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Abstract: Based on multiple linear regression (MLR) models, we estimated the PM2.5 at Seoul using
a number of aerosol optical depth (AOD) values obtained from ground-based and satellite remote
sensing observations. To construct the MLR model, we consider various parameters related to the
ambient meteorology and air quality. In general, all AOD values resulted in the high quality of
PM2.5 estimation through the MLR method: mostly correlation coefficients >~0.8. Among various
polar-orbit satellite AODs, AOD values from the MODIS measurement contribute to better PM2.5

estimation. We also found that the quality of estimated PM2.5 shows some seasonal variation; the
estimated PM2.5 values consistently have the highest correlation with in situ PM2.5 in autumn, but are
not well established in winter, probably due to the difficulty of AOD retrieval in the winter condition.
MLR modeling using spectral AOD values from the ground-based measurements revealed that the
accuracy of PM2.5 estimation does not depend on the selected wavelength. Although all AOD values
used in this study resulted in a reasonable accuracy range of PM2.5 estimation, our analyses of the
difference in estimated PM2.5 reveal the importance of utilizing the proper AOD for the best quality
of PM2.5 estimation.

Keywords: PM2.5; aerosol optical depth (AOD); multiple linear regression; boundary layer height

1. Introduction

The negative effects of fine mode particles on human health have been significantly
examined, and are more serious at the present time. For example, in addition to the threat to
the well-known respiratory and cardiovascular problems, people are currently concerned
about the damage to mental health due to the high concentration of aerosols and even
precursor gases [1]. This effect has usually been inspected based on the mass density of
particulate matter (PM), especially PM having an aerodynamic diameter <2.5 µm (PM2.5).
To conduct an accurate evaluation, the monitoring of local PM2.5 is therefore an essential
task. To date, the platform for the in situ measurement of PM2.5 has been improved and
advanced in many places, resulting in the accumulation of long-term records. Nonetheless,
the spatial coverage of in-situ PM2.5 observations is still limited, and does not provide
abundant data for the evaluation of health effects, particularly in rural regions.
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As an alternative approach, satellite remote sensing has been used for the monitoring
of aerosol pollution. The aerosol optical depth (AOD) is a product from satellite remote
sensing that indicates the atmospheric turbidity associated with the density of airborne par-
ticles. However, PM2.5 is not directly produced from satellite measurements. Thus, PM2.5
estimation using satellite AOD has been widely conducted based on various statistical
methods, which are well summarized in [2,3]. Multiple-linear regression (MLR) modeling
is a representative method that has been widely used to date, indicating the contribution of
various factors (e.g., meteorology) to the estimation of PM2.5. Recently, machine learning
and deep learning algorithms have been applied to PM2.5 estimation, and better results
have been achieved compared to the previous approaches.

Nonetheless, the accuracy of PM2.5 estimation can vary according to the utilized
dataset and methodology. For example, PM estimation can differ between the usage
of polar-orbit and geostationary satellite AOD [4], or in accordance with the temporal
period [5]. The combination of factors also relates to the quality of the PM estimate [6]. In
addition, PM estimation using the same dataset and methodology can result in different
levels of quality due only to the difference in spatial location [7].

Although many studies have presented various methods of PM2.5 estimation using
AOD values, the sensitivity to the type of data used has not been significantly investigated.
In particular, the quality of PM2.5 estimation according to the kind of AOD, one of the main
parameters considered to be significant in the process of PM2.5 estimation, has rarely been
evaluated. Although some previous works directly compared the spatiotemporal pattern
consistency between AOD and PM2.5, and diagnosed the difference in terms of the kind
of selected AOD values [8,9], evaluation of the quality of estimated PM2.5 after advanced
statistical data processing was not undertaken.

