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Abstract

Explaining the decision of a multi-modal decision maker
requires to determine the evidence from both modalities.
Recent advances in XAI provide explanations for models
trained on still images. However, when it comes to modeling
multiple sensory modalities in a dynamic world, it remains
underexplored how to demystify the mysterious dynamics
of a complex multi-modal model. In this work, we take a
crucial step forward and explore learnable explanations for
audio-visual recognition. Specifically, we propose a novel
space-time attention network that uncovers the synergistic
dynamics of audio and visual data over both space and time.
Our model is capable of predicting the audio-visual video
events, while justifying its decision by localizing where the
relevant visual cues appear, and when the predicted sounds
occur in videos. We benchmark our model on three audio-
visual video event datasets, comparing extensively to multi-
ple recent multi-modal representation learners and intrinsic
explanation models. Experimental results demonstrate the
clear superior performance of our model over the existing
methods on audio-visual video event recognition. Moreover,
we conduct an in-depth study to analyze the explainability
of our model based on robustness analysis via perturbation
tests and pointing games using human annotations.

1. Introduction
A real-world event is often perceived and interpreted

by processing information from various sensory modalities,
such as audio and vision [12]. For instance, the video event
of playing acoustic guitar can be recognized because of the
presence of a musician playing the guitar in the scene (vi-
sual cues) and the sound of the guitar (audio cues). In fact,
perceiving the audio and visual cues simultaneously makes
it easier to distinguish acoustically or visually similar events
such as playing acoustic guitar and playing mandolin. The
synergy of audio and visual modalities has also been shown
to be beneficial for learning more powerful multi-modal
representations for video recognition. Recently, a line of
works shows that integrating the audio and visual data by
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Figure 1. For a given video, our space-time attention network
(STAN) predicts the audio-visual event and provides audio-visual
explanations, which pinpoint where the discriminative visual cues
appear in the video and when the predicted sounds occur.

multi-modal learning can greatly boost the model perfor-
mance, e.g. for recognizing human action [43], speech [2],
or sound events [13] in videos.

Although existing works have discovered the strength
of multi-modal networks for video recognition, understand-
ing how different modalities are composed and utilized for
model predictions remains an unresolved challenge. In-
spired by the recent advances in explainable AI (XAI)
[8, 20, 48, 27, 28], our goal in this work is to uncover the
underlying rationale for the audio-visual model predictions.
Instead of simply fusing the two modalities, we introduce an
intrinsically explainable audio-visual model that can predict
the audio-visual video events, while explaining how each
data modality contributes to the model predictions.

To achieve the aforementioned intrinsic explainability in
audio-visual learning, we need to tackle several challenges:
(i) the audio and visual information could vary drastically
over space and time; (ii) obtaining desired audio-visual
recognition and explanation both require learning good rep-
resentations. We tackle these challenges via a unified audio-
visual model built with an explainable space-time atten-
tion mechanism (Figure 1). In contrast to most existing
explainable models that operate on the static images and
texts [36, 39, 33, 50], our model learns to provide expla-
nations for the audio and visual data over space and time.
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In other words, unlike visual recognition on still images, it
is crucial to simultaneously reason on the spatial and tem-
poral dynamics across different modalities for audio-visual
video recognition. As a pioneer in exploring explanations
for audio-visual learning, our model is designed to predict
the audio-visual video events and offer explanations that
localize where the related visual cues appear in space and
when the predicted sounds occur along time.

Our contributions are as follows. (1) We propose a novel
explainable space-time attention network (STAN) which
uncovers the underlying spatial and temporal dynamics to
justify how the audio and visual modalities are utilized
for recognizing an audio-visual event. (2) We establish a
comprehensive benchmark on multiple audio-visual event
datasets, comparing our model to multiple recent multi-
modal models and intrinsic explanation models. Experi-
mental results show that our model achieves superior perfor-
mance on audio-visual event recognition. (3) We provide an
insightful study to analyze the explainablity of our model.
We show that our model serves as a good proxy for model
explanations and offers human-interpretable explanations.

2. Related Work

Visual Explanations. A group of existing works provide
visual explanations (e.g., a saliency or attention map) that
uncover the underlying focus of deep neural networks in a
visual recognition task [37, 49, 29, 54, 36, 36, 38, 39, 8,
51, 14, 28, 27]. Existing visual explanation models can be
grouped into three families: CNN visualization [49, 29],
gradient-based post-hoc explanations [36, 38, 8, 39], and
response-based intrinsic explanations [54, 14]. While the
former two families obtain visualizations without making
any architectural change, the latter one incorporates visual
explanations as an intrinsic component in the model ar-
chitecture. The gradient-based visual explanation models
(such as Grad-CAM [36] and Integrated Gradients [39]) uti-
lize the back-propagated gradients of a pre-trained network
to derive an activation or saliency map for identifying the
image regions or pixels that most contribute to the model’s
decisions. For response-based visual explanation models
(e.g., CAM [54], ABN [14] and one-class explanation mod-
els [27, 28]), an activation or attention map is designed as an
intrinsic property of the model to provide transparent expla-
nations, which often yield an interpretable heatmap on the
image to highlight the decisive regions. In a similar spirit
as CAM and ABN, our proposed model is also an intrinsic
explanation model with a learnable class activation mech-
anism to localize the salient regions. However, we stretch
this mechanism to model the multi-modal audio-visual data
in videos, and propose a novel explainable space-time at-
tention mechanism that jointly learns class activation maps
over space and class activation values along time.

