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AlphaFold2 and the future of structural biology
To the Editor — AlphaFold2 is a 
machine-learning algorithm for protein 
structure prediction that has now been used 
to obtain hundreds of thousands of protein 
models. The resulting resource is marvelous 
and will serve the community in many 
ways. Here I discuss the implications of this 
breakthrough achievement, which changes 
the way we do structural biology.

Imagine a website where you could 
download a reliable three-dimensional 
model of your protein of interest. Until 
recently, this was just a dream. Now such 
structure prediction has become reality, 
at least for many monomeric proteins. 
As a result of a collaboration between the 
company DeepMind and the European 
Molecular Biology Laboratory, hundreds of 
thousands of protein models were published 
online 22 July 2021.

It has been a long-term goal of the 
scientific community to provide structural 
information on the human proteome. 
However, despite decades of effort, only 
~18% of the total residues in human protein 
sequences are covered by experimentally 
determined structures at this time. This 
coverage has now been widely expanded 
by structural modeling with DeepMind’s 
machine-learning algorithm, AlphaFold2 
(ref. 1). As a result, the authors could 
double the number of residues in the 
human proteome that are covered with 
high-confidence three-dimensional 
information2.

Machines learn to predict structures
AlphaFold2 incorporates empirical 
knowledge about protein structure into a 
deep-learning algorithm1. The algorithm 
also makes use of information from 
evolutionary conservation in the form of 
multiple-sequence alignment3. The resulting 
protein models are often as accurate as 
experimentally determined structures. 
Indeed, AlphaFold2 had outcompeted other 
prediction methods in a blind test, the 14th 
Critical Assessment of Protein Structure 
Prediction (CASP14)4. Whereas the original 
code was not public5, the expanded code and 
the pretrained model for AlphaFold2 are 
now available for download via GitHub1.

Also very recently, an academic team 
led by David Baker has provided an 
alternative machine-learning algorithm 
for structure prediction that is called 
RoseTTAFold6. This algorithm builds on the 
deep-learning approaches established during 
the development of AlphaFold2 and has 

already been applied to predict structures of 
several protein complexes. Like AlphaFold2, 
RoseTTAFold is available to the community 
and can now be used as an alternative route 
to predict protein structure from sequence.

AlphaFold2 and the community
Half a century ago, the structural 
biology community had decided that all 
experimentally resolved macromolecular 
structures should be collected in an 
open-access database, the Protein Data 
Bank (PDB)7. The PDB has been a great 
investment in the future and was essential 
for training the machine-learning algorithm 
of AlphaFold2. From the features learned 
during this training on experimentally 
determined structures, the algorithm 
could predict unknown structures with 
considerably higher accuracy than what has 
been achieved before.

The vast structural knowledge available 
in the PDB was thus a conditio sine qua non 
for developing the new prediction tools. 
Obtaining the many experimental structures 
that are collected in the PDB has required 
decades of hard work by the structural 
biology community and has remained 
challenging despite many advances 
made over the years. Now these efforts 
are paying off in a way that could not be 
imagined until recently. The new prediction 
algorithms distil the PDB to provide a tool 
that facilitates and accelerates structure 
determination and the use of structural 
knowledge in biomedicine.

How structural biology will change
The new algorithms will change how we do 
structural biology. First, they will facilitate 
structure solution of large assemblies by 
cryo-electron microscopy (cryo-EM). 
This approach generally requires detailed 
structures of the individual proteins or 
their domains as a starting point. It is 
expected that, if the individual structures 
are not available, they will now simply 
be downloaded as predicted models 
and fitted to the cryo-EM densities. The 
obtained fits may then be confirmed with 
the use of protein crosslinking and mass 
spectrometry8.

Predicted structures may also be used 
as search models to solve X-ray crystal 
structures by molecular replacement9, 
thereby making experimental phasing 
obsolete in many cases. Researchers using 
NMR may also benefit from the prediction 
algorithms. The time-consuming de novo 

solution of domain structures by NMR may 
be replaced by fast predictions so that the 
unique advantages of NMR in investigating 
protein folding and dynamics and the 
binding of ligands and nucleic acids can be 
utilized more readily.

The new prediction algorithms should 
also improve automated model building. 
This will not change the general approach 
in structural biology, which has always 
combined model building with experimental 
observations. The best-known example 
may be the DNA double helix, which was 
originally modeled to fit experimental 
observations that came from X-ray fiber 
diffraction and biochemistry10. Until 
today, structural models were built to 
explain experimental data, but soon 
machine-learning methods may be 
combined with classical refinement tools 
to largely automate model building, to the 
benefit of the community.