Thus, this study attempted to examine the impact on the accuracy of PM2.5 estimation
according to the application of different AOD products, because previous studies showing
the effect of different AOD products on the quality of PM2.5 estimates are rare. Based on
several MLR models, we estimated PM2.5 values using multiple AOD values from satellite
and ground-based measurements in Seoul. Then, these estimated values were compared
with in situ PM2.5 observations for validation. Based on the generated statistical parameters,
e.g., correlation coefficient (R) and root mean square error (RMSE), we evaluated the PM2.5
estimate in terms of sensitivity to the kind of AOD products, seasonal difference, and
wavelengths. To identify the seasonal pattern, we used full yearly measurements of AODs
from May 2016 to April 2017.

2. Data Description

For the estimation of PM2.5 using AODs in this study, we used the multiple remote
sensing instruments onboard low-orbit satellites: Moderate Resolution Imaging Spectro-
radiometer (MODIS) on Terra and Aqua satellites, Visible Infrared Imaging Radiometer
Suite (VIIRS) on the Suomi-NPP satellite, Multi-angle Imaging Spectroradiometer (MISR)
on the Terra satellite, and Ozone Monitoring Instrument (OMI) on the Aura satellite [10,11].
Each satellite mission has its own retrieval algorithm based on the different wavelength
view-angle and spatiotemporal properties. For the MODIS measurement, AOD can be
retrieved from both the Dark Target (DT) and Deep Blue (DB) algorithm with a 10 × 10 km2

resolution at nadir [12], and the DT AOD retrieval with a 3 km resolution [13]. Here we
used these three different AODs, named MODIS-DT, MODIS-DB, and MODIS-3km AODs,
respectively. The differences in the specifications of all satellite AODs considered in this
study are summarized in Table 1. Although the satellite sensors have multiple channels,
AODs in the visible channel around 500–550 nm converted from other channels have been
much qualified [11], and are usually considered to be the representative satellite AOD
product. Thus, this study only used the satellite AODs at 500 or 550 nm wavelengths.
This enabled a better diagnosis of the effect of the retrieval algorithm and spatiotemporal
resolution on the PM2.5 estimation.
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Table 1. Detail description of satellite AOD values used in this study.

Data Name

Description

Satellite Wavelength (nm) Spatial
Resolution (km2) Retrieval Algorithm Observation Time

(UTC)

MODIS-DT Terra
Aqua 550 10 × 10 C6 01:20–03:25

03:35–05:40

MODIS-DB Terra
Aqua 550 10 × 10 C6 01:20–03:25

03:35–05:40

MODIS-3km Terra
Aqua 550 3 × 3 C6 01:20–03:25

03:35–05:40
VIIRS Suomi-NPP 550 6 × 6 EDR 03:15–05:40
MISR Terra 550 17.6 × 17.6 V22 01:30
OMI Aura 500 13 × 24 Near-UV 04:05–05:35

In addition to the satellite AOD measurements, we also utilized AODs from multiple
ground-based measurements. Due to the participation of the KOREA-US air quality
(KORUS-AQ) campaign [14], several ground-based remote sensing instruments were
installed concurrently in May 2016 at the top of the Science Hall in Yonsei University,
South Korea (37.564◦ N, 126.935◦ E), and maintained observations until April 2017: a
sun-photometer registered in the Aerosol Robotic Network (AERONET), a skyradiometer
registered in the SKYNET, a Brewer spectrophotometer, and two Multi-Filter Rotating
Shadowband Radiometers (MFRSR), as summarized in Table 2 [15–20]. Because these
are remote sensing instruments, AOD measurement is only available in daytime, from
sunrise to sunset. AERONET and SKYNET AODs are generally produced each 20 min,
the MFRSR AOD is per 5 min, and AOD of the Brewer spectrophotometer is per 1 h.
To ensure consistency, we used the daily mean AOD for all instruments. In contrast
to the satellite AOD, we used ground-based AOD observations at multiple channels
(wavelengths) because this approach has been more intensively validated [21–23]. Because
the ground-based instruments better reflect the local air properties and have better accuracy
than the satellite measurements, the usage of these ground-based AOD observations enable
inspection of the performance of PM2.5 estimation according to the channel of the AODs.

Table 2. Detailed description of ground-based AOD data used in this study.