Multi-Modal Explanations. Another recent line of works
offers multi-modal explanations for deep neural networks
via generating human-interpretable justifications [19, 33,
25, 20, 50, 24, 48], such as text explanations that explain a
model’s decisions by generating human-readable words or
natural language sentences [25], or other cues like ground-
ing bounding boxes that point to the important visual re-
gions [24]. In general, these explanation models are trained
in a multi-task learning framework by jointly optimizing a
primary task objective and an auxiliary explanation objec-
tive. Among these works, several of them explore to learn
from multi-modal visual and textual data and generate text
explanations to justify the answers for visual question an-
swering [33] or visual commonsense reasoning [50]. Sim-
ilarly, we also explore multi-modal data, but in the task of
audio-visual event recognition that especially requires the
synergistic space-time understanding of two data modal-
ities. Although text explanations or bounding boxes are
human-friendly, they often require manual annotations to
provide supervision on explanations during training. To
avoid using expensive annotations, we propose a space-time
attention mechanism to explain the spatial and temporal dy-
namics for recognizing a video event, without using any ad-
ditional supervision on explanations.
Audio-Visual Learning. Integrating the audio and visual
modalities for multi-modal representation learning can ben-
efit a wide variety of tasks, such as lip reading [3], speech
recognition [2], speech separation [11], emotion recogni-
tion [31, 5], sound source separation [17, 4], sound local-
ization [41, 46, 15], action recognition [43, 47, 9], sound
recognition [13], audio-driven image synthesis [44, 23, 42],
and visual-driven audio synthesis [55, 16]. A line of works
has also explored various ways to localize the visual regions
related to sounds [6, 53, 52, 4], or to localize the sounds
[41, 46]. In this work, we consider to jointly localize the au-
dio and visual aspects over space and time. However, rather
than simply fusing the two modalities for learning an audio-
visual recognition model [43, 13], we introduce explain-
ability into audio-visual learning. While existing works on
localizing sound sources [46, 15] or sound source separa-
tion [17, 4] focus mainly on the audio aspect and do not
consider explanability, our work considers both recognition
and explanations on audio and visual modalities simultane-
ously. Moreover, we evaluate our model under the explana-
tion evaluation criteria to study its underlying connections
to model explanations and human explanations.

3. Space-Time Attention Network (STAN)
Given a video consisting of audio and image frames, our

task is to recognize the audio-visual video events, while be-
ing capable of explaining where (i.e., space) and when (i.e.,
time) are decisive for recognition. For instance, to predict
the audio-visual event of playing acoustic guitar, an audio-
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Figure 2. Given audio and visual data from a video, STAN first composes the audio and visual features from the audio and video encoders
(Section 3.1), and learns space-time attention (Section 3.2), constrained by a learning objective for three classifiers (Section 3.3). Once
trained, STAN can recognize the audio-visual events and offer explanations on the audio-visual data. While the space attention tells where
the salient visual cues appear in space, the time attention tells when the sounds occur along time. CAV/CAM: class activation values/maps.

visual recognition model is expected to “see” where the mu-
sicians play the string instruments in the video, and “hear”
when the sounds of string music occur in the audio track.
To this end, we propose a unified audio-visual recognition
model with an explainable space-time attention mechanism.
As Figure 2 shows, the attention mechanism is decomposed
and learned separately along the space and time dimensions,
conditioning on the audio-visual features. By design, the
space-time attention can pinpoint the salient visual and au-
dio cues, and selectively activate the space-time features to
learn explainable representations for video event recogni-
tion using heterogeneous audio and visual data.

3.1. Representing Audio and Visual Modalities

We refer to the video dataset as {Xa[i],Xv[i], y[i]}Ni=1,
where Xa denotes the audio, Xv is the video, y ∈ RK is
the corresponding video event label and K is the number
of classes. To learn from the fine-grained information over
space and time, Xa,Xv are decomposed into a sequence of
T segments, where T is the total time length. Each audio
or video segment is of a fixed time length (e.g. 1 second).
Next, we detail how each modality is represented and how
they are composed for audio-visual representation learning.
Audio Encoder. An audio track Xa is represented by a se-
quence of audio features, i.e., a = {a1, . . . , at, . . . , aT }.
Each audio segment is a Da-dimensional embedding at ex-
tracted from the log-mel spectrogram by an audio encoder.
Video Encoder. To encode the space-time visual content,
the video Xv is represented by a sequence of visual fea-
tures, i.e., v = {v1, ..., vt, ..., vT }. For each visual seg-
ment, a ResNet [18] is used to extract a (H ×W × Dv)-
dimensional feature map vt, where H ×W denotes its spa-

tial dimensions. As each visual segment could contain mul-
tiple image frames, temporal average pooling is applied to
aggregate all the frame-wise image features and derive one
feature map per segment. Thus, each video Xv is encoded
by a space-time visual feature tensor v ∈ RT×H×W×Dv .
Audio-Visual Composition. As audio and visual modali-
ties encode heterogeneous and complementary information,
we propose to compose the two modalities. To achieve this
aim, an intuitive strategy would be to add, average or con-
catenate the audio and visual features, which however, may
not be directly applicable due to a mismatch in feature di-
mensions across modalities. Hence, we apply linear trans-
formations to project the audio and visual feature tensors to
the size of T ×D and T ×H ×W ×D, followed by tiling
the audio features spatially to kept the audio and visual fea-
tures in an identical size of T ×H ×W ×D. Formally, the
linear transformations can be written as:

