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Perturbation theory of nearly spherical dielectric optical resonators
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Dielectric spheres of various sizes may sustain electromagnetic whispering-gallery modes resonating at
optical frequencies with very narrow linewidths. Arbitrary small deviations from the spherical shape typically
shift and broaden such resonances. Our goal is to determine these shifted and broadened resonances. A
boundary-condition perturbation theory for the acoustic vibrations of nearly circular membranes was developed
by Rayleigh more than a century ago. We extend this theory to describe the electromagnetic excitations of
nearly spherical dielectric cavities. This approach permits us to avoid dealing with decaying quasinormal modes.
We explicitly find the frequencies and the linewidths of the optical resonances for arbitrarily deformed nearly
spherical dielectric cavities, as power series expansions by a small parameter, up to and including second-order
terms. We thoroughly discuss the physical conditions for the applicability of perturbation theory.
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I. INTRODUCTION

In this work we aim at determining frequencies and
linewidths of electromagnetic resonances of nearly spherical
dielectric cavities of arbitrary size and (small) deformation.
In a spherical dielectric cavity, light can excite whispering
gallery modes (WGMs) and circulate about any great circle
with small attenuation [1].

In fact, propagation of light along a curved interface be-
tween two different dielectric media is an intrinsically lossy
process [2]. This implies that the resonant optical frequencies
associated with the WGMs have small but finite linewidths.
The ratio between the frequency of a mode and its linewidth
is proportional to the optical quality factor Q of the mode.
This quantifies the number of optical cycles the light in the
mode will stay confined within in the cavity. Values of Q
around 1011 have been achieved for silica microspheres [3].
Deviations from the spherical shape change frequencies and
linewidths of the modes, thus modifying their quality factors
by an amount depending on the size and the shape of the
deformation. This may be either detrimental or, conversely,
very useful for many applications, ranging from WGMs lasers
[4] to dielectric microcavities [5]. Therefore, it is highly de-
sirable to have a theory predicting, at least with a certain
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level of approximation, the frequencies and the linewidths of
the electromagnetic resonances of nearly spherical dielectric
cavities [6].

In principle, determining such resonances is a conceptually
simple boundary-value problem: One must solve Maxwell’s
equations for the fields inside (medium 1) and outside
(medium 2) the cavity and match these fields at the interface
between the two media. However, satisfying boundary condi-
tions on interfaces of arbitrarily complicated shape is typically
a formidable algebraic task. The literature about techniques
and methods developed for solving this problem is, without
exaggeration, enormous. Among the books we found par-
ticularly useful Stratton’s and Jackson’s classical texts [7,8]
and the perhaps less known but not less valuable works of
Grandy [9] and Kristensson [10]. One of the first perturba-
tion approaches to the scattering of electromagnetic waves by
dielectric media of arbitrary shape was given by Yeh [11].
This study was further developed and improved by Erma [12].
Later, an important contribution to the perturbation theory of
quasinormal modes in open systems was given by Lai et al.
[13]. However, a serious problem with perturbation theory,
based upon the analogy between the refractive index in elec-
tromagnetism and the potential energy in quantum mechanics,
arises from the discontinuity of both the refractive index and
the normal component of the electric field, occurring at the
interface between the resonator and the surrounding medium
[14]. Several methods have been proposed to deal with this
issue; see, e.g., [15,16].

A different approach that avoids this problem is the so-
called boundary-condition perturbation theory. Dubertrand
et al. presented a boundary-condition perturbation theory for
two-dimensional disk resonators [17], which may be seen as
an extension to electromagnetic waves of the classical work
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by Rayleigh for acoustic membranes [18]. Such a theory was
further developed by Wiersig and co-workers, but still limited
to two-dimensional resonators [19,20].

The purpose of our work is to develop a perturbation the-
ory for the electromagnetic resonances of three-dimensional
nearly spherical dielectric resonators. As we will see, this
requires us to fully account for the vector nature of the elec-
tromagnetic field in three dimensions, which is a nontrivial
technical challenge. However, although we deal with an ef-
fectively open system, our method permits us to avoid the
use of quasinormal modes [21,22] and similar techniques
[23]. We note the importance of including second-order terms
in the theory. In fact, under certain conditions, first-order
perturbation theory does not account for the effects of ran-
dom deformations, which typically average to zero. However,
such deformations manifest nonzero correlations, the effects
of which are always disclosed by second-order perturbation
theory [24,25]. Further details on the theory, omitted here for
brevity, can be found in [26].

The work is organized as follows. In Sec. II we establish
the notation and we review the classical Mie solution [27] for
the scattering of electromagnetic waves by dielectric spheres.
This is functional to the perturbation theory to be developed
because the Mie solution will be taken as the zeroth-order
approximation. In Sec. III we establish the exact equations for
our boundary-condition problem. From Sec. IV to Sec. VIII
we thoroughly develop our degenerate second-order perturba-
tion theory, including the case of highly symmetric problems
where the degeneracy is not lifted to first order. In Sec. IX
we apply our theory to the simple case of an oblate spheroid
resonator. In Sec. X we summarize our work and draw
some conclusions. Three Appendixes provide some detailed
calculations.

II. NOTATION AND SCENARIO

In this section we show how to calculate the optical res-
onances of a dielectric sphere using the method of Debye
potentials [28]. The sphere has radius a and refractive index n1

and it is surrounded by a medium of refractive index n2 < n1

(typically air or vacuum). Both the sphere and the surrounding
medium are nonmagnetic, homogeneous, and isotropic. In the
remainder we will benefit from the following definitions: c0

is the speed of light in vacuum; k0 is the (real- or complex-
valued) wave number of light in vacuum; cα = c0/nα is the
speed of light in a medium of refractive index nα , with α =
1, 2; kα = k0nα is the wave number in a medium of refractive
index nα , with α = 1, 2; the time-independent Debye poten-
tials uE

α = uE
α (r) and uM

α = uM
α (r) are scalar fields that, in a

medium of refractive index nα , satisfy the Helmholtz equation

∇2uσ
α + k2

αuσ
α = 0 (σ = E , M ), (1)

with α = 1, 2 [29]; and the orbital angular momentum differ-
ential operator is defined as

L = 1

i
r × ∇. (2)

Figure 1 illustrates our working scenario.
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FIG. 1. (a) Illustration of the dielectric spherical and nearly
spherical resonators of equations r − a = 0 and r − a = a[1 +
h(θ, φ)], respectively, where a is the radius of the sphere. (b) Ge-
ometry of a section of the spherical (dark blue) and of the nearly
spherical (light blue) resonators. Here êr is the radial unit vector and
n(θ, φ) is the vector normal to the deformed surface (41). From (48)
it follows that cos γ = êr · n/|n|.

Without loss of generality, in this work we consider observ-
able monochromatic electric and magnetic fields, denoted by
Eα (r, t ) and Bα (r, t ), respectively, defined by

Eα (r, t ) = Re[Eα (r) exp(−iωt )], (3)

Bα (r, t ) = Re[Bα (r) exp(−iωt )], (4)

where ω = k0c0 = k1c1 = k2c2. In a nonmagnetic medium of
refractive index nα , the time-independent electric and mag-
netic fields Eα (r) and Bα (r) can be written in terms of the
two Debye potentials uE

α (r) and uM
α (r) as [28,29]

1

i
Eα (r) = (LuE

α

)+ i

kα

∇ × (LuM
α

)
, (5a)

cα

i
Bα (r) = (LuM

α

)− i

kα

∇ × (LuE
α

)
. (5b)

In the standard jargon, uE
α and uM

α yield transverse electric
(TE) and transverse magnetic (TM) waves, respectively [29].
Note that from (5) it follows that

cαBα

[
uE

α , uM
α

] = E
[
uM

α ,−uE
α

]
, (6)

where the square brackets denote functional dependence.
Using the completeness and orthogonality of the spherical

harmonics Ylm(θ, φ) [8] and the spherical coordinates (r, θ, φ)
with r ∈ [0,∞), θ ∈ [0, π ], and φ ∈ [0, 2π ), we can write

uσ
α (kαr, θ, φ) =

∑
l,m

U σ
αlm(kαr)Ylm(θ, φ), (7a)

U σ
αlm(kαr) =

∫
Y ∗

lm(θ, φ)uσ
α (kαr, θ, φ)d	, (7b)

with σ = E , M and α = 1, 2. Here and hereafter
∑

l,m is

shorthand for
∑∞

l=0

∑l
m=−l , and for any smooth function
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s(θ, φ),∫
s(θ, φ)d	 =

∫ 2π

0

[∫ π

0
s(θ, φ) sin θ dθ

]
dφ. (8)

The radial dependence of the form kαr is a direct consequence
of (5). Substituting (7) into (5), we obtain

Eα =
∑
l,m

{
U E

αlm(kαr)�lm(θ, φ)

− i

kαr

{
l (l + 1)U M

αlm(kαr)Ylm(θ, φ)

+ [(kαr)U M
αlm(kαr)

]′
�lm(θ, φ)

}}
, (9a)

cαBα =
∑
l,m

{
U M

αlm(kαr)�lm(θ, φ)

+ i

kαr

{
l (l + 1)U E

αlm(kαr)Ylm(θ, φ)

+ [(kαr)U E
αlm(kαr)

]′
�lm(θ, φ)

}}
, (9b)

where the prime denotes the derivative with respect to
the argument kαr and the three vector spherical harmonics
Ylm(θ, φ), �lm(θ, φ), and �lm(θ, φ) are defined as [30]

Ylm(θ, φ) = êrYlm(θ, φ), (10a)

�lm(θ, φ) = r∇Ylm(θ, φ), (10b)

�lm(θ, φ) = êr × �lm(êr ), (10c)

with êr = r/r.
In general, the functions U E

αlm(kαr) and U M
αlm(kαr) are ex-

pressible as linear combinations of spherical Bessel functions
jl (kαr), h(1)

l (kαr), and h(2)
l (kαr), where jl (kαr) is finite at

r = 0, and h(1)
l (kαr) and h(2)

l (kαr) describe outgoing and in-
going spherical waves, respectively, for r → ∞ (see, e.g.,
[31]). However, the electric and magnetic fields inside the
sphere must be finite everywhere for 0 � r � a. Moreover, we
assume that the field outside the sphere is made of outgoing
waves only. This implies that we can write the radial parts of
the four Debye potentials uE

1 (r), uM
1 (r) and uE

2 (r), uM
2 (r) in

the two media as

U σ
αlm(kαr) = aσ

αlmRσ
αl (kαr) (σ = E , M ), (11)

where the radial functions

RE
αl (kαr) = bαl (kαr)

bαl (kαa)
, (12a)

RM
αl (kαr) = bαl (kαr)

nαbαl (kαa)
(12b)

have been defined in terms of the spherical Bessel functions
for the fields in media 1 and 2, renamed as

b1l (z) = jl (z), b2l (z) = h(1)
l (z). (13)

The choice of the denominators in (12) just fixes an arbitrary
normalization, which could be absorbed into the definition of
the coefficients aσ

αlm.

Substituting (11) into (9), we obtain, after a straightforward
calculation,

Eα (r, θ, φ) =
∑
l,m

{
aM

αlm

nα

[
FY

αl (kαr)Ylm(θ, φ)

+ F

αl (kαr)�lm(θ, φ)

]
+ aE

αlmF�
αl (kαr)�lm(θ, φ)

}
, (14a)

cαBα (r, θ, φ) =
∑
l,m

{
−aE

αlm

[
FY

αl (kαr)Ylm(θ, φ)

+F

αl (kαr)�lm(θ, φ)

]
+ aM

αlm

nα

F�
αl (kαr)�lm(θ, φ)

}
, (14b)

where we have defined

FY
αl (kαr) = 1

i
l (l + 1)

1

(kαr)

bαl (kαr)

bαl (kαa)
, (15a)

F

αl (kαr) = 1

i

[(kαr)bαl (kαr)]′

(kαr)bαl (kαa)
, (15b)

F�
αl (kαr) = bαl (kαr)

bαl (kαa)
. (15c)

The numerical coefficients aE
1lm, aE

2lm and aM
1lm, aM

2lm are deter-
mined by imposing the electromagnetic boundary conditions
on the surface of the sphere [8]:

êr × (E1 − E2)|r=a = 0, (16a)

êr × (B1 − B2)|r=a = 0. (16b)

It is not difficult to see that using the relations

êr × Ylm(θ, φ) = 0, (17)

êr × �lm(θ, φ) = �lm(θ, φ), (18)

êr × �lm(θ, φ) = −�lm(θ, φ), (19)

we can rewrite (16a) as

0 =
∑
l,m

(
aE

1lm − aE
2lm

)
�lm(θ, φ)

+ i

k0a

∑
l,m

{
aM

1lm

[(k1a) jl (k1a)]′

n2
1 jl (k1a)

− aM
2lm

[
(k2a)h(1)

l (k2a)
]′

n2
2h(1)

l (k2a)

}
�lm(θ, φ) (20)

and (16b) as

0 =
∑
l,m

(
aM

1lm − aM
2lm

)
�lm(θ, φ)

− i

k0a

∑
l,m

{
aE

1lm

[(k1a) jl (k1a)]′

jl (k1a)

− aE
2lm

[
(k2a)h(1)

l (k2a)
]′

h(1)
l (k2a)

}
�lm(θ, φ), (21)
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where again the prime denotes the derivative with respect to
the argument. From the orthogonality of the vector spherical
harmonics it follows that each term in Eqs. (20) and (21) that
multiplies a vector spherical harmonics must be set equal to
zero separately. So the first lines of (20) and (21) give

aE
1lm = aE

2lm ≡ aE
lm (22)

and

aM
1lm = aM

2lm ≡ aM
lm, (23)

respectively. Substituting (22) in (21), we obtain

[(k1a) jl (k1a)]′

jl (k1a)
−
[
(k2a)h(1)

l (k2a)
]′

h(1)
l (k2a)

= 0 (24)

for TE waves. Similarly, substituting (23) in (20), we find

[(k1a) jl (k1a)]′

n2
1 jl (k1a)

−
[
(k2a)h(1)

l (k2a)
]′

n2
2h(1)

l (k2a)
= 0 (25)

for TM waves. Both Eqs. (24) and (25) are characterized by
the index l , so for each value of l there will be a different set of
solutions. To find these solutions, we write k1a = k0an1 ≡ xn1

and k2a = k0an2 ≡ xn2 in (24) and (25), where the dimension-
less wave number x is defined as x ≡ k0a. Then we introduce
the compact notation (the irrelevant prefactor x/i is introduced
for later notational convenience)

x

i
f E
l (x) ≡ [(n1x) jl (n1x)]′

jl (n1x)
−
[
(n2x)h(1)

l (n2x)
]′

h(1)
l (n2x)

, (26)

x

i
f M
l (x) ≡ [(n1x) jl (n1x)]′

n2
1 jl (n1x)

−
[
(n2x)h(1)

l (n2x)
]′

n2
2h(1)

l (n2x)
(27)

and we solve (numerically) the two transcendental equations

f E
l (x) = 0, f M

l (x) = 0 (28)

with respect to x to find the resonant wavenumbers for both TE
and TM waves. Thus, we obtain two countably infinite sets of
solutions denoted by{

xE
ln

} = {xE
l1, xE

l2, . . .
}

(29)

and {
xM

ln

} = {xM
l1 , xM

l2 , . . .
}
, (30)

with xE
ln, xM

ln ∈ C, such that

f σ
l

(
xσ

ln

) = 0 (n = 1, 2, . . .), (31)

with σ = E , M. In the remainder, we will refer to (29) and
(30) as the unperturbed spectrum. A portion of the spectrum
of TE and TM resonances of a dielectric sphere with refractive
index n1 = 1.5, surrounded by vacuum with n2 = 1, is shown
in Fig. 2.