Data Name Instrument Wavelength (nm) Retrieval Algorithm

AERONET CIMEL Electronique CE318 multiband
sun photometer

340, 380, 440, 500, 675,
870, 1020, 1640 [15]

SKYNET POM-02
Skyradiometer

340, 380, 400, 500,
675, 870, 1020 [16,17]

UV-MFRSR Multi-Filter Rotating Shadowband
Radiometers (MFRSR)

305, 311, 325, 332, 340, 380 (UV-MFRSR)
415, 440, 500, 615, 673, 870 (VIS-MFRSR) [18,19]VIS-MFRSR

Brewer spectrophotometer Brewer Spectrophotometer (MK-IV, No.
148) 320 [20]

In order to prepare an effective MLR model for the PM estimation using various
AODs, as described in the next section, a number of meteorological and physical variables
are necessary. Planetary boundary layer height (PBLH) is one of the essential pieces
of information in the conversion process between column-integrated and surface-level
data [24]. In this study, we used the PBLH data retrieved from the ceilometer measurement
at the top of the Science Hall in Yonsei University. The process of PBLH calculation was well
described in [25]. For comparison purposes, we also used the PBLH from the European
Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis data, ERA-Interim.
Additionally, we used several meteorological parameters, such as air temperature, relative
humidity, wind speed, and visibility. These meteorological parameters in the Korean
peninsula are routinely monitored at the Automatic Weather Station (AWS) operated by the
Korea Meteorological Administration (KMA). For this study, we used meteorological data
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of the Songwol-dong AWS station, which is the closest site (~2 km) to Yonsei University.
We also used the amounts of PM2.5, surface ozone, and nitrogen dioxide (NO2) measured
at the Seodaemun-gu surface station, which is the closest air pollution monitoring site to
Yonsei University (~1.5 km). Both ozone and NO2 data were obtained from the AIRKOREA
data archive (https://www.airkorea.or.kr/, final accessed on 1 January 2021) and the unit
is parts per billion (ppb). The quality control and assurance process was confirmed by the
AIRKOREA data archive system; therefore, the minimum quality of PM2.5, ozone, and
NO2 was ensured guaranteed. The analysis in this study was only performed when the
PM2.5 values were available. The site information of Yonsei University was described in
detail in Jung et al. (2010) [26].

3. Methodology

Although AOD from space-borne satellite measurement provides a quantitative pat-
tern of aerosol loadings in the Earth’s atmosphere, AOD cannot be converted directly into
a PM2.5 value because AOD is a columnar amount and indicator of atmospheric turbidity;
this is different from the physical meaning of PM2.5, which is a surface mass density. Thus,
a specific process is required to convert the columnar AOD to the surface PM2.5. MLR
modeling has been widely utilized for this purpose. Although the application of machine
learning or deep learning techniques have recently started to produce meaningful results
for the conversion between AOD and PM2.5 [4–7], the MLR method continues to be fre-
quently used for PM estimation using AOD values due to its simplicity and convenience in
assessing the influence of considering factors [27,28]. In addition, the performance of the
MLR method for PM estimation is comparable with that of other advanced techniques [29].
Therefore, to evaluate how different AOD values influence the PM estimation, we used the
MLR method in this study.

A number of factors are considered in the MLR model for PM2.5 estimation from AOD
values. PBLH plays an important role in determining the effective height of homogeneous
mixing of local particles near the surface, and assisting in the detection of the contribution
of lower layer air pollution to the total column of aerosol amount. Wind speed indi-
cates the effect of the degree of dispersion on the accumulation or ventilation of airborne
aerosols [4,30]. Relative humidity relates to the growth in the particle size and mass [24],
and air temperature can be associated with the source of long-range transport [31] or the
extent of precursor emissions from biogenic sources [32]. Visibility is another well-known
indicator of aerosol pollutions [33]. Ozone and NO2 can show the local photochemical
activity [34] and atmospheric chemical conditions related to the aerosol pollutions [35,36].