ât = Ftile(Fst
MLP([at, ā];W st

a )),

v̂t = Fst
conv(vt;W

st
v ),

(1)

where Fst
MLP(·;W st

a ) is an MLP; Ftile(·) is a spatial tiling
operator; Fst

conv(·;W st
v ) is a convolutional layer. To take

the global audio information into account, each audio seg-
ment is represented by concatenating its feature at and
the temporal average pooling feature of all audio seg-
ment features, i.e., ā = 1

T

∑T
t=1 at. The features of

the audio and video sequences can be referred as â and
v̂, where â = {â1, ...ât, ..., âT }T×H×W×D and v̂ =
{v̂1, ...v̂t, ..., v̂T }T×H×W×D. To compose the audio and
visual features â and v̂, simple addition or concatenation
can be applied to derive a compositional space-time feature
tensor xst ∈ RT×H×W×D′

which encodes the audio-visual



data. We concatenate â and v̂ to get the space-time feature.

3.2. Learning to Explain Where and When

To demystify how the audio and visual modalities are
composed for recognizing a video event, our space-time at-
tention mechanism is learned to explain where the visual
cues appear in the video and when the sounds occur in the
audio. More precisely, the space and time attentions are
learned separately and then integrated to obtain attention-
weighted space-time features. Since the audio and visual
modalities are both important for recognition, the space and
time attentions are learned upon the space features and time
features respectively, as elaborated in the following.
Space Attention. To explain the where dynamics in space,
we first derive the space features, followed by learning the
space attention. Specifically, the space representations are
obtained using Eq. (1), which gives an audio-visual space-
time feature tensor xs = {xs1, ..., xst , ...xsT }. To learn the
space attention, spatial class activation maps (CAM) [54]
are learned for each individual space feature tensor xst ∈
RH×W×D, followed by a learnable space gating function:

As
t = Fspace-gate(FCAM(xst ;Ws);Wsa),

with FCAM(xst ;Ws) = Mt = Ws ∗ xst ,
(2)

where ∗ denotes 2D convolution; FCAM(·;Ws) learns the
class activation maps for a space feature tensor xst at time
step t: Mt ∈ RH×W×K . Fspace-gate(·;Wsa) is a space gat-
ing function with a convolutional layer and a sigmoid func-
tion, which maps the class activation maps to a space at-
tention map As

t ∈ {0, 1}H×W . As As
t is learned upon the

spatial CAM, it summarizes how the model arrives at its de-
cision in space. As Figure 2 shows, a space attention map
As

t essentially pinpoints the most discriminative visual re-
gions. For a video, the overall space attention is written
as As = {As

1, ..., A
s
t , ..., A

s
T }T×H×W , which includes T

space attention maps.
Time Attention. Although the space attention can explain
the visual dynamics, it does not tell when the sounds occur.
The latter aspect is however essential to explain how the au-
dio contributes to the recognition of an audio-visual event.
To achieve this, we propose to first derive the time features,
followed by learning the time attention. In the time dimen-
sion, the spatial information is no longer important; thus,
we rewrite Eq. (1) to learn the time representations by lin-
ear transformations on the audio and visual features:

ât = F t
MLP([at, ā];W t

a),

v̂t = F t
MLP(v̄t;W

t
v),

(3)

where F t
MLP(·;W t

a),F t
MLP(·;W t

v) are MLP layers. To dis-
card the spatial information, v̄t ∈ RT×Dv is derived by spa-
tial average pooling on the original visual feature map vt.

Given Eq. (3), the audio and visual time features are kept
in an identical size, where ât = {â1, ...ât, ..., âT }T×D and
v̂t = {v̂1, ...v̂t, ..., v̂T }T×D. Thus, ât and v̂t can be com-
posed by addition to obtain a compositional time feature
tensor: xt = {xt1, ..., xtt , ..., xtT }T×D.

To learn an explainable time attention in a similar fashion
as the space attention (Eq. (2)), we propose to first learn the
temporal class activation values (CAV) per time step feature
xtt , followed by a learnable time gating function:

At
t = Ftime-gate(FCAV(xt

t ;Wt);Wta),

with FCAV(xt
t ;Wt) = Vt = Wtx

t
t ,

(4)

where FCAV(·;Wt) is an MLP that learns the class activa-
tion values for the time feature xt

t at time t; Vt ∈ RK

denotes the class activation values. Ftime-gate(·;Wta) is a
time gating function with an MLP and a sigmoid function,
which maps the class activation values to an attention scalar
value per time step, i.e., At

t∈{0, 1}. For a video, the time
attention is written as At = {At

1, ..., A
t
t , ..., A

t
T }T . At has

higher values when relevant sounds occur (see Figure 2).
Remark. It is worth noting that the temporal CAV differs
from the spatial CAM. While CAM learns an activation map
per class per space tensor, CAV learns an activation value
per class per time step. However, both CAM and CAV learn
the per-class relevance scores at a specific spatial or tem-
poral location, which are also constrained by classification
losses (detailed in Section 3.3). Thus, CAM and CAV can
both offer class activation scores to learn the attention maps
that indicate the feature importance over space and time.
Space-Time Attention. Given the space and time attention
tensors As, At, we integrate the two attention tensors by
outer product, resulting in a space-time attention tensor:

Ast = As ⊗At, (5)

where Ast ∈ {0, 1}T×H×W is a holistic attention tensor
that tells how the space-time dynamics contribute to audio-
visual representation learning. For each video,Ast operates
on its audio-visual space-time feature tensor xst (Eq. (1))
as follows.

x̂st = xst �Ast, (6)

where � is the element-wise product of two tensors. The
new space-time feature tensor x̂st (reweighted by attention
tensor Ast) is further passed towards the final classifier for
predicting the video events, as detailed in the next section.

