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We develop perturbative methods to study and control dynamical phenomena related to excep-
tional points in Non-Hermitian systems. In particular, we show how to find perturbative solutions
based on the Magnus expansion that accurately describe the evolution of non-Hermitian systems
when encircling an exceptional point. This allows us to use the recently proposed Magnus-based
strategy for control to design fast non-reciprocal, topological operations whose fidelity error is orders-
of-magnitude smaller than their much slower adiabatic counterparts.

Introduction — A peculiar feature of non-Hermitian
systems [1] is the existence in parameter space of branch
point singularities at which two or more eigenvalues, and
their corresponding eigenvectors, coalesce and become
degenerate [2–5]. The existence of such singular points,
known as exceptional points, in the spectrum of a non-
Hermitian system has led in recent years to the devel-
opment of novel functionalities in optics and photonics
systems [6–14] and to reconsider the understanding of
topological quantum matter [15, 16].

In particular, it was predicted [17–22] and demon-
strated in several platforms [23–26] that enclosing an ex-
ceptional point via a slow varying closed loop results in a
non-reciprocal exchange of energy between the two nor-
mal modes of the system. The exchange of energy is
non-reciprocal both with respect to the initial condition
and orientation of the control loop.

The operations generated by enclosing an exceptional
point are topological; the control loop defines a closed
path in parameter space that cannot be continuously de-
formed to a single point without crossing the singular-
ity. However, as one speeds up the rate at which the
parameters defining the control loop vary, the topolog-
ical properties vanish. This is analogous to chiral edge
transport in periodic photonic structures, where trans-
port is robust against disorder and imperfections, but
only if the amount of disorder and imperfections is weak
enough [27, 28].

Here, we present a perturbative method based on the
Magnus expansion [31, 32] that allows one to describe the
evolution of non-Hermitian systems. As we show below,
the perturbative solutions accurately predict the dynam-
ics when an exceptional point is encircled by a closed
control loop. Furthermore, the existence of perturba-
tive solutions allows us to design closed control loops
that are both fast and more effective at exchanging the
energy between the modes than their slower counter-
parts while simultaneously keeping the topological, non-
reciprocal character of the operation. To achieve this
goal, we build on the recently proposed Magnus-based
strategy for control [29, 30] that we extend to the prob-
lem of non-reciprocal dynamics.

Figure 1. Exceptional points in a dissipative coupled two-
mode system. (a) Schematic representation of two coupled
modes with dissipation. (b) Cross sections of the eigenvalue
surfaces for g = Γ/2 as a function of detuning ∆, showing the
location of an exceptional point located at (∆ = 0, g = Γ/2).
(c) Real and imaginary parts of the eigenvalues in the two-
dimensional parameter space (∆, g) with a negatively oriented
closed path in parameter space about the exceptional point.
The red cross section emphasizes when the path crosses from
the manifold defined by one eigenvalue to the other.

Dynamics around an exceptional point — We consider
two coupled harmonics modes with time-dependent fre-
quencies ω1(t) and ω2(t), coupling strength g(t), and
without loss of generality time-independent decay rates
γ1 and γ2 [see Fig. 1 (a)]. The dynamical system that
describes the evolution of the mode amplitudes is given
by

Φ̇sym(t) = −iDsym(t)Φsym(t), (1)

where Dsym(t) = −(∆(t) + iΓ/2)σz,sym + g(t)σx,sym and
Φsym(t) is the flow from which we can find the modes
amplitude vector csym(t) = [csym,1(t), csym,2, (t)]

T at time
t, i.e, csym(t) = Φsym(t)csym(0), and which obeys the
initial condition Φsym(0) = 1. We have defined ∆(t) =
[ω1(t) − ω2(t)]/2, Γ = (γ1 − γ2)/2, and σj,sym with j ∈
{x, y, z} are Pauli matrices.
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It is convenient to work in the frame that diagonalizes
Dsym(t) at each instant in time (adiabatic frame). This
is done via the change-of-frame transformation S(t) =
exp(−iθ(t)σy) with θ(t) = arctan[−g(t)/(∆(t)+iΓ/2)]/2,
i.e., Φsym(t) → Φ(t) = S−1(t)Φsym(t)S(0), where we as-
sume that the evolution starts at t = 0. The flow Φ(t)
describes the evolution of the normal modes and obeys
the equation of motion

Φ̇(t) = −iD(t)Φ(t) = −i
(
λ(t)σz,ad − θ̇(t)σy,ad

)
Φ(t).

(2)
Since the change-of-frame matrix S(t) is explicitly time-
dependent, transforming Eq. (1) to the adiabatic frame
generates a non-inertial coupling term (non-adiabatic
coupling) between the normal modes c+ = (1, 0)T and
c− = (0, 1)T with strength θ̇(t). The instantaneous,
complex eigenvalues of Dsym(t) associated to the eigen-
modes c+ and c− are ±λ(t), respectively, with λ(t) =√

(∆(t) + iΓ/2)2 + g2(t).
Exceptional points in the spectrum of Dsym(t) occur at

(∆ = 0, g = ±Γ/2), where the two eigenvalues coalesce
(λ(t) = 0) [see Fig. 1 (b)].

We are interested in the dynamics described by Eq. (2)
when one of the exceptional points is enclosed by a con-
trol loop. We consider closed control loops of duration
tf , enclosing the exceptional point located at (∆ = 0, g =
Γ/2). An example of such a control loop is the circular
path parametrized by

r(t) =

[
r0 sin

(
2πs

tf
+ α

)
,

Γ

2
+ r0 cos

(
2πs

tf
t+ α

)]
,

(3)
where r0 is the radius of the circle, s = +1(�), −1(	)
defines the orientation, and α parametrizes the starting
point of the loop.

