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Schwarzschild black-hole interiors border on spacelike singularities representing classical information
leaks. We show that local quantum physics is decoupled from these leaks due to dynamically generated
boundaries, called Zeno borders. Beyond Zeno borders black-hole interiors become asymptotically silent,
and quantum fields evolve freely toward the geodesic singularity with vanishing probability measure for
populating the geodesic boundary. Thus Zeno borders represent a probabilistic completion of Schwarzs-
child black holes within the semiclassical framework.
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I. INTRODUCTION

Schwarzschild black-hole interiors contain geodesic
borders separating them from spacelike singularities.
Any information migrating across a geodesic border
toward the singularity is irretrievably lost by causality. If
Schwarzschild singularities absorb information, the corre-
sponding evolution qualifies as paradoxical since it violates
sacrosanct rules of information processing [1]. It is gen-
erally expected that spacetime fluctuations deform the
Schwarzschild geometry near its geodesic border to yield
a consistent quantum evolution. While the details of this
dynamical regularization mechanism are unknown, they are
important for global aspects of quantum information
processing by black holes, such as the black-hole infor-
mation paradox [2–4].
In this article, we show that Schwarzschild singularities

border on asymptotically silent spacetime regions, that is
regions inhibiting spatial quantum correlations irrespective
of the initial field configuration. More importantly, they
accommodate so-called Zeno borders, which mark a stack
of hypersurfaces terminated by a geodesic border with the
following property: The probability measure for populating
quantum information within the stack decreases monoto-
nously toward the singularity and vanishes at the geodesic
border. As a consequence, quantum events cannot probe the
geodesic border and quantum information cannot migrate

across the geodesic border, irrespective of any quantum
completion of gravity. In other words, Zeno borders render
black-hole interiors leak-proof and represent, to the best or
our knowledge, the first explicit quantum completion of a
geodesically incomplete spacetime within the semiclassical
framework [5]. Quantum field theoretic completeness
conceptualizes the intrinsic consistency of quantum field
theory in curved space-times in the sense that the theory
itself is protected from a breakdown when reaching the
geodesic border. Zeno regions incorporate this dynamical
protection mechanism which guarantees the predictability
of the theory itself and likewise passes the regularity on to
physical observables.
To substantiate this probabilistic completion we proceed

as follows: after stating the geometrical setup, we will
present an intuitive argument based on scaling relations in
the micropædia which introduces the idea of the Zeno
region from the perspective of quantum measurements. The
exact argument is then given in the macropædia followed
by an interpretation based on observables showing that
the probabilistic completion closes the geodesic border
with respect to quantum field theory.

II. GEOMETRICAL PRELIMINARIES

Schwarzschild black holes are the warped geometries
B ≔ P< × tS2, withP< denoting the region t < tg ≔ 2M in
the ðt; rÞ-half plane ð0; rgÞ ×Rþ, where the projection
t∶B → ð0; rgÞ is the Schwarzschild time and the projection
r∶B → Rþ is the Schwarzschild radius function, and S2

denotes the unit two-sphere. Note that in these conventions
the Schwarzschild coordinate vector field ∂t is timelike,
and ∂r is spacelike on B. Compared to the Schwarzschild
exterior spacetime, Schwarzschild time and radius function
have interchanged their meaning. Taking this into account,
the quadratic form associated with Schwarzschild black
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holes is ds2 ¼ −s−1ðtÞdt2 þ sðtÞdr2 þ t2w, where sðtÞ ≔
j1 − rg=tj is the Schwarzschild function, and w denotes the
line element associated with the Euclidean metric on S2,
equipped with the usual spherical coordinates ðϑ;φÞ. B
corresponds to a spatially homogeneous and anisotropic
cosmological solution of general relativity. It can be
foliated into Cauchy hypersurfaces ð0; rgÞ × Σ along the
temporal direction, where Σ is the folio of spatial hyper-
surfaces Σt labeled by Schwarzschild time. The metric field
associated with the above quadratic form will be denoted
by g, and its pull-back to Σ by gΣ.
In this geometry, the geodesic motion of a point particle

that is initially equatorial relative to Schwarzschild spheri-
cal coordinates is bound to remain equatorial, ϑ ¼ π=2.
The so-called energy equation E2 ¼ ðdt=dsÞ2 þ Veff