3.3. Learning Objective

Given the attention-weighted audio-visual feature (Eq.
(6)), the STAN model is trained to predict the video events.
Each audio-visual feature tensor x̂st ∈ RT×H×W×D′

is
first passed through spatial average pooling and temporal



average pooling to obtain a D′-dimensional feature embed-
ding, followed by a fully-connected layer with sigmoid ac-
tivation to obtain the final probabilistic predictions p for the
video. As each video may be tagged with more than one
event label, we cast this recognition task as a multi-label
multi-class classification problem. Hence, STAN can be op-
timized with a multi-label binary cross-entropy loss:

LBCE =

K∑

j=1

y(j)logp(j) + (1−y(j))log(1−p(j)), (7)

where y is the groundtruth audio-visual event label of the
video. In theory, the CAM and CAV (from Eq. (2) and Eq.
(4)) both learn the class activations. Therefore, we constrain
the learning of CAM and CAV by mapping their average
pooling features to the class predictions by adding the clas-
sifier upon CAM and CAV, using the same loss in Eq. (7).
In particular, for CAM, we perform spatial average pool-
ing and temporal average pooling of all the class activation
maps in the full video; while for CAV, we perform tempo-
ral average pooling of all the class activation values. The
overall learning objective for STAN can be written as:

LSTAN = LBCE + LCAM
BCE + LCAV

BCE. (8)

As there are three classifiers, STAN is trained with LSTAN
as a multi-task model. To simplify model optimization, we
use pre-trained audio and video encoders and train only the
space-time attention modules and classifiers, while keeping
the encoders frozen during training. At test time, the final
classifier (constrained byLBCE) is used for model inference.

4. Experiments
We first detail the experimental setup (Section 4.1), and

evaluate on audio-visual recognition (Section 4.2). Finally,
we analyze the explainability of our model (Section 4.3).

4.1. Experimental Setup

Datasets. We evaluate on three audio-visual event datasets.
First, AVE [41] is an audio-visual event dataset, including
4,143 videos of 28 video event categories (e.g., motorcycle
and violin). Most videos are around 10 seconds, and each
video is tagged with one or more video event label. Second,
LLP [40] is a recent audio-visual video event dataset, which
includes 11,849 video clips of 25 video categories (e.g. car
and cat). Each video is 10 seconds and tagged with one
or more than one video event label. Finally, we construct
a new Audio-Visual Recognition (referred as AVR) dataset
by unifying the AVE and LLP datasets into one dataset to
obtain a large class space. AVR contains 15,992 videos of
43 video categories. We summarize the class spaces and
statistics in the supplementary. For all the datasets, we use
only the video event labels for training.

We adopt the above datasets as they contain the human
annotated temporal bounding boxes that indicate when the
predicted sounds occur. For instance, a temporal bound-
ing box “[0, 4]” means the sounds occur from seconds 0
to 4, which can be converted to a binary mask to evaluate
whether the temporal attention values are in line with hu-
man annotations. We detail this evaluation in Section 4.3.

Evaluation Metrics. Following the common practice for
evaluating multi-label multi-class classification [45], we
adopt the following three evaluation metrics. Top-1 accu-
racy measures the fraction of instances whose most con-
fident label is relevant. Mean average precision (mAP) is
the average fraction of relevant labels ranked higher than
other labels. F-score is the F-measure averaged over the in-
stances, which is commonly adopted in sound event recog-
nition [30]. As computing the F-score requires binary pre-
dictions, we convert the model predictive scores (∈[0, 1])
to binary values by a threshold of 0.5. For all the metrics,
higher percentages (%) indicate better model performance.

Implementation Details. We use a VGGish network [21]
pre-trained on the YouTube dataset [1] to extract embed-
dings for each audio segment (1 second). We use a ResNet-
152 [18] pre-trained on ImageNet [10] to extract a visual
feature map that encodes each video segment. To ensure fair
comparison, we use the Adam optimizer [26] with the same
learning rate schedule and random seed for all the methods
that we compare to. More implementation details are given
in the supplementary. Code will be publicly available.

4.2. Evaluating Audio-Visual Recognition

In this section, we conduct an ablation study on STAN,
and compare to the state of the art of two types of models:
(1) intrinsic explanation models and (2) audio-visual learn-
ers. All experiments on audio-visual recognition are con-
ducted on three datasets: AVE, LLP and AVR, using three
metrics: top-1, mAP (mean average precision) and F-score.

Baselines. We ablate our STAN model to evaluate the ef-
fects of audio and visual data on our model. Our audio base-
line is a unimodal baseline that trains an MLP and a clas-
sifier upon the audio features. Our visual baseline is also
a unimodal baseline that trains a convolutional layer and a
classifier upon the visual features. Furthermore, our STAN
(audio) is an ablation of our model that uses only audio fea-
tures and learns only the time attention; while our STAN
(visual) is also an ablation of our model that uses only vi-
sual features and learns space-time attention. Finally, STAN
(audio-visual) is our full model that integrates audio and vi-
sual data to learn space-time attention.