In what follows we show how to get approximate so-
lutions of Eq. (2) using the Magnus expansion [31, 32].
Using perturbation theory is particularly challenging in
this context due to the amplification dynamics generated
by Eq. (2), which exponentially amplifies small pertur-
bations. While one might think that this will inevitably
lead to perturbation theory to break down, we show that
this is not the case, if the perturbative expansion is done
in a suitable frame.

We look for solutions of Eq. (2) of the form

Φ(t) = Φ0(t)ΦI(t), (4)

where

Φ0(t) = exp
(
−iΓtf

{
Re[Λ̃(t)] + iIm[Λ̃(t)]

}
σz,ad

)
(5)

is a solution of Eq. (2) where the non-adiabatic coupling,
i.e., the term proportional to θ̇(t), is fully neglected. We
have defined

Λ(t) =

∫ t

0

dt1λ(t1) = tf

∫ t
tf

0

dxλ(x) = Γtf Λ̃(t) (6)
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Figure 2. Non-reciprocal dynamics with (uncorrected) closed
control loops [see Eq. (3)] and fidelity error of the Magnus ap-
proximation. (a) Evolution of the squared matrix elements of
the flow Φ(t) [see Eq. (2)] and (b) their normalized counter-
parts [see Eq. (12)]. (c) Time-averaged error of the approx-
imate solution [see Eq. (9)]. (d) Average error of the non-
reciprocal exchange of energy [see Eq. (13)] as function of the
starting point of the control loop. Unless otherwise specified,
we chose Γtf = 50, r0 = (1/2)Γ, and α = 0.

with the second equality following from the change of
variable x = t/tf . Within this framework, the flow ΦI(t)
can then be interpreted as the deviation from the ideal
adiabatic dynamics described by Φ0(t).

The flow Φ0(t) predicts that the amplitude of one of the
eigenmodes is amplified while the amplitude of the other
mode is damped with the sign of Im[Λ(t)] determining
which of the eigenmodes undergoes instantaneous ampli-
fication and damping, respectively. Therefore, it is con-
venient to introduce the gain mode cG = δ1,f(tf ,s)c+ +
δ−1,f(tf ,s)c− and lossy mode cL = (1 − δ1,f(tf ,s))c+ +
(1−δ−1,f(tf ,s))c−, where δi,j denotes the Kronecker delta
function and we have defined f(tf , s) = sign{Im[Λ(tf)]}.
The gain mode (lossy mode) is associated to the eigen-
mode whose amplitude is amplified (damped) at t = tf
according to the prediction of Φ0(t).

Since the flow Φ0(t) is diagonal, it cannot describe the
non-reciprocal dynamics, which is our main concern here.
As previously identified (see, e.g., Ref. [22]), the non-
adiabatic coupling is a necessary ingredient to generate
non-reciprocal dynamics. This is best understood when
considering the dynamical equation for ΦI(t), which is
obtained by substituting Eq. (4) into Eq. (2). We have

Φ̇I(t) = DI(t)ΦI(t) = θ̇(t)
(
e2iΛ(t)σ+ − e−2iΛ(t)σ−

)
ΦI(t),

(7)
where we have introduced the matrices σ± = (σx ±
iσy)/2.

We recall that for a Hermitian system, i.e., Λ(t) ∈
R, we would have DI(t) → 0 as tf → ∞ since θ̇(t) ∝
1/tf . This would yield ΦI(t)→ 1 and there would be no
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deviations from the ideal adiabatic dynamics.
In stark contrast to the Hermitian case, DI(t) 6→ 0

as tf → ∞ for all times since at least one matrix el-
ement of DI(t) can be exponentially large in tf . This
readily follows from substituting Eq. (6) into Eq. (7) and
splitting Λ̃(t) into real and imaginary parts. As a conse-
quence, even in the long-cycling limit, there are always
deviations from the ideal adiabatic dynamics, which il-
lustrates that the adiabatic theorem [33] does not hold
for non-Hermitian systems in general.

We approximate the solutions of Eq. (7) using a Dyson
series [34]. More specifically, we use the relation between
the Magnus expansion [31, 32] and the Dyson series (see
Section 2.4 in Ref. [32]) to represent the solutions as

ΦI(t) = exp

[ ∞∑
k=1

εkΩk(t)

]
= 1 +

∞∑
j=1

1

j!

[ ∞∑
k=1

εkΩk(t)

]j
,

(8)
where Ωk(t) is the kth term of the Magnus series (see,
e.g, Ref. [32]) and we have introduced the parameter ε

for bookkeeping. In the following, we denote by Φ
(n)
I (t)

the truncated series expansion where we keep at most

terms of order n, i.e, ΦI(t) = Φ
(n)
I (t) +O(εn+1).

To assess the quality of the approximation, we define
the time-averaged error

δΦ
(n)
I =

∣∣∣∣∣∣1− 1

6

∑
j∈S

1

tf

∫ tf

0

dt

∣∣∣∣[e(n)
j (t)

]H
· ej(t)

∣∣∣∣2
∣∣∣∣∣∣ (9)

where vH denotes the conjugate transpose of the
vector v and we have introduced the unit vec-
tors ei(t) = Φ(t)ci(0)/ ‖Φ(t)ci(0)‖ and e

(n)
i (t) =

Φ(n)(t)ci(0)/
∥∥Φ(n)(t)ci(0)

∥∥. The quantity Fi(t) =∣∣∣[e(n)
i (t)]H · ei(t)

∣∣∣2 gives the state dependent fidelity at

time t between the approximated unit state vector e
(n)
i (t)

and the exact unit state vector ei(t). We get the time-
averaged fidelity by averaging over time and over the six
initial states ci(0) with i ∈ S = {±x,±y,±z}. These six
initial states correspond to the eigenvectors of the Pauli
matrices.