holds, where E ≔ sðtÞdr=ds and L ≔ t2dφ=ds are
constants, which have an intuitive interpretation in the
exterior as asymptotic energy per unit mass and angular
momentum per unit mass, respectively. In fact, in the
exterior, the definition of L formally coincides with
Kepler’s second law. The effective potential is given by
Veff ≔ −ð1þ L2=t2ÞsðtÞ. Close to the endpoint at t ¼ 0,
the effective potential is bounded from above, Veff ¼
−L2rg=t3 plus less singular contributions. Thus the
classical motion generated by Veff is incomplete at
t ¼ 0. Potential incompleteness implies that B is geodesic
incomplete [7], which in turn qualifies Σ0 as a geodesic
information sink. Geodesic incompleteness, however, does
not imply quantum incompleteness (and vice versa).

III. MICROPÆDIA

Let us first give an intuitive argument based on scaling
relations showing that quantum information in B cannot
migrate across Σ0þ , before providing precise statements. In
B, scalar quantum fields Φ�;Φ charged under Uð1Þ evolve
according to the Lagrange density L ¼ L0 þ Lint, with the
first term denoting the free theory L0 ¼ Φ�

□Φ. The
intuitive argument will be given in the absence of inter-
actions, Lint ≡ 0. Close to the spacelike singularity Σ0

bordering on B, ds2 ≅ −ðt=rgÞdt2 þ ðrg=tÞdr2 þ t2w,
where ≅ means equality up to subleading contributions
in each term as Σ0 is approached [8]. In this asymptotic
regime, □≅ ð−rg=tÞð∂2

t þð1=tÞ∂tÞþðt=rgÞ∂2
r þð1=t2Þ∂2∢.

Here ∂2∢ denotes the usual angular part of the Laplace
operator in R3 in Schwarzschild spherical coordinates.
The corresponding Green function G is sourced by

δðt − t0Þδðσ − σ0Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgÞp

, with σ and σ0 denoting
Schwarzschild spatial coordinates of events localized on
Σt and Σt0 , respectively, and satisfies

DðtÞGðt; σ; t0; σ0Þ ¼ δðt − t0Þδðσ − σ0Þ;
DðtÞ ≔ −rg∂tðt∂tÞ þ ðt=rgÞt2∂2

r þ ∂2∢: ð1Þ

In order to estimate the asymptotic relevance of each term
in the differential operator, consider DðετÞ in the limit
ε → 0þ. The effective potential for free fields scales
asymptotically as 1=t2 and develops a repulsive barrier.
It is well known from quantum mechanics that potentials of
this type cannot be penetrated via tunneling processes.
Following the geometrical description of spacelike

singularities by Belinskii, Khalatnikov, and Lifshitz [9],
temporal variations dominate over spatial variations in the
region bordering on Σ0þ . Therefore,DðετÞ ≅ ð1=εÞ∂τðτ∂τÞ.
The time-dependent part of the source distribution scales
like δðετ − t0Þ. This effectively allows to split the Green
functionG ¼ Tðt; t0ÞPðσ; σ0Þ in the vicinity of Σ0þ , with the
asymptotic dynamics given by ∂τðτ∂τTÞ ≅ 0. Here, all
identifiers labeling the eigenvalue problem of the
Laplace operator have been suppressed for ease of notation.
We find the asymptotic solution Tðt; t0Þ ≅ C0ðt0Þþ
C1ðt0Þ lnðt=rgÞ, with C0;1 < ∞ depending on the initial
values given on Σt0 .
In order to appreciate the rather mild divergence of the

asymptotic solution T, we introduce a model for a physical
detection with an emitter Fem localized on Σt0 ; t0 ∈ ð0; t�Þ in
the asymptotic domain, where t� denotes a fiducial time in
this regime, and an absorber Fab on Σετ. A general
measurement is given by a vertex density and involves
the communication channel between source and the detec-
tor. For instance, consider Fab ¼ δðt − ετÞfabðσÞ, with fab
encoding the spatial extension of the detector on Σετ. This
blueprint effectively replaces part of Σ0þ with a detector
volume that can resolve arbitrary frequencies. Note that the
asymptotic regime is controlled by the parameter ε while τ
represents a constant instant of time. The classical meas-
urement process is described by the on-shell vertex density
νobs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi− detðgÞp
F�
abΞos þ c:c: with Ξos ¼ G � Fem denot-

