Picomolar FKBP inhibitors enabled by a single waterdisplacing methyl group in bicyclic [4.3.1] aza-amides

Jürgen M. Kolos ${ }^{\text {£ab }}$, Sebastian Pomplun ${ }^{\text {b } \dagger, ~ S a s c h a ~ J u n g ~}{ }^{\mathrm{c}}$, Benedikt Rieß ${ }^{\text {b† }}$, Patrick L. Purder ${ }^{\text {a }}$, Andreas M. Volla ${ }^{\text {a }}$ Stephanie Merza ${ }^{\text {a }}$, Monika Gnatzy ${ }^{\text {a }}$, Thomas M. Geigera, Ingrid Quist-Løkken ${ }^{\text {d }}$, Jerome Jatzlaue, Petra Knaus ${ }^{\mathrm{e}}$, Toril Holien ${ }^{\mathrm{d}, \mathrm{f}, \mathrm{g}}$, Andreas Bracher ${ }^{\text {h }}$, Christian Meyners ${ }^{\text {a }}$, Paul Czodrowskic, Vera Krewald ${ }^{\text {a }}$, Felix Hausch ${ }^{\text {a* }}$

ξ These authors contributed equally to this work.

* Corresponding author. E-mail: felix.hausch@tu-darmstadt.de

Table of contents

1. Water network .. 2
2. 3D-RISM calculations ... 3

3. FP-Assay data.. 10
4. ITC data.. 13
5. Crystallographic data... 16
6.1 Crystallization of the complex of FKBP51fk1 with $1^{(\mathrm{S})}$-Me $\ldots . ~ 16$
6.2 Structure solution and refinement of the complex of FKBP51fk1 with $1^{(\mathrm{S})-\mathrm{Me}} . .16$
6.3 Crystallization of the complex of FKBP51fk1 with 1.................................... 16
6.4 Structure solution and refinement of the complex of FKBP51fk1 with 1 16
6.5 Crystallization of the complex of FKBP51fk1 with 22.................................... 17
6.6 Structure solution and refinement of the complex of FKBP51fk1 with $22 \ldots 17$
6.7 Crystallization of the complex of FKBP51fk1 with 22(S)-Me......................... 17
6.8 Structure solution and refinement of the complex of FKBP51fk1 with 22(S)-
Me 17
6.3 Refinement data ... 18
7 DFT calculations... 20
8 Cellular assays ... 23
9 Compound Synthesis .. 26
9.1 General Methods .. 26
9.2 Synthesis.. 27
10 References .. 103

1. Water network

22 (7APQ)

4W9P-A

4W9O-A

4W9O-B

4W9Q

Figure S1: Analysis of all available crystal structures (PDB-ID indicated) of FKBP51 (grey surface) containing bicyclic [4.3.1.] sulfonamide ligands (green sticks; chemical structures are given above the crystal structures). Crystallographically resolved water molecules are shown as blue spheres, the conserved water displaced by a methyl group in the a-position is highlighted in red, the distance to the α-position is indicated as yellow dotted lines in Å. Further waters consistently conserved throughout the available crystal structures are highlighted in cyan, green, brown, pink and light pink.

Figure S2. Overlay of the cocrystal structures of 22 (7APQ), 22(S)-Me, 5OBK, 4W9P_A, 4W9P_B, 4W9O_A, 4W9O_B und 4TXO in complex with FKBP51 (5OBK), with the conserved energetically favorable water molecule (HOH324 in 22) highlighted in a pink circle.