Based on these data, we constructed MLR models having different combinations of
variables. The description and variables used for each MLR model are shown in Table 3.
MLR Model 1 (M1) is the simplest model, and estimates PM2.5 only based on the direct
linear regression with AOD, which is still significantly investigated for the diagnosis of
PM exposure [37]. MLR Model 2 (M2) estimates PM2.5 using PBLH in addition to AOD,
considering the effective height of aerosol accumulation near the surface. MLR Model 3
(M3) includes not only meteorological factors (temperature, wind speed, relative humidity,
and visibility) but also chemical conditions in the atmosphere (ozone and NO2). For M2 and
M3, we utilized two different PBLH data, which were obtained from ceilometer observation
(related to M2-1 and M3-1) and from ECMWF reanalysis (related to M2-2 and M3-2).

MLR models were established using 50% of all available data selected randomly, and
evaluated with the remaining 50% of the data. Figure 1 shows the validation example
of all MLR models (M1, M2-1, M2-2, M3-1, and M3-2) using AODs retrieved from the
MODIS-DT algorithm. Considering the reverse pattern of AOD and PM2.5 in East Asia [38],
the relationship between observed and estimated PM2.5 from the M1 model (i.e., only AOD
is considered) is acceptable, having a linear shape and moderate correlation coefficient
(R). However, the slope was 0.15, indicating that the estimated PM2.5 cannot follow the
variation range of observed PM2.5. When we included the PBLH parameter in the MLR

https://www.airkorea.or.kr/
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model (M2), the correlation improved and the slope increased slightly. However, the
quality enhancement of M2 model does not look to be significant.

Table 3. Detailed description of statistical models applied in this study for the PM2.5 estimation using
AOD data (PBLH: planetary boundary layer height, RH: relative humidity, and B: intercept value.
F(RH) is equal to 1/{1 – (RH / 100)}, referring to Seo et al. (2015) [24]. The units of the data used are
as follows: PM2.5 (µg/m3), AOD (unitless), PBLH (km), temperature (K), wind speed (m/s), visibility
(km), RH (%), NO2 (ppb), O3 (ppb).

Models Description

M1 PM2.5 = AOD + B
M2-1 PM2.5 = AOD/PBLH (ceilometer) + B
M2-2 PM2.5 = AOD/PBLH (ECMWF reanalysis) + B

M3-1 PM2.5 = AOD + PBLH (ceilometer) + Temperature + Wind speed +
Visibility + f (RH) + NO2 + O3 + B

M3-2 PM2.5 = AOD + PBLH (ECMWF reanalysis) + Temperature + Wind speed +
Visibility + f (RH) + NO2 + O3 + B
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on 5 statistical models in this study (M1, M2-1, M2-2, M3-1, and M3-2). Colors indicate the occurrence of each case. The
dashed line is the 1:1 line and the solid line shows the linear regression pattern.

After including the mentioned meteorological and chemical factors (M3), the perfor-
mance of the MLR model was finally significantly enhanced: R > 0.8 between observed
and estimated PM2.5 and the slope was ~0.7. Although the M3 model still underestimated
the observed PM2.5, especially in heavily polluted conditions (PM2.5 > 60 µg/m3), these
results indicate that the MLR model considering AOD, PBLH, and some meteorological and
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chemical conditions results in a reliable quality in PM2.5 estimation, that was comparable
to the machine-learning approaches [29]. An additional comparison was made to assess
the effect of using different PBLH data. We did not find large differences in the results
between M2-1 and M2-2, or between M3-1 and M3-2, implying that the data source of
PBLH does not have a significant influence. Overall, this demonstrates the usefulness of
MLR modeling for the PM2.5 estimation. Based on this finding, deeper analyses of the MLR
model results are continued in Section 4.