Equations (28) depend on the index l but not on m. This
implies that for each solution xσ

ln, with σ, l, n assigned, there
are 2l + 1 different Debye potentials, denoted by{

uσ
α|lmn(r)

} = {uσ
α|l,−ln(r), . . . , uσ

α|l,ln(r)
}

(32)

and defined by

uσ
α|lmn(r) = Rσ

αl

(
nαxσ

lnr

a

)
Ylm(θ, φ) (33)

FIG. 2. Spectrum of the TE and TM resonances of a dielectric
sphere of radius a and refractive index n1 = 1.5, surrounded by
vacuum with n2 = 1. The values of xln = klna for 1 � n � 10 and
1 � l � 10 are shown as blue bands. The vertical position of the
center of each band is equal to Re(klna) and the thickness is equal
to Im(klna). For the first radial mode n = 1 (lighter blue bands) the
imaginary part of knl a quickly decreases as l increases from left to
right. Each resonance characterized by the pair of azimuthal and
radial numbers l and n is 2l + 1 times degenerate.

(m = −l,−l + 1, . . . , l) such that the electric and mag-
netic fields obtained from (5) with uE

α = uE
α|lmn(r) and uM

α =
uM

α|lmn(r) will automatically satisfy the boundary conditions
(16). The radial functions are still defined by (12).

By construction, from the (2l + 1)-fold degeneracy of xσ
ln

it follows that any linear combination of the form

l∑
m=−l

aσ
lmuσ

α|lmn(r) = Rσ
αl

(
nαxσ

lnr

a

) l∑
m=−l

aσ
lmYlm(θ, φ), (34)

where aσ
lm are arbitrary numerical coefficients, is still an ad-

missible Debye potential associated with the same eigenvalue
xσ

ln. Evidently, for a given xσ
ln, it is possible to build 2l + 1

linearly independent of such combinations. We will make
extensive use of this property when developing a degenerate
perturbation theory.

III. PERTURBATION OF THE BOUNDARIES

Now we turn to the more general problem of a dielectric
electromagnetic resonator of refractive index n1, surrounded
by a medium of refractive index n2 < n1. Again, both the
resonator and the surrounding media are nonmagnetic, homo-
geneous, and isotropic. The expressions (5)–(7) and (11)–(15)
for the fields and Debye potentials are perfectly general, so
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they remain valid also in the present case. What will change
are the boundary conditions (16) that will be replaced by (40),
defined later.

A. Describing the deformation

Consider a nearly spherical dielectric resonator, the surface
of which can be described by the equation

F (r, θ, φ) = 0, (35)

where

F (r, θ, φ) = (r − a) − ah(θ, φ), (36)

with h(θ, φ) an arbitrary, smooth, single-valued function of
θ and φ defined on the unit sphere S, which describes the
deformation of the resonator. The slight departure from the
spherical shape is guaranteed by any function h(θ, φ), the
maximum value of which is much less than 1 on S:

max{|h(θ, φ)|}S 	 1. (37)

However, as we will see soon, this is not the only condition
required for the applicability of the theory. As usual in per-
turbation theory, it is useful to introduce a formal parameter
0 � ε 	 1 defined by

h(θ, φ) = ε f (θ, φ), (38)

where | f (θ, φ)| � 1. This parameter is just a mathematical
device used to rewrite h(θ, φ) in a more convenient form for
later developments. At the end of the calculations we will
restore the physical deviation h(θ, φ) by replacing everywhere
ε f (θ, φ) with h(θ, φ). With this definition (36) becomes

F (r, θ, φ) = (r − a) − aε f (θ, φ). (39)

The standard electromagnetic boundary conditions on the
surface of the dielectric body can now be written as

n × (E1 − E2)|r=a(1+ε f ) = 0, (40a)

n × (B1 − B2)|r=a(1+ε f ) = 0, (40b)

where f = f (θ, φ) and the vector n = n(θ, φ) = ∇F (r, θ, φ)
normal to the surface of the dielectric at r = a[1 + ε f (θ, φ)]
is given by

n(θ, φ) = êr − n‖(θ, φ)

= êr − ε

1 + ε f (θ, φ)
e‖(θ, φ), (41)

where

e‖(θ, φ) = êθ

∂ f (θ, φ)

∂θ
+ êφ

1

sin θ

∂ f (θ, φ)

∂φ
. (42)

Let � = �(r, θ, φ) denote either E1 − E2 or B1 − B2. Then
we can rewrite the boundary conditions (40) in the suggestive
form

0 = n × �(a + aε f , θ, φ)

= êr ×�(a, θ, φ) + {êr × [�(a+aε f , θ, φ) − �(a, θ, φ)]

− n‖ × �(a + aε f , θ, φ)}, (43)

where f = f (θ, φ). This expression is exact; no approxima-
tions have been done up to now. However, we have written
it in such a way as to isolate the unperturbed first term

êr × �(a, θ, φ), coincident with (16), from the perturbed
second term delimited by curly brackets. To develop a mean-
ingful perturbation theory we require this second term to be
O(ε) with respect to êr × �(a, θ, φ). This is certainly true
for the tangential part êr × [�(a + aε f , θ, φ) − �(a, θ, φ)]
because by definition

�(a + aε f , θ, φ) − �(a, θ, φ) = O(ε). (44)

However, for the radial part we have

n‖ × �(a + aε f , θ, φ) ∼ |n‖|[1 + O(ε)] (45)

and |n‖| is potentially unbounded. To show this, suppose that,
for example, in the neighborhood of the direction (θ, φ) the
deformation of the resonator could be described by

h(θ, φ) = ε sin(pθ ) 	 1, (46)

with p > 0. This implies that

|n‖| = εp| cos(pθ )|
1 + ε sin(pθ )

= εp| cos(pθ )|[1 − ε sin(pθ )] + O(ε3). (47)

Clearly, εp can be of the order of unity or bigger if p � 1/ε.
In this case the angle γ (θ, φ) between the vector êr normal
to the unit sphere S along the direction (θ, φ), and the vector
n(θ, φ) normal to the deformed sphere in the same direction,
defined by

γ (θ, φ) = arctan |n‖| = arctan |∇h(θ, φ)|S, (48)

can be arbitrarily close to π/2. When this occurs, we have the
so-called strongly winding boundaries [20]. If this is not the
case, then we have weakly winding boundaries. Through this
work, we assume that the latter condition is always verified.
Thus, Eqs. (37) and (45) imply that the physical conditions
for the applicability of the perturbation theory require that the
magnitude of the deformation function h(θ, φ) and its gradient
∇h(θ, φ), both evaluated on the unit sphere S, must be O(ε),
namely,

max{|h(θ, φ)|}S ≈ max{|∇h(θ, φ)|}S 	 1. (49)

B. Developments

To proceed further, we must rewrite (40) in a more con-
venient form. Note, however, that in this section we will not
assume the smallness of the deformation as in (37). Following
Sec. II of [12], we want to show that of the six equations (40),
only four are independent. Let us write � = �r êr + �θ êθ +
�φ êφ ≡ �r êr + �‖ and n = êr − nθ êθ − nφ êφ ≡ êr − n‖,
where � denotes either E1 − E2 or B1 − B2, evaluated at
r = a(1 + ε f ). Calculating n × � = 0, we obtain the three
equations

nθ�φ − nφ�θ = 0, (50a)

nφ�r + �φ = 0, (50b)

nθ�r + �θ = 0. (50c)

It is easy to see that when (50b) and (50c) hold true, then
(50a) is automatically satisfied, because

nθ�φ − nφ�θ = nθ (nφ�r + �φ ) − nφ (nθ�r + �θ ). (51)
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Therefore, choosing (50b) and (50c) as independent equations
and multiplying (50b) by êφ and (50c) by êθ , we can rewrite
the four independent boundary conditions (50b) and (50c) as

(E1‖ − E2‖) + (E1r − E2r )n‖ = 0, (52a)

(B1‖ − B2‖) + (B1r − B2r )n‖ = 0, (52b)

where all the fields are evaluated at r = a[1 + ε f (θ, φ)].
We can expand Eqs. (52) in terms of �l ′m′ (θ, φ) and

�l ′m′ (θ, φ) solely, the radial components being absent, to ob-
tain

∑
l ′,m′

[

E

l ′m′�l ′m′ (θ, φ) + �E
l ′m′�l ′m′ (θ, φ)

] = 0, (53a)

∑
l ′,m′

[

B

l ′m′�l ′m′ (θ, φ) + �B
l ′m′�l ′m′ (θ, φ)

] = 0, (53b)

respectively, where

X E
l ′m′ (x) = 1

l ′(l ′ + 1)

∫
X∗

l ′m′ (θ, φ) · [E1‖ − E2‖

+(E1r − E2r )n‖]d	, (54a)

X B
l ′m′ (x) = 1

l ′(l ′ + 1)

∫
X∗

l ′m′ (θ, φ) · [B1‖ − B2‖

+(B1r − B2r )n‖]d	, (54b)

with X = 
,�. For reasons that will soon be clear, on the
left-hand sides of (54), we have made explicit the dependence
on x = k0a. This arises from the radial dependence of the
fields evaluated on the surface of the dielectric resonator:

kαr|r=a(1+ε f (θ,φ)) = kαa[1 + ε f (θ, φ)]

= xnα[1 + ε f (θ, φ)]. (55)

After integration with respect to the angular variables θ and φ

in (54), we are left with the dependence on x only.
Formally, at this point our problem is perfectly posed:

All we have to do is determine the values of x (namely, the
resonant wave numbers) such that the four equations


E
l ′m′ (x) = 0, �E

l ′m′ (x) = 0, (56a)


B
l ′m′ (x) = 0, �B

l ′m′ (x) = 0 (56b)

possess nontrivial solutions for the coefficients aE
1lm, aE

2lm and
aM

1lm, aM
2lm. These coefficients enter in (54), via the expressions

of the electric and magnetic fields written in terms of the four
Debye potentials uE

1 (r), uM
1 (r) and uE

2 (r), uM
2 (r), defined by

(7) and (11).
Needless to say, solving the system of nonlinear algebraic

equations (56) is a formidable task. However, in principle, the
way to proceed is direct: Substituting (14a) and (14b) into
(54), after some long but straightforward calculations, we can

write explicitly the four equations (56) as


E
l ′m′ (x) =

∑
l,m

{[
A�

1

]l ′m′

lm
aE

1lm − [A�
2

]l ′m′

lm
aE

2lm

+
[
B�

1

]l ′m′

lm

n1
aM

1lm −
[
B�

2

]l ′m′

lm

n2
aM

2lm

}
= 0, (57)


B
l ′m′ (x) =

∑
l,m

{
−n1

[
B


1

]l ′m′

lm aE
1lm + n2

[
B


2

]l ′m′

lm aE
2lm

+ [A

1

]l ′m′

lm aM
1lm − [A


2

]l ′m′

lm aM
2lm

}
= 0, (58)

�E
l ′m′ (x) =

∑
l,m

{[
A


1

]l ′m′

lm
aE

1lm − [A

2

]l ′m′

lm
aE

2lm

+
[
B


1

]l ′m′

lm

n1
aM

1lm −
[
B


2

]l ′m′

lm

n2
aM

2lm

}
= 0, (59)

�B
l ′m′ (x) =

∑
l,m

{−n1
[
B�

1

]l ′m′

lm aE
1lm + n2

[
B�

2

]l ′m′

lm aE
2lm

+ [A�
1

]l ′m′

lm aM
1lm − [A�

2

]l ′m′

lm aM
2lm

} = 0, (60)

where we have defined the matrix elements of types A and B
as, respectively,[

AX
α

]l ′m′

lm (x) = 1

l ′(l ′ + 1)

∫
X∗

l ′m′ (θ, φ) · Aαlmd	, (61a)

[
BX

α

]l ′m′

lm (x) = 1

l ′(l ′ + 1)

∫
X∗

l ′m′ (θ, φ) · Bαlmd	, (61b)

with α = 1, 2 and X = 
,�. In (61) we have defined

Aαlm ≡ F�
αlm(x, θ, φ), (62a)

Bαlm ≡ F

αlm(x, θ, φ)

+ e‖(θ, φ)Ylm(θ, φ)BY
αl (x, θ, φ), (62b)

where e‖(θ, φ) is defined by (42),

FX
αlm(x, θ, φ) ≡ Xlm(θ, φ)F X

αl (x, θ, φ) (X = 
,�), (63)

and

BY
αl (x, θ, φ) ≡ ε

1 + ε f (θ, φ)
FY

αl (x, θ, φ). (64)

Note that in (63) and (64) we have used (15) to write

FW
αl (x, θ, φ) = FW

αl (kαr)|r=a[1+ε f (θ,φ)]

= FW
αl (nαx[1 + ε f (θ, φ)]), (65)

with α = 1, 2 and W = 
,�,Y .
It should be noticed that in Eqs. (57)–(60) the pair of in-

dices l ′, m′ comes from (56) and the sum with respect to l, m,
originates from the expressions of the fields (14a) and (14b).
Moreover, for reasons that will soon be clear, it is instructive
to rewrite these four equations in the suggestive matrix form∑

l,m

Ml ′m′
lm · ψlm = 0, (66)
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where we have defined the 4 × 4 matrix Ml ′m′
lm and the 4 × 1 vector ψlm as

Ml ′m′
lm

.=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

[
A�

1

]l ′m′

lm (x) −[A�
2

]l ′m′

lm (x) [B�
1 ]l′m′

lm (x)
n1

− [B�
2 ]l′m′

lm (x)
n2

−n1
[
B


1

]l ′m′

lm (x) n2
[
B


2

]l ′m′

lm (x)
[
A


1

]l ′m′

lm (x) −[A

2

]l ′m′

lm (x)[
A


1

]l ′m′

lm
(x) −[A


2

]l ′m′

lm
(x) [B


1 ]l′m′
lm (x)
n1

− [B

2 ]l′m′

lm (x)
n2

−n1
[
B�

1

]l ′m′

lm (x) n2
[
B�

2

]l ′m′

lm (x)
[
A�

1

]l ′m′

lm (x) −[A�
2

]l ′m′

lm (x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(67)

and

ψlm
.=

⎡
⎢⎢⎢⎣

ψ1lm

ψ2lm

ψ3lm

ψ4lm

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

aE
1lm

aE
2lm

aM
1lm

aM
2lm

⎤
⎥⎥⎥⎦, (68)

respectively. Note that the incognita x in this system is the
same for all the (infinite) terms of the sum with respect to l, m.
Therefore, it is not possible to solve each matrix equation of
the sum independently. This is why in the remainder we will
develop a perturbation scheme to solve (66) with respect to
x. From a physical point of view, the dependence of x on all
indices (l, m) denotes the coupling between all the modes of
the resonator, due to the departure from the spherical shape.

We remark that the homogeneous linear system (66) is ex-
act and is valid irrespective of the shape and the magnitude of
the deformation and of the size of the resonator. In principle,
it contains all the information about the resonances of the
deformed resonator. Were we able to solve it numerically, we
would not need to develop a perturbation theory. However,
this is not the case.