2. 3D-RISM calculations

3D-RISM calculations with MOE were performed for the crystal structures of $\mathbf{2 2 / 2 2} \mathbf{2 2}^{(\mathrm{s})-\mathrm{Me}}$ and $\mathbf{1 / 1} \mathbf{1}^{(\mathrm{S})-\mathrm{Me}} .^{1-2}$ For compounds 22 and 1, in both cases indeed a water site was predicted in close proximity (22: 0.83 \AA, 1: $1.00 \AA$) to the conserved water (red in Fig. S2) found in the crystal structure (Fig. S2, Fig. S3). This computationally supports the findings that a water at this place is highly conserved for this type of compounds. For compounds $\mathbf{2 2}{ }^{(\mathrm{s})-\mathrm{Me}}$ and $\mathbf{1}^{(\mathrm{S})-\mathrm{Me}}$, no water site is predicted near the additional methyl group in accordance with the respective crystal structure (Fig. S4). The local free energy ($\Delta \mathrm{G}_{\text {local }}$) of the conserved water site is predicted to be considerably positive for both 22 (Δ Glocal $=+26.03 \mathrm{~kJ} / \mathrm{mol}$, Fig. $\mathbf{S} 2 \mathbf{A}$ and $1\left(\Delta \mathrm{G}_{\text {local }}=+28.18 \mathrm{~kJ} / \mathrm{mol}\right.$, Fig. S2 B) which means that the respective water can be displaced with low/no desolvation cost. For 22, the predicted interaction energy ($\Delta \mathrm{G}_{\text {interact }}$) of the water site with the receptor is $+3.22 \mathrm{~kJ} / \mathrm{mol}$, for $\mathbf{1}, \Delta \mathrm{G}_{\text {interact }}$ is predicted to be $+2.77 \mathrm{~kJ} / \mathrm{mol}$ (Table S1). Therefore, displacement of the water through the additional methyl group of $\mathbf{2 2}^{(\mathrm{s})-\mathrm{Me}}$ and $1^{(\mathrm{s})-\mathrm{Me}}$ could stabilize the respective complex accordingly (Fig. S5). $\Delta \mathrm{G}_{\text {local }}$ is an estimate of the total cost of desolvation, whereas $\Delta G_{\text {interact }}$ only describes the interaction energy between the respective water and the receptor.

Figure S3. Predicted water site via 3D-RISM calculations. A: $22\left(\Delta \mathrm{G}_{\text {local }}=+26.03 \mathrm{~kJ} / \mathrm{mol}\right.$, distance to crystal water $0.83 \AA$). B: 1 (Δ Glocal $=+28.18 \mathrm{~kJ} / \mathrm{mol}$, distance to crystal water $1.00 \AA$). Red sphere $=$ predicted water site, blue sphere = water found in crystal structure.

Figure S4. A: Predicted water sites (spheres) for 22 in $5 \AA$ around the binding site. B: Predicted water sites (spheres) for 1 in $5 \AA$ around the binding site. The sites are colored according to their predicted local free energy. Red $=$ positive $\Delta G_{l o c a l}$, green $=$ negative $\Delta G_{l o c a l}$, grey $=\Delta G_{l o c a l}$ near zero, blue spheres $=$ crystal structure water. The displaced water is highlighted with a black circle. $\Delta \mathrm{G}_{\text {local }}$ is in $\mathrm{kcal} / \mathrm{mol}$.

Figure S5. A: Predicted water sites (spheres) for $\mathbf{2 2}^{(\mathrm{S})-\mathrm{Me}}$ in $5 \AA$ around the binding site. B: Predicted water sites (spheres) for $1^{(\mathrm{S})-\mathrm{Me}}$ in $5 \AA$ around the binding site. The sites are colored according to their
predicted local free energy. Red $=$ positive Δ Glocal , green $=$ negative Δ Glocal , grey $=\Delta$ Glocal near zero, blue spheres $=$ crystal structure water. $\Delta \mathrm{Glocal}_{\text {in }} \mathrm{kcal} / \mathrm{mol}$.

Fig. S6. A: Overlay of the crystal structure of $\mathbf{2 2}{ }^{(\mathrm{S})} \mathrm{Me}_{-}$complex with the predicted water site of 22complex. B: Overlay of the crystal structure of $\mathbf{1}^{(\mathrm{S})}$-Me-complex with the predicted water site of 1-complex. The methyl group can displace the water in both cases with no desolvation cost.