In Fig. 2 (c), we plot δΦ
(4)
I for the control loop de-

fined in Eq. (3) as a function of the duration Γtf . The
results show that our perturbative solutions of Eq. (2)
based on the Magnus expansion accurately describe the
dynamics of the system. We have made the perturbative
expansion possible by choosing an appropriate interac-
tion picture, where the size of the perturbation remains
relatively small compared to the generator of the unper-
turbed dynamics.

The approximate solutions provide an intuitive way
to understand how the interplay between non-adiabatic
transitions and amplification leads to the non-reciprocal
behavior with respect to the initial condition. In the limit
Γtf � 1, we find that the matrix elements of the flow Φ(t)

behave asymptotically, i.e., for Γt� 1, according to (see
Supplemental Material)∣∣∣Φ(2)

G,G(t)
∣∣∣2 ∼ e2|Im[Λ(t)]| +O

[
(Γtf)

−1
]
,∣∣∣Φ(2)

L,G(t)
∣∣∣2 ∼ e2|Im[Λ(t)]|

∣∣∣θ̇(t)/[2λ(t)]
∣∣∣2 +O

[
(Γtf)

−3
]
,∣∣∣Φ(2)

G,L(t)
∣∣∣2 ∼ e2|Im[Λ(t)]|

∣∣∣θ̇(0)/[2λ(0)]
∣∣∣2 +O

[
(Γtf)

−3
]
,∣∣∣Φ(2)

L,L(t)
∣∣∣2 ∼ e2|Im[Λ(t)]|

∣∣∣θ̇(0)θ̇(t)/[4λ(0)λ(t)]
∣∣∣2 +O

[
(Γtf)

−5
]
,

(10)
where Φi,j(t) = cTi Φ(t)cj with i, j ∈ G,L and we have
assumed |Im[Λ(tf)]| � 1. The result shows that the net
effect of non-adiabatic transitions can be reduced to what
happens at the boundaries of the time-interval over which
the evolution takes place. This is in complete analogy to
the Hermitian case [35] and can similarly be derived using
the Magnus expansion [36].

Furthermore, Eq. (10) shows that all transmission
channels undergo amplitude amplification asymptotically
[see Fig. 2 (a)]. While this might seem counter-intuitive
at first, especially for the L→ L channel, it directly fol-
lows from an interplay between the amplitude of the gain
mode being amplified and non-adiabatic transitions. For
instance, if the system is initialized in the lossy mode,
i.e., c(0) = cL, amplitude is going to be transferred via
the non-adiabatic coupling to the gain mode at t = 0,
where it will be amplified, only to return at a later time
t back to the lossy mode.

Using Eq. (10), we can evaluate asymptotically the ra-
tio η(t) between the energy stored in the lossy mode and
the gain mode. We find

η(t) =
|ΦL,G(t)|2

|ΦG,G(t)|2
=
|ΦL,L(t)|2

|ΦG,L(t)|2
∼ 1

4

∣∣∣θ̇(t)∣∣∣2
|λ(t)|2

∝ 1

4

1

(Γtf)2
,

(11)
which tends to 0 as tf → ∞. This result, which is in-
dependent of the initial state, indicates that most of the
energy ends up in the gain mode, with the latter being
determined by the orientation of the control loop. This
is the expected non-reciprocal behavior, which is best
observed when considering the normalized squared am-
plitudes

Pi,j(t) =
|Φi,j(t)|2∑L
i=G |Φi,j(t)|2

, (12)

as shown in Fig. 2 (b).
In summary, there are two necessary conditions to

fulfill to realize a highly efficient non-reciprocal en-
ergy transfer: (i) the dynamics must generate a size-
able amount of amplification for all transmission chan-
nels i→ j (i, j ∈ {G,L}), which is identical to requiring
|Im[Λ(tf)]| � 1, and (ii) the ratio between the energy
stored in the lossy mode and the gain mode should be
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small at t = tf , i.e., η(tf) � 1 [see Eq. (11)]. The latter
condition ensures a highly efficient transfer since most of
the energy ends up in the gain mode at the end of the
control loop.

While the efficiency is not contingent on the choice of
a specific closed contour, it depends on the duration of
the control loop [see Eq. (11)] and on the starting point
of the control loop. The latter can be understood geo-
metrically by noticing that a closed contour in parame-
ter space does not correspond to a closed contour on the
Riemannian manifold defined by the real and imaginary
parts of the spectrum [see Fig. 1 (c)]. Thus, changing
the starting point of the control loop in parameter space
can lead to paths on the Riemannian manifold of the
spectrum that result in Im[λ(t)] being an anti-symmetric
function of time around t = tf/2. Such a situation leads
to Im[Λ(tf)] = 0 for which condition (i) does not hold.
Thus, enclosing an exceptional point with a slow vary-
ing control loop does not always lead to non-reciprocal
dynamics.

We illustrate this behavior in Fig. 2 (d) by plotting for
fixed Γtf the average error

ε̄ = 1− 1

4

∑
j=±

[
P�

+,j(tf) + P	
−,j(tf)

]
, (13)

calculated for the control loop defined in Eq. (3) as a
function of α. We recall that α parametrizes the position
of the starting point for the circular loop in parameter
space. For α = π, the error becomes maximal because
the non-reciprocity is broken due to having Im[Λ(tf)] = 0.

