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Abstract— Human performance capture is a highly important computer vision problem with many applications in movie production and
virtual/augmented reality. Many previous performance capture approaches either required expensive multi-view setups or did not
recover dense space-time coherent geometry with frame-to-frame correspondences. We propose a novel deep learning approach for
monocular dense human performance capture. Our method is trained in a weakly supervised manner based on multi-view supervision
completely removing the need for training data with 3D ground truth annotations. The network architecture is based on two separate
networks that disentangle the task into a pose estimation and a non-rigid surface deformation step. Extensive qualitative and
quantitative evaluations show that our approach outperforms the state of the art in terms of quality and robustness. This work is an
extended version of [1] where we provide more detailed explanations, comparisons and results as well as applications.

Index Terms—Monocular human performance capture, 3D pose estimation, non-rigid surface deformation, human body.
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1 INTRODUCTION

CAPTURING the space-time coherent geometry of entire
humans including also their everyday clothing, which

is also known as human performance capture, is extensively
used nowadays for movie production and game develop-
ment. With these tools, real humans can be ported into a
virtual world and fused into the process of creating virtual
content. But also other applications such as virtual try-on,
telepresence and virtual and augmented reality applications
can strongly benefit from dense capture methods. Especially
the latter mentioned applications are mainly used by non-
expert users, who do not own dense multi-capture setups.
Thus, to democratize these technologies the hardware setup
has be as simple and accessible as possible, which means
ideally a single color camera is sufficient to capture the entire
deforming surface of a human. While there is extensive
research regarding monocular skeleton-only tracking, only
few works have targeted the capture of the dense deforming
geometry of the entire human from a single color stream.
Nonetheless, densely capturing entire humans from a single
view is still far from being solved while it is indispensable
for creating higher fidelity and photo-real characters.

Some works [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14] have focused on capturing entire humans
from multi-camera setups that typically also include a green
screen. While they achieve a superior quality, the hardware
requirement makes it almost impossible to use them in other
locations like an outdoor film set and restricts the usage to
companies that can afford such an expensive setup.

To overcome the shortcomings of multi-view approaches
and with the advent of deep learning, some recent ap-
proaches [15], [16], [17], [18], [19], [20], [21] focus on predict-
ing the 3D clothed surface of a human from a single color
image. In particular, some works leverage implicit surface
representations such as 3D voxel grids [16], [22] or pixel
aligned implicit surface functions [15], [23]. While such rep-
resentations can handle topological surface changes as well
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Fig. 1. We present the first learning-based approach for dense monocu-
lar human performance capture using weak multi-view supervision that
not only predicts the pose but also the space-time coherent non-rigid
deformations of the model surface.

as the capture of finer geometric details, they suffer from
artifacts like missing limbs as the regressed deformations
are not explicitly constrained by a discrete surface mesh.
Further, these methods are designed to reconstruct a surface
per image. Thus, naively applying those techniques to video
streams results in individual geometries per frame which
are not coherent over time. To this end, another line of
work [17], [19], [24], [25] regresses surface deformation with
respect to a naked human body model. Here, coherence over
time can be ensured and those works do not suffer from
missing limbs since the underlying body model constrains
the surface deformation. However, one drawback of these
approaches is that they do not capture the motion and
surface deformations over time.

The state-of-the-art human performance capture meth-
ods MonoPerfCap [26] and LiveCap [27] densely track the
deforming surface over time. In contrast to the proposed
method, they only predict sparse 2D/3D skeletal keypoints
from the images and then perform an expensive optimiza-
tion based pose and surface fitting. By design, their method

ar
X

iv
:2

11
1.

10
56

3v
1 

 [
cs

.C
V

] 
 2

0 
N

ov
 2

02
1



TO APPEAR IN IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021 2

suffers from the monocular setting as the deformations can
only be constrained by the single view and their pose results
suffer from leaning forward artifacts which originates from
their biased keypoint detections. In contrast, we propose
the first learning-based approach that jointly regresses the
skeletal pose as well as the non-rigid surface deformation
within a single inference pass resulting in a higher accuracy
in terms of 3D surface and pose tracking as well as an
improved robustness. Specifically, two CNN-based models
predict the skeletal joint angles and embedded deformation
parameters of a differentiable mesh-based character repre-
sentation from a single image. By using an explicit mesh rep-
resentation, our method has the advantage that the surface
can be tracked over time which is key-essential for texturing
and rendering in graphics. Furthermore, the coarse-to-fine
modeling of articulation and surface deformation ensures
that the output of our method does not suffer from missing
limbs, even when those are occluded or when the actor
performs out-of-plane motions.

In contrast to previous work [15], [16], [17], [19], our
method does not require any form of 3D supervision for
training but instead leverages weak supervision in the form
of multi-view videos which can be potentially also sparse.
To achieve this, we propose differentiable 3D-to-2D modules
which allow us to train our deep architectures in an analysis-
by-synthesis manner without using 3D ground truth. At the
core, our method leverages a person-specific 3D template
of the actor as well as a multi-view video showing the
actor while he performs a wide range of motions. Then, our
dedicated network modules predict the pose and surface
deformation parameters that allow to pose and deform
the template. This deformed and posed template is then
compared against sparse and dense multi-view observations
extracted from the multi-view images in a differentiable
manner. Importantly, at test time our method only takes
a single image as input and predicts the posed and non-
rigidly deformed surface of the entire human including also
the clothing. In summary, the main technical contributions
of our work are:

• A learning-based 3D human performance capture
approach that jointly tracks the skeletal pose and
the non-rigid surface deformations from monocular
images.

• A new differentiable representation of deforming
human surfaces which enables training from multi-
view video footage directly.

Our new model achieves high quality dense human per-
formance capture results on our new challenging dataset,
demonstrating, qualitatively and quantitatively, the advan-
tages of our approach over previous work. We experimen-
tally show that our method produces reconstructions of
higher accuracy and 3D stability, in particular in depth, than
related work, also under difficult poses.

This work is an extended version of DeepCap [1] where
additional explanations, evaluations, comparisons, appli-
cations, and limitations are provided. In particular, the
character modeling and processing as well as the specific
non-trivial training strategies are explained in more detail.
Further, we provide additional evaluations on all 4 subjects

of the dataset of [1] and qualitative ablation results. Last, we
showcase potential applications and discuss limitations.