Table S1: Parameters for water sites near conserved waters in the crystal structures of compounds 22/1 as predicted via 3D-RISM calculations. See also Fig. S6A for 22 and Fig. S6B for 1.

Complex	Conserved crystal water	Distance of predicted water site to crystal water (\AA)	$\Delta \mathrm{G}_{\text {local }}$ $(\mathrm{kJ} / \mathrm{mol})$	$\Delta \mathrm{G}_{\text {interact }}$ $(\mathrm{kJ} / \mathrm{mol})$
$\mathbf{2 2}$	HOH372 (red)	0.83	+26.03	+3.22
	HOH364 (cyan)	1.34	+18.45	+1.51
	HOH364 (cyan)	2.88	+19.01	-10.38
	HOH348 (green)	2.39	+18.45	+1.51
	HOH324 (light blue)	0.37	-11.79	-23.28
$\mathbf{1}$	HOH440 (red)	1.00	+28.18	+2.76
	HOH396 (green light)	2.35	+18.17	+3.01
	HOH411 (bright pink)	0.53	+31.95	-17.21
	HOH430 (light pink)	1.53	+16.75	-0.42
	HOH435 (brown)	2.23	+20.68	-2.47

Fig. S7. Local free energy Δ Glocal (in $\mathrm{kJ} / \mathrm{mol}$) for predicted water sites (red spheres) near conserved waters found in the crystal structure of $\mathbf{2 2}(A)$ and $\mathbf{1}(B)$ in close proximity to the respective ligand.

Procedure

3D-RISM

To predict water sites and their respective energies, 3D-RISM (Reference Interaction Site Model) calculations ${ }^{1-3}$ with MOE 4 were performed. RISM belongs to the class of implicit solvent methods developed on the basis of density functional theory of liquids. RISM uses statistical mechanics description of the solvent structure. In the 3-dimensional version, a solute molecule is treated as a single object, but the solvent molecules are modelled as a set of atoms or sites, respectively. ${ }^{5}$ 3D-RISM is theoretically equivalent to infinite long MD simulations. From the RISM equations, H and O density maps as well as free energy maps can be computed. To solve the equations, approximations are necessary. Within MOE, the KH closure is used. ${ }^{6}$

Structure pre-processing.
 QuickPrep utility of MOE with default settings except the deletion of water molecules and the refinement step (Fig. S8).

Figure S8. Settings for preparation of the crystal structures.

3D-RISM calculations

3D-RISM calculations were performed using the Solvent Analysis utility in MOE. All atoms with a maximal distance of $15 \AA$ around the receptor were included in the calculation. The grid around the solute was generated such that the minimum distance between any solute atom and the edge of solvent box (Buffer in MOE notation) was equal to $15 \AA$. The linear grid spacing in each of the three directions was $0.3 \AA \AA$. Tight convergence was set for quantitative reproducibility (Fig. S9).

Figure S9. Settings used for RISM calculations.
The predicted radial distributions functions for the oxygen density and the free energy maps were analyzed using the Solvent-Analysis-Grids panel. The predicted water sites were monitored using the Solvent-Analysis-Sites panel (Fig. S10). Only water sites within 5 A around the ligand and with a maximal distance of 3.5 A to a crystal water were considered for further analysis.

Figure S10. Water sites results panel.

3. Compound $2 \&$ Synthesis of $22^{(\mathrm{R})-\mathrm{Me}}$ and $\mathbf{2 2 ^ { (\mathrm { S }) } - \mathrm { Me }}$

Fig. S11. Structure of 2.

