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Figure 1. HPS jointly estimates the full 3D human pose and location of a subject within large 3D scenes, using only

wearable sensors. Left: subject wearing IMUs and a head mounted camera. Right: using the camera, HPS localizes the hu-

man in a pre-built map of the scene (bottom left). The top row shows the split images of the real and estimated virtual camera.

Abstract

We introduce (HPS) Human POSEitioning System, a

method to recover the full 3D pose of a human registered

with a 3D scan of the surrounding environment using wear-

able sensors. Using IMUs attached at the body limbs and a

head mounted camera looking outwards, HPS fuses cam-

era based self-localization with IMU-based human body

tracking. The former provides drift-free but noisy position

and orientation estimates while the latter is accurate in the

short-term but subject to drift over longer periods of time.

We show that our optimization-based integration exploits

the benefits of the two, resulting in pose accuracy free of

drift. Furthermore, we integrate 3D scene constraints into

our optimization, such as foot contact with the ground, re-

sulting in physically plausible motion. HPS complements

more common third-person-based 3D pose estimation meth-

ods. It allows capturing larger recording volumes and

longer periods of motion, and could be used for VR/AR ap-

* Joint first authors with equal contribution.

plications where humans interact with the scene without re-

quiring direct line of sight with an external camera, or to

train agents that navigate and interact with the environment

based on first-person visual input, like real humans.

With HPS, we recorded a dataset of humans interact-

ing with large 3D scenes (300-1000 m2) consisting of 7

subjects and more than 3 hours of diverse motion. The

dataset, code and video will be available on the project

page: http://virtualhumans.mpi-inf.mpg.de/hps/.

1. Introduction

Capturing the full 3D pose of a human, while localizing

and registering it with a 3D reconstruction of the environ-

ment, using only wearable sensors, opens the door to many

applications and new research directions. For example, it

will allow Augmented / Mixed / Virtual Reality users to

move freely and interact with virtual objects in the scene,
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without the need for external cameras. From the captured

data, we could train digital humans that plan and move like

real humans, based on visual data arriving at their eyes.

Moreover, by relying only on ego-centric data, we could

capture a wider variety of human motion, outside of a re-

stricted recording volume imposed by external cameras.

The dominant approach in vision has been to analyze hu-

mans from an external third-person camera, often without

considering scene context [4, 30, 39, 45, 51, 55]. A few re-

cent methods capture 3D scenes and humans [24], but again

using a third-person camera. Capturing with external cam-

eras is undoubtedly a central problem in vision, but it has

its limitations – occlusions are a problem, and interactions

across multiple rooms or beyond the viewing area cannot be

captured; consequently recordings are typically short.

We propose Human POSEitioning System (HPS), the

first method to recover the full body 3D pose of a human

registered with a large 3D scan of the surrounding envi-

ronment relying only on wearable sensors – body-mounted

IMUs and a head mounted camera, approximating the vi-

sual field of view of the human. Inspired by visual-inertial

odometry and localization [29, 40], as well as IMU-based

human pose estimation [50, 71, 73], HPS fuses information

coming from body-mounted IMUs with camera pose ob-

tained from camera self-localization [57,59,64] (see Fig. 1).

Instead of placing the camera towards the body [52,67], we

place it towards the scene, which allows us to capture what

the human observes together with their 3D pose. In com-

parison to third-person pose methods, the body is not seen

by the camera, which poses new challenges.

Pure IMU-based tracking is known to drift over time and

camera localization produces many outliers. By jointly inte-

grating IMU tracking with camera self-localization, we are

able to remove drift [29, 40], and recover the human tra-

jectory when self-localization fails. Furthermore, since we

can approximately locate the person in the 3D scene, we in-

corporate scene constraints when foot contact is detected.

Overall, with HPS we recover natural human motions, reg-

istered with the 3D scene and free of drift, during long pe-

riods of time, and over large areas.

To demonstrate the capabilities of HPS, we capture a

dataset of real people moving in large scenes. Our HPS

dataset consists of 8 types of environments - some being

larger than 1000m2, and 7 subjects performing a variety of

activities such as walking, excercising, reading, eating, or

simply working in the office. The dataset can be used as

a testbed for ego-centric tracking with scene constraints, to

learn how humans interact and move within large scenes

over long periods of time, and to learn how humans process

visual input arriving at their eyes.