C. Unperturbed problem

As a first step towards a perturbation theory, we must verify
that the system (66) reduces to Eqs. (24) and (25) for ε → 0,
that is, when the resonator is perfectly spherical. In this case,
from (41) it follows that n‖ = 0 and Eqs. (62) become

Aαlm ≡ �lm(θ, φ), (69a)

Bαlm ≡ �lm(θ, φ)gαl (x), (69b)

where Eqs. (15) have been used and we have defined

gαl (nαx) ≡ F

αl (kαa) = 1

i

[(nαx)bαl (nαx)]′

(nαx)bαl (nαx)
, (70)

with α = 1, 2. Substituting (69) into (61), we readily find

[
A�

α

]l ′m′

lm = δll ′δmm′ , (71a)[
A


α

]l ′m′

lm
= 0, (71b)[

B�
α

]l ′m′

lm = 0, (71c)[
B


α

]l ′m′

lm = δll ′δmm′gαl (nαx). (71d)

Inserting these values into (66), we obtain the algebraic
system⎡

⎢⎢⎣
1 −1 0 0

−n1g1l n2g2l 0 0
0 0 g1l

n1
− g2l

n2

0 0 1 −1

⎤
⎥⎥⎦
⎡
⎢⎢⎢⎣

aE
1lm

aE
2lm

aM
1lm

aM
2lm

⎤
⎥⎥⎥⎦ = 0, (72)

where gαl = gαl (nαx) with α = 1, 2. The block-diagonal form
of this matrix equation reveals that for a spherical dielectric
resonator the TE and TM waves are uncoupled. Therefore, the
4 × 4 system (72) naturally splits into two independent 2 × 2
systems, which are[

1 −1
−n1g1l (n1x) n2g2l (n2x)

][
aE

1lm

aE
2lm

]
= 0 (73)

for TE waves and[
g1l (n1x)

n1
− g2l (n2x)

n2

1 −1

][
aM

1lm

aM
2lm

]
= 0 (74)

for TM waves. The first system (73),

aE
1lm − aE

2lm = 0, (75a)

−n1g1l (n1x)aE
1lm + n2g2l (n2x)aE

2lm = 0, (75b)

possesses the nontrivial solution aE
1lm = aE

2lm if and only if
−n1g1l (n1x) + n2g2l (n2x) = 0. Using (70), it is easy to see
that the last condition is equivalent to (26). Similarly, the
second system (74),

g1l (n1x)

n1
aM

1lm − g2l (n2x)

n2
aM

2lm = 0, (76a)

aM
1lm − aM

2lm = 0, (76b)

admits the solution aM
1lm = aM

2lm, provided that g1l (n1x)/n1 −
g2l (n2x)/n2 = 0. Again, from (70) it follows that this con-
dition is equivalent to (27). We have thus demonstrated that
our system of equations (66) correctly reproduces the well-
known set of equations for the electromagnetic resonances of
a dielectric sphere.

Remark. The matrix (67) looks formidable. However, it has
in fact a quite simple structure and admits a clear physical pic-
ture. To show this, let us introduce the shorthand M = Ml ′m′

lm
and omit the indices l ′, m′ and l, m everywhere. Then it is not
difficult to see that we can rewrite (67) as a block matrix

M =
[

M0 T (V )
V T (M0)

]
, (77)
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where the matrix-valued function T is defined by

T
([

a11 a12

a21 a22

])
=
[−a21/n2

1 −a22/n2
2

a11 a12

]
(78)

and

M0 =
[

A�
1 −A�

2

−n1B

1 n2B


2

]
∼ 1 + O(ε), (79a)

V =
[

A

1 −A


2

−n1B�
1 n2B�

2

]
∼ O(ε). (79b)

Hence, M has only eight different elements of four different
types {A


α , A�
α , B


α , B�
α }, four types per each of the two media

(α = 1, 2).
From (72) it follows that at ε = 0 (spherical resonator),

M0|ε=0 =
[

1 −1
−n1g1l (n1x) n2g2l (n2x)

]
. (80)

This means that at ε = 0, M0 describes the TE resonances
of a perfect sphere. The rest matrix M0 − M0|ε=0 gives their
corrections due to self-coupling between TE modes. The same
reasoning remains valid if we replace M0 with T (M0), and TE
waves with TM waves. The off-diagonal matrices V and T (V )
evidently yield the coupling between TE and TM waves due
to the departure from the spherical shape, for they vanishes at
ε = 0:

V |ε=0 = 0 = T (V )|ε=0. (81)

IV. QUANTUMLIKE PERTURBATION THEORY

The main goal of this work is to study how the elec-
tromagnetic vibrations of a dielectric resonator are affected
by a slight departure from the exact spherical form. Such
a departure is quantified by the small parameter 0 � ε 	 1
defined by (38). Equations (28) define the resonances of the
unperturbed physical system, which is a dielectric sphere of
radius r = a. Let us denote by x(0) any solution of either
f TE
l (x) = 0 or f TM

l (x) = 0, the type of wave being irrelevant
for the following discussion. We assume the existence of a
neighborhood of ε = 0 where the algebraic system of equa-
tions (66) possesses a nontrivial solution for x = x(ε) such
that

x(ε) = x(0) + εx(1) + ε2x(2) + · · · . (82)

Following the classical Rayleigh scheme of perturbation the-
ory [18], we would like to determine x(1) from a set of
first-order equations in ε, x(2) from a set of second-order
equations in ε, and so on.

To achieve this goal in a systematic and direct manner, we
find it convenient at this stage to adopt a quantumlike notation
to represent the linear system of (nonlinear) equations (66).
This is possible because we can always associate a linear op-
erator with a matrix and vice versa. However, we remark that
in this work the quantum formalism is just a useful notational
tool that permits us to solve an entirely classical problem.

A. Linear algebra in quantumlike notation

To begin with, let us introduce the fictitious vector states
|l, m〉 with l = 0, 1, . . . ,∞ and m = −l,−l + 1, . . . , l . By

hypothesis, they are orthonormal,

〈l, m|l ′, m′〉 = δll ′δmm′ , (83)

and form a complete basis in an infinite-dimensional Hilbert
space, denoted by E∞, that is,

∞∑
l=0

l∑
m=−l

|l, m〉〈l, m| = Î∞, (84)

where Î∞ is the identity operator in E∞ and here and hereafter
the circumflex will mark operators in infinite-dimensional
Hilbert spaces. We remark that the vector states |l, m〉 are
artificial in the sense they do not represent either the scalar
spherical harmonics Ylm(θ, φ) or the vector spherical harmon-
ics (10). They are a mathematical tool that we use to solve our
problem in an efficient way.

Next we define the four basis vectors |i〉 with i = 1, 2, 3, 4.
We assume that they are orthonormal,

〈i| j〉 = δi j, (85)

and span a four-dimensional Hilbert space, denoted by E4,
where they form a complete basis

4∑
i=1

|i〉〈i| = I4, (86)

with I4 the 4 × 4 identity matrix in E4. Then the tensor product
Hilbert space

E = E∞ ⊗ E4 (87)

is by construction spanned by the vectors

|l, m, i〉 ≡ |l, m〉 ⊗ |i〉. (88)

By definition, the completeness relation for E reads∑
l,m,i

|l, m, i〉〈l, m, i| = Î∞ ⊗ I4 ≡ Î, (89)

where here and hereafter
∑

l,m,i stands for∑∞
l=0

∑l
m=−l

∑4
i=1.

Equipped with this paraphernalia, we can rewrite (66) as
follows. First, we introduce the vector state |ψ〉 ∈ E such that

|ψ〉 =
∑
l,m,i

|l, m, i〉〈l, m, i|ψ〉 ≡
∑
l,m,i

ψilm|l, m, i〉, (90)

the components of which are

〈l, m, i|ψ〉 ≡ ψilm, (91)

where, using (68), ⎡
⎢⎢⎣

ψ1lm

ψ2lm

ψ3lm

ψ4lm

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

aE
1lm

aE
2lm

aM
1lm

aM
2lm

⎤
⎥⎥⎥⎦. (92)

Second, we define the operator M̂ = M̂(x) via the matrix
elements

〈l ′, m′, i|M̂|l, m, j〉 = 〈i|(〈l ′, m′|M̂|l, m〉)| j〉 = 〈i|Ml ′m′
lm | j〉

≡ [Ml ′m′
lm

]
i j
, (93)
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where, according to (67),[
Ml ′m′

lm

]
11 = [A�

1

]l ′m′

lm (x),[
Ml ′m′

lm

]
12 = −[A�

2

]l ′m′

lm (x),

...[
Ml ′m′

lm

]
44 = −[A�

2

]l ′m′

lm (x). (94)

Finally, using this notation, we can rewrite (66) as

M̂|ψ〉 = 0. (95)

This can be easily proven by multiplying this equation by
〈l ′, m′, i| from the left and using the closure relation (89),

0 = 〈l ′, m′, i|M̂|ψ〉
=
∑
l,m, j

〈l ′, m′, i|M̂|l, m, j〉〈l, m, j|ψ〉

=
∑
l,m, j

[
Ml ′m′

lm

]
i jψ jlm, (96)

where (91) and (93) have been used.
We make an important remark: Unlike the case of quantum

mechanics, here we have no guarantee that the operator M̂ is
Hermitian. As a matter of fact, in general, it is not. This is why,
in the remainder, we will make extensive use of biorthogonal
bases generated by the right and left eigenvectors of non-
Hermitian operators. The ultimate reason for the presence
of non-Hermitian operators in our theory is that dielectric
resonators are intrinsically leaky systems.

B. Formal expansion

Before diving into the development of a rigorous pertur-
bation theory, in this section we provide a general outline of
the theory, irrespective of the precise form of the resonances
spectrum. The goal is to solve (95), here rewritten as

M̂(ε)|ψ (ε)〉 = 0, (97)

where M̂(ε) is defined by (93) and

x(ε) = x(0) + εx(1) + ε2x(2) + · · · (98)

has been defined in (82), with x(0) = x(0). Moreover, we as-
sume that also the operator M̂(ε) and the vector |ψ (ε)〉 can
be expanded as powers of ε as

M̂(ε) = M̂(0) + εM̂(1) + ε2M̂(2) + · · · , (99)

with

M̂(n) = 1

n!

dnM̂(ε)

dεn

∣∣∣∣
ε=0

(n = 0, 1, . . .) (100)

and

|ψ (ε)〉 = |ψ (0)〉 + ε|ψ (1)〉 + ε2|ψ (2)〉 + · · · , (101)

where, by definition,

|ψ (0)〉 = |ψ (0)〉. (102)

Substituting (99) and (101) into (97), we obtain

M̂(ε)|ψ (ε)〉
= M̂(0)|ψ (0)〉

+ ε(M̂(0)|ψ (1)〉 + M̂(1)|ψ (0)〉)

+ ε2(M̂(0)|ψ (2)〉 + M̂(1)|ψ (1)〉 + M̂(2)|ψ (0)〉)

+ · · · = 0. (103)

All the terms proportional to the same power of ε must sum to
zero. Thus, we obtain the chain of equations

M̂(0)|ψ (0)〉 = 0, (104a)

M̂(0)|ψ (1)〉 + M̂(1)|ψ (0)〉 = 0, (104b)

M̂(0)|ψ (2)〉 + M̂(1)|ψ (1)〉 + M̂(2)|ψ (0)〉 = 0, (104c)

etc. To solve iteratively these equations, we must first choose
the initial state |ψ (0)〉 (actually, the initial set of states) asso-
ciated with the unperturbed eigenvalue x(0). We will take for
x(0) one of the 2l + 1 time degenerate solutions of (31), that is,
x(0) = xσ

ln. We will see that such a solution is associated with
a degenerate subspace of dimension 2l + 1. However, before
starting to solve (104), it is useful to illustrate some general
properties of the operator M̂.

C. General properties of the operator M̂
The set of operators

{M̂(n)} = {M̂(0),M̂(1),M̂(2), . . .} (105)

possesses some general properties which are key to the devel-
opment of the perturbation theory. These properties are proven
in Appendix A. In this section we will present the plain results,
which are summarized by

M̂(0) = D̂(0), (106a)

M̂(n) = V̂ (n) + x(n)D̂, (106b)

where we have defined

V̂ (n) ≡ M̂(n)|x(n)=0, (107a)

D̂ ≡ dM̂(n)

dx(n)
, (107b)

with n � 1. We remark again that all the operators in (106)
are not necessarily Hermitian. Note that the operator D̂ is in-
dependent of the order index n. Both D̂(0) and D̂ are diagonal
with respect to the basis |l, m〉, that is,

〈l, m, i|D̂(0)|l ′, m′, j〉 = δll ′δmm′ 〈i|D(0)
l | j〉, (108a)

〈l, m, i|D̂|l ′, m′, j〉 = δll ′δmm′ 〈i|Dl | j〉, (108b)

where the operators D(0)
l and Dl are represented by a 4 × 4

matrix independent of m. From (93) and (72) it follows that
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D(0)
l is equal to

D(0)
l

.=

⎡
⎢⎢⎣

1 −1 0 0
−n1g1l n2g2l 0 0

0 0 g1l

n1
− g2l

n2

0 0 1 −1

⎤
⎥⎥⎦, (109)

with gαl = gαl (nαx(0) ) (α = 1, 2), given by (70). Moreover,
Eq. (A19) gives

Dl
.=

⎡
⎢⎢⎢⎣

0 0 0 0
−n2

1[g1l ]′ n2
2[g2l ]′ 0 0

0 0 [g1l ]′ −[g2l ]′

0 0 0 0

⎤
⎥⎥⎥⎦, (110)

where the prime denotes the derivative with respect to the
argument: [gαl ]′ = dgαl (u)/du|u=nαx(0) . Note that it is possible
to rewrite Dl as

Dl (nαx(0) ) = dD(0)
l (nαx(0) )

dx(0)
. (111)

In practice, V̂ (n) may (and, in general, it will) depend on
x(0), x(1), . . . , x(n−1), but not on x(n).

V. ZEROTH-ORDER EQUATION

In this section we will start a systematical analysis of (104),
solving the chained equations order by order. Using twice the
resolution of the identity (89) and Eqs. (108) and (109), we
can rewrite (104a) as

0 = M̂(0)|ψ (0)〉 = D̂(0)|ψ (0)〉

=
∑
l,m,i

(
4∑

j=1

〈i|D(0)
l | j〉〈l, m, j|ψ (0)〉

)
|l, m, i〉. (112)

According to (91), in the remainder we will also occasionally
use the more compact notation

ψ
(n)
ilm ≡ 〈l, m, i|ψ (n)〉, (113)

where ⎡
⎢⎢⎢⎣

ψ
(n)
1lm

ψ
(n)
2lm

ψ
(n)
3lm

ψ
(n)
4lm

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

aE (n)
1lm

aE (n)
2lm

aM(n)
1lm

aM(n)
2lm

⎤
⎥⎥⎥⎦. (114)

Since the vectors {|l, m, i〉} form a complete basis in E , then
(112) is satisfied when all the coefficients of the expansion
(112) are identically zero, that is, when

4∑
j=1

〈i|D(0)
l | j〉〈l, m, j|ψ (0)〉 = 0. (115)

In matrix form this equation reads⎡
⎢⎢⎢⎢⎣

1 −1 0 0

−n1g1l n2g2l 0 0

0 0 g1l

n1
− g2l

n2

0 0 1 −1

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

ψ
(0)
1lm

ψ
(0)
2lm

ψ
(0)
3lm

ψ
(0)
4lm

⎤
⎥⎥⎥⎦ = 0, (116)

where gαl = gαl (nαx(0) ) (α = 1, 2) and (109) has been used.

We have already solved this system of equations in
Sec. III C and we have found two different results for TE and
TM waves. Therefore, also now we will consider these two
cases separately.