Scheme S1. Synthesis of $\mathbf{2 2}^{(\mathrm{R})-\mathrm{Me}}$ and $\mathbf{2 2}^{(\mathrm{S})-\mathrm{Me}}$. Reagents and conditions: (a) CbzCI, DIPEA, DCM, rt, 1 h; (b) OsO4, NalO4, 2,6-lutidine, dioxane/H2O, rt, 20 h ; (c) NaBH_{4}, EtOH, 1 h, rt, 66\% (over 3 steps); (d) Mel, $\mathrm{NaH}, \mathrm{rt}, 1 \mathrm{~h}$; (e) CAN, MecN/H2O, rt, $4 \mathrm{~h}, 55 \%$ (over 2 steps); (f) 2-(1-bromoethyl)pyridine, NaH , DMF, rt, 1 h ; (g) $\mathrm{BCl}_{3}{ }^{*} \mathrm{SMe}_{2}$, DCM, rt, 1 h , separation of diastereomers: $\mathbf{2 7}^{(\mathrm{R})-\mathrm{Me}}: \mathbf{2 3 \%}$, $\mathbf{2 7}{ }^{(\mathrm{S})}$-Me $: \mathbf{1 2 \%}$ (over 2 steps); (h) benzo[d]thiazole-6-sulfonyl chloride, DIPEA, DMAP, DCM, rt, $20 \mathrm{~h}, \mathbf{2 2}^{(\mathrm{R})-\mathrm{Me}}: 40 \%, \mathbf{2 2}^{(\mathrm{S})-\mathrm{Me}}$: 46\%.

4. FP-Assay data

All proteins (FKBP12, -12.6, -51FK1, -52FK1) were recombinantly expressed in E. coli BL21DE2Gold and had a final purity of $>95 \%$ as visually judged by Coomassie gel. The proteins were stored in HEPES buffer (20 mM HEPES, $20 \mathrm{mM} \mathrm{NaCl}(150 \mathrm{mM} \mathrm{NaCl}$ for FKBP12.6), +/-5\% (v/v) Glycerol, pH 8.0). The fluorescent ligand FT was developed by Pomplun et al ${ }^{7}$ (Fig. S12).

Figure S12. Chemical structure of the fluorescent ligand FT.

Fluorescent ligand dissociation constants as well as final concentrations of the fluorescent ligand FT and proteins FKBP12, 12.6, 51FK1 and 52FK1 are summarized in Tab. S2. The competition curves were analyzed using Prism 6.0 (GraphPad Software).

Table S2. Concentrations of proteins and fluorescent ligand FT and dissociation constants of FT.

FKBP	$\mathbf{1 2}$	$\mathbf{1 2 . 6}$	51FK1	52FK1
$[\mathrm{FKBP}] / \mathrm{nM}$	1	10	15	10
$[\mathrm{FT}] / \mathrm{nM}$	0.5	1	1	1
$\mathrm{Kd}(\mathrm{FT}) / \mathrm{nM}$	0.30 ± 0.06	1.7 ± 0.1	5.7 ± 0.2	4.1 ± 0.2