2 RELATED WORK

In the following, we focus on related work in the field of
dense 3D human performance capture and do not review
work on sparse 2D pose estimation.
Capture using Parametric Models. Monocular human per-
formance capture is an ill-posed problem due to its high
dimensionality and ambiguity. Low-dimensional parametric
models can be employed as shape and deformation prior.
First, model-based approaches leverage a set of simple
geometric primitives [28], [29], [30], [31]. Recent methods
employ detailed statistical models learned from thousands
of high-quality 3D scans [13], [32], [33], [34], [35], [36], [37],
[38], [39], [40], [41]. Deep learning is widely used to obtain
2D and/or 3D joint detections or 3D vertex positions that
can be used to inform model fitting [42], [43], [44], [45],
[46]. An alternative is to regress model parameters directly
[47], [48], [49]. Beyond body shape and pose, recent models
also include facial expressions and hand motion [50], [51],
[52], [53] leading to very expressive reconstruction results.
Recently, Zhou et al. [54] also predict facial albedo and light-
ing parameters while even achieving real-time performance.
Since parametric body models do not represent garments,
variation in clothing cannot be reconstructed, and therefore
many methods recover the naked body shape under cloth-
ing [55], [56], [57], [58]. The full geometry of the actor can be
reconstructed by non-rigidly deforming the base parametric
model to better fit the observations [18], [59], [60], [61]. But
they can only model tight clothes such as T-shirts and pants,
but not loose apparel which has a different topology than
the body model, such as skirts. To overcome this problem,
ClothCap [14] captures the body and clothing separately, but
requires active multi-view setups. Physics based simulations
have recently been leveraged to constrain the surface track-
ing [62], [63] as well as the pose estimation [64], [65], or to
learn a model of clothing on top of SMPL (TailorNet [20]).
Instead, our method is based on person-specific templates
including clothes and employs deep learning to predict
clothing deformation based on monocular video directly.
Depth-based Template-free Capture. Most approaches
based on parametric models ignore clothing. The other side
of the spectrum are prior-free approaches based on one
or multiple depth sensors. Capturing general non-rigidly
deforming scenes [66], [67], even at real-time frame rates
[67], [68], [69], is feasible, but only works reliably for small,
controlled, and slow motions. Higher robustness can be
achieved by using higher frame rate sensors [70], [71] or
multi-view setups [72], [73], [74], [75], [76]. Techniques that
are specifically tailored to humans increase robustness [77],
[78], [79] by integrating a skeletal motion prior [77] or a
parametric model [78], [80]. HybridFusion [81] additionally
incorporates a sparse set of inertial measurement units.
These fusion-style volumetric capture techniques [82], [83],
[84], [85], [86] achieve impressive results, but do not estab-
lish a set of dense correspondences between all frames. In
addition, such depth-based methods do not directly gener-
alize to our monocular setting, have a high power consump-
tion, and typically do not work well under sunlight.
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Monocular Template-free Capture. Quite recently, fueled
by the progress in deep learning, many template-free
monocular reconstruction approaches have been proposed.
Due to their regular structure, many implicit reconstruction
techniques [16], [87] make use of uniform voxel grids.
DeepHuman [16] combines a coarse scale volumetric recon-
struction with a refinement network to add high-frequency
details. Multi-view CNNs can map 2D images to 3D vol-
umetric fields enabling reconstruction of a clothed human
body at arbitrary resolution [88]. SiCloPe [89] reconstructs
a complete textured 3D model, including cloth, from a
single image. PIFu [15], its follow-up work [23], and a real-
time variant [90] regress an implicit surface representation
that locally aligns pixels with the global context of the
corresponding 3D object. Similar to our work, ARCH [91]
proposes to evaluate the implicit surface function in pose
canonical space which makes the learning task easier as
the pose and surface deformation can be separated. Unlike
voxel-based representations, this implicit per-pixel repre-
sentation is more memory efficient. These approaches have
not been demonstrated to generalize well to strong artic-
ulation. Furthermore, implicit approaches do not recover
frame-to-frame correspondences which are of paramount
importance for downstream applications, e.g., in augmented
reality and video editing. In contrast, our method is based
on a mesh representation and can explicitly obtain the per-
vertex correspondences over time while being slightly less
general.
Template-based Capture. An interesting trade-off between
being template-free and relying on parametric models are
approaches that only employ a template mesh as prior.
Historically, template-based human performance capture
techniques exploit multi-view geometry to track the motion
of a person [92]. Some systems also jointly reconstruct
and obtain a foreground segmentation [2], [8], [10], [93].
Given a sufficient number of multi-view images as input,
some approaches [4], [9], [94] align a personalized template
model to the observations using non-rigid registration. All
the aforementioned methods require expensive multi-view
setups and are not practical for consumer use. Depth-based
techniques enable template tracking from less cameras [72],
[95] and reduced motion models [5], [6], [10], [11] increase
tracking robustness. Recently, capturing 3D dense human
body deformation just with a single RGB camera has been
enabled [26] and real-time performance has been achieved
[27]. However, their methods rely on expensive optimiza-
tion leading either to very long per-frame computation
times [26] or the need for two graphics cards [27]. Similar to
them, our approach also employs a person-specific template
mesh. But differently, our method directly learns to predict
the skeletal pose and the non-rigid surface deformations.
As shown by our experimental results, benefiting from
our multi-view based self-supervision, our reconstruction
accuracy significantly outperforms the existing methods.

3 METHOD

Given a single RGB video of a moving human in general
clothing, our goal is to capture the dense deforming surface
of the full body. This is achieved by training a neural
network consisting of two components: As illustrated in

Fig. 2. Character models. Here, we show the character model of S1 to
S4 (top to bottom) of our new dataset. It consists of the textured mesh,
the underlying embedded deformation graph as well as the attached
skeleton.

Fig. 3, our pose network, PoseNet, estimates the skeletal pose
of the actor in the form of joint angles from a monocular
image (Sec. 3.2). Next, our deformation network, DefNet,
regresses the non-rigid deformation of the dense surface,
which cannot be modeled by the skeletal motion, in the
embedded deformation graph representation (Sec. 3.3). To
avoid generating dense 3D ground truth annotation, our
network is trained in a weakly supervised manner. To this
end, we propose a fully differentiable human deformation
and rendering model, which allows us to compare the ren-
dering of the human body model to the 2D image evidence
and back-propagate the losses. For training, we first capture
a video sequence in a calibrated multi-camera green screen
studio (Sec. 3.1). Note that our multi-view video is only used
during training. More details about training are provided in
Sec. 4. At test time we only require a single RGB video to
perform dense non-rigid tracking.

3.1 Template and Data Acquisition

Character Model. Our method relies on a person-specific
3D template model. To this end, we first scan the actor with
a 3D scanner [96] to obtain the textured mesh (see Fig. 2).
Next, we rig a skeleton onto the template which consists of
23 joints and 21 attached landmarks (17 body and 4 face
landmarks) and it is parameterized with 27 joint angles
θ ∈ R27, the camera relative rotation α ∈ R3 and translation
t ∈ R3. The landmark placement follows the convention
of OpenPose [97], [98], [99], [100]. To model the non-rigid
surface deformation, we automatically build an embedded
deformation graph G with K nodes. The connections of a
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Fig. 3. Overview of our approach. Our method takes a single segmented image as input. First, our pose network, PoseNet, is trained to predict the
joint angles and the camera relative rotation using sparse multi-view 2D joint detections as weak supervision. Second, the deformation network,
DefNet, is trained to regress embedded graph rotation and translation parameters to account for non-rigid deformations. To train DefNet, multi-view
2D joint detections and silhouettes are used for supervision.