We have defined the average error such that ε̄ = 0 cor-
responds to a perfect non-reciprocal transfer of energy,
i.e., all of the energy is transferred to the gain mode.
We have expressed the normalized squared amplitudes
in Eq. (13) in the basis of eigenmodes and explicitly in-
dicated the path orientation.

The Control Problem — We are now in a position to
show how to design control loops that lead to a highly
efficient non-reciprocal exchange of energy even when the
cycling time becomes small, i.e., Γtf ∼ 1. Our approach
follows from the recently proposed Magnus-based strat-
egy for control introduced in Refs. [29, 30].

The first step of the Magnus-based strategy for con-
trol entails finding a partition of the dynamical matrix
D(t) = Dideal(t) + Vbad(t), where Dideal(t) generates

a flow Φideal(t) = T exp[−i
∫ t

0
dt1Dideal(t1)] such that

Φideal(tf) = ΦG is the desired operation one wishes to
realize at t = tf . Vbad(t) is the spurious dynamical ma-
trix disrupting the ideal dynamics and preventing one to
achieve the desired operation.

The second step consists in modifying D(t) by in-
troducing a control W (t) which on average cancels the
deleterious effects generated by Vbad(t), i.e., D(t) →
Dmod(t) = D(t) + W (t). Formally, W (t) describes how
the time dependence of D(t) needs to be modified to gen-
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Figure 3. Accelerated non-reciprocal exchange of energy
via corrected control loops around an exceptional point. (a)
- (b) Comparison between initially chosen and second-order
modified control fields [see Eq. (18)] and (d) resulting path
in parameter space. (c) Average error of the non-reciprocal
exchange of energy [see Eq. (13)], suppressed by orders of
magnitude. (e) Schematic representation of the average non-
adiabatic transitions induced by the modified dynamics. Un-
less specified, we chose Γtf = 10, r0 = (1/2)Γ, α = 0, km = kM
= nm = nM = 0, lm = mm = 1, and lM = mM = 6.

erate the desired operation at t = tf .
For the problem at hand, we have Dideal(t) = λ(t)σz +

siθ̇(t)(σx + siσy)/2, which depends explicitly on the ori-
entation s of any chosen path. Finding an exact closed
form representation for Φideal(t) is a challenging task,
thus forcing one to rely on numerical approaches. While
this is possible, it negates one of the main advantages
of the Manugs-based strategy for control, which is the
ability to treat the control problem semi-analytically.

In the following, we propose a modified way to par-
tition the original control problem, and which can also
be employed in the quantum case, when an exact repre-
sentation for Φideal(t) is hard to find. In contrast to the
prescription of Refs. [29, 30], we decompose Dmod(t) into

Dmod(t) = Deasy(t) + Vgood(t) + Vbad(t) +W (t), (14)

where Deasy(t)+Vgood(t) = Dideal(t). The decomposition
introduced in Eq. (14) is chosen such that it is straight-
forward to find the flow Φeasy(t) generated by Deasy(t).

To find W (t), it is convenient to transform Eq. (14) to
the interaction picture defined by Φeasy(t) and represent
W (t) as a series, i.e., W (t) =

∑
nW

(n)(t). We obtain

Dmod,I(t) = Vgood,I(t) + Vbad,I(t) +
∑
n

W
(n)
I (t). (15)

Following the philosophy of Refs. [29, 30], we can de-

termine W
(n)
I (t) by considering the Magnus expansion

generated by the partially corrected dynamical matrix

D
(n)
mod,I(t) = Vgood,I(t) +Vbad,I(t) +

∑n
l=1W

(l)
I (t). Taking
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into account that W
(n)
I (t) must only cancel on average

spurious terms involving Vbad,I(t), we find that W
(n)
I (t)

must satisfy the following equations:∫ tf

0

dtW
(n)
I (t) = −i

n∑
l=1

[
Ω

(n−1)
bad,l (tf) + δΩ

(n−1)
l (tf)

]
,

(16)

with Ω
(n)
l (t) = Ω

(n)
good,l(t) + Ω

(n)
bad,l(t) + δΩ

(n)
l (t) the lth

term of the Magnus expansion associated to D
(n)
mod,I(t)

[37]. We have decomposed Ω
(n)
l (t) into contributions

coming from Vgood,I(t), Vbad,I(t), and commutators in-
volving both Vgood,I(t) and Vbad,I(t), respectively.

Using the decomposition introduced in Eq. (14), we do
not need to find explicitly Φideal(t), which can be hard,
and deal with the difficult, good part and bad part of
the dynamics using the Magnus expansion instead. This
allows us to use the Magnus-based strategy for control as
it was intended to be used: As a semi-analytical method.

Turning our attention back to Eq. (2), we choose
Φeasy(t) = Φ0(t) [see Eq. (5)]. This leads to Vgood,I(t) =

+siθ̇(t)(σx + siσy)/2 and Vbad,I(t) = −siθ̇(t)(σx −
siσy)/2.

Furthermore, following the prescription of Ref. [30], we
parametrize the control W (t) as

W (t) =
∑
n

W (n)(t) =
∑
n

∆(n)
c (t)σz + g(n)

c (t)σx, (17)

where we represent the control fields using a truncated
Fourier series

∆(j)
c (t) =

kM∑
k=km

c
(j)
k

[
1− cos

(
2πk

t

tf

)]
+

lM∑
l=lm

d
(j)
l sin

(
2πl

t

tf

)
,

g(j)c (t) =

mM∑
m=mm

c(j)m

[
1− cos

(
2πm

t

tf

)]
+

nM∑
n=nm

d(j)n sin

(
2πn

t

tf

)
.