For the analysis of K_{d} values, data were fitted to the following equation (provided in Kozany et al.; Supporting Information, Appendix 3). ${ }^{8}$
$A=(A \max -A \min) /[L] t x\left(\left([L] t x\left(\left(2 x\left(\left(K \operatorname{lig}+K_{c o m p}+[L] t+[I] t-[R] t\right)^{\wedge} 2-3 x\left(K_{\text {comp }} X([L] t-[R] t)+\right.\right.\right.\right.\right.\right.$ $\left.\left.\operatorname{Klig} x([I] t-[R] t)+K_{\text {lig }} x K_{\text {comp }}\right)\right)^{\wedge} 0.5 x \operatorname{COS}\left(A R C C O S\left(\left(-2 x\left(K_{\text {lig }}+K_{c o m p}+[L] t+[I] t-[R] t\right)^{\wedge} 3+\right.\right.\right.$ $9 x\left(K_{\text {lig }}+K_{\text {comp }}+[L] t+[I] t-[R] t\right) \times\left(K_{\operatorname{comp}} x([L] t-[R] t)+K \operatorname{lig} x([I] t-[R] t)+K \operatorname{lig} x K_{c o m p}\right)-27 x(-$ $\left.\left.1 \mathrm{x} \operatorname{Kig} \mathrm{x} \mathrm{K}_{\operatorname{comp}} \mathrm{x}[\mathrm{R}] \mathrm{t}\right)\right) /\left(2 \mathrm{x}\left(\left(\left((\mathrm{Klig}+\mathrm{K} \operatorname{comp}+[\mathrm{L}] \mathrm{t}+[\mathrm{I}] \mathrm{t}-[\mathrm{R}] \mathrm{t})^{\wedge} 2-3 \mathrm{x}\left(\mathrm{K}_{\operatorname{comp}} \mathrm{X}([\mathrm{L}] \mathrm{t}-[\mathrm{R}] \mathrm{t})+\mathrm{K} \operatorname{lig} \mathrm{x}\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.\left.\left.([I] t-[R] t)+K \operatorname{lig} x K_{c o m p}\right)\right)^{\wedge} 3\right)^{\wedge} 0.5\right)\right)\right) / 3\right)\right)-\left(K_{\text {lig }}+K_{c o m p}+[L] t+[I] t-[R] t\right)\right) /\left(\left(3 x K_{\text {lig }}\right)+\right.$ $\left(\left(2 x\left(\left(K_{\text {lig }}+K_{\text {comp }}+[L] t+[I] t-[R] t\right)^{\wedge} 2-3 x\left(K_{\operatorname{comp}} x([L] t-[R] t)+K \operatorname{lig} x([I] t-[R] t)+K \operatorname{lig} x\right.\right.\right.\right.$ Kcomp $))^{\wedge} 0.5 x \operatorname{COS}\left(\operatorname{ARCCOS}\left(\left(-2 x(\text { Klig }+\mathrm{Kcomp}+[\mathrm{L}] \mathrm{t}+[I] \mathrm{t}-[\mathrm{R}] \mathrm{t})^{\wedge} 3+9 \mathrm{x}(\mathrm{Klig}+\mathrm{Kcomp}+[\mathrm{L}] \mathrm{t}+[I] \mathrm{t}\right.\right.\right.$ $\left.-[R] t) \times\left(K_{\operatorname{comp}} X([L] t-[R] t)+K \operatorname{lig} X([I] t-[R] t)+K \operatorname{lig} X K_{c o m p}\right)-27 x\left(-1 \times K \operatorname{lig} X K_{c o m p} X[R] t\right)\right) /$ $\left(2 x\left(()\left(K_{\text {lig }}+K_{c o m p}+[L] t+[I] t-[R] t\right) \wedge 2-3 x\left(K_{c o m p} X([L] t-[R] t)+K \operatorname{lig} x([I] t-[R] t)+K \operatorname{lig} x\right.\right.\right.$ $\left.\left.\left.\left.\left.\mathrm{K}_{\text {comp }}\right)\right)^{\wedge} 3\right)^{\wedge} 0.5\right)\right)$)/3) $\left.\left.\left.)-\left(\mathrm{K}_{\text {lig }}+\mathrm{K}_{\text {comp }}+[\mathrm{L}] \mathrm{t}+[\mathrm{I}] \mathrm{t}-[\mathrm{R}] \mathrm{t}\right)\right)\right)\right)+\mathrm{Amin}_{\text {min }}$

In this equation $K_{\text {ig }}$ and $\mathrm{K}_{\text {comp }}$ stand for the K_{d} values of the used tracer or competing ligand, $[\mathrm{L}]_{\mathrm{t}}$ and $[\mathrm{R}]_{\mathrm{t}}$ are referring to the total concentrations of the used tracer or the protein and $[I]$ t is referring to the total concentration of the titrated ligand. A stands for the fluorescence anisotropy ($\mathrm{A}_{\text {min }}=$ minimal measured anisotropy, $A_{\max }=$ maximal measured anisotropy).

Table S3. FP-Assay data of all tested compounds for all tested FKBPs.