node k to neighboring nodes are denoted as the set Nn(k).
The position of the graph nodes is denoted as G ∈ RK×3

where Gk is the position of node k. Finally, the vertex-to-
node weights between the graph node k and the template
vertex i are defined as wi,k and Nvn(i) denotes the set of
nodes that influence vertex i. The nodes are parameterized
with Euler angles A ∈ RK×3 and translations T ∈ RK×3.
Similar to [27], we segment the mesh into different non-
rigidity classes resulting in per-vertex rigidity weights si.
This allows us to model varying deformation behaviors
of different surface materials, e.g. skin deforms less than
clothing (see Eq. 13).
Training Data. To acquire the training data, we record a
multi-view video using C calibrated cameras of the actor
doing various actions in a calibrated multi-camera studio
with green screen. To provide weak supervision for the
training, we first perform 2D pose detection on the se-
quences using OpenPose [97], [98], [99], [100] and apply
temporal filtering. Then, we generate the foreground mask
using color keying and compute the corresponding distance
transform image Df,c [101], where f ∈ [0, F ] and c ∈ [0, C]
denote the frame index and camera index, respectively.
During training, we randomly sample one camera view
c′ and frame f ′ for which we crop the recorded image
with a bounding box, based on the 2D joint detections.
The final training input image If ′,c′ ∈ R256×256×3 is ob-
tained by removing the background and augmenting the
foreground with random brightness, hue, contrast and satu-
ration changes. For simplicity, we describe the operation on
frame f ′ and omit the subscript f ′ in following equations.

3.2 Pose Network
In our PoseNet, we use ResNet50 [102] pretrained on Ima-
geNet [103] as backbone and modify the last fully connected
layer to output a vector containing the joint angles θ and the
camera relative root rotation α, given the input image Ic′ .
Since generating the ground truth for θ and α is a non-
trivial task, we propose weakly supervised training based
on fitting the skeleton to multi-view 2D joint detections.

Kinematics Layer. To this end, we introduce a kinematics
layer as the differentiable function that takes the joint angles
θ and the camera relative rotation α and computes the
positions Pc′ ∈ RM×3 of the M 3D landmarks attached
to the skeleton (17 body joints and 4 face landmarks). Note
that Pc′ lives in a camera-root-relative coordinate system.
In order to project the landmarks to other camera views, we
need to transform Pc′ to the world coordinate system:

Pm = RT
c′Pc′,m + t, (1)

where Rc′ is the rotation matrix of the input camera c′ and
t is the global translation of the skeleton.
Global Alignment Layer. To obtain the global translation t,
we propose a global alignment layer that is attached to the
kinematics layer. It localizes our skeleton model in the world
space, such that the globally rotated landmarks RT

c′Pc′,m

project onto the corresponding detections in all camera
views. This is done by minimizing the distance between
the rotated landmarks RT

c′Pc′,m and the corresponding rays
cast from the camera origin oc to the 2D joint detections:∑

c

∑
m

σc,m‖(RT
c′Pc′,m + t− oc)× dc,m‖2, (2)

where dc,m is the direction of a ray from camera c to the 2D
joint detection pc,m corresponding to landmark m:

dc,m =
(E−1c p̃c,m)xyz − oc

‖(E−1c p̃c,m)xyz − oc‖
. (3)

Here, Ec ∈ R4×4 is the projection matrix of camera c
and p̃c,m = (pc,m, 1, 1)T . Each point-to-line distance is
weighted by the joint detection confidence σc,m, which is
set to zero if below 0.4. The minimization problem of Eq. 2
can be solved in closed form:

t = W−1
∑
c,m

Dc,m(RT
c′Pc′,m − oc) + oc −RT

c′Pc′,m, (4)

where
W =

∑
c

∑
m

I−Dc,m. (5)
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Here, I is the 3 × 3 identity matrix and Dc,m = dc,mdT
c,m.

Note that the operation in Eq. 4 is differentiable with respect
to the landmark position Pc′ .
Sparse Keypoint Loss. Our 2D sparse keypoint loss for the
PoseNet can be expressed as

Lkp(P) =
∑
c

∑
m

λmσc,m‖πc (Pm)− pc,m‖2, (6)

which ensures that each landmark projects onto the corre-
sponding 2D joint detections pc,m in all camera views. Here,
πc is the projection function of camera c and σc,m is the
same as in Eq. 2. λm is a hierarchical re-weighting factor
that varies during training for better convergence. More
precisely, for the first one third of the training iterations
per training stage (see Sec. 4) for PoseNet, we multiply the
keypoint loss with a factor of λm = 3 for all torso markers
and with a factor of λm = 2 for elbow and knee markers.
For all other markers, we set λm = 1. For the remaining
iterations, we set λm = 3 for all markers. This re-weighting
allows us to let the model first focus on the global rotation
(by weighting torso markers higher than others). We found
that this gives better convergence during training and joint
angles overshoot less often, especially at the beginning of
training.
Pose Prior Loss. To avoid unnatural poses, we impose a
pose prior loss on the joint angles

Llimit(θ) =
27∑
i=1

Ψ(θi) (7)

Ψ(x) =


(x− θmax,i)

2, if x > θmax,i

(θmin,i − x)2 , if x < θmin,i

0 , otherwise
, (8)

that encourages that each joint angle θi stays in a range
[θmin,i,θmax,i] depending on the anatomic constraints.

3.3 Deformation Network

With the skeletal pose from PoseNet alone, the non-rigid de-
formation of the skin and clothes cannot be fully explained.
Therefore, we disentangle the non-rigid deformation and
the articulated skeletal motion. DefNet takes the input image
Ic′ and regresses the non-rigid deformation parameterized
with rotation angles A and translation vectors T of the
nodes of the embedded deformation graph. DefNet uses the
same backbone architecture as PoseNet, while the last fully
connected layer outputs a 6K-dimensional vector reshaped
to match the dimensions of A and T. The weights of
PoseNet are fixed while training DefNet. Again, we do not
use direct supervision on A and T. Instead, we propose
a deformation layer with differentiable rendering and use
multi-view silhouette-based weak supervision.
Deformation Layer. The deformation layer takes A and T
from DefNet as input to non-rigidly deform the surface

Yi =
∑

k∈Nvn(i)

wi,k(R(Ak)(V̂i −Gk) + Gk + Tk). (9)

Here, Y, V̂ ∈ RN×3 are the vertex positions of the de-
formed and undeformed template mesh, respectively. wi,k

are vertex-to-node weights, but in contrast to [104] we

compute them based on geodesic distances. G ∈ RK×3

are the node positions of the undeformed graph, Nvn(i)
is the set of nodes that influence vertex i, and R(·) is a
function that converts the Euler angles to rotation matrices.
We further apply the skeletal pose on the deformed mesh
vertices to obtain the vertex positions in the input camera
space

Vc′,i =
∑

k∈Nvn(i)

wi,k(Rsk,k(θ,α)Yi + tsk,k(θ,α)), (10)

where the node rotation Rsk,k and translation tsk,k are
derived from the pose parameters using dual quaternion
skinning [105]. Eq. 9 and Eq. 10 are differentiable with
respect to pose and graph parameters. Thus, our layer can be
integrated in the learning framework and gradients can be
propagated to DefNet. So far, Vc′,i is still rotated relative to
the camera c′ and located around the origin. To bring them
to global space, we apply the inverse camera rotation and
the global translation, defined in Eq. 4, Vi = RT

c′Vc′,i + t.
Non-rigid Silhouette Loss. This loss encourages that the
non-rigidly deformed mesh matches the multi-view silhou-
ettes in all camera views. It can be formulated using the
distance transform representation [101]