ing a convolution of Fem with a bi-local kernel given by G
with respect to x0 [10]. In the region bordering on Σ0þ , as
specified by the support properties of emitter and absorber,
νobs ≅ t2 lnðtÞδðt − ετÞ sinðϑÞfabFem, where Fem contains
the exclusive information on the emission process and
depends only on source parameters. In particular, Fem is
finite in accordance with the homogeneous interior B. For
fixed t0 and ε → 0, the measurement of the emitter’s
influence on the detector gives a vanishing response, see
figure 1, νobs ≅ 0, in the distributional sense. This implies
that no information carried by local bookkeeping devices
reach Σ0þ .
It is possible to be more specific about the emitter and

absorber. As an example, the energy momentum tensor for
the complex scalar field scales like T ¼ dΦ ⊗ dΦ� ∝
1=ðετÞ2 on Σετ and develops a singularity toward Σ0þ .
Our detector model is given by Fab ¼ δðt − ετÞfabðσÞ,
with fab encoding the spatial extension of the detector
on Σετ or a more physical absorber of an ideal gas
F̃ab ¼ MðετÞU ⊗ U, where U ≅

ffiffiffiffiffiffiffiffiffiffiffi
ετ=rg

p
dt is the normal,

and MðtÞ denotes the spatial volume integral over an
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energy density. From a phenomenological point of view,
Fab is required to have nontrivial support toward Σ0þ . Then,
ν̃obs ≅ 0, as well, which only confirms that the asymptotic
description of the tree-level measurement process is inde-
pendent of the tensor providing the principal communica-
tion channel.
Before closing the micropæ dia, let us briefly discuss the

asymptotic diagnostics of Noether charges. Let Φ∶B → C
carry a Uð1Þ charge. The four-dimensional Uð1Þ current
density is j ¼ iðΦ�PΦ − c:c:Þ, where P denotes the four-
momentum operator. Projecting the current density onto U
from before, we find the following scaling relation for the
charge density ρ localized on Σετ: ρðετÞ ≅ ρðt�Þðt�=ετÞ3=2,
which formally diverges as Σ0þ is approached. Physical
measurements of the charge QðετÞ, however, yield a finite
result. In fact QðετÞ ¼ Qðt�Þ. Black holes cannot be
discharged through the geodesic singularity bordering on
Σ0þ . Any active information sink would necessarily lead to
charge depletion. Note that this discussion of asymptotic
charge conservation is fully based on local physics inside
black holes, and no reference to the usual global charac-
terization in the exterior is made.

IV. MACROPÆDIA

A more rigorous argument is based on the Schrödinger
representation of local quantum physics which we sum-
marize for convenience below. Let ða; bÞ × Σ be a Cauchy
foliation of a globally hyperbolic spacetime ðM; gÞ with a
geodesic border Σa in the folio Σ of hypersurfaces. For
t ∈ ða; bÞ, we denote by CðΣtÞ the space of instantaneous
field configurations ϕ∶Σt → C. Consider the C-vector

space of measurable wave functionals Ψt∶ CðΣtÞ → C
whose modulus is square integrable with respect to the
formal functional measure Dϕ. Let L2ðCðΣtÞ;DϕÞ be the
quotient of this space by the subspace of wave functionals
vanishing Dϕ-almost everywhere in CðΣtÞ. We introduce
the usual norm on L2ðCðΣtÞ;DϕÞ. If U is a formally
measurable subset of CðΣtÞ and XU the corresponding
indicator functional, then kXUΨtk2 is the probability for
the field configuration on Σt to be given by some ϕ ∈ U.
This interpretation requires normalizable wave functionals.
The configuration field operator Φ½f� is just the multipli-
cation operator with ϕ½f�, where f denotes some smooth
test function of compact support on Σt such that
hΨtjΦ½f�jΨti ¼ k ffiffiffiffiffiffiffiffiffi