4. Results and Discussions

First, compared the PM2.5 estimation of all MLR models using different satellite AOD
data (Table 4). For the M1 and M2 models, the performance of PM2.5 estimation seems
largely dependent on the used AOD; the cases of MODIS and MISR AOD show higher
correlation and lower RMSE, but those of VIIRS and OMI AOD show lower correlation and
higher RMSE. However, the M3 model results reveal the consistency of PM2.5 estimation
for all AOD cases. All correlation coefficients are higher 0.7 and their difference is smaller
than 0.2; these values are significantly better than the cases of the M1 and M2 models,
which show correlations < 0.5 and correlation differences > 0.3. In terms of slope, M1 and
M2 show relatively small slopes: all slopes of M1 and M2 < 0.3. However, M3 results show
a significantly better slope, which is from 0.5 to 0.7. Comparison between M3-1 and M3-2
indicates that M3-1 can estimate PM2.5 slightly better, implying that the ground-based
measurement of PBLH can better represent the local conditions of aerosol distribution.

Table 4. R, RMSE, slope, and used data number (N) of correlations between measured and estimated PM2.5 (unit: µg/m3)
values for five MLR models (M1, M2, M2-1, M3-1, and M3-2) using six satellite AODs. The unit of RMSE is µg/m3.

Statistics MLR Model MODIS-DT MODIS-DB MODIS-3km VIIRS MISR OMI

R

M1 0.4 0.48 0.36 0.29 0.36 0.17
M2-1 0.43 0.54 0.43 0.21 0.45 0.24
M2-2 0.49 0.46 0.46 0.26 0.49 0.21
M3-1 0.84 0.83 0.84 0.8 0.85 0.75
M3-2 0.83 0.81 0.81 0.8 0.83 0.75

RMSE

M1 9.09 9.53 9.11 9.5 11.4 10.75
M2-1 9.7 8.9 9.61 9.85 12.83 10.78
M2-2 8.83 9.74 8.77 9.59 10.65 10.69
M3-1 5.7 5.9 5.76 5.99 7.45 7.36
M3-2 5.69 6.25 5.72 6.09 7.33 7.32

Slope

M1 0.15 0.22 0.14 0.08 0.13 0.01
M2-1 0.18 0.28 0.19 0.05 0.23 0.03
M2-2 0.25 0.21 0.2 0.08 0.23 0.02
M3-1 0.73 0.71 0.69 0.63 0.72 0.55
M3-2 0.69 0.67 0.68 0.62 0.69 0.57

N

M1 1643 2794 1933 3027 249 577
M2-1 877 1662 1049 1608 146 318
M2-2 1639 2786 1930 3027 249 577
M3-1 843 1597 1012 1608 146 318
M3-2 1576 2686 1863 2900 243 557

Overall, MODIS-DT AOD results in the best quality of PM2.5 estimation: the highest
correlation coefficient, smallest RMSE, and largest slope. Other MODIS AODs (MODIS-DB
and MODIS-3km) show a similar performance. MISR AOD shows a high correlation and
large slope, but RMSE is high, probably due to the small data number (Table 4). VIIRS
AOD does not result in high accuracy of PM2.5 estimation in the M1 and M2 models; in
particular, the slope is relatively small (<0.1), indicating a weak sensitivity of the estimated
PM2.5 to the observed value. However, VIIRS AOD results in highly enhanced accuracy
of PM2.5 estimation in the M3 model. The reason for this drastic enhancement is not clear,
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but perhaps can be explained by the larger number of data than that of other AODs. In
turn, this is attributable to a larger swath width because statistical modeling is generally
more advantageous with a larger dataset. OMI AOD results in relatively lower quality
of PM2.5 estimation, but the M3 result is acceptable, showing a moderate correlation
coefficient (R = ~0.7). The low spatial resolution of OMI L1B data (13 × 24 km2), and
generally unfavorable conditions of cloud masking in aerosol retrieval, may result in a
lower correlation coefficient. Here, we confirm that the choice of AOD to be applied can
influence the performance of PM2.5 estimation, but that any AOD can contribute to the
moderate quality of PM2.5 estimation when the MLR model is composed of PBLH with
other meteorological and chemical information.