We make the following contributions: 1) to the best of

our knowledge, HPS is the first approach to estimate the full

3D human pose while localizing the person within a pre-

scanned large 3D scene using wearable sensors. 2) we intro-

duce a joint optimization which integrates camera localiza-

tion, IMU-based tracking and scene constraints, resulting in

smooth and accurate human motion estimates. 3) we pro-

vide the HPS dataset, a new dataset consisting of 3D scans

of large scenes (some larger than 1000 m2), ego-centric

video, IMU data, and our 3D reconstructed humans moving

and interacting with the scene. In contrast to existing 3D

pose datasets, which are captured from a third-person view,

ours is captured from an egocentric view. We believe both

HPS and HPS dataset will provide a step towards develop-

ing future algorithms to understand and model 3D human

motion and behavior within the 3D environment from an

egocentric (or third-person) perspective.

2. Related Work

IMU-based 3D Human Pose Estimation: Although

commercial solutions for IMU-based pose estimation have

improved the stability of earlier solutions [53], they still

suffer from severe drift, especially in the global orientation

and location of the body. Early work [70] developed a cus-

tom suit to capture 3D human pose during daily activities.

One line of work has focused on reducing the amount of

IMUs necessary to capture motion via space-time optimiza-

tion [73] or with deep learning [26]. In order to reduce drift

and improve accuracy, visual-inertial approaches combine

IMUs with multiple external cameras [42, 49, 50, 69, 72], a

depth-camera [25,85] or even a single hand-held RGB cam-

era [71]–which allowed collecting the 3DPW [71] dataset

with accurate 3D poses outdoors. However, they all re-

quire an external camera, which limits the field of view to

be captured, or requires someone to follow the person being

tracked. Instead, we mount the camera (approximating the

person’s field of view) on the head and use it to self-localize

the person in the scene.

Ego-centric capture and prediction: In contrast to our

method, most ego-centric body-capture approaches mount

the camera on the head looking towards the body. While

ego-centric capture has received considerable attention for

activity recognition [6, 12, 17, 41, 54, 80], methods at most

detect the upper body. For full body capture, a pioneering

method [52] relied on a helmet with sticks holding a camera

away from the body. More recent methods [67, 78] work

reasonably well even when the camera is close to the head.

However, the accuracy is still far from desired.

Another group of methods place the camera looking out-

wards (like humans), and aim at estimating 3D pose from

the ego-centric view alone, but 3D poses are inaccurate and

have high uncertainty [28, 81, 82]. These methods to in-

fer 3D pose from an ego-centric view [28, 81, 82] would

benefit from our captured data, which contains ego-centric

video with corresponding accurate 3D pose registered with

the environment. An alternative approach places many cam-
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Figure 2. Overview. We use IMU data, RGB video from a head mounted camera, and a pre-scanned scene as input. We obtain an

approximate 3D body pose using IMU data, and use head camera self-localization to localize the subject in the 3D scene. We then integrate

the approximate body pose, the camera position and orientation, along with the 3D scene in a joint optimization to obtain the final location

and pose estimates. We urge readers to see the video at http://virtualhumans.mpi-inf.mpg.de/hps/.

eras on the body looking out and use multi-camera structure

from motion [61], but it can only recover slow motions.

Camera Localization: Most 6-DoF camera localization

algorithms can be split into three groups. The first group is

structure-based [11,14,37,59,62,63,65,66], which matches

2D points in the query image with 3D scene keypoints to es-

timate the camera pose by minimizing the reprojection er-

ror. While they provide precise position in small scenes,

they do not scale to large scenes as matching becomes am-

biguous and computationally expensive.

The second group of methods is referred to as image-

based. The idea is to retrieve nearest neighbors in an image

database based on a global descriptor [5, 68, 76]. The cam-

era pose can then be approximated by the known poses of

the retrieved images. They are more robust and scalable

compared to structure based methods, but less precise, and

the quality depends on the size of the image database.

In the third group are hybrid approaches [10, 56, 57]

which combine the benefits of the last two. First, a set of

relevant database images are found using an image-based

method, and then the precise camera pose is recovered using

structure-based methods. Another set of methods directly

regress the camera pose using a CNN [60, 74], but their ac-

curacy leaves a lot to be desired. Hybrid approaches have

been shown to be precise and to scale to large scenes, and

hence the self-localization part of HPS builds upon them.