(18)

with ∆
(j)
c (t) and g

(j)
c (t) chosen to vanish at t = 0 and

t = tf .
We can now follow the procedure introduced in

Ref. [30] to find the linear system of equations deter-
mining the Fourier coefficients of Eq. (18), but with the
vector of spurious elements (see Eq. (93) in Ref. [30] and
Supplemental Material) being given by Eq. (16). More-
over, since we want to preserve the non-reciprocal be-
havior with respect to the loop-orientation, we solve si-
multaneously for the Fourier coefficients that cancel out
the effects of Vbad,I(t) for both s = +1 and s = −1 (see
Supplemental Material). This amounts to require that
independently of the orientation of the path we always
cancel on average transitions from the gain mode to the
lossy mode [see Fig. 3 (e)].

We compare in Fig. 3 (c) the average error [see
Eq. (13)] between the uncorrected circular control loop
[see Eq. (3)] and its second-order correction. Simple
modifications of the control fields [see Fig. 3 (a) and

(b)], yielding a modified path in parameter space [see
Fig. 3 (d)], lead to a reduction of the average error by a
few orders of magnitude. Or in other words, it is possi-
ble to achieve a non-reciprocal exchange of energy that
is much faster for a comparable error.

Conclusion — In conclusion, we have shown how to ob-
tain accurate perturbative solutions describing the evolu-
tion of non-Hermitian systems based on the Magnus ex-
pansion. The existence of perturbative solutions further
allows us to use the Magnus-based strategy for control to
speed up the non-reciprocal exchange of energy when en-
circling an exceptional point. Finally, we have introduced
two major modifications to the Magnus-based strategy
for control that allow one to (I) deal with problems for
which it is hard to solve for the generator of the ideal dy-
namics and (II) extend its applicability to non-Hermitian
systems.
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Supplemental Material for: Accelerated Non-Reciprocal Transfer of Energy Around
an Exceptional Point

Perturbation theory for non-Hermitian systems

In this section, we show in more details how one can use the Magnus expansion to find approximate solutions of
the dynamial system (Eq. (7) of the main text)

Φ̇I(t) = DI(t)ΦI(t) = θ̇(t)
(
e2iΛ(t)σ+ − e−2iΛ(t)σ−

)
ΦI(t). (19)

Using the Magnus expansion, we can formally write the exact solution as

ΦI(t) = exp

[ ∞∑
k=1

εkΩk(t)

]
= 1 +

∞∑
j=1

1

j!

[ ∞∑
k=1

εkΩk(t)

]j
, (20)

where the second equality follows from expanding the exponential function with a Taylor series (Eq. (8) of the main
text) and we use the parameter ε for bookkeeping.

Approximate solutions are found by truncating the series at a desired order in ε. Keeping at most terms that are
fourth order in ε, we find

ΦI(t) = 1 + εΩ1(t) + ε2
[

1

2
Ω2

1(t) + Ω2(t)

]
+ ε3

[
1

3!
Ω3

1(t) +
1

2
{Ω1(t),Ω2(t)}+ Ω3(t)

]
+ ε4

[
1

4!
Ω4

1(t) +
1

2
Ω2

2(t) +
1

2
{Ω1(t),Ω3(t)}+

1

3!

{
Ω1(t)2,Ω2(t)

}
+

1

3!
Ω1(t)Ω2(t)Ω1(t) + Ω4(t)

]
+O

(
ε5
)
,

(21)

where {A1, A2} = A1A2 + A2A1 denotes the anticommutator of the matrices A1 and A2 and the Magnus elements
Ωk(t) with k ∈ {1, 4} are given by

Ω1(t) =

∫ t

0

dt1DI(t1) = f
(1)
+ (t)σ+ − f (1)

− (t)σ−,

Ω2(t) =
1

2

∫ t

0

dt1 [DI(t1),Ω1(t1)] =
1

2
f (2)
z (t)σz,

Ω3(t) =

∫ t

0

dt1

{
1

2
[DI(t1),Ω2(t1)] +

1

12
[Ω1(t1), [Ω1(t1), DI(t1)]]

}
= f

(3)
+ (t)σ+ + f

(3)
− (t)σ−,

Ω4(t) =

∫ t

0

dt1

{
1

2
[DI(t1),Ω3(t1)] +

1

12
[Ω2(t1), [Ω1(t1), DI(t1)]] +

1

12
[Ω1(t1), [Ω2(t1), DI(t1)]]

}
=

1

2
f (4)
z (t)σz,

(22)

where [A1, A2] = A1A2−A2A1 denotes the commutator of the matrices A1 and A2. We have decomposed the Magnus

elements in the basis of Pauli matrices and we have introduced f
(2k−1)
± (t) and f

(2k)
z (t) with k ∈ {1, 2} to denote the

time-dependent coefficients of the decomposition.
Substituting Eq. (22) into Eq. (21) and setting ε = 1, we find

Φ
(4)
I (t) =

{
1 +

1

2

(
f

(1)
+ (t)f

(3)
− (t)− f (1)

+ (t)f
(1)
− (t)− f (1)

− (t)f
(3)
+ (t)

)
+

1

4!