Lsil(V) =
∑
c

∑
i∈Bc

ρc,i‖Dc (πc (Vi)) ‖2. (11)

Here, Bc is the set of vertices that lie on the boundary when
the deformed 3D mesh is projected onto the distance trans-
form image Dc of camera c. Those vertices are computed
by rendering a depth map using a custom CUDA-based
rasterizer that can be easily integrated into deep learning
architectures as a separate layer. The vertices that project
onto a depth discontinuity (background vs. foreground)
in the depth map are treated as boundary vertices. ρc,i
is a directional weighting [27] that guides the gradient in
Dc. The silhouette loss ensures that the boundary vertices
project onto the zero-set of the distance transform, i.e., the
foreground silhouette.
Sparse Keypoint Graph Loss. Only using the silhouette loss
can lead to wrong mesh-to-image assignments, especially
for highly articulated motions. To this end, we use a sparse
keypoint loss to constrain the mesh deformation, which is
similar to the keypoint loss for PoseNet in Eq. 6

Lkpg(M) =
∑
c

∑
m

σc,m‖πc (Mm) − pc,m‖2. (12)

Differently from Eq. 6, the deformed and posed landmarks
M are derived from the embedded deformation graph. To
this end, we can deform and pose the canonical landmark
positions by attaching them to its closest graph node g in
canonical pose with weight wm,g = 1.0. Landmarks can
then be deformed according to Eq. 9, 10, resulting in Mc′

which is brought to global space via Mm = RT
c′Mc′,m + t.

As-rigid-as-possible Loss. To enforce local smoothness of
the surface, we impose an as-rigid-as-possible loss [106]

Larap(A,T) =
∑
k

∑
l∈Nn(k)

uk,l‖dk,l(A,T)‖1, (13)

where

dk,l(A,T)=R(Ak)(Gl −Gk) + Tk + Gk − (Gl + Tl).
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Nn(k) is the set of indices of the neighbors of node k. In
contrast to [106], we propose weighting factors uk,l that
influence the rigidity of respective parts of the graph. We
derive uk,l by averaging all per-vertex rigidity weights si
[27] for all vertices (see Sec. 3.1), which are connected to
node k or l. Thus, the mesh can deform either less or
more depending on the surface material. For example, graph
nodes that are mostly connected to vertices on a skirt can
deform more freely than nodes that are mainly connected to
vertices on the skin. Without this loss, the deformations can
strongly drift along the visual hull carved by the silhouette
images without receiving any penalty leading to strong
visual artifacts.

3.4 In-the-wild Domain Adaptation

Since our training set is captured in a green screen studio
and our test set is captured in the wild, there is a signif-
icant domain gap between them, due to different lighting
conditions and camera response functions. To improve the
performance of our method on in-the-wild images, we fine-
tune our networks on the monocular test images for a
small number of iterations using the same 2D keypoint and
silhouette losses as before, but only on a single view. This
drastically improves the performance at test time as shown
in the supplemental material.

4 IMPLEMENTATION DETAILS

Both network architectures as well as the GPU-based custom
layers are implemented in the Tensorflow framework [107].
We use the Adam optimizer [108] in all our experiments.
Template Acquisition and Rigging. To create the textured
mesh (see Fig. 2), we capture the person in a static T-pose
with an RGB-based scanner1 which has 134 RGB cameras
resulting in 134 images Irec = {Irec1 , · · · , Irec134}. The tex-
tured 3D geometry is obtained by leveraging a commercial
3D reconstruction software, called Agisoft Metashape2, that
takes as input the images Irec and reconstructs a textured
3D mesh of the person (see Fig. 2). We apply Metashape’s
mesh simplification to reduce the number of vertices N and
Meshmixer’s3 remeshing to obtain roughly uniform shaped
triangular surfaces. Next, we automatically fit the skeleton
(see Fig. 2) to the 3D mesh by fitting the SMPL model [35]. To
this end, we first optimize the pose by performing a sparse
non-rigid ICP where we use the head, hands and feet as
feature points since they can be easily detected in a T-pose.
Then, we perform a dense non-rigid ICP on vertex level
to obtain the final pose and shape parameters. For clothing
types that roughly follow the human body shape, e.g., pants
and shirt, we propagate the per-vertex skinning weights
of the naked SMPL model to the template vertices. For
other types of clothing, like skirts and dresses, we leverage
Blenders’s4 automated skinning weight computation.
Embedded Graph Construction. To build the embedded de-
formation graph G with K the template mesh is decimated
to around 500 vertices (see Fig. 2). The connections of a node

1. https://www.treedys.com/
2. http://www.agisoft.com
3. http://www.meshmixer.com/
4. https://www.blender.org/

k to neighboring nodes are given by the vertex connections
of the decimated mesh. For each vertex of the decimated
mesh we search for the closest vertex on the template mesh
in terms of Euclidean distance. These points then define the
position of the graph nodes. To compute the vertex-to-node
weights wi,k, we measure the geodesic distance between the
graph node k and the template vertex i.

Multi-view video. The number of frames per subject varies
between 26000 and 38000 depending on how fast the per-
son performed all the motions. We used C calibrated and
synchronized cameras with a resolution of 1024 × 1024
for capturing where for all subjects we used between 11
and 14 cameras. The original image resolution is too large
to transfer all the distance transform images to the GPU
during training. Fortunately, most of the image information
is anyways redundant since we are only interested in the
image region where the person is. Therefore, we crop the
distance transform images using the bounding box that
contains the segmentation mask with a conservative margin.
Finally, we resize it to a resolution of 350 × 350 without
loosing important information.

Training Strategy for PoseNet. As we are interested in joint
angle regression, one has to note that multiple solutions for
the joint angles exist due the fact that every correct solution
can be multiplied by 2π leading to the same loss value. To
this end, training has to be carefully designed. In general,
our strategy first focuses on the torso markers by giving
them more weight (see Sec. 3.2). Using this strategy, the
global rotation will be roughly correct and joint angles are
slowly trained to avoid overshooting of angular values. This
is further ensured by our limits term. After several epochs,
when the network already learned to fit the poses roughly,
we turn off the regularization and let it refine the angles
further. More precisely, the training of PoseNet proceeds in
three stages. First, we train PoseNet for 120k iterations with
a learning rate of 10−5 and weight Lkp with 0.01. Llimit

has a weight of 1.0 for the first 40k iterations. Between 40k
and 60k iterations we re-weight Llimit with a factor of 0.1.
Finally, we set Llimit to zero for the remaining training steps.
Second, we train PoseNet for another 120k iterations with a
learning rate of 10−6 and Lkp is weighted with a factor of
10−4. Third, we train PoseNet again 120k iterations with a
learning rate of 10−6 and Lkp is weighted with a factor of
10−5. We always use a batch size of 90.