Humans and Scenes: The relationship between hu-

mans, scenes, and objects is a recurrent subject of study

in vision. Examples are methods for 2D pose and ob-

ject detection [15, 21, 27, 31, 48, 79], 3D object detection

using human poses [20, 22], learning to insert people in

scenes [19,35,75,84], constraining pose [24,83], estimating

forces [36], or predicting long term motion [13] conditioned

on the scene. Most approaches predict only static poses in a

single room, and reasoning is done from a third-person per-

spective. In contrast, our analysis is from a first-person per-

spective, and uses the scene to self-localize the human in it.

Furthermore, our method enables to capture humans in mo-

tion in multiple-room and outdoor environments. All afore-

mentioned methods would benefit from the HPS dataset.

3. Method

Our goal is to recover the 3D body pose and location of a

subject in a known scene from egocentric measurements. To

this end, our method requires as input: 1) a head-mounted

camera, 2) body-mounted IMUs, and 3) a pre-built 3D scan

of a scene, along with a database of RGB scene images

with known camera parameters. Using camera data, our

method localizes the person within a pre-scanned 3D scene

(Sec. 3.2), estimates their 3D pose using IMUs (Sec. 3.3),

and in a joint optimization step (Sec. 3.4) integrates cam-

era localization, IMU pose estimates and scene constraints,

resulting in smooth and accurate human motion estimates.

For an overview of our method, see Fig. 2. For more details

on the 3D scene reconstruction, image database collection,

camera and IMU setup, we refer to the supplementary.

3.1. SMPL Body Model

We use the Skinned Multi-Person Linear (SMPL) body

model [38] to represent the human subject. SMPL is a dif-

ferentiable function M(θ, t,β) : R
72×3×10 7→ R

6890×3

that maps pose θ, translation t and shape β parameters
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Figure 3. Camera self-localization. We match the head camera

image keypoints with the keypoints from the prefiltered database

with known 2D-3D scene correspondences. We then localize the

camera in the scene by minimizing a reprojection error of the key-

points. From top to bottom: head camera image (query), top-3 re-

trieved images from a dataset, depthmaps rendered from the same

position to map 2D database keypoints to 3D, synthetic view of

the scene from the inferred camera position.

to the vertices of a watertight human mesh. The underly-

ing skeleton of SMPL has 24 joints. The pose parameters

θ ∈ R
72 correspond to the relative orientation of each joint

in the SMPL skeleton, expressed in axis-angles. The shape

parameters β ∈ R
10 are the PCA coefficients of a shape

space learnt from a corpus of registered scans. We use the

notation Mn(θ, t,β) ∈ R
3 to indicate the nth vertex of

SMPL. We obtain approximate shape parameters β of a per-

son from body measurements. We assume that β remains

constant during a sequence and aim to recover θ and t of

the subject registered with the 3D environment. Henceforth

we drop β for notational convenience.

3.2. Camera Self­localization

The camera self-localization stage aims to estimate the

position and orientation of the human head from a head-

mounted camera. To scale to large scenes, we use a hi-

erarchical structure-based localization algorithm [57, 58]

(Fig. 3). It first identifies a set of potentially relevant

database images, i.e., images used to build the 3D scene

map, through image retrieval via NetVLAD [5] descrip-

tors. 2D-3D matches are established between local Super-

Point [16] features extracted in the query image and 3D

points visible in the top-40 retrieved images. These matches

are then used to estimate the camera pose by applying a

P3P solver [23, 32, 33] inside a RANSAC loop [18] with

local optimization [34]. Rather than building a separate

sparse Structure-from-Motion point cloud for localization,

Figure 4. Comparison of the trajectories of IMUs (in green) with

camera self-localization (in red). The yellow dot marks the start.

Notice the red trajectory is free of drift but has outliers.

as originally used in [57], we obtain 3D point positions

from our dense scene 3D model [64]. For each pixel in a

database image, we obtain the corresponding 3D point by

rendering the 3D model from the known pose of the image.

2D-2D matches between the query and the top-40 retrieved

database images thus yield the required 2D-3D matches.

From the camera self-localization step, we obtain estimates

for camera orientation R
C and position tC .