A. TE waves

Let us choose a pair of values (l0, x(0)
E ) such that

zE ≡ n1g1l0

(
n1x(0)

E

) = n2g2l0

(
n2x(0)

E

)
. (117)

In this case (116) becomes

D(0)
l0

(
x(0)

E

) · ψ
(0)
l0m = 0, (118)

where

D(0)
l0

(
x(0)

E

) ≡

⎡
⎢⎢⎢⎢⎣

1 −1 0 0

−zE zE 0 0

0 0 zE

n2
1

− zE

n2
2

0 0 1 −1

⎤
⎥⎥⎥⎥⎦ (119)

and

ψ
(0)
l0m

.=

⎡
⎢⎢⎢⎣

ψ
(0)
1l0m

ψ
(0)
2l0m

ψ
(0)
3l0m

ψ
(0)
4l0m

⎤
⎥⎥⎥⎦. (120)

Equation (118) turns into an identity for

ψ
(0)
l0m = ψ

(0)
l0m

⎡
⎢⎢⎢⎣

1
1
0
0

⎤
⎥⎥⎥⎦, (121)

where ψ
(0)
l0m are, at this stage, arbitrary numbers. By definition,

this solution (121) is valid only for l = l0. However, Eq. (115)
must be zero for all values of l . Therefore, the solutions of
(115) must be

〈l, m, j|ψ (0)〉 =
{

0, l �= l0
ψ

(0)
l0m(δ j1 + δ j2), l = l0.

(122)

Then we can write |ψ (0)〉 as

|ψ (0)〉 =
∑
l,m,i

|l, m, i〉〈l, m, i|ψ (0)〉

=
l0∑

m=−l0

2∑
i=1

ψ
(0)
l0m|l0, m, i〉

≡ |ϕ(0)〉∣∣αE
0

〉
, (123)

where we have defined

|ϕ(0)〉 ≡
l0∑

m=−l0

ψ
(0)
l0m|l0, m〉, (124a)

∣∣αE
0

〉 ≡ |1〉 + |2〉 .=

⎡
⎢⎢⎣

1
1
0
0

⎤
⎥⎥⎦. (124b)
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At this stage, the 2l0 + 1 coefficients ψ
(0)
l0m in (124a) are

still undetermined. However, irrespective of their values, we
always have

D̂(0)|ψ (0)〉 =
l0∑

m=−l0

4∑
i=1

ψ
(0)
l0m|l0, m, i〉〈i|D(0)

l0

(
x(0)

E

)|α0〉 = 0,

(125)

because from (119) and (121) it follows that

D(0)
l0

(
x(0)

E

)∣∣αE
0

〉 = 0. (126)

This equation can be interpreted as an eigenvector equation
with eigenvalue equal to 0. A direct calculation actually shows
that |αE

0 〉 ∈ E4 belongs to the biorthogonal pair {|αE
0 〉, |αE

1 〉},
where

∣∣αE
1

〉 ≡ 1

zE + 1
(|1〉 − zE |2〉)

.= 1

zE + 1

⎡
⎢⎢⎣

1
−zE

0
0

⎤
⎥⎥⎦, (127)

and

D(0)
l0

(
x(0)

E

)∣∣αE
ı

〉 = λı

∣∣αE
ı

〉
(ı = 0, 1), (128)

where λ0 = 0 and λ1 = zE + 1. Note that, throughout this
paper, we use dotless letters ı and j as indices running from
0 to 3, while ordinary letters i and j are indices running from
1 to 4. The left eigenvectors 〈α̃E

0 | and 〈α̃E
2 | of D(0)

l0
(x(0)

E ) are
defined by 〈

α̃E
ı

∣∣D(0)
l0

(
x(0)

E

) = λı

〈
α̃E

ı

∣∣ (ı = 0, 1), (129)

where 〈
α̃E

0

∣∣ = 1

1 + zE
(zE 〈1| + 〈2|), (130a)〈

α̃E
1

∣∣ = 〈1| − 〈2|. (130b)

If, additionally, we define∣∣αE
2

〉 ≡ |3〉, ∣∣αE
3

〉 ≡ |4〉 (131)

and 〈
α̃E

2

∣∣ ≡ 〈3|, 〈
α̃E

3

∣∣ ≡ 〈4|, (132)

we can build a complete and biorthogonal set of bases for E4,
denoted by {|αE

ı 〉, 〈α̃E
ı |} [32]. It is a simple exercise to verify

that these basis vectors satisfy the standard normalization
condition for biorthogonal vectors,〈

α̃E
ı

∣∣αE
j

〉 = δıj (ı, j = 0, 1, 2, 3), (133)

and that they form a complete basis for E4,

3∑
ı=0

∣∣αE
ı

〉〈
α̃E

ı

∣∣ = I4, (134)

where I4 is the 4 × 4 identity matrix. Such a biorthogonal
basis will be very useful for the next steps in perturbation
theory.

B. TM waves

In this case we choose a pair of values (l0, x(0)
M ) such that

zM ≡ 1

n1
g1l0

(
n1x(0)

M

) = 1

n2
g2l0

(
n2x(0)

M

)
. (135)

We proceed as for the TE case and we write again (116) as

D(0)
l0

(
x(0)

M

) · ψ
(0)
l0m = 0, (136)

with

D(0)
l0

(
x(0)

M

) ≡

⎡
⎢⎢⎣

1 −1 0 0
−n2

1zM n2
2zM 0 0

0 0 zM −zM

0 0 1 −1

⎤
⎥⎥⎦. (137)

Next (136) turns into an identity for

ψ
(0)
l0m = ψ

(0)
l0m

⎡
⎢⎢⎢⎣

0
0
1
1

⎤
⎥⎥⎥⎦, (138)

where ψ
(0)
l0m are again arbitrary numbers. Therefore, Eq. (115)

becomes an identity for

〈l, m, j|ψ (0)〉 =
{

0, l �= l0
ψ

(0)
l0m(δ j3 + δ j4), l = l0.

(139)

Then we can write |ψ (0)〉 as

|ψ (0)〉 =
l0∑

m=−l0

4∑
j=3

ψ
(0)
l0m|l0, m, j〉 ≡ |ϕ(0)〉∣∣αM

0

〉
, (140)

where |ϕ(0)〉 is defined by (124a) and

∣∣αM
0

〉 ≡ |3〉 + |4〉 .=

⎡
⎢⎢⎣

0
0
1
1

⎤
⎥⎥⎦. (141)

By definition, from (137) and (141) it follows that

D(0)
l0

(
x(0)

M

)∣∣αM
0

〉 = 0. (142)

Now the complete and biorthogonal set of bases for E4 is
{|αM

ı 〉, 〈α̃M
ı |} and it is defined by∣∣αM

0

〉 = |3〉 + |4〉, (143a)∣∣αM
1

〉 = 1

zM − 1
(zM |3〉 + |4〉), (143b)∣∣αM

2

〉 = |1〉, (143c)∣∣αM
3

〉 = |2〉 (143d)

and 〈
α̃M

0

∣∣ = 1

zM − 1
(−〈3| + zM〈4|), (144a)〈

α̃M
1

∣∣ = 〈3| − 〈4|, (144b)〈
α̃M

2

∣∣ = 〈1|, (144c)〈
α̃M

3

∣∣ = 〈2|, (144d)
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where

D(0)
l0

(
x(0)

M

)∣∣αM
ı

〉 = λı

∣∣αM
ı

〉
(ı = 0, 1) (145)

and 〈
α̃M

ı

∣∣D(0)
l0

(
x(0)

M

) = λı

〈
α̃M

ı

∣∣ (ı = 0, 1), (146)

with λ0 = 0 and λ1 = zM − 1. By definition,〈
α̃M

ı

∣∣αM
j

〉 = δıj (ı, j = 0, 1, 2, 3) (147)

and
3∑

ı=0

∣∣αM
ı

〉〈
α̃M

ı

∣∣ = I4. (148)

VI. FIRST-ORDER EQUATIONS

A. Some preparatory remarks

In this section we will focus on the degenerate subspace of
dimension Nl0 = 2l0 + 1, denoted by D0 ⊆ E , generated by a
solution x(0)

E of the TE equation

n1g1l0

(
n1x(0)

E

)− n2g2l0

(
n2x(0)

E

) = 0 (149)

and the vectors (121), or by a solution x(0)
M of the TM equation

1

n1
g1l0

(
n1x(0)

M

)− 1

n2
g2l0

(
n2x(0)

M

) = 0 (150)

and the vectors (138). To build up D0, consider first the sub-
space D , which is naturally spanned by the 2l0 + 1 orthogonal
vectors

D ≡ span{|l0,−l0〉, |l0,−l0 + 1〉, . . . , |l0, l0〉}. (151)

As we will see later, it is actually more convenient to choose
a different set of Nl0 orthonormal vectors{∣∣ϕ(0)

μ

〉} = {∣∣ϕ(0)
1

〉
,
∣∣ϕ(0)

2

〉
, . . . ,

∣∣ϕ(0)
Nl0

〉}
, (152)

defined by

∣∣ϕ(0)
μ

〉 ≡ l0∑
m=−l0

ϕ(0)
μm|l0, m〉, (153)

where the coefficients ϕ(0)
μm are, at this stage, still undeter-

mined. We may think of this basis as a part of the biorthogonal
set {|ϕ(0)

μ 〉, 〈ϕ̃(0)
μ |} in E∞, where

〈
ϕ̃(0)

μ

∣∣ ≡ l0∑
m=−l0

ϕ̃(0)
μm〈l0, m|, (154)

with, in general, ϕ̃(0)
μm �= ϕ(0)

μm
∗ and

〈
ϕ̃(0)

μ

∣∣ϕ(0)
ν

〉 = l0∑
m=−l0

ϕ̃(0)
μmϕ(0)

νm = δμν, (155a)

〈
l, m
∣∣ϕ(0)

μ

〉 = 0 = 〈ϕ̃(0)
μ

∣∣l, m
〉

(l �= l0). (155b)

Next we introduce the biorthogonal set {|ψ (0)
μı 〉, 〈ψ̃ (0)

μı |} in
E , defined by ∣∣ψ (0)

μı

〉 ≡ ∣∣ϕ(0)
μ

〉|αı〉, (156a)〈
ψ̃ (0)

μı

∣∣ ≡ 〈ϕ̃(0)
μ

∣∣〈α̃ı |, (156b)

with μ = 1, . . . , Nl0 and ı = 0, 1, 2, 3. Here α denotes either
αE or αM . By definition, the subset of vectors {|ψ (0)

μ0 〉} spans
the sought degenerate subspace D0, of dimension Nl0 :

D0 ≡ span
{∣∣ψ (0)

μ0

〉
; μ = 1, . . . , Nl0

}
. (157)

Therefore, we have〈
ψ̃

(0)
μ0

∣∣ψ (0)
ν0

〉 = δμν, (158a)

D̂(0)
∣∣ψ (0)

μ0

〉 = 0 = 〈ψ̃ (0)
μ0

∣∣D̂(0). (158b)

Moreover, from (153), (154), and (155a) and using (108) it
is possible to show that〈

ψ̃ (0)
μı

∣∣D̂∣∣ψ (0)
νj

〉 = δμν〈α̃ı |Dl0 |αj 〉 (159)

for ı, j = 1, 2, 3.
By construction, the 3 × Nl0 vectors |ψ (0)

μı 〉, with (ı =
1, 2, 3), span the subspace DI , defined by

DI ≡ span
{∣∣ψ (0)

μı

〉
; μ = 1, . . . , Nl0 , ı = 1, 2, 3

}
. (160)

This directly implies that D0 ⊕ DI = D ⊗ E4. Finally, the
total space E defined by (87) is now written as the direct sum

E = D0 ⊕ DI ⊕ C , (161)

where the complement subspace C is defined by

C = span{|l, m, i〉; l = 0, . . . ,∞, m = −l, . . . , l,

∧ l �= l0, i = 1, 2, 3, 4}. (162)

B. Solving the equations

We consider now the change of the degenerate vectors
|ψ (0)

μ0 〉 (μ = 1, . . . , Nl0 ) when the sphere is deformed. Pro-
ceeding as in Sec. IV B, we write∣∣ψ (0)

μ0

〉 → |ψμ(ε)〉 = ∣∣ψ (0)
μ0

〉+ ε
∣∣ψ (1)

μ

〉+ ε2
∣∣ψ (2)

μ

〉+ O(ε3),

(163a)

x(0) → xμ(ε) = x(0) + εx(1)
μ + ε2x(2)

μ + O(ε3). (163b)

This set of equations (163) must hold for all μ =
1, . . . , Nl0 . Note that for each value of μ the corrections x(n)

μ (ε)
might be different, because the departure from the spherical
shape typically removes the degeneracy.

As it is customary in quantum perturbation theory, we
normalize the vector |ψμ(ε)〉 as〈

ψ̃
(0)
μ0

∣∣ψμ(ε)〉 = 1. (164)

As in quantum mechanics, this normalization is particularly
convenient for the later developments of the theory and does
not affect any physical quantity. Equation (164) implies that
|ψ (n)

μ 〉 for n � 1 has no component along 〈ψ̃ (0)
μ0 |, that is,〈

ψ̃
(0)
μ0

∣∣ψ (n)
μ

〉 = 0 for n � 1. (165)

Note, however, that |ψ (n)
μ 〉 may have components along |ψ (0)

ν0 〉,
with ν �= μ.

From (95) it follows that the perturbed vector |ψμ0(ε)〉
must satisfy

M̂(ε)|ψμ(ε)〉 = 0. (166)
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Substituting (163) into this equation and proceeding as in
Sec. IV B, we obtain at first order in ε,

D̂(0)
∣∣ψ (1)

μ

〉+ [V̂ (1) + x(1)
μ D̂

]∣∣ψ (0)
μ0

〉 = 0, (167)

where (106) has been used. To solve this equation we must
project it on the three orthogonal subspaces D0, DI , and C .

1. Projecting along D0

Multiplying (167) from the left by 〈ψ̃ (0)
ν0 | and recalling

(108), we obtain〈
ψ̃

(0)
ν0

∣∣V̂ (1)
∣∣ψ (0)

μ0

〉+ x(1)
μ δνμ〈α̃0|Dl0 |α0〉 = 0, (168)

where (158b) has been used to cancel the leftmost term in
(167). This equation implies that〈

ψ̃
(0)
ν0

∣∣V̂ (1)
∣∣ψ (0)

μ0

〉
〈
α̃0

∣∣Dl0 |α0〉
= −x(1)

μ δνμ, (169)

which can be suggestively rewritten as〈
ϕ̃(0)

ν

∣∣ 〈α̃0|V̂ (1)|α0〉
〈α̃0|Dl0 |α0〉

∣∣ϕ(0)
μ

〉 = −x(1)
μ δνμ. (170)

The denominator 〈α̃0|Dl0 |α0〉 is just a number, as shown in
Appendix A. Conversely, the numerator 〈α̃0|V̂ (1)|α0〉 is an op-
erator in E∞. However, as it is sandwiched between 〈ϕ̃(0)

ν | and
|ϕ(0)

μ 〉 which are in D , we can equivalently rewrite (170) as〈
ϕ̃(0)

ν

∣∣ 〈α̃0|PD V̂ (1)PD |α0〉
〈α̃0|Dl0 |α0〉

∣∣ϕ(0)
μ

〉 = −x(1)
μ δνμ, (171)

where

PD =
l0∑

m=−l0

|l0, m〉〈l0, m| (172)

is the projector onto the subspace D . By definition,

PD

∣∣ϕ(0)
μ

〉 = ∣∣ϕ(0)
μ

〉
,
〈
ϕ̃(0)

μ

∣∣PD = 〈ϕ̃(0)
μ

∣∣. (173)

Written in this form, Eq. (171) tells us that the biorthogonal
set {|ϕ(0)

μ 〉, 〈ϕ̃(0)
μ |} must be chosen to make the Nl0 × Nl0

matrix 〈α̃0|PD V̂ (1)PD |α0〉 diagonal in the subspace D . From
now on, we assume that the set of vectors {|ϕ(0)

μ 〉, 〈ϕ̃(0)
μ |} has

been chosen in this way (see Appendix B for more details).
Finally, setting ν = μ, we get the value of the first-order

correction to the resonance:

x(1)
μ = −

〈
ψ̃

(0)
μ0

∣∣V̂ (1)
∣∣ψ (0)

μ0

〉
〈α̃0|Dl0 |α0〉 . (174)

The next steps will determine the components of |ψ (1)
μ 〉 in DI

and C . We recall that for n � 1,∣∣ψ (n)
μ

〉 = ∣∣ψ (n)
μ

〉|D0 + ∣∣ψ (n)
μ

〉|DI + ∣∣ψ (n)
μ

〉|C , (175)

where

∣∣ψ (n)
μ

〉∣∣
D0

=
Nl0∑
ν=0

∣∣ψ (0)
ν0

〉〈
ψ̃

(0)
ν0

∣∣ψ (n)
μ

〉
, (176a)

∣∣ψ (n)
μ

〉∣∣
DI

=
Nl0∑
ν=1

3∑
ı=1

∣∣ψ (0)
νı

〉〈
ψ̃ (0)

νı

∣∣ψ (n)
μ

〉
, (176b)

∣∣ψ (n)
μ

〉∣∣
C

=
∑
l,m,i

′|l, m, i〉〈l, m, i
∣∣ψ (n)

μ

〉
, (176c)

where, here and hereafter,
∑′

l,m,i stands for∑∞
l=0
l �=l0

∑l
m=−l

∑4
i=1.