Ablation Study. Table 1 shows our ablative evaluation
on audio-visual video event recognition. As can be seen,
compared to the audio baseline and visual baseline that
learn from one single modality, STAN (audio) and STAN



Data Method
AVE LLP AVR

top-1 mAP F-score top-1 mAP F-score top-1 mAP F-score

Audio
audio baseline 67.7 66.8 40.1 79.1 65.5 60.3 72.3 58.0 51.7
STAN (audio) 74.4 77.0 68.2 81.8 72.3 69.1 76.5 67.1 64.1

Vision
visual baseline 77.4 83.7 71.4 61.1 47.4 46.1 64.1 58.5 47.2
STAN (visual) 79.4 84.0 72.5 70.8 59.4 54.0 71.4 64.7 54.1

Audio+Vision STAN (audio-visual) 91.8 93.6 85.3 87.2 82.6 75.5 86.2 83.1 74.5
Table 1. Ablation study of STAN for audio-visual video event recognition on the AVE, LLP and AVR datasets, using the evaluation metrics:
top-1, mAP (mean average precision) and F-score.

Model Method
AVE LLP AVR

top-1 mAP F-score top-1 mAP F-score top-1 mAP F-score

Explanation
Models

CAM (visual) [54] 78.6 82.1 71.1 61.0 45.8 46.1 62.9 56.9 47.7
ABN (visual) [14] 79.6 83.8 72.4 63.2 47.4 45.1 63.8 58.6 47.8
AV-CAM 85.6 88.3 79.6 84.9 76.2 70.8 83.4 78.4 71.1
AV-ABN 87.8 91.0 81.6 85.6 78.6 71.9 84.6 80.4 70.9

Audio-
Visual
Models

Relationship [35] 85.3 88.4 78.6 83.8 76.1 70.4 83.2 77.8 68.9
Average Ensemble [32] 86.8 90.0 62.8 82.0 76.8 65.9 79.6 76.4 59.5
FiLM [34] 87.8 90.8 81.6 85.0 79.6 71.3 83.4 81.2 70.2
Attention Fusion [13] 89.3 93.2 81.8 86.3 80.4 72.2 84.8 81.8 72.6

Ours STAN 91.8 93.6 85.3 87.2 82.6 75.5 86.2 83.1 74.5
Table 2. Evaluating state of the art intrinsic explanation models, audio-visual learners and STAN for audio-visual video event recognition
on the AVE, LLP and AVR datasets, using the evaluation metrics: top-1, mAP (mean average precision) and F-score.

(visual) greatly boost the model performance by learning
the explainable attention on the audio or visual data. For
instance, when comparing the audio baseline and STAN
(audio), the F-score is increased from 40.1/60.3/51.7 to
68.2/69.1/64.1 on the AVE/LLP/AVR datasets. Similarly,
when comparing the visual baseline and STAN (visual), the
F-score is improved from 71.4/46.1/47.2 to 72.4/54.0/54.1
on AVE/LLP/AVR. Compared to the unimodal models, our
STAN (audio-visual) further enhances the model perfor-
mance. The F-score of STAN (audio-visual) is raised upon
STAN (visual) from 72.4/54.0/54.1 to 85.3/75.5/74.5 on
AVE/LLP/AVR. The similar improving trends can also be
observed in other evaluation metrics including top-1 and
mAP. Overall, these results suggest the joint benefits of
composing the audio and visual modalities and learning the
explainable space-time attention. In the following, we refer
to our full model STAN (audio-visual) as STAN.
Compared Methods. We compare STAN to two groups
of models: (1) intrinsic explainable models that incorpo-
rate explanation as an intrinsic model component; (2) multi-
modal representation learners that integrate audio and visual
data. We describe these two groups of models as below.

• CAM [54] (class activation maps): A visual explanation
model that learns to localize the discriminative regions.

• ABN [14] (attention branch network): An attention-based
visual explanation model that learns visual attention maps
to pinpoint class-agnoistic discriminative regions.

• AV-CAM: We extend the vanilla CAM to learn upon the
concatenation of visual feature maps and audio features.

• AV-ABN: Same as AV-CAM, we extend the vanilla ABN
to learn from audio and visual data.

Remark. CAM is used as a model component in the above
methods. However, our model especially learns class acti-
vation values (CAV) along time, which allows to uncover
both the spatial and temporal dynamics in videos.

• Relationship [35]: A multi-modal module. It takes in the
visual features and audio features, followed by concate-
nation and an MLP to fuse the audio-visual features.

• Average Ensemble [32]: An ensemble of the unimodal
audio and visual baselines by averaging their predictions.

• FiLM [34]: A Feature-wise Linear Modulation module,
where the audio features are used to modulate the visual
features through a learnable affine transformation.

• Attention Fusion [13]: A recent state-of-the-art audio-
visual feature learner that fuses the audio and visual fea-
tures by an attention-based weighted average.

Remark. Relationship and FiLM are two representative
multi-modal models proposed to learn from images and
texts. We adapt these two methods by replacing the text fea-
tures with audio features, and use temporal average pooling
to obtain one audio-visual feature per video. As Average
Ensemble and Attention Fusion are both designed for audio-
visual learning, we apply them to our context directly.
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Figure 3. Perturbation tests on (a) relevant features of high atten-
tion values; (b) irrelevant features of low attention values. Note:
Increasing the perturbation noise level on features of high/low at-
tention values should lead to higher/lower TVD. Dataset: AVR.