3.3. IMU based Pose Estimation

We use a commercial inertial mo-cap system provided

by XSens [47], which uses 17 IMUs attached to the body

with velcro-straps or a suit. XSens IMUs provide 3D pose

estimates, denoted as θI and location estimates relative to

the starting position of a recording - denoted as tI , using a

proprietary algorithm based on a Kalman filter and a kine-

matic model of the human body to reduce drift. While it

provides accurate articulation, our experiments show that

the global orientation and position drift significantly over

time, and consequently scene constraints are not satisfied

(Fig. 4, 6). Using acceleration information, IMUs also de-

tect feet contacts with the ground, which we integrate in our

joint optimization algorithm.

3.4. Joint Optimization

Our joint optimization algorithm finds the pose param-

eters of the SMPL body model in order to satisfy i) the

head camera self-localization, ii) scene, and iii) smoothness

constraints while remaining as close as possible to the IMU

pose estimate θI (excluding global orientation and position)

– while we could optimize SMPL to match the raw IMU

data directly [71,73], we chose not to, because it contains a

lot of drift. Mathematically, we minimize the following ob-
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jective over a batch of T frames (T is fixed for all scenes)

E(θ1:T , t1:T ) = wsEself+wscEscene+wsmEsm+wpEIMU,
(1)

with respect to pose θ1:T and translation t1:T parameters.

θ1:T ∈ R
72T and t1:T ∈ R

3T are stacked model poses and

translations for each time step j = 1 . . . T . In the following,

we explain each of the terms in more detail.

Self-localization Term Eself : We use the estimated orien-

tation of the camera to constrain the orientation of SMPL.

Specifically, we minimize the geodesic distance [73] from

the head camera orientation as inferred from SMPL,

R
C
(θ), to the self-localization estimate R

C over a batch

of frames T :

Eself =
1

T

T
∑

j=1

||(log((R
C
(θj))

⊤
R

C
j ))

∨||2 , (2)

where the log operation recovers the skew-symmetric ma-

trix from the relative rotation matrix, and the ∨ operator

converts it to its axis-angle representation. The mapping

R
C
(θj) can be derived as follows. First, we obtain the head

bone orientation by traversing the kinematic chain of SMPL

RH(θ) =
∏

i∈PHead

exp(θi
∧

) , (3)

where PHead is an ordered list of all the parents to the head

joint. The ∧ operator maps an axis-angle to its correspond-

ing skew-symmetric matrix and exp(θi
∧

) are the relative

joint rotation matrices obtained from θi ∈ so(3) using the

Rodrigues formula. While RH : R72 7→ SO(3) maps from

pose to head rotation, we need a mapping to camera orienta-

tion. Since the camera is rigidly attached to the head, there

is a constant camera to head offset that can be estimated at

frame 0 [50, 73]:

RHC = (RH(θI
0))

⊤
R

C
0 . (4)

We find the desired mapping from pose to camera at a sub-

sequent frame j as R
C
(θj) = RH(θj) RHC .

Scene Contact Term Escene: When the IMUs detect a foot

contact, we force it to be in contact with the ground by us-

ing an energy term consisting of two subterms Escene =
wcEcontact + wvEslide. Let Bk with k ∈ [1, 2, 3, 4] denote

4 sets of manually defined vertex indices in the SMPL cor-

responding to the toe and heel regions for the left and right

foot (more details in supplementary), and let ckj ∈ [0, 1] be

a binary variable indicating if part k is in contact with the

ground at frame j. We define the following contact term,

which snaps the foot vertices to the closest scene vertices

Econtact =
1

4T

T∑

j=1

4∑

k=1

∑

n∈Bk

1

|Bk|
c
k
j ||Mn(θj , tj)− v(n)‖2 ,

(5)

where Mn(θj , tj) is the nth vertex of the SMPL mesh at

frame j, and v(n) = argmin
vs∈Vs

(||Mn(θj , tj)− vs||2) returns

the closest scene point vs ∈ Vs to Mn(θj , tj). To prevent

the foot from sliding when in contact with the scene, we also

constrain the distance between foot parts in contact with the

scene in two successive frames to be zero.