\#	$\begin{gathered} \text { FKBP12 } \\ {[\mathrm{nM}]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { FKBP51 } \\ \text { [nM] } \\ \hline \end{gathered}$	FKBP52 [nM]	\mathbf{R}^{1}	\mathbf{R}^{2}	\mathbf{R}^{3}
FK506	$0.70+-0.04$	$129+-7$	$49.14+-2.98$	X	X	X
Rapamycin	$0.43+-0.04$	$31+-1$	34.40 +- 1.74	X	X	X
$1^{(\mathrm{R}) \text {-Me }}$	48	123	296	$\mathrm{CH}\left((\mathrm{R})-\mathrm{CH}_{3}\right) \mathrm{COOH}$	DCB ${ }^{[a]}$	Vinyl
1	33	172	320	$\mathrm{CH}_{2} \mathrm{COOH}$		
$1^{(\mathrm{S})-\mathrm{Me}}$	13	22	80	$\mathrm{CH}\left((\mathrm{S})-\mathrm{CH}_{3}\right) \mathrm{COOH}$		
$8^{(R)-M e}$	>5000	>5000	>5000	$\mathrm{CH}\left((\mathrm{R})-\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OBn}$	BTZ ${ }^{[b]}$	Vinyl
$8^{(\mathrm{S})-\mathrm{Me}}$	28	263	316	$\mathrm{CH}\left((\mathrm{S})-\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OBn}$		
$9^{(R)-M e}$	>5000	>5000	>5000	$\mathrm{CH}\left((\mathrm{R})-\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OH}$	BTZ ${ }^{[b]}$	Vinyl
$9^{(S)-M e}$	21	110	102	$\left.\mathrm{CH}(\mathrm{S})-\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OH}$		
$10^{(R)-M e}$	>5000	>5000	>5000	$\mathrm{CH}\left((\mathrm{R})-\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OBn}$	DCB ${ }^{[a]}$	Vinyl
$10^{(5)-M e}$	58	1076	1028	$\mathrm{CH}\left((\mathrm{S})-\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OBn}$		
11 ${ }^{\text {(R)-Me }}$	>5000	>5000	>5000	$\mathrm{CH}\left((\mathrm{R})-\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OH}$	DCB ${ }^{[a]}$	Vinyl
$11^{(\mathrm{s})}$-Me	3.5	107	116	$\left.\mathrm{CH}(\mathrm{S})-\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OH}$		
$16^{(8)-M e}$	130	>1000	>1000	$\mathrm{CH}\left((\mathrm{R})-\mathrm{CH}_{3}\right) \mathrm{Py}$	DCB ${ }^{[a]}$	Vinyl
16	1.3	119	54	$\mathrm{CH}_{2} \mathrm{Py}$		
$16^{(5)-M e}$	0.72	2.6	2.2	$\mathrm{CH}\left((\mathrm{S})-\mathrm{CH}_{3}\right) \mathrm{Py}$		
$17^{(R)-M e}$	240	4546	3451	$\mathrm{CH}\left((\mathrm{R})-\mathrm{CH}_{3}\right) \mathrm{Py}$	BTZ ${ }^{[b]}$	Vinyl
17	7.5	294	276	$\mathrm{CH}_{2} \mathrm{Py}$		
17 ${ }^{\text {(S) }-\mathrm{Me}}$	2.2	33	29	$\mathrm{CH}\left((\mathrm{S})-\mathrm{CH}_{3}\right) \mathrm{Py}$		
18	0.52	33	19	$\mathrm{CH}_{2} \mathrm{Py}$	DCB ${ }^{[a]}$	$\mathrm{CH}_{2} \mathrm{OH}$
18(8)-Me	0.29	2.6	3.6	$\mathrm{CH}\left((\mathrm{S})-\mathrm{CH}_{3}\right) \mathrm{Py}$		
19	0.65	12	11	$\mathrm{CH}_{2} \mathrm{Py}$	DCB ${ }^{[a]}$	$\mathrm{CH}_{2} \mathrm{OMe}$
19(3)-Me	0.33	2.9	3.2	$\mathrm{CH}\left((\mathrm{S})-\mathrm{CH}_{3}\right) \mathrm{Py}$		
20	6.5	410	285	$\mathrm{CH}_{2} \mathrm{Py}$	$B T Z^{[b]}$	Ethyl
20 ${ }^{\text {(3)-Me }}$	1.9	27	22	$\mathrm{CH}\left((\mathrm{S})-\mathrm{CH}_{3}\right) \mathrm{Py}$		
21	5.5	283	190	$\mathrm{CH}_{2} \mathrm{Py}$	BTZ ${ }^{[b]}$	$\mathrm{CH}_{2} \mathrm{OH}$
21 ${ }^{(\mathrm{S})}$-Me	1.5	27.2	18.2	$\mathrm{CH}\left((\mathrm{S})-\mathrm{CH}_{3}\right) \mathrm{Py}$		
$22^{(\mathrm{R})-\mathrm{Me}}$	52	696	735	$\mathrm{CH}\left((\mathrm{R})-\mathrm{CH}_{3}\right) \mathrm{Py}$	BTZ ${ }^{[b]}$	$\mathrm{CH}_{2} \mathrm{OMe}$
22	2.5	104	60	$\mathrm{CH}_{2} \mathrm{Py}$		
22 ${ }^{\text {(S) }-\mathrm{Me}}$	2.2	32	17	$\mathrm{CH}\left((\mathrm{S})-\mathrm{CH}_{3}\right) \mathrm{Py}$		