Training Strategy for DefNet. We train DefNet for 120k
iterations with a batch size of 50. We used a learning rate
of 10−5 and weight Lsil, Lkpg, and Larap with 1k, 0.05, and
1.5k, respectively.

Training Strategy for the Domain Adaptation. To fine-tune
the network for in-the-wild monocular test sequences, we
train the pre-trained PoseNet and DefNet for 250 iterations,
respectively. To this end, we replace the multi-view losses
with a single view loss which can be trivially achieved. For
PoseNet, we disable Llimit and weight Lkp with 10−6. For
DefNet, we weight Lsil, Lkpg, and Larap with 1k, 0.05, and
1.5k respectively. Further, we use a learning rate of 10−6

and use the same batch sizes as before. This fine-tuning
in total takes around 5 minutes. All hyperparameters are
empirically determined and fixed across different subjects.

https://www.treedys.com/
http://www.agisoft.com
http://www.meshmixer.com/
https://www.blender.org/
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5 RESULTS

All our experiments were performed on a machine with an
NVIDIA Tesla V100 GPU. A forward pass of our method
takes around 50ms, which breaks down to 25ms for PoseNet
and 25ms for DefNet. During testing, we use the off-the-
shelf video segmentation method of [109] to remove the
background in the input image. Our method requires Open-
Pose’s 2D joint detections [97], [98], [99], [100] as input
during testing to crop the frames and to obtain the 3D
global translation with our global alignment layer. Finally,
we temporally smooth the output mesh vertices with a
Gaussian kernel of size 5 frames.
Dataset. We evaluate our approach on 4 subjects (S1 to S4)
with varying types of apparel. For qualitative evaluation,
we recorded 13 in-the-wild sequences in different indoor
and outdoor environments shown in Fig. 4. For quantitative
evaluation, we captured 4 sequences in a calibrated multi-
camera green screen studio (see Fig. 5), for which we com-
puted the ground truth 3D joint locations using the multi-
view motion capture software, The Captury [110], and we
use a color keying algorithm for ground truth foreground
segmentation. All sequences contain a large variety of mo-
tions, ranging from simple ones like walking up to more
difficult ones like fast dancing or baseball pitching. We will
release the dataset for future research.
Qualitative Comparisons. Fig. 4 shows our qualitative re-
sults on in-the-wild test sequences with various clothing
styles, poses and environments. Our reconstructions not
only precisely overlay with the input images, but also look
plausible from arbitrary 3D view points. In Fig. 6 and 7, we
qualitatively compare our approach to the related human
capture and reconstruction methods [15], [16], [27], [47] on
our green screen and the in-the-wild sequences, respectively.
In terms of the shape representation, our method is most
closely related to LiveCap [27] that also uses a person-
specific template. Since they non-rigidly fit the template
only to the monocular input view, their results do not faith-
fully depict the deformation in other view points. Further,
their pose estimation severely suffers from the monocular
ambiguities, whereas our pose results are more robust and
accurate (see supplemental video). Comparing to the other
three methods [15], [16], [47] that are trained for general
subjects, our approach has the following advantages: First,
our method recovers the non-rigid deformations of hu-
mans in general clothes whereas the parametric model-
based approaches [47], [49] only recover naked body shape.
Second, our method directly provides surface correspon-
dences over time which is important for AR/VR applica-
tions (see supplemental video). In contrast, the results of
implicit representation-based methods, PIFu [15] and Deep-
Human [16], lack temporal surface correspondences and do
not preserve the skeletal structure of the human body, i.e.,
they often exhibit missing arms and disconnected geometry.
Furthermore, DeepHuman [16] only recovers a coarse shape
in combination with a normal image of the input view, while
our method can recover medium-level detailed geometry
that looks plausible from all views. Last but not least, all
these existing methods have problems when overlaying
their reconstructions on the reference view, even though
some of the methods show a very good overlay on the input

view. In contrast, our approach reconstructs accurate 3D
geometry, and therefore, our results can precisely overlay
on the reference views (also see Fig. 5, 8, 9, and 10).
Skeletal Pose Accuracy. We quantitatively compare our
pose results (output of PoseNet) to existing pose estimation
methods on S1 to S4. To account for different types of
apparel, we choose S1 and S2 wearing trousers and a T-shirt
or a pullover and S3 and S4 wearing a long and short dress,
respectively. We rescale the bone length for all methods to
the ground truth and evaluate the following metrics on the
14 commonly used joints [44] for every 10th frame: 1) We
evaluate the root joint position error or global localization
error (GLE) to measure how good the skeleton is placed in
global 3D space. Note that GLE can only be evaluated for
LiveCap [27] and ours, since other methods only produce
up-to-scale depth. 2) To evaluate the accuracy of the pose
estimation, we report the 3D percentage of correct keypoints
(3DPCK) with a threshold of 150mm of the root aligned
poses and the area under the 3DPCK curve (AUC). 3) To
factor out the errors in the global rotation, we also report
the mean per joint position error (MPJPE) after Procrustes
alignment. We compare our approach against the state-of-
the-art pose estimation approaches including VNect [44],
HMR [47], HMMR [49], and LiveCap [27]. We also compare
to a multi-view baseline approach (MVBL), where we use
our differentiable skeleton model in an optimization frame-
work to solve for the pose per frame using the proposed
multi-view losses. We can see from Tab. 3 that our approach
outperforms the related monocular methods in all metrics
by a large margin and is even close to MVBL although
our method only takes a single image as input. We further
compare to VNect [44] fine-tuned on our training images
for S1. To this end, we compute the 3D joint position using
The Captury [110] to provide ground truth supervision for
VNect. On the evaluation sequence for S1, the fine-tuned
VNect achieved 95.66% 3DPCK, 52.13% AUC and 47.16mm
MPJPE. This shows our weakly supervised approach yields
comparable or better results than supervised methods in
the person-specific setting. However, our approach does
not require 3D ground truth annotation that is difficult to
obtain, even for only sparse keypoints, let alone the dense
surfaces. Further note that even for S3 we achieve accurate
results even though she wears a long dress such that legs
are mostly occluded. On S2, we found that our results are
more accurate than MVBL since the classical frame-to-frame
optimization can get stuck in local minima, leading to wrong
poses.
Surface Reconstruction Accuracy. To evaluate the accuracy
of the regressed non-rigid deformations, we compute the
intersection over union (IoU) between the ground truth
foreground masks and the 2D projection of the estimated
shape on S1 and S4 for every 100th frame. We evaluate the
IoU on all views, on all views expect the input view, and on the
input view which we refer to as AMVIoU, RVIoU and SVIoU,
respectively. To factor out the errors in global localization,
we apply the ground truth translation to the reconstructed
geometries. For DeepHuman [16] and PIFu [15], we cannot
report the AMVIoU and RVIoU, since we cannot overlay
their results on reference views as discussed before. Further,
PIFu [15] by design achieves perfect overlay on the input
view, since they regress the depth for each foreground
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Fig. 4. Qualitative results. Each row shows results for a different person with varying types of apparel. We visualize input frames and our
reconstruction overlayed to the corresponding frame. Note that our results precisely overlay to the input. Further, we show our reconstructions
from a virtual 3D viewpoint. Note that they also look plausible in 3D.