Eslide =
1

4(T − 1)

T−1
∑

j=1

4
∑

k=1

∑

n∈Bk

1

|Bk|
ckj c

k
j+1||Mn(θj , tj)−

Mn(θj+1, tj+1)||2 . (6)

Smoothness Term Esm: This term ensures smooth chang-

ing of the global translation and orientation, as well as head

orientation

Esm = wTET + wGEG + wHEH , (7)

where the translation term equals:

ET =
1

T − 1

T−1
∑

j=1

||(tj − tj+1)||2 . (8)

Defining RG : R72 7→ SO(3) as RG(θ) = exp(θG
∧

) where

θG is the axis-angle representation of the root (global) joint,

the global orientation smoothness term is

EG =
1

T − 1

T−1
∑

j=1

||(log((RG(θj))
⊤RG(θj+1)))

∨||2 (9)

Using Eq (9), the head orientation smoothness term is en-

forced with an equivalent term replacing RG by RH .

Pose Term EIMU: The pose recovered by IMUs captures

the articulation of the body well, but is inaccurate for global

orientation and translation. Hence, we constrain the pose

parameters corresponding to the body to remain close to the

IMUs estimate. Let B be an identity matrix with zeros at

the diagonal entries corresponding to the root joint. With

this, the pose is regularized with the following equation:

EIMU =
1

T

T
∑

j=1

√

(θj − θI
j )

⊤B(θj − θI
j ) . (10)

For implementation details of our joint optimization algo-

rithm, please see the supplementary.

3.5. Initialization

Since the objective function in Eq. (1) is highly non-

convex, convergence to a good minimum hinges on good

initialization. We initialize translation parameters tj using

camera localization estimates tCj . Camera localization re-

sults are typically noisy, so instead of using raw results we

first detect outliers by computing the velocity of translation
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between each result and its inlier neighbours. We mark

a result as an outlier if its velocity exceeds the threshold

ǫ = 3m/s. We repeat this process until convergence and

replace all outliers by interpolation.

For poses θ, the simplest choice is to initialize with

the IMU pose estimate θj = θI
j . However, the global

body orientation often deviates from the more accurate self-

localization trajectory (see Fig. 4, 6). Observing that the

body orientation is often perpendicular to the trajectory,

our idea is to rotate the IMU pose to align it to the self-

localization trajectory. To this end, we first estimate the

tangent direction of the self-localization and IMU trajecto-

ries

vC
j =

tCj+γ − tCj

||tCj+γ − tCj ||2
, vI

j =
tIj+γ − tIj

||tIj+γ − tIj ||2
,

(γ = 10 in our case) and correct the root orientation

exp(θI,G
j

∧

) of the IMU pose with the following formula

θ
I,G∗
j = (log(exp(vI

j × vC
j

∧

)exp(θI,G
j

∧

)))∨ , (11)

where exp(vI
j × vC

j

∧

) is the planar rotation that aligns vI
j

with vC
j . For stationary frames, we use the correction ma-

trix of the last frame with non-zero velocity. We find that in

practise, for stationary frames, this a good approximation.

3.6. Coordinate Frame Alignment

While the camera estimates R
C and tC are in the 3D

scene coordinates, IMU estimates θI and tI are not. Before

the initialization step (Sec. 3.5) of our joint optimization al-

gorithm (Sec. 3.4), we align the IMU coordinate frame with

the 3D scene frame by finding a planar rotation R
∗
A that

orients the SMPL head at frame zero RH(θI
0) to match the

camera orientation R
C
0 at the same frame. Mathematically,

this entails minimizing the following objective

R
∗
A = argmin

RA∈R
||(log(RAR

H(θI
0))

⊤
R

C
0 ))

∨||2 . (12)

We use the axis-angle parameterization to define the set

of rotation matrices R = {exp(xα
∧

) : x ∈ R}. where α =
[0, 0, 1]⊤ is the z-axis unit vector. The IMU pose θI

j and

position tIj estimate of each subsequent frame are aligned

to the 3D scene reference frame by

θ
I,G
j = (log(R∗

Aexp(θ
I,G
j

∧

)))∨ , tIj = R
∗
At

I
j . (13)

4. Dataset

HPS allows us to collect the HPS dataset - a dataset of

3D humans interacting with large 3D scenes (300-1000 m2,

up to 2500 m2). Our dataset contains images captured from

a head-mounted camera coupled with the reference 3D pose

and location of the person in a pre-scanned 3D scene. We

capture 7 people in 8 large scenes performing activities such

Distance

traveled
IMU IMU + Cam

IMU + Cam

(filtered)

HPS

w\o scene
HPS

At start 6.85 9.24 10.48 7.21 5.20

70 m 54.49 742.32 6.93 6.48 4.60

200 m 69.02 136.81 5.93 5.80 4.26

380 m 108.44 32.17 6.15 5.69 4.53

Table 1. Drift and cam. outliers: 3D error (in cm) for the subject

standing in A-pose after moving freely around the scene.