Based on the result of the M3-1 model, which recorded the best performance, the sea-
sonal pattern of estimated PM2.5 was also analyzed (Figure 2). Compared to the observed
PM2.5, the estimated PM2.5 shows the highest correlation (R = ~0.8 to 0.9) and slope (~0.7 to
0.9) in autumn (September–October–November, SON), implying that the columnar AOD
has a relatively high sensitivity to the variation in surface fine-mode particles during this
season. Given that there are a number of springtime Asian dust events and summertime
hygroscopic growth of local aerosols in the Korean peninsula [39,40], AOD in spring and
summer can be partially affected by coarse-mode particles, resulting in relatively lower
correlations and slope values. The RMSE pattern looks similar, i.e., small RMSE in autumn
(i.e., higher quality) but large RMSE in spring (i.e., lower quality). RMSE in summer is
relatively small because PM2.5 is the lowest in summer.

The performance of PM2.5 estimation in spring, summer, and autumn does not show
a significant discrepancy according to the AOD used. In winter, however, the quality of
PM2.5 estimation is relatively dependent on the AOD used. Although the MISR AOD
results in the highest correlation (R = ~0.9) and slope (~0.9), the OMI AOD results in the
lowest correlation (R = ~0.65) and slope (<~0.5), and highest RMSE, indicating a weak
capability of capturing the surface aerosol properties in winter. MODIS AODs also show
different performances: MODIS-3km and MODIS-DT AOD are related to a high correlation
and slope, but MODIS-DB is related to a relatively low correlation and slope.

This feature indicates that the consistency of various satellite AOD data is not high in
winter. It appears that the number of data is not significantly associated with the quality
of PM2.5 estimation (Figure 2a). This inconsistency may be attributed to the accuracy of
AOD retrieval in winter. The quality of AOD retrieval can be degraded due to a high
solar zenith angle [41,42] or bright surface albedo caused by snow cover [43,44], which are
representative of winter conditions on the Korean peninsula. Some retrieval algorithms can
be largely affected by the winter characteristics of surface albedo. For example, the MODIS
DT algorithm selects the minimum surface albedo in 30-day data for each pixel, and the
high-reflecting surface case can be selected if there retains a snow-covered surface for a
long period during winter. Different particle shapes can be associated with the variation
in AOD quality if combined with the other influencing factors noted above (e.g., SZA
and surface albedo). Aerosol retrieval of MISR using multi-view angles appears to be
more advantageous for the separation of surface and aerosol signals than other sensors,
resulting in better reliability in retrieved AOD across seasons. Therefore, according to
the specification of satellite sensors and properties of the retrieval algorithm, the AOD
difference can be relatively larger in winter. Further research will be required to reduce
the gap in the PM2.5 estimation in winter. Because aerosol pollution in South Korea is
most serious during winter [45], the quality improvement in wintertime PM2.5 estimation
is essential.

Because we found that the MODIS AOD values resulted in different performance
of PM2.5 estimation according to the retrieval algorithm, we also inspected if the result
of PM2.5 estimation was different when the MODIS AOD of the Terra (or Aqua) satellite
is only used. Figure 3 shows the comparison of correlation, slope, and RMSE results
between observed and estimated PM2.5 when the MODIS-DT, MODIS-DB, and MODIS-
3km onboard the Terra (or Aqua) satellite AOD was used with M3-1 and M3-2 models. It
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does not appear that an obvious change was derived from this comparison but, in general,
the MODIS AODs onboard the Terra satellite resulted in a slightly higher accuracy. The
difference in the correlation coefficients appears negligible, but the slope difference between
the Terra and Aqua AOD cases is sometimes significant (higher that 0.05 difference). The
number of data of the MODIS AODs of the Terra satellite are slightly higher but this does
not appear to be a critical factor. One significant difference is the temporal difference;
the overpassing time of the Terra satellite is around 10:30 AM local time, whereas that of
Aqua satellite is around 1:30 PM local time. Considering that PBLH is generally higher
in the afternoon compared to the morning due to the enhanced vertical mixing driven
by the surface heating [21,46], it is feasible to expect a smaller portion of surface aerosol
concentration in the total columnar aerosol density, which may explain the relatively lower
accuracy of the estimated PM2.5. This comparison provides an insight into identifying the
role of AOD measurement time in PM2.5 estimation.
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Thus far, we examined the relationship between the performance of PM2.5 estimation
and applied satellite AOD values. Next, similar comparisons were repeated using the
various ground-based AODs. As mentioned, we estimated PM2.5 based on the M3-1
model using AERONET, SKYNET, ultraviolet MFRSR (UV-MFRSR), visible MFRSR (VIS-
MFRSR), and Brewer spectrophotometer AOD (Figure 4). Here, one more key point was to
investigate the performance of PM2.5 estimation in terms of the channel (wavelength) of
AOD. We mainly compared the basic MLR (M1) and the best MLR (M3-1) model results. M1
results, only considering AOD for PM2.5 estimation, show a large wavelength dependence:
a decrease in the correlation coefficients and slope, and an increase in RMSE for the
comparison between observed and estimated PM2.5 as the wavelength increased. AODs
in near-infrared (IR) channels do not result in high-quality PM2.5 estimation. This feature
reveals the importance of channel selection in the simple application of the relationship
between AOD and PM2.5 for the investigation of regional aerosol pollution. Considering the
large wavelength dependence of ground-based AOD measurement [47], exact examination
of the relationship between AOD and PM2.5 cannot be guaranteed without the appropriate
channel selection. This lesson should be significantly considered for the usage of AOD to
connect with the level of PM2.5 directly [37].