[
f

(1)
+ (t)f

(1)
− (t)

]2
+

1

8

[
f (2)
z (t)

]2}
1

+
1

2

[
f (2)
z (t) + f (4)

z (t)− 1

3!
f

(1)
− (t)f

(1)
+ (t)f (2)

z (t)

]
σz +

[
f

(1)
+ (t) + f

(3)
+ (t)− 1

3!

[
f

(1)
+ (t)

]2
f

(1)
− (t)

]
σ+

−
[
f

(1)
− (t)− f (3)

− (t)− 1

3!

[
f

(1)
− (t)

]2
f

(1)
+ (t)

]
σ−,

(23)

where we used the notation Φ
(n)
I (t) introduced in the main text and which is defined via ΦI(t) = Φ

(n)
I (t) +O(εn+1).
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Exact closed-form expressions for the coefficients f
(2k−1)
± (t) and f

(2k)
z (t) [see Eq. (22)] are difficult to obtain. We

can, however, find series representations in powers of 1/(Γtf) by iteratively integrating by parts Eq. (22). The general
strategy is reminiscent of the standard procedure used when trying to approximate the integral of a fast oscillating
function multiplied by a slow varying envelope function, but here we need to take into account that the frequency
of the fast oscillating function is explicitly time-dependent. As an example, we show below the first iteration for the

functions f
(1)
± (t). We have

f
(1)
± (t) =

∫ t

0

dt1e
±2iΛ(t1)θ̇(t1) =

∫ t

0

dt1

{
d

dt1

[
∓ i

2

1

λ(t1)
e±2iΛ(t1)

]
∓ i

2

λ̇(t1)

λ2(t1)
e±2iΛ(t1)

}
θ̇(t1)

= ∓ i
2

[
θ̇(t)

λ(t)
e±2iΛ(t) − θ̇(0)

λ(0)

]
± i

2

∫ t

0

dt1e
±2iΛ(t1)

[
θ̈(t1)

λ(t1)
− λ̇(t1)

λ(t1)

θ̇(t1)

λ(t1)

]
.

(24)

By truncating the series representations at fourth order in 1/(Γtf), we find

f
(1)
± (t) = ∓ i

2

[
θ̇(t)

λ(t)
e±2iΛ(t) − θ̇(0)

λ(0)

]
+

1

4

[(
θ̈(t)

λ2(t)
− θ̇(t)

λ(t)

λ̇(t)

λ2(t)

)
e±2iΛ(t) −

(
θ̈(0)

λ2(0)
− θ̇(0)

λ(0)

λ̇(0)

λ2(0)

)]

± i

8

{[
θ(3)(t)

λ3(t)
− 3θ̈(t)λ̇(t)

λ4(t)
+
θ̇(t)

λ(t)

(
3λ̇2(t)

λ4(t)
− λ̈(t)

λ3(t)

)]
e±2iΛ(t) −

[
θ(3)(0)

λ3(0)
− 3θ̈(0)λ̇(0)

λ4(0)
+
θ̇(0)

λ(0)

(
3λ̇2(0)

λ4(0)
− λ̈(0)

λ3(0)

)]}

− 1

16

{[
θ(4)(t)

λ4(t)
− 6θ(3)(t)λ̇(t)

λ5(t)
+

θ̈(t)

λ2(t)

(
15λ̇2(t)

λ4(t)
− 4λ̈(t)

λ3(t)

)
+
θ̇(t)

λ(t)

(
10λ̇(t)λ̈(t)

λ5(t)
− λ(3)(t)

λ4(t)
− 15λ̇3(t)

λ6(t)

)]
e±2iΛ(t)

−

[
θ(4)(0)

λ4(0)
− 6θ(3)(0)λ̇(0)

λ5(0)
+

θ̈(0)

λ2(0)

(
15λ̇2(0)

λ4(0)
− 4λ̈(0)

λ3(0)

)
+
θ̇(0)

λ(0)

(
10λ̇(0)λ̈(0)

λ5(0)
− λ(3)(0)

λ4(0)
− 15λ̇3(0)

λ6(0)

)]}

+O

[
1

(Γtf)
5

]
,

(25)

where we have defined h(n)(t) = dnh(t)
dtn for n > 2. Proceeding similarly, we find

f (2)
z (t) = −i

∫ t

0

dt1

(
θ̇2(t1)

λ(t1)

)
+

1

4

θ̇(0)

λ(0)

θ̇(t)

λ(t)

(
e2iΛ(t) − e−2iΛ(t)

)
+
i

4

∫ t

0

dt1

[
θ̇(t1)

λ(t1)

d

dt1

(
θ̈(t1)

λ2(t1)
− θ̇(t1)λ̇(t1)

λ3(t1)

)]

+
i

8

[(
θ̇(0)λ̇(0)

λ3(0)
− θ̈(0)

λ2(0)

)
θ̇(t)

λ(t)

(
e2iΛ(t) + e−2iΛ(t)

)
− θ̇(0)

λ(0)

(
θ̇(t)λ̇(t)

λ3(t)
− θ̈(t)

λ2(t)

)(
e2iΛ(t) + e−2iΛ(t)

)]

− 1

16

{[
θ(3)(0)

λ3(0)
− 3θ̈(0)λ̇(0)

λ4(0)
+
θ̇(0)

λ(0)

(
3λ̇2(0)

λ4(0)
− λ̈(0)

λ3(0)

)]
θ̇(t)

λ(t)
+ 3

θ̇(0)

λ(0)

(
θ̈(t)λ̇(t)

λ4(t)
− θ̇(t)λ̇2(t)

λ5(t)

)

+

(
θ̈(0)

λ2(0)
− θ̇(0)λ̇(0)

λ3(0)

)(
θ̈(t)