2. Projecting along DI

Multiplying (167) from the left by 〈ψ̃ (0)
νı |, with ı = 1, 2, 3,

and recalling (108), we obtain

0 = 〈ψ̃ (0)
νı

∣∣D̂(0)
∣∣ψ (1)

μ

〉+ 〈ψ̃ (0)
νı

∣∣V̂ (1)
∣∣ψ (0)

μ0

〉
+ x(1)

μ

〈
ψ̃ (0)

νı

∣∣D̂∣∣ψ (0)
μ0

〉
, (177)

where

〈
ψ̃ (0)

νı

∣∣D̂(0)
∣∣ψ (1)

μ

〉 = 3∑
j=1

〈α̃ı |D(0)
l0

∣∣αj 〉
〈
ψ̃ (0)

νj

∣∣ψ (1)
μ

〉
, (178a)

〈
ψ̃ (0)

νı

∣∣D̂∣∣ψ (0)
μ0

〉 = δνμ〈α̃ı |Dl0 |α0〉. (178b)

Substituting (178) into (177), we obtain

0 =
3∑

j=1

〈
α̃ı

∣∣D(0)
l0

∣∣αj

〉〈
ψ̃ (0)

νj

∣∣ψ (1)
μ

〉+ 〈ψ̃ (0)
νı

∣∣V̂ (1)
∣∣ψ (0)

μ0

〉
+ x(1)

μ δνμ〈α̃ı |Dl0 |α0〉 (ı = 1, 2, 3), (179)

where x(1)
μ is given by (174). For given values of μ and ν, this

is a set of three linear equations in the variables 〈ψ̃ (0)
ν1 |ψ (1)

μ 〉,
〈ψ̃ (0)

ν2 |ψ (1)
μ 〉, and 〈ψ̃ (0)

ν3 |ψ (1)
μ 〉. We write it concisely as

D �X − �Y = 0, (180)

where we have defined

Xj = 〈ψ̃ (0)
νj

∣∣ψ (1)
μ

〉
, (181a)

Yı = −〈ψ̃ (0)
νı

∣∣V̂ (1)
∣∣ψ (0)

μ0

〉− x(1)
μ δνμ〈α̃ı |Dl0 |α0〉 (181b)

(ı, j = 1, 2, 3), and the 3 × 3 matrix D with elements

Dıj = 〈α̃ı |D(0)
l0

|αj 〉. (182)

A straightforward calculation gives

D = DE =

⎡
⎢⎣zE + 1 0 0

0 zE

n2
1

− zE

n2
2

0 1 −1

⎤
⎥⎦ (183)

for TE waves and

D = DM =
⎡
⎣zM − 1 0 0

0 1 −1
0 −n2

1zM n2
2zM

⎤
⎦ (184)

for TM waves, where zE and zM are given by (117) and (135),
respectively. These matrices are invertible, because

det DE = (zE + 1) f M
l0

(
x(0)

E

) �= 0, (185a)

det DM = (zM − 1) f E
l0

(
x(0)

M

) �= 0, (185b)

where f E
l (x) and f M

l (x) are given by (26) and (27), respec-
tively, and we have denoted by x(0)

E and x(0)
M the solutions of

f E
l0

(
x(0)

E

) = 0, f M
l0

(
x(0)

M

) = 0, (186)
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respectively. Using these equations, we can eventually write
the solution of (180),

�X = D−1 �Y , (187)

as 〈
ψ̃

(0)
ν1

∣∣ψ (1)
μ

〉 = 1

zE + 1
Y1, (188a)

〈
ψ̃

(0)
ν2

∣∣ψ (1)
μ

〉 = 1

f M
l0

(
x(0)

E

)(−Y2 + zE

n2
2

Y3

)
, (188b)

〈
ψ̃

(0)
ν3

∣∣ψ (1)
μ

〉 = 1

f M
l0

(
x(0)

E

)(−Y2 + zE

n2
1

Y3

)
(188c)

for TE waves and〈
ψ̃

(0)
ν1

∣∣ψ (1)
μ

〉 = 1

zM − 1
Y1, (189a)

〈
ψ̃

(0)
ν2

∣∣ψ (1)
μ

〉 = 1

f E
l0

(x(0)
M )

(
n2

2zMY2 + Y3
)
, (189b)

〈
ψ̃

(0)
ν3

∣∣ψ (1)
μ

〉 = 1

f E
l0

(x(0)
M )

(
n2

1zMY2 + Y3
)

(189c)

for TM waves.

3. Projecting along C

Multiplying (167) from the left by 〈l, m, i|, with l �= l0 and
i = 1, 2, 3, 4, we obtain

0 = 〈l, m, i
∣∣D̂(0)

∣∣ψ (1)
μ

〉+ 〈l, m, i
∣∣V̂ (1)

∣∣ψ (0)
μ0

〉
+ x(1)

μ

〈
l, m, i

∣∣D̂∣∣ψ (0)
μ0

〉
. (190)

From (108) and l �= l0 it follows that the last term on the right-
hand side is identically zero. Substituting (176c) into (190) we
find, after a little calculation,

0 =
4∑

j=1

〈
i
∣∣D(0)

l

∣∣ j〉〈l, m, j
∣∣ψ (1)

μ

〉+ 〈l, m, i
∣∣V̂ (1)

∣∣ψ (0)
μ0

〉
, (191)

which can be recast into

0 = D(0)
l

�X − �Y , (192)

where now we have defined �X and �Y as

Xj = 〈l, m, j
∣∣ψ (1)

μ

〉
, (193a)

Yi = −〈l, m, i
∣∣V̂ (1)

∣∣ψ (0)
μ0

〉
(193b)

(i, j = 1, 2, 3, 4). The 4 × 4 matrix D(0)
l is defined by (116),

with gαl = gαl (x(0) ), where x(0) = xσ
l0n (σ = E , M) is a so-

lution of f σ
l0

(x(0) ) = 0. By construction, D(0)
l is invertible

because, for l �= l0,

det D(0)
l = f E

l

(
xσ

l0n

)
f M
l

(
xσ

l0n

) �= 0. (194)

Finally, a straightforward calculation gives, for l �= l0,〈
l, m, 1

∣∣ψ (1)
μ

〉 = 1

f E
l (x(0) )

[n2g2l (x
(0) )Y1 + Y2], (195a)

〈
l, m, 2

∣∣ψ (1)
μ

〉 = 1

f E
l (x(0) )

[n1g1l (x
(0) )Y1 + Y2], (195b)

〈
l, m, 3

∣∣ψ (1)
μ

〉 = 1

f M
l (x(0) )

(
−Y3 + g2l (x(0) )

n2
Y4

)
, (195c)

〈
l, m, 4

∣∣ψ (1)
μ

〉 = 1

f M
l (x(0) )

(
−Y3 + g1l (x(0) )

n1
Y4

)
, (195d)

where x(0) = xσ
l0n, with σ = E , M.

C. Summary of the first-order perturbation theory

In this section we have determined the first-order cor-
rections x(1)

μ [Eq. (174)] to the resonances, and the compo-
nents 〈ψ̃ (0)

νı |ψ (1)
μ 〉 [Eqs. (188) and (189)] and 〈l, m, i|ψ (1)

μ 〉
[Eqs. (195)] of the first-order vector |ψ (1)

μ 〉 [Eq. (175)].
However, similarly to what happens in standard quantum
perturbation theory, it is not possible to determine the compo-
nents 〈ψ̃ (0)

ν0 |ψ (1)
μ 〉 of |ψ (1)

μ 〉 along the degenerate subspace D0.
For this, we need to solve the second-order equation (104c).
This will be done in the next section.

VII. SECOND-ORDER EQUATIONS

A. Nondegenerate case

In this section we are going to solve (104c) when the
degeneracy is lifted to first order, that is, when

x(1)
μ �= x(1)

ν whenever μ �= ν (196)

and μ, ν = 1, . . . , Nl0 . To begin with, we use (106) to rewrite
(104c) as

D̂(0)
∣∣ψ (2)

μ

〉+ (V̂ (1) + x(1)
μ D̂

)∣∣ψ (1)
μ

〉
+ (V̂ (2) + x(2)

μ D̂
)∣∣ψ (0)

μ0

〉 = 0. (197)

Next we proceed as in first-order theory, projecting this equa-
tion on the subspaces D0 to find x(2)

μ and 〈ψ̃ (0)
ν0 |ψ (1)

μ 〉. We recall
that at second order we are interested only in the resonance
corrections, so we do not need to determine the full vector
|ψ (2)

μ 〉.
1. Projecting along D0

Multiplying (197) from the left by 〈ψ̃ (0)
ν0 | and recalling

(108), we obtain

0 = 〈ψ̃ (0)
ν0

∣∣D̂(0)
∣∣ψ (2)

μ

〉+ 〈ψ̃ (0)
ν0

∣∣V̂ (1)
∣∣ψ (1)

μ

〉
+ x(1)

μ

〈
ψ̃

(0)
ν0

∣∣D̂∣∣ψ (1)
μ

〉+ 〈ψ̃ (0)
ν0

∣∣V̂ (2)
∣∣ψ (0)

μ0

〉
+ x(2)

μ

〈
ψ̃

(0)
ν0

∣∣D̂∣∣ψ (0)
μ0

〉
. (198)

Now, for clarity, we calculate the five addends on the right-
hand side of (198) separately. The first addend [from (158b)]〈

ψ̃
(0)
ν0

∣∣D̂(0)
∣∣ψ (2)

μ

〉 = 0. (199)

The second addend〈
ψ̃

(0)
ν0

∣∣V̂ (1)
∣∣ψ (1)

μ

〉 = −x(1)
ν

〈
α̃0

∣∣Dl0

∣∣α0
〉〈
ψ̃

(0)
ν0

∣∣ψ (1)
μ

〉
+

Nl0∑
τ=1

3∑
ı=1

〈
ψ̃

(0)
ν0

∣∣V̂ (1)
∣∣ψ (0)

τ ı

〉〈
ψ̃ (0)

τ ı

∣∣ψ (1)
μ

〉
+
∑
l,m,i

′〈
ψ̃

(0)
ν0

∣∣V̂ (1)
∣∣l, m, i

〉〈
l, m, i

∣∣ψ (1)
μ

〉
,

(200)
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where (175), (176), and (169) have been used. The third ad-
dend 〈

ψ̃
(0)
ν0

∣∣D̂∣∣ψ (1)
μ

〉 = 〈α̃0|Dl0 |α0〉
〈
ψ̃

(0)
ν0

∣∣ψ (1)
μ

〉
+

3∑
ı=1

〈α̃0|Dl0 |αı〉
〈
ψ̃ (0)

νı

∣∣ψ (1)
μ

〉
, (201)

where (159) has been used. The fourth addend〈
ψ̃

(0)
ν0

∣∣V̂ (2)
∣∣ψ (0)

μ0

〉 = 〈ϕ̃(0)
ν , α̃0|V̂ (2)

∣∣ϕ(0)
μ , α0

〉
. (202)

The fifth addend〈
ψ̃

(0)
ν0

∣∣D̂∣∣ψ (0)
μ0

〉 = δνμ〈α̃0|Dl0 |α0〉, (203)

where (159) has been used.
Now that we have all the terms, we can use (198) evaluated

for ν = μ to obtain x(2)
μ . Next we set ν �= μ to get 〈ψ̃ (0)

ν0 |ψ (1)
μ 〉.

In the first case we find

x(2)
μ = −1〈

α̃0

∣∣Dl0

∣∣α0
〉
{〈

ψ̃
(0)
μ0

∣∣V̂ (2)
∣∣ψ (0)

μ0

〉
+
∑
l,m, j

′〈
ψ̃

(0)
μ0

∣∣V̂ (1)
∣∣l, m, j

〉〈
l, m, j

∣∣ψ (1)
μ

〉

+
Nl0∑
τ=1

3∑
ı=1

〈
ψ̃

(0)
μ0

∣∣V̂ (1)
∣∣ψ (0)

τ ı

〉〈
ψ̃ (0)

τ ı

∣∣ψ (1)
μ

〉

+ x(1)
μ

3∑
ı=1

〈
α̃0

∣∣Dl0

∣∣αı

〉〈
ψ̃ (0)

μı

∣∣ψ (1)
μ

〉}
. (204)

In the second case we obtain

〈
ψ̃

(0)
ν0

∣∣ψ (1)
μ

〉 = 1〈
α̃0

∣∣Dl0

∣∣α0
〉 1

x(1)
ν − x(1)

μ

{〈
ψ̃

(0)
ν0

∣∣V̂ (2)
∣∣ψ (0)

μ0

〉
+
∑
l,m,i

′〈
ψ̃

(0)
ν0

∣∣V̂ (1)
∣∣l, m, i

〉〈
l, m, i

∣∣ψ (1)
μ

〉

+
Nl0∑
τ=1

3∑
ı=1

〈
ψ̃

(0)
ν0

∣∣V̂ (1)
∣∣ψ (0)

τ ı

〉〈
ψ̃ (0)

τ ı

∣∣ψ (1)
μ

〉

+ x(1)
μ

3∑
ı=1

〈
α̃0

∣∣Dl0

∣∣αı

〉〈
ψ̃ (0)

μı

∣∣ψ (1)
μ

〉}
, (205)

with ν �= μ.
It is instructive to rewrite (204) in a compact form using

the first-order equation (167) in the bra form〈
ψ̃ (1)

μ

∣∣D̂(0) + 〈ψ̃ (0)
μ0

∣∣(V̂ (1) + x(1)
μ D̂

) = 0. (206)

Multiplying this equation from the right by |ψ (1)
μ 〉, we obtain〈

ψ̃
(0)
μ0

∣∣V̂ (1) + x(1)
μ D̂

∣∣ψ (1)
μ

〉 = −〈ψ̃ (1)
μ

∣∣D̂(0)
∣∣ψ (1)

μ

〉
. (207)

Substituting this result in (198) we find, after a simple manip-
ulation,

x(2)
μ =

〈
ψ̃ (1)

μ

∣∣D̂(0)
∣∣ψ (1)

μ

〉− 〈ψ̃ (0)
μ0 |V̂ (2)

∣∣ψ (0)
μ0

〉
〈
ψ̃

(0)
μ0

∣∣D̂∣∣ψ (0)
μ0

〉 . (208)

This expression is only formal in the sense that it contains
unknown coefficients. However, it makes clear what the com-
plicated equation (204) actually means.