Fig. 5. Results on our evaluation sequences where input views (IV) and
reference views (RV) are available. Note that our reconstruction also
precisely overlays on RV even though they are not used for tracking.

pixel. However, their reconstruction does not reflect the
true 3D geometry (see Fig. 6). Therefore, it is meaningless
to report their SVIoU. Similarly, DeepHuman [16] achieves
high SVIoU, due to their volumetric representation. But their
results are often wrong, when looking from side views. In
contrast, our method consistently outperforms all other ap-
proaches in terms of AMVIoU and RVIoU, which shows the
high accuracy of our method in recovering the 3D geometry.

Further, we are again close to the multi-view baseline.
Ablation Study. To evaluate the importance of the number
of cameras, the number of training images, and our DefNet,
we performed an ablation study on S4 in Tab. 3. 1) In the
first group of Tab. 3, we train our networks with supervision
using 1 to 14 views. We can see that adding more views
consistently improves the quality of the estimated poses
and deformations. The most significant improvement is
from one to two cameras. This is not surprising, since the
single camera settings is inherently ambiguous. In Fig. 8,
the importance of the number of cameras is also shown
qualitatively. 2) In the second group of Tab. 3 and in Fig. 9,
we reduce the training data to 1/2 and 1/4. We can see that
the more frames with different poses and deformations are
seen during training, the better the reconstruction quality
is. This is expected since a larger number of frames may
better sample the possible space of poses and deforma-
tions. 3) In the third group of Tab. 3, we evaluate the
AMVIoU on the template mesh animated with the results
of PoseNet, which we refer to as PoseNet-only. One can see
that on average, the AMVIoU is improved by around 4%.
Since most non-rigid deformations rather happen locally,
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Input HMR [47] LiveCap [27] PIFu [15] DeepHuman [16] Ours

Fig. 6. Qualitative comparison to other methods [15], [16], [27], [47] on
our green screen evaluation sequences. Note that our results overlay
more accurately to the input view and also look more plausible from
a reference view that was not used for tracking. Ground truth global
translation is used to match the reference view for the results of [27],
[47]. Since PIFu [15] and DeepHuman [16] output meshes with varying
topology in a canonical volume without an attached root, it is not possible
to apply the ground truth translation and therefore we show the reference
view without overlay.

Input HMR [47] LiveCap [27] PIFu [15] DeepHuman [16] Ours

Input HMR [47] LiveCap [27] PIFu [15] DeepHuman [16] Ours

Fig. 7. Comparisons to related work [15], [16], [27], [47] on our in-
the-wild sequences showing S1 and S4. Our approach can recover the
deformations of clothing in contrast to [47] and gives more stable and
accurate results in 3D compared to [27]. Moreover, note that in contrast
to previous work [15], [16], our method regresses space-time coherent
geometry, which follows the structure of the human body.

the difference is visually even more significant as shown in
Fig. 11. Especially, the skirt is correctly deformed according
to the input image whereas the PoseNet-only result cannot
fit the input due to the limitation of skinning. In Fig. 10,
we show the PoseNet-only result and our final result on
one of our evaluation sequences where a reference view is
available. The deformed template also looks plausible from

MPJPE/GLE (in mm) and 3DPCK/AUC (in %) on S1
Method GLE↓ 3DPCK↑ AUC↑ MPJPE↓

VNect [44] - 66.06 28.02 77.19
HMR [47] - 82.39 43.61 72.61

HMMR [49] - 87.48 45.33 72.40
LiveCap [27] 317.01 71.13 37.90 92.84

Ours 91.08 98.43 58.71 49.11
MVBL 76.03 99.17 57.79 45.44

MPJPE/GLE (in mm) and 3DPCK/AUC (in %) on S2
Method GLE↓ 3DPCK↑ AUC↑ MPJPE↓

VNect [44] - 80.50 39.98 66.96
HMR [47] - 80.02 39.24 71.87

HMMR [49] - 82.08 41.00 74.69
LiveCap [27] 142.39 79.17 42.59 69.18

Ours 75.79 94.72 54.61 52.71
MVBL 64.12 89.91 45.58 57.52

MPJPE/GLE (in mm) and 3DPCK/AUC (in %) on S3
Method GLE↓ 3DPCK↑ AUC↑ MPJPE↓

VNect [44] - 78.03 41.95 88.14
HMR [47] - 83.37 42.37 79.02

HMMR [49] - 79.93 36.27 91.62
LiveCap [27] 281.27 66.30 31.44 98.76

Ours 89.54 95.09 54.00 58.77
MVBL 67.82 96.37 54.99 56.08

MPJPE/GLE (in mm) and 3DPCK/AUC (in %) on S4
Method GLE↓ 3DPCK↑ AUC↑ MPJPE↓

VNect [44] - 82.06 42.73 72.62
HMR [47] - 86.88 43.91 73.63

HMMR [49] - 82.80 41.18 77.41
LiveCap [27] 248.67 75.11 37.35 83.48

Ours 96.56 96.74 59.25 45.40
MVBL 75.82 96.20 57.27 45.12

TABLE 1
Skeletal pose accuracy. Note that we are consistently better than other
monocular approaches. Moreover, we are even close to the multi-view

baseline.

Fig. 8. Ablation for number of cameras used during training. The most
significant improvement happens when adding one additional camera
to the monocular setting. But also adding further cameras consistently
improves the result as the yellow circles indicate.

a reference view that was not used for tracking. Importantly,
DefNet can correctly regress deformations that are along the
camera viewing direction of the input camera (see reference
view in second column) and surface parts that are even
occluded (see reference view in fourth column). This implies
that our weak multi-view supervision during training let
the network learn the entire 3D surface deformation of the
human body. For more results, we refer to the supplemental
video. 4) finally, in Fig. 12, we visually demonstrate the
impact of our domain adaptation step. It becomes obvious
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AMVIoU, RVIoU, and SVIoU (in %) on S1 sequence
Method AMVIoU↑ RVIoU↑ SVIoU↑

HMR [47] 62.25 61.7 68.85
HMMR [49] 65.98 65.58 70.77
LiveCap [27] 56.02 54.21 77.75

DeepHuman [16] - - 91.57
Ours 87.2 87.03 89.26

MVBL 91.74 91.72 92.02

AMVIoU, RVIoU and SVIoU (in %) on S2
Method AMVIoU↑ RVIoU↑ SVIoU↑

HMR [47] 59.79 59.1 66.78
HMMR [49] 62.64 62.03 68.77
LiveCap [27] 60.52 58.82 77.75

DeepHuman [16] - - 91.57
Ours 83.73 83.49 89.26

MVBL 89.62 89.67 92.02

AMVIoU, RVIoU and SVIoU (in %) on S3
Method AMVIoU↑ RVIoU↑ SVIoU↑

HMR [47] 59.05 58.73 63.12
HMMR [49] 61.73 61.32 67.14
LiveCap [27] 61.55 60.47 75.6

DeepHuman [16] - - 79.66
Ours 85.75 85.55 88.27

MVBL 90.31 90.21 91.53

AMVIoU, RVIoU, and SVIoU (in %) on S4 sequence
Method AMVIoU↑ RVIoU↑ SVIoU↑

HMR [47] 65.1 64.66 70.84
HMMR [49] 63.79 63.29 70.23
LiveCap [27] 59.96 59.02 72.16

DeepHuman [16] - - 84.15
Ours 82.53 82.22 86.66

MVBL 88.14 88.03 89.66

TABLE 2
Surface deformation accuracy. Note that we again outperform all other
monocular methods and are close to the multi-view baseline. Further
note, that for [16] an evaluation of the multi-view IoU is not possible

since their output is always in local image space that cannot be brought
to global space.