λ2(t)
− θ̇(t)λ̇(t)

λ3(t)

)
+
θ̇(0)

λ(0)

(
θ̇(t)λ̈(t)

λ4(t)
− θ(3)(t)

λ3(t)

)}(
e2iΛ(t) − e−2iΛ(t)

)
+O

[
1

(Γtf)
5

]
,

(26)
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f
(3)
± (t) = ±1

4

(
θ̇(t)

λ(t)
e±2iΛ(t) +

θ̇(0)

λ(0)

)∫ t

0

dt1

(
θ̇2(t1)

λ(t1)

)

+
i

2

{
− 1

12

θ̇(0)

λ(0)

∫ t

0

dt1

(
θ̇(t1)

λ(t1)

d

dt1

θ̇(t1)

λ(t1)

)
+

1

24

θ̇2(0)θ̇(t)

λ2(0)λ(t)

(
e±2iΛ(t) − e∓2iΛ(t)

)
+

1

3

(
θ̇3(t)

λ3(t)
e±2iΛ(t) − θ̇3(0)

λ3(0)

)
+

1

24

θ̇(0)

λ(0)

(
θ̇2(t)

λ2(t)
e±4iΛ(t) − θ̇2(0)

λ2(0)

)

+
1

4

[(
θ̈(t)

λ2(t)
− θ̇(t)λ̇(t)

λ3(t)

)
e±2iΛ(t) +

(
θ̈(0)

λ2(0)
− θ̇(0)λ̇(0)

λ3(0)

)]∫ t

0

dt1

(
θ̇2(t1)

λ(t1)

)}

± 1

16

{∫ t

0

dt1

[
θ̇(0)θ̇(t1)

λ(0)λ(t1)

(
3
λ̇(t1)

λ2(t1)

d

dt1

θ̇(t1)

λ(t1)
+
θ̇(t1)λ̈(t1)

λ3(t1)
− θ(3)(t1)

λ2(t1)

)

+
θ̇2(t1)

λ(0)λ(t1)

(
3
λ̇(0)

λ2(0)

[
d

dt1

θ̇(t1)

λ(t1)

]
t1=0

+
θ̇(0)λ̈(0)

λ3(0)
− θ(3)(0)

λ2(0)

)

+
1

3

(
θ̈(0)θ̇(t1)

λ2(0)λ(t1)
− θ̇(0)λ̇(0)θ̇(t1)

λ3(0)λ(t1)

)
d

dt1

θ̇(t1)

λ(t1)

]

−
∫ t

0

dt1

[
θ̇(t1)

λ̇(t1)

(
−3

λ̇(t1)

λ2(t1)

d

dt1

θ̇(t1)

λ(t1)
− θ̇(t1)λ̈(t1)

λ3(t1)
+
θ(3)(t1)

λ2(t1)

)]
θ̇(t)

λ(t)
e±2iΛ(t)

+
1

3

[
θ̈(0)θ̇(t)

λ2(0)
− θ̇(0)

λ(0)

(
λ̇(0)θ̇(t)

λ2(0)
+

1

2

d

dt

θ̇(t)

λ(t)

)]
θ̇(0)

λ(0)λ(t)
e∓2iΛ(t)

+
1

3

[
θ̈(0)θ̇(t)

2λ2(0)
− θ̇(0)

λ(0)

(
λ̇(0)θ̇(t)

2λ2(0)
+

d

dt

θ̇(t)

λ(t)

)]
θ̇(t)

λ2(t)
e±4iΛ(t)

−

[(
θ̇2(0)

6λ2(0)λ(t)
+

16

3

θ̇2(t)

λ3(t)

)
d

dt

θ̇(t)

λ(t)
−
∫ t

0

dt1
θ̇2(t1)

λ(t1)

(
3
λ̇(t)

λ3(t)

d

dt

θ̇(t)

λ(t)
+
θ̇(t)λ̈(t)

λ4(t)
− θ(3)(t)

λ3(t)

)]
e±2iΛ(t)

+
11

2

θ̇2(0)

λ3(0)

[
d

dt

θ̇(t)

λ(t)

]
t=0

}
+O

[
1

(Γtf)
5

]
,

(27)
where [df(t)/dt]t=0 = ḟ(0) denotes that we evaluate the derivative at t = 0. Finally, we have

f (4)
z (t) =

i

3

[∫ t

0

dt1
θ̇(t1)

λ(t1)

(
θ̇2(0)θ̇(t1)

4λ2(0)
+
θ̇3(t1)

λ2(t1)
+

1

2

(
d

dt1

θ̇(t1)

λ(t1)

)∫ t1

0

dt2
θ̇2(t2)

λ(t2)

)

+
1

2

θ̇(0)θ̇(t)

λ(0)λ(t)

∫ t

0

dt1

(
θ̇2(t1)

λ(t1)

)(
e2iΛ(t) + e−2iΛ(t)

)]

+
1

4

{
1

4

θ̇(0)θ̇(t)

λ(0)λ(t)

(
−1

3

∫ t

0

dt1

(
θ̇(t1)

λ(t1)

d

dt1

θ̇(t1)

λ(t1)

)
+

θ̇2(t)

6λ2(t)
− 3θ̇2(0)

2λ2(0)

)

+
θ̇(t)

3λ(t)λ(0)

[
d

dt

θ̇(t)

λ(t)

]
t=0

∫ t

0

dt1

(
θ̇2(t1)

λ(t1)

)

− θ̇(0)

3λ(0)

[
θ̇3(t)

λ3(t)
+

1

λ(t)

(
d

dt

θ̇(t)

λ(t)

)∫ t

0

dt1

(
θ̇2(t1)

λ(t1)

)]}(
e2iΛ(t) − e−2iΛ(t)

)
− θ̇2(0)θ̇2(t)

96λ2(0)λ2(t)

(
e4iΛ(t) − e−4iΛ(t)

)
+O

[
1

(Γtf)
5

]
.