Distance

traveled
IMU IMU + Cam

IMU + Cam

(filtered)

HPS

w\o scene
HPS

At start 6.77 2189.75 10.05 9.19 6.44

70 m 51.57 569.71 21.75 20.68 15.96

200 m 61.11 719.44 7.34 6.67 4.76

380 m 100.44 261.72 12.59 11.96 10.07

Table 2. Drift and cam. outliers (dynamic): 3D error (in cm)

for the subject walking, standing and leaning on the table, after

moving around the scene. Error is measured from the dynamic

ground truth point cloud to the result (3D mesh in motion). Rows

indicate distance traveled before evaluation.

as exercising, reading, eating, lecturing, using a computer,

making coffee, dancing. All subjects have agreed to re-

lease their data for research purposes. In total, the dataset

provides more than 300K synchronized RGB images cou-

pled with the reference 3D pose and location. We plan to

keep updating the dataset by adding more long-term mo-

tion recordings with a variety of scene interactions. Figure

7 shows qualitative results from our dataset. For more ex-

amples, please see the video [1].

5. Experiments

This section shows that HPS does not drift with time and

distance traveled, is robust to non-persistent camera local-

ization outliers, and satisfies scene constraints (feet stay on

the ground during contact, and do not slide).

Since this is the first method to track humans in large

scenes, there exist no published baselines to compare to,

and ground truth 3D human pose and localization cannot

be obtained for unbounded areas like ours. Hence, we use

depth cameras to obtain ground truth dynamic point clouds

of the human in a small sub-area of the scene. Subjects are

then asked to move freely in the large scene, and return to

the sub-area, where we can evaluate accuracy and drift.

5.1. Quantitative Evaluation

We evaluate the accuracy of our method by comparing

our output SMPL mesh (including translation) with a dy-

namic ground-truth point cloud of the person obtained from

three synchronized and calibrated external depth cameras

(Azure Kinect [2]). We register the point cloud to the scene

in three steps involving camera self-localization, ICP, and

manual correction. For an explanation of the Kinect setup

and point cloud registration we refer to the supplementary.

We report the bidirectional Chamfer distance between the
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Metric IMU IMU + Cam
IMU + Cam

(filtered)

HPS

w\o scene
HPS

Dist. to Surf. 188.38 39.8 0.95 0.32 0.056

Foot Sliding 0.92 52.09 1.75 2.00 0.90

Table 3. Foot contact: For frames when foot contact is detected,

we report (in cm) Distance to surface: Average distance between

foot vertices and the scene, and Foot Sliding: Average distance on

the surface plane between foot vertices in two successive frames.

Numbers are computed for a 3 minute long walking sequence.

Frame 867 Frame 885

IM
U

 +
 C

a
m

 (
fi
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e
re

d
)

H
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Figure 5. Effect of integrating predicted 3D scene contacts. As a

baseline we used camera localization results for localizing SMPL

model. Red regions mark closest surface to feet, heels and toes are

colored with light blue and blue when IMUs detect ground contact.

SMPL model (result) and ground truth point cloud from

depth sensors without Procrustes alignment.

Movements: For quantitative evaluation, we record us-

ing the following protocol: a subject starts within the

recording volume of the three RGB-D sensors and performs

different actions including standing in A-pose, leaning on a

table and walking. The subject then leaves the recording

volume and moves within the scene, returns back and re-

peats the same actions inside that volume again. This is

repeated several times, each time choosing a different path.

Baselines: There are no established baselines to com-

pare to, as no other method tackles the same problem.

Hence, to understand the influence of each component, we

use the following baselines: 1) IMU: pure IMU tracker,

2) IMU+Cam: pose from IMU, and translation from

camera self-localization, 3) IMU+Cam (filtered): Like

IMU+Cam but with filtered camera outliers (same as in

Sec. 3.5), 4) HPS w\o scene: Optimization without 3D

scene contact constraints.