[a] DCB = 3,5-Dichlorobenzene. [b] BTZ = 6-Benzothiazole. n.d. = not determined.

5. ITC data

The binding thermodynamics of selected compounds to FKBP51FK1 were determined by isothermal titration calorimetry at $25^{\circ} \mathrm{C}$. In brief, a $10-20 \mu \mathrm{M}$ solution of FKBP51FK1 formulated in 20 mM HEPES pH 8.0, 20 mM NaCl and $0.5-1 \%$ DMSO was placed in the sample cell of a PEAK-ITC instrument. The syringe was filled with a 100-200 $\mu \mathrm{M}$ solution of the respective compound formulated in the same buffer. After equilibration the compound was titrated into the sample cell by 18 injections of $2 \mu \mathrm{l}$ each. The obtained data was then analyzed using the MicroCal analysis software, fitted to a one-site binding model yielding the thermodynamic parameters of the interaction.

Table S4: ITC data of selected compounds for FKBP51.

\#	Ki nM	$\begin{gathered} \mathrm{dH} \\ \mathrm{~kJ} / \mathrm{mol} \end{gathered}$	$\begin{gathered} \text { TdS } \\ \mathrm{kJ} / \mathrm{mol} \end{gathered}$	$\begin{gathered} \mathrm{dG} \\ \mathrm{~kJ} / \mathrm{mol} \end{gathered}$	\mathbf{R}^{1}	$\mathbf{R}^{\mathbf{2}}$	\mathbf{R}^{3}
$\begin{gathered} 1 \\ 1^{(\mathrm{s})-\mathrm{Me}} \end{gathered}$	$\begin{gathered} 210 \pm 60 \\ 26 \pm 7 \end{gathered}$	$\begin{aligned} & -45 \pm 1 \\ & -47 \pm 1 \end{aligned}$	$\begin{aligned} & 7 \pm 2 \\ & 4 \pm 1 \end{aligned}$	$\begin{aligned} & -38 \pm 1 \\ & -43 \pm 1 \end{aligned}$	$\begin{gathered} \mathrm{CH}_{2} \mathrm{COOH} \\ \mathrm{CH}\left((\mathrm{~S})-\mathrm{CH}_{3}\right) \mathrm{COOH} \end{gathered}$	DCB ${ }^{[a]}$	Vinyl
$\begin{aligned} & \hline \mathbf{g}^{(\mathrm{R})-\mathrm{Me}} \\ & \mathbf{g}^{(\mathrm{S})-\mathrm{Me}} \end{aligned}$	$\begin{gathered} 4500 \pm 1000 \\ 170 \pm 25 \end{gathered}$	$\begin{aligned} & -47 \pm 4 \\ & -53 \pm 2 \end{aligned}$	$\begin{aligned} & 17 \pm 5 \\ & 14 \pm 2 \end{aligned}$	$\begin{aligned} & -31 \pm 1 \\ & -39 \pm 1 \end{aligned}$	$\begin{aligned} & \mathrm{CH}\left((\mathrm{R})-\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OH} \\ & \mathrm{CH}\left((\mathrm{~S})-\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OH} \end{aligned}$	BTZ ${ }^{[b]}$	Vinyl