ϕ½f�p
Ψtk2 is bounded. The conjugated

momentum field operator Π½f� is the functional derivative
−iðdetðgΣt

ÞÞ−1=2δ=δϕ in the direction of f. Heisenberg’s
fundamental uncertainty relation is a consequence of
½Φ½f1�;Π½f2�� ¼ iðf1; f2Þ, where ð·; ·Þ denotes the scalar
product of smearing functions on Σt.
Consider the evolution semigroup given by the continu-

ous map ða; bÞ → L2ðCðΣtÞ;DϕÞ, defined by t →
Eðt; t0ÞjΨt0i for an initial time t0 ∈ ða; bÞ. A probabilistic
interpretation is only possible for kEðt; t0Þk ≤ 1, that is for
contractive evolution semigroups. While this includes
unitarity as a special case for Minkowski spacetime, its
generator density H is only required to be accretive,
ReðhΨtjHjΨtiÞ ≥ 0, instead of being self-adjoint. On
generic spacetimes, the pair (contractive, accretive) super-
sedes (unitary, self-adjoint) as a requirement on evolution
semigroups in order to allow for a probabilistic interpre-
tation. This has important ramifications for physical space-
times as support for quantum events:
Let ðL2ðCðΣt0ÞÞ;HÞ be the initial Schrödinger represen-

tation of a quantum field theory in a globally hyperbolic
spacetime ðM; gÞ with the Cauchy foliation ða; bÞ × Σ
containing a geodesic boundary Σa in the folio Σ of
hypersurfaces. A Zeno region ZM in M is a stack of
Cauchy hypersurfaces in Σ with the following property:
The evolution semigroup generated by H is strictly con-
tractive in ZM and kEðc; t0Þk → 0 as c → a.
Evidently, ZM is bounded by some Cauchy hypersur-

face Σz, called the Zeno border, and the geodesic border Σa.
Let us justify the introduction of Zeno regions: If a
spacelike singularity borders on a Zeno region, then the
singularity cannot be probed by quantum fields and the
quantum evolution in its immediate vicinity allows for a
probabilistic interpretation. This distinguishes the physical
spacetime as the principal support of quantum events from
the geometrical spacetime model. Therefore Zeno regions
imply a probabilistic or quantum completion of a geodesic
incomplete spacetime within the semiclassical framework.
Let us now turn back to Schwarzschild black-hole

interiors B, Cauchy-foliated as ð0; rgÞ × Σ with respect
to the Schwarzschild time function. Consider the space
CðΣt0Þ of instantaneous field configuration ϕ;ϕ�∶Σt0 → C

FIG. 1. Vertex density νobs for measurement processes inside
Schwarzschild black holes. The communication between emitter
and absorber, described by the asymptotic Green function G,
diverges toward the geodesic border Σ0, but the integration
measure μ goes sufficiently fast to zero to render νobs finite at
all times. Furthermore, within the Zeno region (shaded), see
Fig. 2 and the macropædia for details, νobs is monotonously
decreasing and vanishes toward Σ0.

QUANTUM POPULATIONS NEAR BLACK-HOLE SINGULARITIES PHYS. REV. D 104, 105010 (2021)

105010-3



and its Schrödinger representation ðL2ðCðΣt0ÞÞ;HÞ in B
with Hamilton density H ¼ GðΠ�;ΠÞ þ VðΦ�;ΦÞ, where
GðΠ�;ΠÞ ≔ ffiffiffiffiffiffiffiffi−gtt

p Π�Π= detðgΣt
Þ, and Π ≔ −iδ=δΦ

denotes the momentum field conjugated to Φ [11]. The
effective potential density V ≔ ffiffiffiffiffiffiffiffi−gtt

p ðjgradΦj2 þm2jΦj2Þ
is a pure multiplication operator, with m being the mass of
the scalar field.
For the ground-state wave functional we make the

following ansatz

Ψt½ϕ�;ϕ� ¼ N t exp ð−½V��Kt½V�Þ; ð2Þ

which will be justified a posteriori. Here, V ¼ ðϕ;ϕ�ÞT,
and

½V��Kt½V� ≔
1

2

Z
Σt

dμx;y V�ðxÞKtðx; yÞVðyÞ ð3Þ

is a quadratic functional with a bilocal representation given
by the matrix K. In the absence of interactions, K is
diagonal and only its trace enters in (3). Close to the
Schwarzschild singularity Σ0 the quantum evolution triv-
ializes [12], that is H ≈ GðΠ�;ΠÞ. As a consequence, the
trace of the bilocal kernel matrix K becomes a contact term
on Σt ∈ Σ near the geodesic border, trðKετÞðx; yÞ ≅
kðετÞδð3Þðx; yÞ with [13]

Im ðkðετÞÞ ≅ −
2

ðετÞ3
1

j lnðετÞj ;