Drift and Outliers: In Tables 1 and 2, we compare HPS

to the baselines. We observe that the IMU-only method

drifts over time, particularly the global body translation

and orientation. IMU+Cam corrects drift with camera lo-

calization, but produces translation noise and severe jit-
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Figure 6. Global body orientation improvement. Combining

the IMU pose with position from camera localization (IMU+Cam

(filtered)) results in unnatural motion–the global body orientation

does not face the direction of movement. By contrast, HPS cor-

rectly estimates the the global orientation. We refer to the video at

project page [1] for more visual examples.

ter. IMU+Cam (filtered) mitigates this, but lacks precision

and suffers from global orientation errors (Fig. 6). HPS

w\o scene further improves results, but without knowledge

about foot-scene contacts, it is easily misled by incorrect

camera localization, and the subject penetrates or flies over

the ground. HPS results satisfy these scene constraints, and

consistently achieve the best accuracy. HPS is inaccurate

when filtered camera localization fails for a long period (see

2nd and 4th rows of Table 2), but it can recover once the

camera can be well localized in nearby frames (see 3rd row

of Table 2). Overall, the analysis reveals that HPS does not

drift (error does not increase with distance traveled or time),

and is robust to non-persistent camera localization outliers.

For scenes with with persistent camera localization fail-

ures (outdoor scenes, indoor scenes with repetitive pat-

terns), we implemented a slightly modified version of HPS,

described in the supplementary.

Foot contacts: We also report in Table 3 the average

foot-to-scene distance and foot-sliding-along-the-surface

distance during contacts detected with the IMUs. HPS bet-

ter preserves foot contact with the surface than the base-

lines, and has slightly lower foot-sliding compared to the

raw IMU tracker, which also integrates constraints with a

virtual imaginary ground. Foot contacts in HPS result in

stable and natural motion, see Fig. 5, and the video [1].

5.2. Qualitative evaluation

In Fig. 5 we show the effect of foot contact constraints.

As we encourage contact with the scene surface each time a

contact is detected, the human mesh does not fly in the air or

penetrate the ground like the baseline. The motion is more

stable and physically correct. In Fig. 7 we show examples of

4324



Figure 7. We show qualitative results of our method. Our method can localize and estimate the 3D pose of people performing activities

as diverse as exercising, dancing, reading, sitting, eating, talking in a range of indoor and outdoor scenes, all without external cameras.

humans performing different actions including sitting, lean-

ing on a table, dancing or performing push-ups. For more

examples, please see the video at our project page [1].

6. Conclusions and Future Work

We introduced HPS, to the best of our knowledge, the

first method to estimate full body pose registered with a

pre-scanned 3D environment from only wearable sensors.

We demonstrate that HPS produces natural human mo-

tion, removes the typical drift of pure IMU based systems,

and is robust to non-persistent camera localization outliers.

HPS is able to continuously track humans in large scenes

(300− 1000m2) including multiple rooms and outdoors.

The error of HPS does not accumulate with time or dis-

tance traveled. However, if camera localization is inaccu-

rate for long periods of time, HPS performance deteriorates.

This can be seen in the errors, which range from 4cm to

15cm. Two factors influence localization accuracy: 1) Lack

of features, 2) scene changes between the static 3D scan and

the real images, captured from the head camera.

While HPS achieves a remarkable accuracy and stabil-

ity, many applications will require errors in localization and

pose of less than 1cm. We envision many exciting research

directions to improve HPS. First, a local map could be built

on the fly to update the large static scene with objects that

move, and adding new objects. This would improve lo-

calization and allow interaction with dynamic objects. It

is not inconceivable that, in the future, a dynamic 3D re-

construction of the world will be stored on the cloud, and

will be continuously updated from cameras worn by peo-

ple [3]. Second, camera localization could incorporate se-

mantics [9, 86], e.g. detecting static and reliable objects.

Third, while HPS integrates foot contacts, scene constraints

with other body parts can further improve results. More

powerful would be to learn a model to anticipate human

intent to improve tracking. For example, we could detect

when the person is about to sit on a chair, or about to grab

an object. Conversely, HPS can be used to build models

of environment interaction and navigation [43,77] from hu-

man captures consisting of several hours, as we believe nat-

ural behavior arises only during long recordings. Fourth,

we want to combine HPS with virtual humans of appear-

ance [7, 8, 44, 46] to generate realistic data for training and

evaluation of 3D human analysis methods.

HPS is the first step in a new exciting research direc-

tion. We will release the HPS dataset and code for research

use [1], and hope it will foster new methods to perceive and

model scenes and humans from an ego-centric perspective.
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