Fig. 9. Ablation for number of frames used during training. The more
frames we used during training the better the result becomes as the
network can better sample the possible pose and deformation space.

that the refinement drastically improves the pose as well as
the non-rigid deformations so that the input can be matched
at much higher accuracy. Further, we do not require any
additional input for the refinement as our losses can be
directly adapted to the monocular setting.
Applications. Our method enables driving 3D characters
just from a monocular RGB video (see Fig. 4). As the only
device that is needed at test time is a single color camera,
our method can be easily used in daily life scenarios once

Fig. 10. Our result from the input view and a reference view that was not
used for tracking. Note that our DefNet can even regress deformations
along the camera viewing axis of the input camera (second column) and
it can correctly deform surface parts that are occluded (fourth column).

3DPCK and AMVIoU (in %) on S4 sequence
Method 3DPCK↑ AMVIoU↑

1 camera view 62.11 65.11
2 camera views 93.52 78.44
3 camera views 94.70 79.75
7 camera views 95.95 81.73

6500 frames 85.19 73.41
13000 frames 92.25 78.97
PoseNet-only 96.74 78.51

Ours(14 views, 26000 frames) 96.74 82.53

TABLE 3
Ablation study. We evaluate the number of cameras and the number of

frames used during training in terms of the 3DPCK and AMVIoU
metrics. Adding more cameras and frames consistently improves the

quality of reconstruction. Further, DefNet improves the AMVIoU
compared to pure pose estimation.

the multi-view video and the template are acquired and the
training of the model was performed. Further, as we also
account for non-rigid surface deformations, our method also
enhances the realism of the virtual characters. Our approach
also allows augmenting a video as shown in Fig. 13. Since
we track the entire 3D geometry, the augmented texture is
also aware of occlusions in contrast to pure image-based
augmentation techniques.

6 CONCLUSION

Limitations. Conceptually, both representations, pose and
the non-rigid deformations, are decoupled. Nevertheless,
since the predicted poses during training are not perfect,
our DefNet also deforms the graph to account for wrong
poses to a certain degree. In our supplemental video, we
also tested our method on subjects that were not used for
training but which wear the same clothing as the training
subject. Although, our method still performs reasonable, the
overall accuracy drops as the subjects appearance was never
observed during training. Further, our method can fail for
extreme poses, e.g. a hand stand, that were not observed
during training.

We have presented a learning-based approach for
monocular dense human performance capture using only
weak multi-view supervision. In contrast to existing meth-
ods, our approach directly regresses poses and surface de-
formations from neural networks, produces temporal sur-
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Fig. 11. PoseNet + DefNet vs. PoseNet-only. DefNet can deform the
template to accurately match the input, especially for loose clothing.
In addition, DefNet also corrects slight errors in the pose and typical
skinning artifacts.

Fig. 12. Impact of the in-the-wild domain adaption step. Note that after
the network refinement, both, the pose as well as the deformations
better match the input.

face correspondences, preserves the skeletal structure of the
human body, and can handle loose clothes. Our qualitative
and quantitative results in different scenarios show that
our method produces more accurate 3D reconstruction of
pose and non-rigid deformation than existing methods. In
the future, we plan to incorporate hands and the face to
our mesh representation to enable joint tracking of body,
facial expressions and hand gestures. We are also interested
in physically more correct multi-layered representations to
model the garments even more realistically.
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S. Rusinkiewicz, and W. Matusik, “Dynamic shape capture using
multi-view photometric stereo,” ACM Transactions on Graphics
(TOG), vol. 28, no. 5, p. 174, 2009.

[8] T. Brox, B. Rosenhahn, J. Gall, and D. Cremers, “Combined region
and motion-based 3d tracking of rigid and articulated objects,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 32, no. 3, pp. 402–415, 2010.

[9] C. Cagniart, E. Boyer, and S. Ilic, “Free-form mesh tracking: a
patch-based approach,” in Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on. IEEE, 2010, pp. 1339–1346.

[10] Y. Liu, C. Stoll, J. Gall, H.-P. Seidel, and C. Theobalt, “Markerless
motion capture of interacting characters using multi-view image
segmentation,” in Computer Vision and Pattern Recognition (CVPR),
2011 IEEE Conference on. IEEE, 2011, pp. 1249–1256.

[11] C. Wu, C. Stoll, L. Valgaerts, and C. Theobalt, “On-set
Performance Capture of Multiple Actors With A Stereo Camera,”
in ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia
2013), vol. 32, no. 6, November 2013, pp. 161:1–161:11. [Online].
Available: http://doi.acm.org/10.1145/2508363.2508418

[12] A. Mustafa, H. Kim, J.-Y. Guillemaut, and A. Hilton, “General
dynamic scene reconstruction from multiple view video,” in
ICCV, 2015.

[13] G. Pons-Moll, J. Romero, N. Mahmood, and M. J. Black, “Dyna:
a model of dynamic human shape in motion,” ACM Transactions
on Graphics (TOG), vol. 34, no. 4, p. 120, 2015.

[14] G. Pons-Moll, S. Pujades, S. Hu, and M. Black, “ClothCap:
Seamless 4D clothing capture and retargeting,” ACM Transactions
on Graphics, (Proc. SIGGRAPH), vol. 36, no. 4, 2017. [Online].
Available: http://dx.doi.org/10.1145/3072959.3073711

[15] S. Saito, Z. Huang, R. Natsume, S. Morishima, A. Kanazawa, and
H. Li, “Pifu: Pixel-aligned implicit function for high-resolution
clothed human digitization,” CoRR, vol. abs/1905.05172, 2019.
[Online]. Available: http://arxiv.org/abs/1905.05172

[16] Z. Zheng, T. Yu, Y. Wei, Q. Dai, and Y. Liu, “Deephuman:
3d human reconstruction from a single image,” CoRR, vol.
abs/1903.06473, 2019. [Online]. Available: http://arxiv.org/abs/
1903.06473

[17] T. Alldieck, M. Magnor, B. L. Bhatnagar, C. Theobalt, and G. Pons-
Moll, “Learning to reconstruct people in clothing from a single
RGB camera,” in IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Jun 2019, pp. 1175–1186.

[18] T. Alldieck, M. Magnor, W. Xu, C. Theobalt, and G. Pons-Moll,
“Video based reconstruction of 3d people models,” in IEEE

http://doi.acm.org/10.1145/2508363.2508418
http://dx.doi.org/10.1145/3072959.3073711
http://arxiv.org/abs/1905.05172
http://arxiv.org/abs/1903.06473
http://arxiv.org/abs/1903.06473


TO APPEAR IN IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021 12

Conference on Computer Vision and Pattern Recognition, 2018, CVPR
Spotlight Paper.