New challenges for computational 
biology
The new algorithms will be used to predict 
the structured proteome of any organism 
that is sequenced. Such predictions may 
help in the design of specific scientific 
projects, but they will also accelerate 
drug discovery and foster biotechnology 
applications. Large-scale predictions 
may additionally result in a new type of 
comparative structural proteomics, which, 
it is assumed, will lead to new discoveries. 
These developments, however, require 
that computational biologists stay closely 
connected to the experimental community.

In the near future, machine learning 
should be explored for predicting structures 
of protein–nucleic acid complexes, which 
are a notable blind spot of AlphaFold2 and 
RoseTTAFold. The PDB already contains 
nearly 10,000 entries for protein–nucleic 
acid complexes that should be used for 
training new algorithms. Whereas predicting 
protein–DNA complexes may be in reach, 
experimentally resolved protein–RNA 
complex structures remain low in number, 
and training sets are thus small, which may 
impair success at this time.

New machine-learning tools should 
also be developed to analyse and predict 
conformational changes in proteins and to 
solve structures of polymorphic assemblies 
and protein fibers11. Machine-learning 
methods should also enable a better 
prediction of protein function and facilitate 
protein engineering and design12. Finally, up 

NAture StructurAl & MoleculAr Biology | VOL 28 | September 2021 | 704–705 | www.nature.com/nsmb

http://crossmark.crossref.org/dialog/?doi=10.1038/s41594-021-00650-1&domain=pdf
https://alphafold.ebi.ac.uk/
https://alphafold.ebi.ac.uk/
https://swissmodel.expasy.org/
https://swissmodel.expasy.org/
http://www.nature.com/nsmb


705

correspondence

to half of the human proteome is estimated 
to encode for intrinsically disordered 
regions, which often engage in multivalent 
interactions to form transient compartments 
in cells13. There is currently little structural 
information on such protein regions, but 
machine-learning tools may help us to 
better characterize such systems once more 
training data become available.

the future of structural biology
A long-term goal of structural biology 
remains the visualization of molecular 
structures in their natural context, which is 
often referred to as in-cell or in situ structure 
determination. Indeed, recent advances in 
cryo-electron tomography14, data processing15 
and chemical crosslinking and mass 
spectrometry16 demonstrate the feasibility of 
this approach. However, at this time, in-cell 
structural biology is limited to certain types 
of simple cells, parts of cells or exceptionally 
large and stable molecular complexes.

In-cell structural biology would 
benefit from the further development of 
machine-learning algorithms that would 
enable us to reliably predict structures 
of protein complexes that could then be 
used as templates to mine tomography 
data. However, experimental studies of 
such large complexes have revealed their 
transient nature and plasticity, showed that 
their integrity often depends on nucleic 
acids and small molecule cofactors and 
found that protein–protein interfaces are 
often very small in size. Therefore, accurate 
prediction of protein complexes will 
probably remain a formidable challenge 
for the foreseeable future and will rely 
on improved platforms to integrate 
information from various sources.

It will therefore probably require 
intermediate steps to achieve the 
transition from current state-of-the-art 
integrated structural biology to future 
in-cell structure determination. Over the 
coming years, structural biologists will 
probably try to resolve large endogenous 
assemblies and visualize isolated cellular 
compartments. Such studies will certainly 
benefit from the localization of proteins by 
fluorescence-labeling and high-resolution 
light microscopy17.

conclusions
The new prediction algorithms do not  
solve the protein folding problem in the 
sense that they do not reveal how a sequence 
encodes three-dimensional structure. 
However, they do solve the problem 
in practical terms, as they can reliably 
predict structure from sequence, at least 
in many cases. Although only time will 
tell, this advance is expected to represent 
a breakthrough in structural biology that 
is comparable to previous major advances, 
such as the introduction of synchrotron 
radiation18 and selenomethionine 
phasing19 for X-ray crystallography or the 
development of direct electron detectors  
for cryo-EM20.

In summary, the recent advances in 
protein structure prediction that result from 
new machine-learning algorithms mark 
the beginning of a new era in structural 
biology. They will accelerate life science 
research and will facilitate many biomedical 
applications that require structural 
knowledge. The advances are also testimony 
to the power of artificial intelligence and 
open science, and they provide a seminal 
example of how transformative research 

may be done in the 21st century, to the 
benefit of science and society. ❐
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