When the M3 model is used, however, the wavelength dependence does not occur
(Figure 4d–f). From this result, we find that the wavelength dependence of AOD is not
influential on the PM2.5 estimation if the advanced statistical approach is applied with a
number of other effective factors (i.e., PBLH, meteorology, local chemical concentration).
The M3 results reveal that both MFRSR AOD values result in a high accuracy of PM2.5 esti-
mation because MFRSR AODs here are retrieved with the elaborate screening of Rayleigh
scattering induced by trace gases such as ozone and NO2 [23], resulting in the more precise
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capture of local aerosol variation. Compared to the results obtained from using the satellite
AODs (Table 4), the usage of ground-based AODs shows similar correlation coefficients
but a slightly higher RMSE and lower slope. This feature can probably be explained by the
fact that ground-based AODs more reflect the local characteristic of the maximum aerosol
pollution because the statistical approach has limitations in the detection of dense aerosol
pollution [4].
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The interesting result shown in Figure 4—the performance of PM2.5 estimation using
the UV- and VIS-MFRSR AODs— is described here in more detail. The M1 results show
that the quality of estimated PM2.5 based on MFRSR AODs is lower than that of the others.
In contrast, the quality of estimated PM2.5 based on MFRSR AODs appears to be the best
when the M3 model is applied, obtaining the highest correlations and slope values. The
main difference of UV- and VIS-MFRSR AODs from other AODs is the consideration of
the ozone and NO2 optical depth. Namely, the variation in Rayleigh scattering by ozone
and NO2 is accurately considered in the retrieval of UV- and VIS-MFRSR AOD following
the methodology in Mok et al. (2018) [19], whereas the climatology of ozone and NO2 is
only considered in the retrieval of AERONET and SKYNET AODs. It appears that the
AOD performance itself is better for the AERONET and SKYNET AODs, probably due
to the better detection of direct sun (the AERONET and SKYNET instruments follow the
diurnal cycle of the solar position), resulting in more accurate PM2.5 estimation using the
M1 model. However, in the M3 model where the variation of meteorological and chemical
(ozone and NO2) factors is considered, accurate consideration of ozone and NO2 optical
depth in UV- and VIS-MFRSR AOD appears to be more influential on the estimation of
qualified PM2.5. The study site, Yonsei University, is located near a road where high traffic
generally occurs [26]. We note that the usage of local air pollutants in the MLR model also
appears to be significant for the PM2.5 estimation, particularly for the polluted region.