Comparative Results. Table 2 shows the comparative eval-
uation on two groups of models and our STAN on audio-
visual video event recognition. Among the group of in-
trinsic explanation models including CAM, ABN, AV-CAM
and AV-ABN, we can observe the benefits of learning from
audio-visual data jointly, e.g., the performance of CAM
and ABN are improved substantially in their multi-modal
variants. However, compared to the best model AV-ABN
in this group, our STAN still outperforms AV-ABN sig-
nificantly, increasing the F-score from 81.6/71.9/70.9 to
85.3/75.5/74.5 on AVE/LLP/AVR respectively. The perfor-
mance advantages of STAN over AV-CAM and AV-ABN in-
dicate the synergistic merits of learning the space attention
based on class activation maps and the time attention based
on class activation values. By design, the space-time atten-
tion also selectively activates the space-time audio-visual
features (Eq. (6)) to facilitate better audio-visual learning.

In the group of audio-visual learners, we see that STAN
still outperforms the best model Attention Fusion, improv-
ing the F-score from 81.8/72.2/72.6 to 85.3/75.5/74.5 on
AVE/LLP/AVR respectively. Although Attention Fusion
also learns attention to selectively fuse the two modalities,
STAN learns a more advanced space-time attention that can
select the essential audio and visual information both over
space and along time, thus offering superior model perfor-
mance for audio-visual video event recognition.

4.3. Evaluating Audio-Visual Explanations

To study how our explainable attention relates to model
explanations and human explanations, we design two ex-
periments to analyze its explainablity: (1) robustness anal-
ysis via perturbation tests, and (2) pointing games on lo-
calizing sounds. The former aims to uncover whether the
attention value provides the importance of each feature to-
wards model prediction; while the latter focuses on examin-
ing whether the attention is in line with human annotations.
Perturbation Tests. Here, we examine if our learned
attention-based explanations uncover the importance of
each feature towards the model’s decision. We conduct

perturbation tests following the evaluation criteria in ro-
bustness analysis for evaluating model explanations [22].
Specifically, our perturbation tests are driven by two eval-
uation criteria. First, perturbing the relevant features (i.e.,
features with high attention scores or importance values)
should lead to an appreciable change in the model predic-
tions. Second, perturbing the irrelevant features (i.e., fea-
tures with low attention scores or importance values) should
not lead to an appreciable change in model predictions.
Based on these criteria, we add perturbation noise to the
features, following a Gaussian distribution η ∼ N (0, σ2),
where σ2 is increased from 0 to 1 to vary the level of noise.
As the attention scores lie in [0, 1], we count the features
with higher attention scores (>0.5) as relevant, and the fea-
tures with lower attention scores (<0.5) as irrelevant. To
quantify the changes in the model predictions, we measure
the total variation distance (TVD) between two probability
distributions P and Q derived before and after adding per-
turbation noise, where TVD(P,Q) = 1

2

∑K
i=1 |Pi −Qi|.

Figure 3 presents the results of perturbation tests on the
AVR dataset for two types of features: (a) relevant features
that have higher attention values; and (b) irrelevant fea-
tures with lower attention values. We compare our STAN to
two strong intrinsic explainable models: ABN and AV-ABN
(described in Section 4.2), which also learn attention maps
to locate the essential features. For each level of perturba-
tion noise, we randomly sample the 100 different noises and
compute the mean TVD of 100 tests. We give an algorithm
overview of our perturbation tests in the supplementary.

On the one hand, as Figure 3 (a) shows, when increasing
the perturbation noise level in relevant features, the TVD
is increased among all the methods. However, the changes
are much larger in STAN as compared to those of ABN and
AV-ABN. This means that the features of high attention val-
ues predicted by STAN correspond to the regions essential
towards model predictions. On the other hand, as Figure 3
(b) shows, when increasing the perturbation noise level in
irrelevant features, the predictive changes in STAN are al-
most imperceptible compared to the much bigger changes
in ABN and AV-ABN. This indicates the features of low
attention values in STAN are indeed not important for mak-
ing model predictions. In summary, these results indicate
that our model offers explainable attention that picks up the
features of importance for model decision, and serves as a
good proxy of model explanations.

Pointing Games on Localizing Sounds. To further evalu-
ate how our attention-based explanations relate to human
explanations, we conduct pointing games using available
human annotations on audio. This evaluation shares a simi-
lar spirit as the pointing games for localizing visual objects
in images [51]. However, we design this test in the audio do-
main to evaluate the temporal localization ability of sounds.
We exploit the human-annotated temporal bounding boxes
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Figure 4. Visualizing attention maps with STAN. (a) Space attention on image frames from different video classes. (b) Space attention
maps over different image frames in the videos and the time attention on the co-occurring audios. Dataset: AVR.

Method AVE LLP AVR
STAN (audio)+soft attention 0.47 0.42 0.44
STAN (audio-visual)+soft attention 0.46 0.40 0.37
STAN (audio)+binary attention 0.33 0.23 0.25
STAN (audio-visual)+binary attention 0.29 0.24 0.20

Table 3. Evaluation of pointing games for localizing sounds on
AVE, LLP and AVR. Metric: MAE (the lower the better).

that indicate when the sounds occur, as described in Section
4.1. Hence, they serve as a proxy of human explanations.