This completes the calculation for the second-order cor-
rections, when the degeneracy is lifted to first order. If this
is not the case, we need a different procedure, which will be
developed in the next section.

B. Degenerate case

1. Some preparatory remarks

Now we consider the case when the degeneracy is only
partially removed to first order. Without loss of generality, we
assume that the first N first-order corrections x(1)

μ are equal to
each other

x(1)
1 = x(1)

2 = · · · = x(1)
N ≡ x(1), (209)

where 1 < N � Nl0 , and (169) is still valid. Consequently, the
initial degenerate subspace D0 breaks in two parts, denoted by
D0N and D0M , with N + M = Nl0 , and defined by

D0N = span
{∣∣ψ (0)

μ0

〉
, μ = 1, . . . , N

}
, (210a)

D0M = span
{∣∣ψ (0)

μ0

〉
, μ = N + 1, . . . , Nl0

}
. (210b)

As before, because of the remaining N-fold degeneracy, it is
convenient to define a new orthonormal basis in D0N , denoted
by |ψ (0)

A0 〉 and defined by

∣∣ψ (0)
A0

〉 ≡ ∣∣ϕ(0)
A

〉|α0〉 =
N∑

μ=1

ϕ
(0)
Aμ

∣∣ϕ(0)
μ

〉|α0〉 =
N∑

μ=1

ϕ
(0)
Aμ

∣∣ψ (0)
μ0

〉
,

(211)

where A = 1, . . . , N . The coefficients ϕ
(0)
Aμ are to be deter-

mined. As it should be customary now, we think of this basis
as a part of the biorthogonal set {|ψ (0)

A0 〉, 〈ψ̃ (0)
A0 |} in E∞, where

〈
ψ̃

(0)
A0

∣∣ ≡ N∑
μ=1

ϕ̃
(0)
Aμ

〈
ψ̃

(0)
μ0

∣∣, (212)

with

〈
ψ̃

(0)
A0

∣∣ψ (0)
B0

〉 = N∑
μ=1

ϕ̃
(0)
Aμϕ

(0)
Bμ = δAB. (213)

We build up the perturbation theory as usual,

|ψA(ε)〉 = ∣∣ψ (0)
A0

〉+ ε
∣∣ψ (1)

A

〉+ ε2
∣∣ψ (2)

A

〉+ O(ε3), (214a)

xA(ε) = x(0) + εx(1) + ε2x(2)
A + O(ε3). (214b)

Note that in (214b) the first-order correction x(1) has no
label, according to (209). Using the fundamental equation
(97),

M̂(ε)|ψA(ε)〉 = 0, (215)

we can obtain the familiar chain of equations

D̂(0)
∣∣ψ (0)

A0

〉 = 0, (216a)

D̂(0)
∣∣ψ (1)

A

〉 = −M̂(1)
∣∣ψ (0)

A0

〉
, (216b)

D̂(0)
∣∣ψ (2)

A

〉 = −M̂(1)|ψ (1)
A 〉 − M̂(2)

∣∣ψ (0)
A0

〉
, (216c)
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etc., where (106a) has been used. Next we need to adapt to the
present case the normalization condition (165). As shown in
Appendix C, the new condition is〈

ψ̃
(0)
A0

∣∣ψ (n)
A

〉 = 0 for 1 � A � N (217)

and n � 1. Therefore, similarly to (175) and (176), we can
write now∣∣ψ (n)

A

〉 = ∣∣ψ (n)
A

〉|D0N + ∣∣ψ (n)
A

〉∣∣
D0M

+ ∣∣ψ (n)
A

〉∣∣
DI

+ ∣∣ψ (n)
A

〉|C ,

(218)

where

∣∣ψ (n)
A

〉|D0N =
N∑

ν=1

∣∣ψ (0)
ν0

〉〈
ψ̃

(0)
ν0

∣∣ψ (n)
A

〉
, (219a)

∣∣ψ (n)
A

〉∣∣
D0M

=
Nl0∑

ν=N+1

∣∣ψ (0)
ν0

〉〈
ψ̃

(0)
ν0

∣∣ψ (n)
A

〉
, (219b)

∣∣ψ (n)
A

〉∣∣
DI

=
Nl0∑
ν=1

3∑
ı=1

∣∣ψ (0)
νı

〉〈
ψ̃ (0)

νı

∣∣ψ (n)
A

〉
, (219c)

∣∣ψ (n)
A

〉∣∣
C

=
∑
l,m,i

′|l, m, i〉〈l, m, i
∣∣ψ (n)

A

〉
. (219d)

The zeroth-order equation (216a) is trivially satisfied. The
first-order equation (216b) also becomes an identity when pro-
jected on D0N and D0M . However, it furnishes the coefficients
〈ψ̃ (0)

νı |ψ (1)
A 〉 and 〈l, m, i|ψ (1)

A 〉 when projected upon DI and C ,
respectively. So let us study it.

2. First-order equations

a. Projecting along DI .. Multiplying (216b) from the left
by 〈ψ̃ (0)

νı |, with ν = 1, . . . , Nl0 and ı = 1, 2, 3, we obtain

0 = 〈ψ̃ (0)
νı

∣∣D̂(0)
∣∣ψ (1)

A

〉
+ 〈ψ̃ (0)

νı

∣∣V̂ (1)
∣∣ψ (0)

A0

〉+ x(1)
〈
ψ̃ (0)

νı

∣∣D̂∣∣ψ (0)
A0

〉
, (220)

where (106b) has been used. The first term of this sum is〈
ψ̃ (0)

νı

∣∣D̂(0)
∣∣ψ (1)

A

〉 = 〈ψ̃ (0)
νı

∣∣D̂(0)
∣∣ψ (1)

A

〉∣∣
DI

=
3∑

j=1

〈α̃ı |D(0)
l0

|αj 〉
〈
ψ̃ (0)

νj

∣∣ψ (1)
A

〉
, (221)

because diagonal operators D̂ cannot connect DI with C ,
and (159) has been used. The second term does not require
calculations, being simply

〈
ψ̃ (0)

νı

∣∣V̂ (1)
∣∣ψ (0)

A0

〉 = N∑
μ=1

ϕ
(0)
Aμ

〈
ψ̃ (0)

νı

∣∣V̂ (1)
∣∣ψ (0)

μ0

〉
, (222)

where the coefficients ϕ
(0)
Aμ are still to be determined and (211)

has been used. Finally, the third and last term is〈
ψ̃ (0)

νı

∣∣D̂∣∣ψ (0)
A0

〉 = 〈ψ̃ (0)
νı

∣∣D̂∣∣ψ (0)
A0

〉|DI

=
N∑

μ=1

ϕ
(0)
Aμδνμ〈α̃ı |Dl0 |α0〉, (223)

where (159) has been again used.

Substituting (221)–(223) into (220), we obtain

0 =
3∑

j=1

〈α̃ı |D(0)
l0

|αj 〉
〈
ψ̃ (0)

νj

∣∣ψ (1)
A

〉

+
N∑

μ=1

ϕ
(0)
Aμ

[〈
ψ̃ (0)

νı

∣∣V̂ (1)
∣∣ψ (0)

μ0

〉
+ x(1)δνμ〈α̃ı |Dl0 |α0〉

]
(224)

for ν = 1, . . . , Nl0 and ı = 1, 2, 3. For each value of ν,
Eq. (224) can be written as a matrix equation of the
form

0 = D �X − �Y , (225)

where the 3 × 3 matrix D is defined by (182), that is, Dıj =
〈α̃ı |D(0)

l0
|αj 〉, and now

Xj = 〈ψ̃ (0)
νj

∣∣ψ (1)
A

〉
, (226a)

Yı = −
N∑

μ=1

ϕ
(0)
Aμ

[〈
ψ̃ (0)

νı

∣∣V̂ (1)
∣∣ψ (0)

μ0

〉− x(1)δνμ〈α̃ı |Dl0 |α0〉
]
.

(226b)

Specifically, D is given by (183) for TE waves and by (184)
for TM waves. Therefore, we know that it is invertible and we
can formally write

〈
ψ̃ (0)

νı

∣∣ψ (1)
A

〉 = −
N∑

μ=1

{
3∑

j=1

D−1
ıj

[〈
ψ̃

(0)
ν j

∣∣V̂ (1)
∣∣ψ (0)

μ0

〉

+ x(1)δνμ〈α̃j |Dl0 |α0〉
]}

ϕ
(0)
Aμ, (227)

where D−1 is the matrix inverse of D. Using the standard
notation D−1({ı, j}) (ı, j = 1, 2, 3) to denote the principal
submatrix of D−1 that lies between row ı and row j and
between column ı and column j [33], we can write D−1 =
D−1({1, 1}) ⊕ D−1({2, 3}), where

D−1
E ({1, 1}) = 1

zE + 1
, (228a)

D−1
E ({2, 3}) = 1

f M
l0

(
x(0)

E

)
[−1 zE

n2
2

−1 zE

n2
1

]
(228b)

for TE waves and

D−1
M ({1, 1}) = 1

zM − 1
, (229a)

D−1
M ({2, 3}) = 1

f E
l0

(
x(0)

M

)
[

n2
2zM 1

n2
1zM 1

]
(229b)

for TM waves, where zE and zM are given by (117) and (135),
respectively.

Thus, the expression between curly brackets in (227) is
completely determined. In the remainder we will indicate it
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compactly with

M (1)
νı|μ = −

3∑
j=1

D−1
ıj

[〈
ψ̃ (0)

νj

∣∣V̂ (1)
∣∣ψ (0)

μ0

〉+ x(1)δνμ〈α̃j |Dl0 |α0〉
]

= −
3∑

j=1

D−1
ıj

〈
ψ̃ (0)

νj

∣∣M̂(1)
∣∣ψ (0)

μ0

〉
(230)

to rewrite (227) as

〈
ψ̃ (0)

νı

∣∣ψ (1)
A

〉 = N∑
μ=1

M (1)
νı|μϕ

(0)
Aμ. (231)

b. Projecting along C . Multiplying (216b) from the left by
〈l, m, i|, with l �= l0 and i = 1, 2, 3, 4, we obtain

0 = 〈l, m, i
∣∣D̂(0)

∣∣ψ (1)
A

〉
+ 〈l, m, i

∣∣V̂ (1)
∣∣ψ (0)

A0

〉+ x(1)
〈
l, m, i

∣∣D̂∣∣ψ (0)
A0

〉
. (232)

The last term proportional to x(1) is equal to 0 due to the now
familiar properties of the diagonal operators D̂. Using (108),
we can directly calculate the first term to get

〈
l, m, i

∣∣D̂(0)
∣∣ψ (1)

A

〉 = 4∑
j=1

〈
i
∣∣D(0)

l

∣∣ j〉〈l, m, j
∣∣ψ (1)

A

〉
. (233)

Finally, the second term is simply given by

〈
l, m, i

∣∣V̂ (1)
∣∣ψ (0)

A0

〉 = N∑
μ=1

〈
l, m, i

∣∣V̂ (1)
∣∣ψ (0)

μ0

〉
ϕ

(0)
μA. (234)

Substituting (233) and (234) into (232), we obtain

0 =
4∑

j=1

〈
i
∣∣D(0)

l

∣∣ j〉〈l, m, j
∣∣ψ (1)

A

〉

+
N∑

μ=1

〈
l, m, i

∣∣V̂ (1)
∣∣ψ (0)

μ0

〉
ϕ

(0)
μA. (235)

This equation is analogous to (191) with the same 4 ×
4 invertible matrix D(0)

l with elements [D(0)
l ]i j = 〈i|D(0)

l | j〉.
Therefore, we do not need to make additional calculations and
we can write directly

〈
l, m, i

∣∣ψ (1)
A

〉 = N∑
μ=1

V (1)
lmi|μϕ

(0)
Aμ, (236)

where we have defined

V (1)
lmi|μ = −

4∑
j=1

[
D(0)

l

]−1

i j

〈
l, m, j

∣∣V̂ (1)
∣∣ψ (0)

μ0

〉
. (237)

In this expression[
D(0)

l

]−1 = [D(0)
l

]−1
({1, 2}) ⊕ [D(0)

l

]−1
({3, 4}), (238)

where

[
D(0)

l

]−1
({1, 2}) = 1

f E
l (x(0) )

[
n2g2l (n2x(0) ) 1

n1g1l (n1x(0) ) 1

]
, (239a)

[
D(0)

l

]−1
({3, 4}) = 1

f M
l (x(0) )

[
−1 g2l (n2x(0) )

n2

−1 g1l (n1x(0) )
n1

]
, (239b)

where x(0) = xσ
l0n, with σ = E , M.

3. Second-order equations

Projecting along D0N . Let us set ν � N . Multiplying
(216c) from the left by 〈ψ̃ (0)

ν0 | and using (106b), we obtain〈
ψ̃

(0)
ν0

∣∣D̂(0)
∣∣ψ (2)

μ

〉
= −〈ψ̃ (0)

ν0

∣∣V̂ (1)
∣∣ψ (1)

A

〉− x(1)
〈
ψ̃

(0)
ν0

∣∣D̂∣∣ψ (1)
A

〉
− 〈ψ̃ (0)

ν0

∣∣V̂ (2)
∣∣ψ (0)

A0

〉− x(2)
A

〈
ψ̃

(0)
ν0

∣∣D̂∣∣ψ (0)
A0

〉
. (240)

The left-hand side of this equation vanishes because of (158b).
The four addends on the right-hand side of (240) are calcu-
lated as follows. The first addend〈

ψ̃
(0)
ν0

∣∣V̂ (1)
∣∣ψ (1)

A

〉 = − x(1)〈α̃0|Dl0 |α0〉
〈
ψ̃

(0)
ν0

∣∣ψ (1)
A

〉
+ x(1)

Nl0∑
μ=1

3∑
ı=1

〈
ψ̃

(0)
ν0

∣∣V̂ (1)
∣∣ψ (0)

μı

〉〈
ψ̃ (0)

μı

∣∣ψ (1)
A

〉
+
∑
l,m,i

′〈
ψ̃

(0)
ν0

∣∣V̂ (1)|l, m, i〉〈l, m, i
∣∣ψ (1)

A

〉
,

(241)

where (168) has been used. Note that in the first line of (241),
the coefficients 〈ψ̃ (0)

ν0 |ψ (1)
A 〉 are unknown. However, we will

see soon that such a term is canceled by an analogous one in
the second addend. The second addend

x(1)
〈
ψ̃

(0)
ν0

∣∣D̂∣∣ψ (1)
A

〉 = x(1)〈α̃0|Dl0 |α0〉
〈
ψ̃

(0)
ν0

∣∣ψ (1)
A

〉
+ x(1)

3∑
ı=1

〈α̃0|Dl0 |αı〉
〈
ψ̃ (0)

νı

∣∣ψ (1)
A

〉
. (242)

As anticipated, the term x(1)〈α̃0|Dl0 |α0〉〈ψ̃ (0)
ν0 |ψ (1)

A 〉 in this ex-
pression cancels with the same term in (241). The third addend

〈
ψ̃

(0)
ν0

∣∣V̂ (2)
∣∣ψ (0)

A0

〉 = N∑
μ=1

〈
ψ̃

(0)
ν0

∣∣V̂ (2)
∣∣ψ (0)

μ0

〉
ϕ

(0)
Aμ. (243)

The fourth addend

x(2)
A

〈
ψ̃

(0)
ν0

∣∣D̂∣∣ψ (0)
A0

〉 = x(2)
A 〈α̃0|Dl0 |α0〉ϕ(0)

Aν . (244)

Summing all these addends, after straightforward manipula-
tion we eventually obtain

N∑
ν=1

(
M (2)

μν + x(2)
A δμν

)
ϕ

(0)
Aν = 0, (245)

where we have defined the N × N matrix M (2) by the elements

M (2)
μν ≡ 1〈

α̃0

∣∣Dl0

∣∣α0
〉
{ Nl0∑

τ=1

3∑
ı=1

[〈
ψ̃

(0)
μ0

∣∣V̂ (1)
∣∣ψ (0)

τ ı

〉
+ x(1)δτμ

〈
α̃0

∣∣Dl0

∣∣αı

〉]
M (1)

τ ı|ν

+
∑
l,m,i

′〈
ψ̃

(0)
μ0

∣∣V̂ (1)
∣∣l, m, i

〉
V (1)

lmi|ν

+ 〈ψ̃ (0)
μ0

∣∣V̂ (2)
∣∣ψ (0)

ν0

〉}
. (246)

Equation (245) is an eigenvalue equation that gives us both the
second-order resonance corrections x(2)

A , as the eigenvalues of
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M (2), and the basis vectors |ψ (0)
A0 〉, as the associated eigenvec-

tors. This completes our calculations.