Finally, we examined the seasonal variation in PM2.5 estimation using ground-based
AODs in multiple channels. Table 5 shows a comparison of correlation coefficients, RMSE,
and slope between the observed PM2.5 and PM2.5 estimated from the usage of AERONET
AODs in the M3-1 model, as a representative example, during each season. Similar to
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the usage of satellite AODs (Table 4), the performance of PM2.5 estimation is the best in
autumn, which obtained the highest correlation coefficient, lowest RMSE, and highest
slope. Although the quality of PM2.5 estimation appears to be relatively lower in spring,
probably due to the large reflection of Asian dust events near the surface, PM2.5 estimation
appears to be reliable for all seasons, even winter. This difference between the usage of
satellite and ground-based AODs implies that the inconsistency of PM2.5 estimation in
winter may be attributed to the surface conditions, because the AOD retrieval from the
ground-based measurement is not significantly associated with the surface reflectance. In
addition, no wavelength dependence of AOD was found for each season, meaning that
the channel selection of AOD is not of concern if the statistical approaches are applied for
PM2.5 estimation.

Table 5. Seasonal variation of R, RMSE, slope, and number of data used (N) in correlations between measured and estimated
PM2.5 (unit: µg/m3) values for various wavelengths. Estimated PM2.5 values here are from the M3-1 model using AERONET
AOD. The unit of RMSE is µg/m3.

AERONET AOD
M3-1

340 nm 380 nm 440 nm 500 nm 675 nm 870 nm 1020 nm

Spring R 0.74 0.74 0.74 0.73 0.73 0.73 0.73
N 951 953 953 953 953 953 953

RMSE 9.83 9.86 9.89 9.91 9.95 9.97 9.98
Slope 0.54 0.54 0.53 0.53 0.53 0.53 0.53

Summer R 0.79 0.78 0.78 0.78 0.78 0.78 0.78
N 337 343 343 343 343 343 343

RMSE 6.99 6.82 6.83 6.84 6.86 6.86 6.87
Slope 0.62 0.66 0.66 0.66 0.66 0.66 0.66

Autumn R 0.81 0.82 0.82 0.82 0.82 0.82 0.82
N 511 513 513 513 513 513 513

RMSE 5.58 5.50 5.51 5.51 5.54 5.56 5.57
Slope 0.68 0.67 0.67 0.67 0.66 0.66 0.66

Winter R 0.78 0.76 0.76 0.76 0.76 0.76 0.76
N 770 774 774 774 774 774 774

RMSE 6.98 7.03 7.04 7.04 7.04 7.04 7.04
Slope 0.61 0.61 0.61 0.61 0.61 0.61 0.61

5. Summary and Conclusions

Based on the MLR method, this study evaluated the accuracy of PM2.5 estimation in
accordance with the type of applied AOD value. We confirmed that all satellite AODs
generally resulted in satisfactory PM2.5 estimation if other influential factors (e.g., PBLH,
local meteorology, and the quantity of precursor gases) were simultaneously considered.
In spite of this positive result, we also obtained some inconsistent results in winter, when
the AOD retrieval can have larger uncertainty. Because the aerosol pollution in the Korean
peninsula is usually the most serious in winter, an effort to identify the proper AOD
appears to be required to achieve high accuracy of PM2.5 estimation. The overpassing
time of satellite measurements may have an impact on PM2.5 estimation, but may not
be significant. The direct relationship between AOD and PM2.5 shows a relatively large
wavelength dependence, which is negligible, however, if the MLR method is applied. In
conclusion, the type of AOD does not significantly affect the accuracy of PM estimation
but, nonetheless, careful usage appears to be required if a specific condition is the research
target (e.g., diurnal or seasonal variation).

Numerous studies have been previously conducted about the estimation of PM using
AOD values based on many different statistical methods. Through these works, we
determined which factors are significant and should be considered to ensure the quality of
PM2.5 estimation, and recognized the substantial effect of the AOD contribution. Because
a number of different AOD values are produced by various satellite and ground-based
measurements, it is necessary to determine how the performance of PM2.5 estimation
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can change in terms of applied AOD values. Our research provides useful information
about this phenomenon and improvements in the search for an approach for better PM2.5
estimation from AOD values.
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