(28)

Substituting the truncated series representations of f
(2k−1)
± (t) and f

(2k)
z (t) [k ∈ {1, 2}] in Eq. (23), we can evaluate
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the matrix elements cTi Φ(t)cj with i, j ∈ G,L and their modulus squared (not shown here due to the length of the
expression).

The asymptotic expression shown in the main text [see Eq. (10)] is obtained by keeping solely the exponential large
terms that governed the dynamics in the long-time regime, i.e., Γt� 1.

Magnus-based strategy for control

In this section, we show in more detail how we obtained the linear system of equations determining the Fourier
coefficients of the control fields ∆c(t) and gc(t).

In the interaction picture defined by Φ0(t) (see Eq. (5) of the main text), the control matrix W (t) (see Eq. (17) of
the main text) takes the form

WI(t) =
∑
n

w̃(n)
z (t)σz + w̃(n)

x (t)σx + w̃(n)
y (t)σy

=
∑
n

[
−

(
iΓ

2 + ∆(t)

λ(t)
∆(n)

c (t)− g(t)

λ(t)
g(n)

c (t)

)
σz − cos [Λ(t)]

(
g(t)

λ(t)
∆(n)

c (t) +
iΓ

2 + ∆(t)

λ(t)
g(n)

c (t)

)
σx

+ sin [Λ(t)]

(
g(t)

λ(t)
∆(n)

c (t) +
iΓ

2 + ∆(t)

λ(t)
g(n)

c (t)

)
σy

]
.

(29)

The first order correction is found by solving Eq. (16) of the main text for n = 1. Since we want W (t) to cancel
the effects of Vbad(t) independently of the orientation of the control loop, we must solve the system of equations

∫ tf

0

dtW
(1)
I (t) = −i

∫ tf

0

dtV �
bad,I(t),∫ tf

0

dtW
(1)
I (t) = −i

∫ tf

0

dtV 	
bad,I(t).

(30)

where we have defined

V �
bad,I(t) = ṽ�z (t)σz + ṽ�x (t)σx + ṽ�y (t)σy = e2iΛ(t)]θ̇(t) (σx + iσy) ,

V 	
bad,I(t) = ṽ	z (t)σz + ṽ	x (t)σx + ṽ	y (t)σy = −e−2iΛ(t)]θ̇(t) (σx − iσy) .

(31)

Using the decomposition of WI(t) [see Eq. (29)] and V s
bad,I(t) [see Eq. (31)] into the basis of Pauli matrices and
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taking into account that the coefficients of the decomposition are complex, Eq. (30) can be written as

Re

[∫ tf

0

dtw̃(1)
z

]
= Re

[
−i
∫ tf

0

dtṽ�z (t)

]
,

Im

[∫ tf

0

dtw̃(1)
z

]
= Im

[
−i
∫ tf

0

dtṽ�z (t)

]
,

Re

[∫ tf

0

dtw̃(1)
x

]
= Re

[
−i
∫ tf

0

dtṽ�x (t)

]
,

Im

[∫ tf

0

dtw̃(1)
x

]
= Im

[
−i
∫ tf

0

dtṽ�x (t)

]
,

Re

[∫ tf

0

dtw̃(1)
y

]
= Re

[
−i
∫ tf

0

dtṽ�y (t)

]
,

Im

[∫ tf

0

dtw̃(1)
y

]
= Im

[
−i
∫ tf

0

dtṽ�y (t)

]
,

Re

[∫ tf

0

dtw̃(1)
z

]
= Re

[
−i
∫ tf

0

dtṽ	z (t)

]
,

Im

[∫ tf

0

dtw̃(1)
z

]
= Im

[
−i
∫ tf

0

dtṽ	z (t)

]
,

Re

[∫ tf

0

dtw̃(1)
x

]
= Re

[
−i
∫ tf

0

dtṽ	x (t)

]
,

Im

[∫ tf

0

dtw̃(1)
x

]
= Im

[
−i
∫ tf

0

dtṽ	x (t)

]
,

Re

[∫ tf

0

dtw̃(1)
y

]
= Re

[
−i
∫ tf

0

dtṽ	y (t)

]
,

Im

[∫ tf

0

dtw̃(1)
y

]
= Im

[
−i
∫ tf

0

dtṽ	y (t)

]
,

(32)

Substituting Eq. (18) of the main text into Eq. (32), we can carry out the time integration and we are left with a
linear system of 12 equations for the unknown Fourier coefficients. As shown in Ref. [30], the system of equations can
be written in matrix form as

Mx(1) = y(1) (33)

with M a known 12×Ncoeffs matrix characterizing the evolution of the system under the flow Φ0(t), y(1) is the known
vector of length 12 that encodes the spurious elements, and x(1) is the unknown vector of Fourier coefficients of length
Ncoeffs. Here, Ncoeffs is the total number of Fourier coefficients that one is free to choose. As noted in Ref. [30], for
Ncoeffs 6= 12 the system of equations can be solved using the Moore-Penrose pseudo-inverse.

Higher-order coefficients are found by solving the linear system of equations

Mx(n) = y(n), (34)

where M is the same matrix as in Eq. (33) and the vector of spurious elements y(n) is determined using Eq. (16) of
the main text.
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