with three options (e.g., three ligands) on a simplex.51 (e) Example of a multiobjective optimization
problem for a chemical reaction, along with the construction of Chimera (bottom panel) from three 1-dimensional objective functions. Reproduced
with permission from ref 52. Copyright 2018 Royal Society of Chemistry.
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data set are transferable to other data sets or related problems.
However, ML algorithms are highly parametrized and thus can
readily overfit.63 Indeed, the model choice can itself become a
form of overfitting, especially when done on performance
considerations alone.64 Moreover, training data bias can
contaminate predictions65 but accounting for these biases
appropriately is problem-specific. Furthermore, many studies
are focused on error estimates obtained from statistical measures
such as cross-validation. Although validation error can be a
useful guide to the true prediction error on new data, it is not a
replacement for it66 and is often too optimistic.67 In many ways,
these issues arise when focus on the scientific goals is lost, as
ultimately the best test of supervised learning is whether it solves
problems.

■ CONCLUSION AND OUTLOOK

In this Account, we have reviewed data-driven approaches our
group has employed for the design of materials, especially for
clean energy applications, in the past decade. One of the first
large scale campaigns our group embarked on was the CEP,
where we implemented supervised learning together with HTVS
using quantum chemistry simulations to investigate 107

potential donor molecules for organic solar cells and devised
design principles by statistical analysis of structure−function
relationships.12 In the subsequent years, we refined these ML
strategies and expanded our efforts toward other important
materials such as OLEDs, OFRBs, multivalent CIBs, and RFs. In
all these projects, data-driven workflows were key to speed up
both the discovery and the design of new materials.
However, we believe that the full potential of data-driven

strategies is yet to be unleashed. For instance, many properties
are currently not investigated in HTVS because of their
prohibitive computational cost. One such property is molecular
stability with respect to common decomposition pathways. The
associated problem is the huge dimensionality of potential
reactions molecules can undergo, which greatly exceeds the
chemical compound space in complexity. Recently, our group
developed a method for the automatic discovery of chemical
reactions based on the selection of reactive internal coordinates
such as weak chemical bonds.68 We believe this approach,
together with empirical rules or heuristics for selecting reactive
internal coordinates, could be used for HTVS of reactivity and
stability of materials, and research in that direction is ongoing.
Other properties too prohibitive for HTVS include the influence
of explicit solvation on spectroscopic properties and the direct

simulation of amorphous solid-state structures and properties.
The main challenge therein is the large number of particles and
degrees of freedom in the model systems and the associated
multitude of interactions.
Furthermore, some of the methodologies we developed have

only been tested on benchmark problems but are yet to be
employed in real applications. Particularly, the genetic algorithm
augmented with neural networks using SELFIES as molecular
representation47 our group proposed recently has outperformed
most alternative generative models in benchmarks. However, it
has yet to be implemented for designing functional materials,
and we are actively working on that.3 Finally, one of the most
critical challenges of ML is model interpretability. Typically,
supervised learning approaches are employed in a black box
fashion without gaining insight into what the model actually
learned. However, our group has shown recently that regression
methods such as gradient boosting, when trained on molecular
graph features, can be used to reveal important chemical
moieties influencing the properties.69,70 The trained model can
be interpreted by human experts and rationalizing the feature
importance can lead to new scientific understanding. We believe
that similar approaches have the potential to change the way
science is carried out in the near future.
However, the bottleneck of materials design campaigns is

experimental synthesis and characterization, usually by a large
margin.71 Any material, no matter how good its (predicted)
performance, needs to be synthesized for it to be used in real life.
In particular for clean energy applications, material syntheses
need to be performed on a huge scale requiring reliable, safe and
green chemical processes. Accordingly, the continuing speed-up
in computer power providing unprecedented prediction
capabilities needs to be paralleled by increased experimental
throughput. Accelerating materials design ultimately requires
close integration of computer simulation, ML and experimenta-
tion in self-driving platforms, which our group termed Materials
Acceleration Platforms (MAPs).43

One essential feature of MAPs is a closed-loop materials
discovery workflow incorporating experimentation, computa-
tion, and human intuition. Online characterization techniques in
conjunction with automated robotic synthesis72−74 are central
enabling technologies in these platforms. Making andmeasuring
molecules on-demand in a feedback loop with self-correcting
computational screening and ML is key to finding true “needle-
in-a-haystack” materials. Currently, our group is implementing
such an MAP for the realization of innovative materials making

Figure 6.Workflow for supervised learning of molecular properties. A known (labeled) data set is used to optimize amodel, which is subsequently used
to estimate molecular properties for an unknown (unlabeled) data set.
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use of robust cross coupling chemistry, parallel robotic synthesis,
and in-line characterization of spectroscopic properties coupled
with computer simulation and ML. Details of this implementa-
tion will be described in an upcoming Account our group is
working on in due course. Accordingly, the data-driven methods
described above are a stepping stone to accelerate materials
design. However, to realize their true potential, they need to
percolate into experimental systems, and we are looking forward
to witnessing applications of these methods in closed-loop
experimental material design campaigns in the near future.
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