We compare the time attention to the binary masks ob-
tained by converting a human annotation to a grounding
mask: [0, ..., 1, 1, 0], where 1 refers to the time when the
sounds occur. We compute the mean absolute error (MAE)
between the time attention and the binary mask, which mea-
sures the difference between our explanation and the human
explanation. We evaluate STAN in two modes, i.e. STAN
(audio) and STAN (audio-visual). As described in Section
4.2, these are the only two explanation models that offer
the time attention on audio. We also evaluate soft attention
obtained from the model and binary attention derived by bi-
narizing the soft attention with a threshold of 0.5.

As Table 3 shows, STAN (audio-visual) overall offers the
lower MAE compared to STAN (audio) on two types of at-
tentions across three different datasets. Notably, when using
soft attention, STAN (audio-visual) obtains a lower MAE of
0.46/0.40/0.37 compared to 0.47/0.42/0.44 by STAN (au-
dio) on AVE/LLP/AVR. This indicates that STAN (audio-
visual) has a better temporal localization ability of sounds.
In other words, the time attention learned by STAN (audio-

visual) is closer to the groundtruth human annotations.
Visualizing Attention Maps. We visualize the attention
maps of STAN in Figure 4. As Figure 4 (a) shows, the space
attention maps of different video classes cover the most dis-
criminative visual regions. For instance, in the video Flute
and Violin, the flute and violin are highlighted by STAN.
This means that the space attention can pick up the class-
relevant visual cues. In Figure 4 (b), we can observe that
the space attention on video and the time attention on au-
dio work in different but synergistic ways. For instance, in
the video Goat, the space attention operates on the image
frames to locate the moving goats in the video; while the
time attention operates on the audio to pick up the relevant
audio cues along time. Overall, these results confirm that
our formulation of space and time attention works syner-
gistically to discover the informative audio and visual cues
over space and time, which also resembles how humans in-
terpret video events with both audio and visual content.

5. Conclusion
We presented a novel intrinsic explanation model for

audio-visual recognition, which sheds light on a new aspect
for explainable modeling on multi-modal data collected
over space and time. Our proposed space-attention network
(STAN) first composes the audio and visual features, and
learns attention upon class activation maps over space and
class activation values along time. The learned space and
time attention maps can be considered as explanations on
the visual and audio modalities for video event recognition.
Our comprehensive experiments demonstrate that STAN is
a strong audio-visual representation learners and offers im-



pressive model performance on audio-visual event recogni-
tion. Our analysis on explainablity also shows that STAN
provides meaningful explanations that are closely in line
with model explanations and human explanations.
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Supplementary
We provide additional details about the datasets in Sec-

tion A, more implementation details of our proposed model
STAN in Section B, and the algorithm descriptions for the
perturbation tests in Section C. Further, we present addi-
tional qualitative results in Section D.

A. Datasets

Tables A, B and C summarize the class label space of
the three audio-visual datasets: AVE, LLP and AVR, which
include 28, 25 and 43 different classes respectively. In Table
D, we summarize the statistics of the training, validation
and test set.

Hyper Class Class Names
Animal Bark; Cat; Goat; Horse; Rodents, rats, mice

Instrument
Accordion; Acoustic guitar; Banjo; Flute;
Mandolin; Shofar; Ukulele; Violin, fiddle

Home Clock; Frying (food); Toilet flush

Human
Baby cry, infant cry; Female speech, woman speaking;
Male speech, man speaking

Vehicle
Bus; Fixed-wing aircraft, airplane; Helicopter;
Motorcycle; Race car, auto racing; Train horn; Truck

Others Chainsaw; Church bell
Table A. The audio-visual class space of the AVE dataset.

Hyper Class Class Names
Animal Cat; Chicken rooster; Dog
Instrument Accordion; Acoustic guitar; Banjo; Cello; Violin, fiddle

Home
Blender; Frying (food); Lawn mower;
Telephone bell ringing; Vacuum cleaner

Human
Baby cry, infant cry; Baby laughter;
Cheering; Clapping; Singing; Speech

Vehicle Car; Helicopter; Motorcycle
Others Basketball bounce; Chainsaw; Fire alarm

Table B. The audio-visual class space of the LLP dataset.

Hyper Class Class Names

Animal
Bark (Dog); Cat; Chicken rooster; Goat; Horse;
Rodents, rats, mice

Instrument
Accordion; Acoustic guitar; Banjo; Cello;
Flute; Mandolin; Shofar; Ukulele; Violin, fiddle

Home
Blender; Clock; Frying (food); Lawn mower;
Telephone bell ringing; Toilet flush; Vacuum cleaner

Human
Baby cry, infant cry; Baby laughter; Cheering; Clapping;
Female speech, woman speaking;
Male speech, man speaking; Singing; Speech

Vehicle
Car; Bus; Fixed-wing aircraft, airplane; Helicopter;
Motorcycle; Race car, auto racing; Train horn; Truck

Others Basketball bounce; Chainsaw; Church bell; Fire alarm
Table C. The audio-visual class space of the AVR dataset.

Dataset # Total # Training # Val # Test
AVE 4,143 3,339 402 402
LLP 11,850 10,000 650 1,200
AVR 15,993 13,339 1,602 1,052

Table D. Dataset statistics for the AVE, LLP, and AVR datasets.