[19] B. L. Bhatnagar, G. Tiwari, C. Theobalt, and G. Pons-Moll, “Multi-
garment net: Learning to dress 3d people from images,” in IEEE
International Conference on Computer Vision (ICCV). IEEE, oct
2019.

[20] C. Patel, Z. Liao, and G. Pons-Moll, “Tailornet: Predicting cloth-
ing in 3d as a function of human pose, shape and garment style,”
in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, jun 2020.

[21] Q. Ma, J. Yang, A. Ranjan, S. Pujades, G. Pons-Moll, S. Tang, and
M. Black, “Learning to dress 3d people in generative clothing,”
in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, jun 2020.

[22] V. Gabeur, J.-S. Franco, X. Martin, C. Schmid, and G. Rogez,
“Moulding humans: Non-parametric 3d human shape estima-
tion from single images,” in Proceedings of the IEEE International
Conference on Computer Vision, 2019, pp. 2232–2241.

[23] S. Saito, T. Simon, J. Saragih, and H. Joo, “Pifuhd: Multi-level
pixel-aligned implicit function for high-resolution 3d human
digitization,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, June 2020.

[24] T. Alldieck, G. Pons-Moll, C. Theobalt, and M. Magnor,
“Tex2shape: Detailed full human body geometry from a sin-
gle image,” in IEEE International Conference on Computer Vision
(ICCV). IEEE, oct 2019.

[25] A. Pumarola, J. Sanchez-Riera, G. P. T. Choi, A. Sanfeliu, and
F. Moreno-Noguer, “3dpeople: Modeling the geometry of dressed
humans,” in The IEEE International Conference on Computer Vision
(ICCV), October 2019.

[26] W. Xu, A. Chatterjee, M. Zollhöfer, H. Rhodin, D. Mehta, H.-P.
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and L. Van Gool, “One-shot video object segmentation,” in Com-
puter Vision and Pattern Recognition (CVPR), 2017.

[110] “The Captury,” http://www.thecaptury.com/.

Marc Habermann works as a PhD student in
the Graphics, Vision and Video group at the
Max Planck Institute for Informatics. Within his
thesis, he explores the modeling and tracking of
non-rigid deformations of surfaces, e.g. captur-
ing the performance of humans in their everyday
clothing. In his previous works, he showed that
this is possible at real-time frame rates and that
the 3D performance can be further improved
using deep learning techniques. He received the
Guenter-Hotz-Medal for the best Master gradu-

ates in Computer Science at Saarland University in 2017 and his work,
DeepCap, received the CVPR Best Student Paper Honorable Mention
in 2020.

Weipeng Xu is a research scientist at Face-
book Reality Labs in Pittsburgh. He was a post-
doctoral researcher at the Graphic, Vision &
Video group of Max Planck Institute for Infor-
matics in Saarbruecken, Germany. He received
B.E. and Ph.D. degrees from Beijing Institute of
Technology in 2009 and 2016, respectively. He
studied as a long-term visiting student at NICTA
and Australian National University from 2013
to 2015. His research interests include virtual
human character, human pose estimation and

machine learning for vision/graphics.

Michael Zollhoefer is a Visiting Assistant Pro-
fessor at Stanford University. His stay at Stanford
is funded by a postdoctoral fellowship of the
Max Planck Center for Visual Computing and
Communication (MPC-VCC), which he received
for his work in the fields of computer vision,
computer graphics, and machine learning. Be-
fore, Michael was a Postdoctoral Researcher in
the Graphics, Vision & Video group at the Max
Planck Institute for Informatics in Saarbruecken,
Germany. He received his PhD in 2014 from the

University of Erlangen-Nuremberg for his work on real-time static and
dynamic scene reconstruction. His research is focused on teaching
computers to reconstruct and analyze our world at frame rate based
on visual input. To this end, he develops key technology to invert the
image formation models of computer graphics based on data-parallel
optimization and state-of-the-art deep learning techniques.

Gerard Pons-Moll is the head of the Emmy
Noether independent research group ”Real Vir-
tual Humans”, senior researcher at the Max
Planck for Informatics (MPII) in Saarbrücken,
Germany, and Junior Faculty at Saarland Infor-
matics Campus. His research lies at the inter-
section of computer vision, computer graphics
and machine learning – with special focus on
analyzing people in videos, and creating virtual
human models by ”looking” at real ones. His
research has produced some of the most ad-

vanced statistical human body models of pose, shape, soft-tissue and
clothing (which are currently used for a number of applications in in-
dustry and research), as well as algorithms to track and reconstruct
3D people models from images, video, depth, and IMUs. His work
has received several awards including the prestigious Emmy Noether
Grant (2018), a Google Faculty Research Award (2019), a Facebook
Reality Labs Faculty Award (2018), and recently the German Pattern
Recognition Award (2019), which is given annually by the German
Pattern Recognition Society to one outstanding researcher in the fields
of Computer Vision and Machine Learning. In 2020 he received a Snap-
Research gift. His work got Best Papers Awards BMVC’13, Eurograph-
ics’17, 3DV’18 and CVPR’20 and has been published at the top venues
and journals including CVPR, ICCV, Siggraph, Eurographics, 3DV, IJCV
and PAMI. He served as Area Chair for ECCV’18, 3DV’19, SCA’18’19,
FG’20, ECCV’20. He will serve as Area Chair for CVPR’21 and 3DV’20.

Christian Theobalt is a Professor of Com-
puter Science and the head of the research
group “Graphics, Vision, & Video” at the Max-
Planck-Institute for Informatics, Saarbruecken,
Germany. He is also a professor at Saarland
University. His research lies on the boundary be-
tween Computer Vision and Computer Graphics.
For instance, he works on 4D scene reconstruc-
tion, marker-less motion and performance cap-
ture, machine learning for graphics and vision,
and new sensors for 3D acquisition. Christian

received several awards, for instance the Otto Hahn Medal of the Max-
Planck Society (2007), the EUROGRAPHICS Young Researcher Award
(2009), the German Pattern Recognition Award (2012), an ERC Starting
Grant (2013), an ERC Consolidator Grant (2017), and the Eurographics
Outstanding Technical Contributions Award (2020). In 2015, he was
elected one of Germany’s top 40 innovators under 40 by the magazine
Capital. He is a co-founder of theCaptury (www.thecaptury.com).

http://www.sciencedirect.com/science/article/pii/S0734189X86800470
http://www.sciencedirect.com/science/article/pii/S0734189X86800470
http://tensorflow.org/
http://www.thecaptury.com/

	1 Introduction
	2 Related Work
	3 Method
	3.1 Template and Data Acquisition
	3.2 Pose Network
	3.3 Deformation Network
	3.4 In-the-wild Domain Adaptation

	4 Implementation Details
	5 Results
	6 Conclusion
	References
	Biographies
	Marc Habermann
	Weipeng Xu
	Michael Zollhoefer
	Gerard Pons-Moll
	Christian Theobalt