VIII. OBLATE SPHEROID

In this section we apply our theory to nearly spherical
dielectric resonators, which are rotationally invariant around
the z axis, with h(θ, φ) = h(θ ). This permits us to illustrate
the use of degenerate perturbation theory in the case in which
the degeneration is only partially removed to first order. The
unperturbed system is, as always in this work, a dielectric
sphere of radius a and refractive index n1, surrounded by vac-
uum or air with n2 = 1. For practical reasons (the numerical
results are more accurate), we will choose n1 = 2.

As a specific example, we consider as nearly spherical
resonator, an oblate spheroid with semiaxes (a(1 + δ), a(1 +
δ), a), where 0 < δ 	 1 quantifies the magnitude of the defor-
mation. The equation of the spheroid in spherical coordinates
is

r = a√
cos2 θ + sin2 θ

(1+δ)2

= a[1 + δ sin2 θ + O(δ2)], (247)

where the Taylor expansion truncated at first order is a good
approximation for 0 < δ 	 1. Thus, in the remainder we will
set

h(θ, φ) = h(θ ) = δ sin2 θ (248)

as the deformation function and

r = a(1 + δ sin2 θ ) (249)

for the equation defining the approximate oblate spheroid, for
both the perturbative and the numerical calculations. To per-
form the latter, we used the COMSOL Multiphysics® software
(Wave Optics Module) [34].

For illustration purposes, we choose as unperturbed res-
onances (29) and (30) x(0)

E = xE
l0n0

� 6.826 − i2.535 × 10−3

and x(0)
M = xM

l0n0
� 7.248 − i4.325 × 10−3, with l0 = 10 and

n0 = 1, for TE and TM waves, respectively. We take the
magnitude of the deformation to be equal to δ = 0.01 and
δ = 0.05 for the TE and TM waves, respectively. The choice
of n0 = 1 (first radial mode) is suggested by the fact that
higher-order radial numbers (n > 1) mark lossy waves not
localized near the surface of the resonator, which are of low
practical interest [1].

Figures 3(a) and 4(a) show the values of ka = kl0n0 a for
TE and TM waves, respectively. The orange open circles are
obtained by direct numerical simulations and the blue closed
circles by solving the eigenvalue equation (245). Deforming
the sphere into a spheroid partially lifts the degeneracy, thus
yielding l0 + 1 = 11 distinct resonances, each characterized
by a different value of |m| = 0, 1, . . . , l0. The remaining
twofold degeneracy is due the rotational invariance of the
spheroid with respect to the z axis, which implies that the
physics is the same for clockwise (m > 0) and counterclock-
wise (m < 0) waves. Note that waves with |m| < l0 have a
polar angle θ extension, growing with l0 − |m|. This implies
that they are more sensitive to surface deformations.

Figures 3(b) and 4(b) display the relative error δx/x be-
tween numerical (xnum) and perturbative (xpert) calculations,

FIG. 3. (a) Comparison between numerical calculations (orange
open circles) and perturbation theory predictions (blue closed circles)
for the TE complex-valued resonances x = ka of a dielectric approx-
imate oblate spheroid with δ = 0.01 and refractive index n1 = 2.
Here k = kl0n0 , where l0 = 10 and n0 = 1 is the first radial number.
The numbers 10, 9, . . . , 0 nearthe resonances mark the values of 0 �
|m| � l0. (b) Relative error δx/x between numerical and perturbative
calculations, calculated according to (250). The dashed orange line
gives the average relative error.

with x = ka, calculated as

δx

x
=
∣∣∣∣ xpert

xnum − δxnum
− 1

∣∣∣∣, (250)

where δxnum has been estimated as the absolute error be-
tween the theoretical (exact, |m|-independent) values obtained
by solving (28) with l = 10, n = 1, and the (|m|-dependent)
numerical results for a perfectly spherical cavity. To give a
quantitative estimate of the error, we have also plotted the
average relative error (orange dashed lines). Figures 5 and 6
are the same as Figs. 3 and 4, respectively, but with δ = 0.05.
Overall, all plots exemplify the goodness of the second-order
perturbation theory we have developed, even for nonequato-
rial modes with |m| < l0.

To produce the plots above, we greatly benefited from the
fact that the infinite sums that appears in (204), (205), and
(246) actually contain only a finite number of terms according
to the rule

∑
l,m,i

′ →
l0+Lmax∑

l = max(l0 − Lmax, 1)
l �= l0

l∑
m=−l

4∑
i=1

, (251)
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FIG. 4. Same as Fig. 3 but for TM waves.

FIG. 5. Same as Fig. 3 but for a bigger value for the magnitude
of the deformation δ = 0.05.

FIG. 6. Same as Fig. 5 but for TM waves.

where Lmax is determined by the expansion of the deformation
function f (θ, φ) in terms of the spherical harmonics:

f (θ, φ) =
Lmax∑
L=0

L∑
M=−L

fLMYLM (θ, φ). (252)

For example, from (248) it follows that

f (θ, φ) = sin2 θ

= 4
√

π

3

[
Y00(θ, φ) − 1√

5
Y20(θ, φ)

]
, (253)

so that Lmax = 2.
The rule (251) is empirically determined. However, it

could be rigorously proven by writing the product of spher-
ical harmonics in terms of the Wigner 3- j symbols [35].
Such products appear in the quantities 〈Xl ′m′ , f (θ, φ)�lm〉 and
〈Xl ′m′Ylm(θ, φ)e‖(θ, φ)〉, used in (A7b) and (A8b). A practical
example of the use of the 3- j symbols in this kind of calcula-
tion can be found in Sec. VI C of Ref. [25], Eqs. (115)–(120).

IX. SUMMARY

We have developed a boundary-condition perturbation the-
ory to determine the electromagnetic resonances of nearly
spherical dielectric resonators. The three-dimensional nature
of the resonator and the vector character of the electromag-
netic field dictated the use of vector spherical harmonics for
handling the problem, as opposed to the more familiar scalar
spherical harmonics, the latter being typically employed in
problems with spherical or nearly spherical symmetry. By
imposing standard electromagnetic boundary conditions at the
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surface of the resonator separating two different dielectric me-
dia, we obtained an exact algebraic homogeneous system of
linear equations. The mathematical correspondence between
linear operators and matrices allowed us to reformulate the
problem in the language of quantum mechanics and to use
the well-known Rayleigh-Schrödinger perturbation theory to
build up a perturbation series for the resonances of the elec-
tromagnetic field, up to and including second-order terms.
However, as dielectric resonators are de facto open systems,
we had to use the mathematical machinery of non-Hermitian
operators and biorthogonal bases. We considered both simple
and degenerate unperturbed spectra, including the case when
degeneracy is not fully removed to first order. For the latter
instance, exemplified by the spectrum of an oblate spheroid
resonator, we have compared the predictions of our theory
with numerical calculations, finding excellent agreement.

The main results are represented by Eqs. (174), (204),
(245), and (246). These formulas can be used to calculate
the spectrum of the electromagnetic resonances of arbitrarily
deformed nearly spherical dielectric resonators of any size,

provided the conditions (49) for the applicability of the per-
turbation theory are satisfied. Notably, as second-order terms
are included, this theory can also be used for the calculation
of the spectra of spherical resonators with random surface
roughness. This is the case, for example, of helium droplets
with thermally excited capillary waves [24].
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APPENDIX A: PROPERTIES OF THE MATRIX ELEMENTS

In this Appendix we demonstrate some general properties of the operator M̂ defined by (93). In particular, we want to
calculate the terms of the expansion

〈l ′, m′, i|M̂(0) + M̂(1) + M̂(2) + · · · + |l, m, j〉 = [Ml ′m′(0)
lm

]
i j + [Ml ′m′(1)

lm

]
i j + [Ml ′m′(2)

lm

]
i j + · · · (A1)

to demonstrate the validity of (106)–(108).
As M̂ is operatively defined by its matrix elements, defined by (93), we must investigate the properties of [Ml ′m′(n)

lm ]i j , with

n = 0, 1, 2, . . . and i, j = 1, 2, 3, 4. To begin with, we note that from (71) it follows that for ε = 0, the 4 × 4 matrix Ml ′m′(0)
lm can

be written in terms of [
A�(0)

α

]l ′m′

lm = δll ′δmm′ , (A2a)[
A
(0)

α

]l ′m′

lm
= 0, (A2b)[

B�(0)
α

]l ′m′

lm
= 0, (A2c)[

B
(0)
α

]l ′m′

lm = δll ′δmm′gαl (nαx), (A2d)

where, according to (70),

gαl (nαx) ≡ F

αl (nαx) = 1

i

[(nαx)bαl (nαx)]′

(nαx)bαl (nαx)
, (A3)

with α = 1, 2. Using this result and following the discussion in Sec. III C, we can express the 4 × 4 matrix Ml ′m′
lm [Eq. (67)] in

terms of the following elements:[
A�

α

]l ′m′

lm (x) = δll ′δmm′ + ε
[
A�(1)

α

]l ′m′

lm + ε2
[
A�(2)

α

]l ′m′

lm + · · · , (A4a)[
A


α

]l ′m′

lm (x) = ε
[
A
(1)

α

]l ′m′

lm + ε2
[
A
(2)

α

]l ′m′

lm + · · · , (A4b)[
B�

α

]l ′m′

lm (x) = ε
[
B�(1)

α

]l ′m′

lm + ε2
[
B�(2)

α

]l ′m′

lm + · · · , (A4c)[
B


α

]l ′m′

lm
(x) = δll ′δmm′gαl (nαx(0) ) + ε

[
B
(1)

α

]l ′m′

lm
+ ε2

[
B
(2)

α

]l ′m′

lm
+ · · · . (A4d)

Next we evaluate the terms on the right-hand side of (A4). To this end, it is convenient to rewrite the three functions (15)
isolating their common denominator bαl (kαa), that is,

FY
αl (kαr) = 1

i
l (l + 1)

bαl (kαr)

kαr

1

bαl (kαa)
≡ cY

αl (kαr)

bαl (kαa)
, (A5a)
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F

αl (kαr) = 1

i

[(kαr)bαl (kαr)]′

kαr

1

bαl (kαa)
≡ c


αl (kαr)

bαl (kαa)
, (A5b)

F�
αl (kαr) = bαl (kαr)

1

bαl (kαa)
≡ c�

αl (kαr)

bαl (kαa)
. (A5c)

Note that in each of these expressions the dependence on ε enters in different ways in the numerator and the denominator,
because

cW
αl (kαr)

bαl (kαa)
→ cW

αl [nαx(ε)r/a]

bαl [nαx(ε)]

∣∣∣∣
r=a[1+ε f (θ,φ)]

= cW
αl{nα (x(0) + εx(1) + ε2x(2) + · · · )[1 + ε f (θ, φ)]}

bαl [nα (x(0) + εx(1) + ε2x(2) + · · · )]
, (A6)

with W = 
,�,Y .
Substituting (A5) into (62), making a Taylor expansion around ε = 0 using (A6), and evaluating the integrals (61), we

eventually obtain, up to and including second-order terms,[
AX (0)

α

]l ′m′

lm = c�
αl (nαx(0) )

bαl (nαx(0) )︸ ︷︷ ︸
=1

〈Xl ′m′ ,�lm〉, (A7a)

[
AX (1)

α

]l ′m′

lm = x(1)

⎛
⎜⎜⎝nα

[
c�
αl (nαx(0) )

bαl (nαx(0) )

]′

︸ ︷︷ ︸
= 0

〈Xl ′m′ ,�lm〉

⎞
⎟⎟⎠+ nαx(0)

[
c�
αl (nαx(0) )

]′
bαl (nαx(0) )

〈Xl ′m′ , f (θ, φ)�lm〉, (A7b)

[
AX (2)

α

]l ′m′

lm = x(2)

⎛
⎜⎜⎝nα

[
c�
αl (nαx(0) )

bαl (nαx(0) )

]′

︸ ︷︷ ︸
= 0

〈Xl ′m′ ,�lm〉

⎞
⎟⎟⎠+ 1

2
(nαx(1) )2

[
c�
αl (nαx(0) )

bαl (nαx(0) )

]′′

︸ ︷︷ ︸
= 0

〈Xl ′m′ ,�lm〉

+nαx(1)

([
c�
αl (nαx(0) )

]′
bαl (nαx(0) )

+ nαx(0)

[[
c�
αl (nαx(0) )

]′
bαl (nαx(0) )

]′)
〈Xl ′m′ , f (θ, φ)�lm〉

+1

2
(nαx(0) )2

[
c�
αl (nαx(0) )

]′′
bαl (nαx(0) )

〈Xl ′m′ , f 2(θ, φ)�lm〉 (A7c)

and [
BX (0)

α

]l ′m′

lm = c

αl (nαx(0) )

bαl (nαx(0) )︸ ︷︷ ︸
= gαl (nαx(0) )

〈Xl ′m′ ,�lm〉, (A8a)

[
BX (1)

α

]l ′m′

lm
= x(1)

(
nα

[
c

αl (nαx(0) )

bαl (nαx(0) )

]′
〈Xl ′m′ ,�lm〉

)
︸ ︷︷ ︸

contributes to 〈l ′,m′ |D̂|l,m〉

+nαx(0)

[
c

αl (nαx(0) )

]′
bαl (nαx(0) )

〈Xl ′m′ , f (θ, φ)�lm〉

+ cY
αl (nαx(0) )

bαl (nαx(0) )︸ ︷︷ ︸
= 1

i
l (l+1)
nα x(0)

〈Xl ′m′ ,Ylm(θ, φ)e‖(θ, φ)〉, (A8b)

[
BX (2)

α

]l ′m′

lm = x(2)

(
nα

[
c

αl (nαx(0) )

bαl (nαx(0) )

]′
〈Xl ′m′ ,�lm〉

)
︸ ︷︷ ︸

contributes to 〈l ′,m′ |D̂|l,m〉

+1

2
(nαx(1) )2

[
c

αl (nαx(0) )

bαl (nαx(0) )

]′′
〈Xl ′m′ ,�lm〉

+nαx(1)