Re ðkðετÞÞ ≅ jImðCÞj jImðkðετÞÞj
j lnðετÞj ; ð4Þ

where ≅ refers to the limit ε → 0. Our result is reminiscent
of the analysis of Kasner spacetimes by Belinskii,
Khalatnikov and Lifshitz: In the vicinity of spacelike
singularities, but still in the domain of general relativity,
the spatial variations of local quantities are insignificant
compared to temporal gradients. This is also similar to
asymptotic silence [14] which describes how the particle
horizon shrinks in homogeneous but anisotropic space-
times bordering on a spacelike singularity. All spatial
correlations vanish eventually.
The asymptotic kernel (4) implies that the immediate

vicinity of the geodesic border is a Zeno region ZB since

lim
ε→0

Ψετ½ϕ�;ϕ� ¼ lim
ε→0

j ln ðετÞj−ΛvðΣετÞ ¼ 0; ð5Þ

where Λ denotes a short-distance cutoff and vðΣετÞ a
volume regularization. Note that any hypersurface con-
tained inZB has an infinite volume, (5) is robust against the
detailed regularization prescription. The Zeno region ZB
secludes the Schwarzschild black-hole’s interior not grant-
ing any sojourn to quantum probes on the singular hyper-
surface bordering on B. Thence the physical space-time is
closed for quantum probes despite being geodesically
incomplete in the mathematical notion. In other words, it

is the portion of B that can be probed via the support of
quantum events, see Fig. 2.
Intuitively ZB marks the stack of hypersurfaces which

enforces the probabilistic completion such that the geodesic
border is closed in the quantum theoretical sector. Quantum
field theory, hence, introduces a new scale τZ in the black
hole interior. To classify τZ further, we compare it to the
scales coming from classical gravity, i.e., rg, and from
quantum gravity, i.e., the Planck time tPl.
Following the definition of ZB, the exact location is

given by an interplay between the background geometry
and the probing quanta. The relevant quantity to estimate
τZ is the position of the maximum in the probability density
wετ ¼ jΨετ½ϕ�;ϕ�j2 which is closest to Σ0. Since the
asymptotic solution is confined to a small region, we need
to extend it by including less singular terms of order
Oð1=εÞ such that Ψετ covers the evolution of test fields in a
larger portion of B and a possible maximum becomes
visible. In this range, we find oscillatory solutions to (1)
given by Bessel functions. This allows to estimate the
position of τZ at which the maximum occurs which also
determines the beginning of the Zeno region. To give a
proof of concept, we perform a mode-sum decomposition
in l ∈ N0, where we split off the time-dependent contri-
bution of the kernel (note, for the full kernel the sum over
all l has to be performed)

klðετÞ ¼
−i
ε3τ2

∂τ ln ðc1J0ð
ffiffiffiffiffiffiffiffiffi
l2ετ

p
Þ þ c2Y0ð

ffiffiffiffiffiffiffiffiffi
l2ετ

p
ÞÞ: ð6Þ

Here, l2 ¼ 4lðlþ 1Þ, ci ∈ C constants of integration, and
J0 and Y0 are the Bessel function of the first and second
kind. The location of Σl

Z can be expressed as a three-
parameter family of hypersurfaces determined by l2 as well

FIG. 2. Probability density wl
t ¼ jΨl

t ½ϕ�;ϕ�j2 for the distribu-
tion of a field configuration ϕ for a fixed l in the folium Σ of B.
Wavy lines mark the geodesic border Σ0, dashed lines represent
the onset of asymptotic silence, and the shaded region between Σ0

and the dotted line is the Zeno region ZB. The upper right corner
displays the corresponding Penrose diagram.

EGLSEER, HOFMANN, and SCHNEIDER PHYS. REV. D 104, 105010 (2021)

105010-4



as the initial conditions represented by c1 and c2 of the
quantum probes. By performing a series expansion for
small arguments l2ετ ≪ 1, we can approximate the posi-
tion of the maximum in wl

τ for l2-values that allow for a
suitable covering in the τ-direction within this approxima-
tion. Thus, we find for a given l