B. Implementation Details
As aforementioned in Section 4.1 in the main paper, the

audio and visual features are extracted from a VGGish net-
work [21] pre-trained on YouTube-8M [1] and a ResNet-
152 pre-trained on ImageNet [10]. For each 10 second
video (i.e., T = 10), audio features (with size T ×Da) and
visual feature maps (with size T × H ×W × Dc) are ex-
tracted to encode the audio and video segment per second.
For pre-trained networks, we empirically find that a pre-
trained image encoder works better than a video encoder
pre-trained on a video dataset such as Kinetics [7]. This is
likely caused by the fact that most audio-visual video events
do not contain a lot of motion information for actions, while
an ImageNet pre-trained network offers more generic vi-
sual features than the visual features extracted from a pre-
trained video network. The audio and visual features, ex-
tracted from pre-trained networks, further serve as the in-
puts to STAN. To understand the learned attention maps,
we show the space attention maps on image frames and the
time attention maps on raw audio data. Since the convo-
lutions in the image encoder reduce the spatial sizes of the
visual features, we resize the space attention maps to match
the original image size. Similarly, the raw audio time at-
tention maps are of small resolution. Hence, we upsample
the attention maps to a larger size for better visual quality.
PyTorch code will be released publicly.

C. Algorithm for Perturbation Tests
We give an algorithm overview for a general perturbation

test (as mentioned in Section 4.3 in the main paper) in Al-
gorithm A, which either adds input noise (η ∼ N (0, σ2)) to
the relevant features (i.e. features with higher attention val-
ues: 1[A≥0.5]) or the irrelevant features (i.e. features with
lower attention values: 1[A<0.5]). The robustness under per-
turbation is measured as the total variation distance (TVD)
between the predictive distributions before and after pertur-
bation: TVD(ŷ, ŷp) = 1

2

∑K
i=1 |ŷ − ŷp|. We also detail the

perturbation test for STAN in Algorithm B, which adds per-
turbation noise to the audio and visual features similar to
Algorithm A. Note that for each input, we average the TVD
values over 100 random perturbations.

D. Additional Results

Additional Results on Perturbation Tests. Figure A
shows the perturbation tests on the AVE and LLP datasets.



Algorithm A General perturbation test on input features.
1: x← Ffeat(X), A← Fattn(x), ŷ ← Fclassify(x, A)
2: if perturb relevant features then
3: ε = 1[A≥0.5] . mask on input of high attention
4: else
5: ε = 1[A<0.5] . mask on input of low attention
6: end if
7: for p← 1 to 100 do
8: η ∼ N (0, σ2) . sample random input noise
9: xp ← x + η ∗ ε . add noise to input features

10: ŷp ← Fclassify(xp, A) . forward perturbed input
11: ∆ŷp ← TVD(ŷp, ŷ) . compute TVD
12: end for
13: ∆ŷmean ← Meanp(∆ŷp) . average TVD

Algorithm B STAN perturbation test on input features.
1: a← FfeatAudio(Xa), v ← FfeatVideo(Xv)
2: As ← Fspace-branch(a,v), At ← Ftime-branch(a,v)
3: Ast ← As ⊗At, xst ← Fspace-time(a,v)
4: ŷ ← Fclassify(xst, Ast)
5: if perturb relevant features then
6: ε = 1[A≥0.5] . mask on input of high attention
7: else
8: ε = 1[A<0.5] . mask on input of low attention
9: end if

10: for p← 1 to 100 do
11: η ∼ N (0, σ2) . sample random input noise
12: ap ← a + η ∗ ε, vp ← v + η ∗ ε . add noise
13: xst,p ← Fspace-time(a

p,vp) . forward propagation
14: ŷp ← Fclassify(xst,p, Ast) . forward perturbed input
15: ∆ŷp ← TVD(ŷp, ŷ) . compute TVD
16: end for
17: ∆ŷmean ← Meanp(∆ŷp) . average TVD

Similar to Figure 3 in the main paper that shows pertur-
bation tests on the AVR dataset, we can observe the same
trends in Figure A. As Figure A (1)-(a) and (2)-(a) show,
when increasing the perturbation noise level in relevant fea-
tures, the TVD is increased among all the methods. The
changes in predictions (as quantified by TVD) are much
larger for STAN than the changes made by ABN and AV-
ABN. As Figure A (1)-(b) and (2)-(b) show, when increas-
ing the perturbation noise level in irrelevant features, the
predictive changes in STAN are much smaller compared
to the much bigger changes made by ABN and AV-ABN.
These observations again confirm that the features with high
attention values predicted by STAN correspond to the re-
gions essential for model predictions; while the features
with low attention values in STAN are less essential for
making model predictions. In other words, our model of-
fers explainable attention which picks up on the features of
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Figure A. Perturbation tests on the AVE and LLP datasets for
(a) relevant features with high attention values, and (b) irrelevant
features with low attention values. Note: Increasing the perturba-
tion noise level on features with high / low attention values should
lead to higher / lower TVD.

importance for making the model decision.
Additional Results on Attention Visualization. Similar
to Figure 4 in the main paper, we show more visual ex-
amples of the space and time attention maps obtained from
our STAN in Figure B. As can be seen, the space and time
attention maps work in different ways to pick up the dis-
criminative visual and audio cues over space and time. As
shown in the main paper, our STAN not only offers mean-
ingful attention-based explanations, but also provides better
model performance in audio-visual video event recognition.
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Figure B. Visualizing attention maps with STAN, which shows space attention maps over different image frames in the videos and the
time attention maps on the co-occurring audio waveform files. Dataset: AVR.