([
c

αl (nαx(0) )

]′
bαl (nαx(0) )

+ nαx(0)

[[
c

αl (nαx(0) )

]′
bαl (nαx(0) )

]′)
〈Xl ′m′ , f (θ, φ)�lm〉

+1

2
(nαx(0) )2

[
c

αl (nαx(0) )

]′′
bαl (nαx(0) )

〈Xl ′m′ , f 2(θ, φ)�lm〉 + nαx(1)

[
cY
αl (nαx(0) )

bαl (nαx(0) )

]′
〈Xl ′m′ ,Ylm(θ, φ)e‖(θ, φ)〉

+
(

− cY
αl (nαx(0) )

bαl (nαx(0) )
+ nαx(0)

[
cY
αl (nαx(0) )

]′
bαl (nαx(0) )

)
〈Xl ′m′ ,Ylm(θ, φ) f (θ, φ)e‖(θ, φ)〉, (A8c)
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where single and double primes denote, respectively, first and second derivatives with respect to the argument, and we have
introduced the suggestive notation

〈Xl ′m′ , H(r, θ, φ)〉 = 1

l ′(l ′ + 1)

∫
X∗

l ′m′ (θ, φ) · H(r, θ, φ)d	, (A9)

with X = 
,� and H(r, θ, φ) being an arbitrary three-dimensional vector field. Calculating explicitly the higher-order terms, it
is straightforward to see that

d
[
AX (n)

α

]l ′m′

lm

dx(n)
= 0,

d
[
BX (n)

α

]l ′m′

lm

dx(n)
= nα

[
F


αl (nαx(0) )
]′〈Xl ′m′ ,�lm〉 (n � 1), (A10)

where (A5b) has been used and

〈Xl ′m′ ,�lm〉 =
{

0 if X = �

δll ′δmm′ if X = 
.
(A11)

Similarly,

〈Xl ′m′ ,�lm〉 =
{

0 if X = 


δll ′δmm′ if X = �.
(A12)

Other useful properties of the vector spherical harmonics are

�∗
l ′m′ · �lm = �∗

l ′m′ · �lm, (A13a)

�∗
l ′m′ · �lm = −�∗

l ′m′ · �lm. (A13b)

To evaluate the integrals containing e‖(θ, φ) in (A8b) and (A8c), we find it useful to recast e‖(θ, φ) into the form

e‖(θ, φ) =
∞∑

L=0

L∑
M=−L

fLM�LM (θ, φ), (A14)

where, from the definition (38),

fLM =
∫

Y ∗
LM (θ, φ) f (θ, φ)d	, (A15)

and, by definition,

f (θ, φ) =
∞∑

L=0

L∑
M=−L

fLMYLM (θ, φ). (A16)

Gathering all these results, we can eventually write[
A
(n)

α

]l ′m′

lm = [
A
(n)

α

]l ′m′

lm , (A17a)[
A�(n)

α

]l ′m′

lm = [
A�(n)

α

]l ′m′

lm , (A17b)[
B
(n)

α

]l ′m′

lm = [
B
(n)

α

]l ′m′

lm + x(n)δll ′δmm′dαl , (A17c)[
B�(n)

α

]l ′m′

lm = [B�(n)
α

]l ′m′

lm , (A17d)

where the terms denoted by calligraphic letters are independent of x(n) and contribute to V̂ (n). The diagonal operator D̂ is
characterized by

dαl = nα

[
F


αl (nαx(0) )
]′ = nα[gαl (nαx(0) )]′ (α = 1, 2) (A18)

and represented by

Dl
.=

⎡
⎢⎢⎣

0 0 0 0
−n2

1[g1l (n1x(0) )]′ n2
2[g2l (n2x(0) )]′ 0 0

0 0 [g1l (n1x(0) )]′ −[g2l (n2x(0) )]′
0 0 0 0

⎤
⎥⎥⎦. (A19)

This completes the proof of the validity of (106)–(108).
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APPENDIX B: CALCULATION OF 〈α̃0|PDV̂ (1)PD|α0〉
In this Appendix we calculate the elements of the Nl0 × Nl0 matrix 〈α̃0|PD V̂ (1)PD |α0〉, with Nl0 = 2l0 + 1. The knowledge of

this matrix permits us to evaluate x(1)
μ from (174), here rewritten as

x(1)
μ = −〈ϕ̃(0)

μ

∣∣ 〈α̃0|PD V̂ (1)PD |α0〉
〈α̃0|Dl0 |α0〉

∣∣ϕ(0)
μ

〉
(μ = 1, 2, . . . , Nl0 ). (B1)

In practice, to solve (B1) we need to solve the right- and left-eigenvalue equations

〈α̃0|PD V̂ (1)PD |α0〉
〈α̃0|Dl0 |α0〉

∣∣ϕ(0)
μ

〉 = −x(1)
μ

∣∣ϕ(0)
μ

〉
, (B2a)

〈
ϕ̃

(0)
μ0

∣∣ 〈α̃0|PD V̂ (1)PD |α0〉
〈α̃0|Dl0 |α0〉 = −x(1)

μ

〈
ϕ̃(0)

μ

∣∣. (B2b)

The procedure is straightforward: Multiplying (B2a) from the left by 〈l0, m′| and using (153), we obtain

l0∑
m=−l0

V (1)
m′m

〈α̃0|Dl0 |α0〉ϕ
(0)
μm = −x(1)

μ ϕ
(0)
μm′ , (B3)

where we have used (172) twice to rewrite

〈α̃0|PD V̂ (1)PD |α0〉 =
l0∑

m′=−l0

l0∑
m=−l0

|l0, m′〉〈l0, m|〈l0, m′, α̃0|V̂ (1)|l0, m, α0〉

≡
l0∑

m′=−l0

l0∑
m=−l0

|l0, m′〉〈l0, m|V (1)
m′m, (B4)

where V (1)
m′m, with m′, m = −l0, l0 + 1, . . . , l0 − 1, l0, denotes the matrix element of the Nl0 × Nl0 matrix V (1) to be diagonalized.

Using the definitions (93) and (107a), we readily find

V (1)
m′m = 〈l0, m′, α̃0|M̂(1)|l0, m, α0〉|x(1)=0

= 〈α̃0|Ml0m′(1)
l0m |α0〉|x(1)=0. (B5)

Substituting (B5) in (B3), we can straightforwardly determine the sought eigenvalues x(1)
μ and eigenvectors |ϕμ0〉. A similar

procedure can be repeated to calculate the left eigenvectors 〈ϕ̃μ0|.
Note that V (1)

m′m takes a different value for TE and TM waves. Specifically, we find, for n � 1,

〈
α̃E

0

∣∣Ml0m′(n)
l0m

∣∣αE
0

〉 = 1

zE + 1

{
zE
([

A�(n)
1

]l0m′

l0m − [A�(n)
2

]l0m′

l0m

)− (n1
[
B
(n)

1

]l0m′

l0m − n2
[
B
(n)

2

]l0m′

l0m

)}
(B6)

for TE waves and

〈
α̃M

0

∣∣Ml0m′(n)
l0m

∣∣αM
0

〉 = 1

zM − 1

⎧⎨
⎩−
⎛
⎝[B
(n)

1

]l0m′

l0m

n1
−
[
B
(n)

2

]l0m′

l0m

n2

⎞
⎠+ zM

([
A�(n)

1

]l0m′

l0m − [A�(n)
2

]l0m′

l0m

)⎫⎬⎭ (B7)

for TM waves, with zE and zM defined by (117) and (135), respectively. From the definitions (26) and (A5) it follows that, for
n = 1,

[
A�(1)

1

]lm′

lm − [A�(1)
2

]lm′

lm |x(1)=0 = 1

i
x(0) f E

l (x(0) )〈�lm′ , f (θ, φ)�lm〉, (B8a)

n1
[
B
(1)

1

]lm′

lm − n2
[
B
(1)

2

]lm′

lm |x(1)=0 = [ix(0)
(
n2

1 − n2
2

)+ f E
l (x(0) )

]〈�lm′ , f (θ, φ)�lm〉, (B8b)

1

n1

[
B
(1)

1

]lm′

lm
− 1

n2

[
B
(1)

2

]lm′

lm
|x(1)=0 =

[
l (l + 1)

ix(0)

(
1

n2
1

− 1

n2
2

)
+ f M

l (x(0) )

]
〈�lm′ , f (θ, φ)�lm〉

+ l (l + 1)

ix(0)

(
1

n2
1

− 1

n2
2

)
〈�lm′ ,Ylm(θ, φ)e‖〉. (B8c)
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To derive these expressions we find it useful to replace second derivatives of the spherical Bessel functions bαl (u) defined by
(13), according to Bessel’s differential equation

d2

du2
bαl (u) = −

[
2

u

d

du
+ 1 − l (l + 1)

u2

]
bαl (u). (B9)

We can use (B8) to simplify (B6) and (B7), because f E
l0

(x(0)
E ) = 0 = f M

l0
(x(0)

M ). After a straightforward calculation we obtain

〈
α̃E

0

∣∣Ml0m′(1)
l0m

∣∣αE
0

〉∣∣
x(1)=0 = 1

i

1

zE + 1
x(0)
(
n2

1 − n2
2

)〈
�l0m′ , f (θ, φ)�l0m

〉
(B10)

for TE waves and〈
α̃M

0

∣∣Ml0m′(1)
l0m

∣∣αM
0

〉∣∣
x(1)=0 = 1

i

1

zM − 1

{
zMx(0)

M f E
l0

(
x(0)

M

)〈
�l0m′ , f (θ, φ)�l0m

〉
− l (l + 1)

x(0)
M

(
1

n2
1

− 1

n2
2

)[〈
�l0m′ , f (θ, φ)�l0m

〉+ 〈�l0m′ ,Yl0m(θ, φ)e‖
〉]}

(B11)

for TM waves.
Finally, we evaluate the denominator in (174). A lengthy but straightforward calculation gives〈

α̃E
0

∣∣Dl0

∣∣αE
0

〉 = 1

zE + 1

{
n2

2

[
g2l0

(
n2x(0)

E

)]′ − n2
1

[
g1l0

(
n1x(0)

E

)]′}
= 1

i

1

zE + 1

(
n2

1 − n2
2

)
, (B12a)

〈
α̃M

0

∣∣Dl0

∣∣αM
0

〉 = 1

zM − 1

{[
g2l0

(
n2x(0)

M

)]′ − [g1l0

(
n1x(0)

M

)]′}
= 1

i

1

zM − 1

[
− (2l0 + 1)(l0 + 1)(

x(0)
M

)2 +
(

jl0+1
(
n1x(0)

M

)
jl0
(
n1x(0)

M

)
)2

−
(

h(1)
l0+1

(
n2x(0)

M

)
h(1)

l0

(
n2x(0)

M

)
)2]

(B12b)

for TE and TM waves, respectively, with

zE = l0 + 1

x(0)
E

− n1
jl0+1

(
n1x(0)

E

)
jl0
(
n1x(0)

E

) , (B13a)

zM = 1

n2
1

[
l0 + 1

x(0)
M

− n1
jl0+1

(
n1x(0)

M

)
jl0
(
n1x(0)

M

)
]
. (B13b)

Note the common factors

1

i

1

zE + 1
,

1

i

1

zM − 1
(B14)

in front of (B10)–(B12). They simplify when taking the ratios, as required by (174). For example, for TE waves using (B5),
(B10), and (B12a), we obtain a particularly simple result

V (1)
m′m〈

α̃E
0

∣∣Dl0

∣∣αE
0

〉 = x(0)
〈
�l0m′ , f (θ, φ)�l0m

〉
. (B15)

Substituting this result into (B3), we obtain

l0∑
m=−l0

〈
�l0m′ , f (θ, φ)�l0m

〉
ϕ(0)

μm = −x(1)
μ

x(0)
ϕ

(0)
μm′ (μ = 1, 2, . . . , Nl0 ). (B16)

Since f (θ, φ) is a real-valued function, Eq. (B16) is a Hermitian eigenvalue equation. This implies that the ratio x(1)
μ /x(0) is also

real valued, in agreement with previous results [13,25].

APPENDIX C: PROOF OF 〈ψ̃(0)
A0 |ψ(n)

A 〉 = 0

Consider the perturbed vector

|ψA(ε)〉 = ∣∣ψ (0)
A0

〉+ ε
∣∣ψ (1)

A

〉+ ε2
∣∣ψ (2)

A

〉+ O(ε3), (C1)
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where, by hypothesis, the vector corrections |ψ (n)
A 〉 do not fulfill (217). However, we can always rewrite each |ψ (n)

A 〉 as∣∣ψ (n)
A

〉 = (∣∣ψ (n)
A

〉− ∣∣ψ (0)
A0

〉〈
ψ̃

(0)
A0

∣∣ψ (n)
A

〉)+ ∣∣ψ (0)
A0

〉〈
ψ̃

(0)
A0

∣∣ψ (n)
A

〉 ≡ ∣∣ψ (n)
A⊥
〉+ ∣∣ψ (n)

A‖
〉
, (C2)

where, by construction, 〈
ψ̃

(0)
A0

∣∣ψ (n)
A⊥〉 = 0. (C3)

Substituting (C2) into (C1), we obtain

|ψA(ε)〉 = ∣∣ψ (0)
A0

〉+ ε
(∣∣ψ (1)

A⊥
〉+ ∣∣ψ (1)

A‖
〉)+ ε2

(∣∣ψ (2)
A⊥
〉+ ∣∣ψ (2)

A‖
〉)+ · · ·

= (∣∣ψ (0)
A0

〉+ ε
∣∣ψ (1)

A‖
〉+ ε2

∣∣ψ (2)
A‖
〉+ · · · )+ ε

∣∣ψ (1)
A⊥
〉+ ε2

∣∣ψ (2)
A⊥
〉+ · · · , (C4)

where ∣∣ψ (0)
A0

〉+ε
∣∣ψ (1)

A‖
〉+ ε2

∣∣ψ (2)
A‖
〉+ · · · = (1 + ε

〈
ψ̃

(0)
A0

∣∣ψ (1)
A

〉+ ε2
〈
ψ̃

(0)
A0

∣∣ψ (2)
A

〉+ · · · )∣∣ψ (0)
A0

〉 ≡ 1

Z (ε)

∣∣ψ (0)
A0

〉
, (C5)

with Z (ε) a normalization factor. Substituting this result back into (C4), we get

|ψA(ε)〉 = 1

Z (ε)

∣∣ψ (0)
A0

〉+ ε
∣∣ψ (1)

A⊥
〉+ ε2

∣∣ψ (2)
A⊥
〉+ · · · . (C6)

Since |ψA(ε)〉 satisfies

M̂(ε)|ψA(ε)〉 = 0, (C7)

irrespective of its normalization, we can multiply both sides of (C6) by Z (ε) to obtain

|ψA(ε)〉′ = ∣∣ψ (0)
A0

〉+ Z (ε)[ε
∣∣ψ (1)

A⊥
〉+ ε2

∣∣ψ (2)
A⊥
〉+ · · · ]

= ∣∣ψ (0)
A0

〉+ ε
∣∣ψ (1)

A⊥
〉+ ε2(∣∣ψ (2)

A⊥
〉− 〈ψ̃ (0)

A0

∣∣ψ (1)
A

〉∣∣ψ (1)
A⊥
〉)+ · · · , (C8)

where |ψA(ε)〉′ ≡ Z (ε)|ψA(ε)〉 fulfills

M̂(ε)|ψA(ε)〉′ = 0. (C9)

Equation (C8) shows that now all the corrections to the zeroth-order vector |ψ (0)
A0 〉 are orthogonal to it.
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