τlZ ≈
rg

jCðc1; c2Þj2l2
; ð7Þ

where Cðc1; c2Þ is a constant depending on the initial
conditions. Apparently, increasing the angular momentum
l results in shifting the Zeno border closer to the geodesic
border while for the case l ¼ 0 we find the logarithmic
(non-oscillating) solution in (5) where, the Zeno border lies
at infinity, i.e., it covers all of the interior. Although the
exact position of ZB depends on the specifics of the
solution, we can compare τlZ to the high-energy scale
provided by the Planck energy. To this aim, we consider
Christensen’s general form of a renormalized stress-energy
tensor [15] with Synge’s world function given in [16] and
look at its trace hTðxÞiren ¼ 1

8π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgÞp ð 1

360
K þ CÞ þ

Oð1=m2Þ ≈ r2g=ð224π2τ4Þ where K ¼ 12r2g=τ6, the
Kretschmann scalar and C ¼ 1

432
r2g=τ6 other contractions

of the Riemann tensor. The trace is usually the most
divergent contribution since it includes the inverse metric.
By comparing it with the Planck scale tPl, we are able to
determine τ⋆ where presumably quantum gravity effects
become important. Therefore, we demand hTðτ⋆Þiren ¼ t−2Pl .
Hence, we locate the high-energy scale at τ⋆ ≈ 1

7

ffiffiffiffiffiffiffiffiffi
rgtPl

p
. For

stellar-mass Schwarzschild black holes, the Zeno border
will then be located τ⋆ < τlZ ≤ rg for all initial conditions
coming from sub-Planckian energy densities.
Next we consider observables in ZB and introduce an

auxiliary source functional J ∶CðΣtÞ → C, describing the
absorption and emission of an instantaneous field configu-
ration by the associated local current density J∶Σt → C. Let
ΨJ

t ½ϕ� ≔ hϕj expðJ tÞ½Φ�jΨti which allows to replace com-
positions of the configuration operator Φ by the corre-
sponding succession of functional derivatives with respect
to the current. In the presence of the auxiliary source,

hΨJ
t jjΦ½f�j2jΨJ

t i

¼ ½f�δ2J exp
�
1

4

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgΣÞ

p ½J�½ReðKtÞ�−1½J�
�
kΨJ

t ½ϕ�k2

ð8Þ
with ½f�δ2J denoting the second functional derivative with
respect to J, smeared with an appropriate field configuration
f. In the absence of an auxiliary source, the ground-state
expectation (8) is real and semipositive definite. It is

monotonously decreasing in ZB toward Σ0 and vanishes
on Σ0. Similarly,

hΨJ
t jjΠj2½f�jΨJ

t i
¼ ½f�Kt½f�kΨJ

t ½ϕ�k2−detðgΣÞk2ðtÞhΨJ
t jjΦ½f�j2jΨJ

t iΣt
:

ð9Þ

Both, the real and imaginary part of (9) are monotonously
decreasing in ZB toward Σ0 and vanish on Σ0 when the
auxiliary current is switched off.
Within the Zeno region, the ground-state expectation

values (8) and (9) are controlled by the contractive
representation of the evolution semigroup. As a result
hΨJ

t jH½f�jΨJ
t i does receive decreasing probabilistic support

within ZB and has vanishing probabilistic support on Σ0.
The Zeno region completes B since information cannot leak
through the geodesic information sink Σ0. These results
remain true if (self-) interactions are included [12] which
can be understood at the qualitative level from the approxi-
mate operator identity H ≅ GðΠ�;ΠÞ.

V. DISCUSSION

The mathematical spacetime model of Schwarzschild
black-hole interiors is geodesic incomplete. This result is
often used to argue for the breakdown of general relativity as
predicted by general relativity. In this letter we have shown
that interiors of Schwarzschild black holes contain so-called
Zeno regions, i.e., stacks of hypersurfaces in the vicinity of
the geodesic spacetime singularity, on which observables
enjoy a vanishing probabilistic support toward the geodesic
spacetime border. In this sense Zeno regions represent a
probabilistic completion of Schwarzschild black holes
within the usual semiclassical framework. Moreover, geo-
desic incompleteness of Schwarzschild black holes qualifies
the mathematical spacetime model, but certainly not the
physical spacetime with a Zeno region in the immediate
vicinity of the geodesic singularity. This statement is
justified since Zeno regions allow for a consistent evolution
of quantum fields but are beyond the scope of classical point
particle mechanics. It is interesting to speculate whether
Zeno regions are terminated byHawking’s hidden surface to
which the principle of ignorance applies [17], but this we
leave for further investigations.
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