$\begin{gathered} \hline 17^{(\mathrm{R})-\mathrm{Me}} \\ 17 \\ 17^{(\mathrm{S})-\mathrm{Me}} \end{gathered}$	$\begin{gathered} 2700 \pm 450 \\ 280 \pm 58 \\ 13 \pm 6 \end{gathered}$	$\begin{aligned} & \hline-40 \pm 2 \\ & -52 \pm 2 \\ & -54 \pm 2 \end{aligned}$	$\begin{gathered} 8 \pm 2 \\ 15 \pm 3 \\ 9 \pm 2 \end{gathered}$	$\begin{aligned} & -32 \pm 1 \\ & -37 \pm 1 \\ & -45 \pm 1 \end{aligned}$	$\begin{gathered} \hline \mathrm{CH}\left((\mathrm{R})-\mathrm{CH}_{3}\right) \mathrm{Py} \\ \mathrm{CH} 2 \mathrm{Py} \\ \mathrm{CH}\left((\mathrm{~S})-\mathrm{CH}_{3}\right) \mathrm{Py} \end{gathered}$	$B T Z^{[b]}$	Vinyl
$\begin{gathered} 18 \\ 18^{(\mathrm{S})-\mathrm{Me}} \end{gathered}$	$\begin{gathered} 44 \pm 7 \\ 4 \pm 2 \end{gathered}$	$\begin{aligned} & -71 \pm 1 \\ & -71 \pm 1 \end{aligned}$	$\begin{aligned} & 29 \pm 1 \\ & 22 \pm 2 \end{aligned}$	$\begin{aligned} & -42 \pm 1 \\ & -48 \pm 1 \end{aligned}$	$\begin{gathered} \mathrm{CH}_{2} \mathrm{Py} \\ \mathrm{CH}\left((\mathrm{~S})-\mathrm{CH}_{3}\right) \mathrm{Py} \end{gathered}$	DCB ${ }^{[a]}$	$\mathrm{CH}_{2} \mathrm{OH}$
19 $19(\mathrm{~S})-\mathrm{Me}$	$\begin{gathered} 16 \pm 8 \\ 1.6 \pm 0.8 \end{gathered}$	$\begin{aligned} & -56 \pm 2 \\ & -55 \pm 1 \end{aligned}$	$\begin{gathered} 12 \pm 2 \\ 5 \pm 1 \end{gathered}$	$\begin{aligned} & -45 \pm 1 \\ & -50 \pm 1 \end{aligned}$	$\begin{gathered} \mathrm{CH}_{2} \mathrm{Py} \\ \mathrm{CH}\left((\mathrm{~S})-\mathrm{CH}_{3}\right) \mathrm{Py} \end{gathered}$	DCB ${ }^{[a]}$	$\mathrm{CH}_{2} \mathrm{OMe}$
$\begin{gathered} 20 \\ 20^{(\mathrm{s})-\mathrm{Me}} \end{gathered}$	$\begin{gathered} 250 \pm 70 \\ 33 \pm 6 \end{gathered}$	$\begin{aligned} & -53 \pm 3 \\ & -50 \pm 1 \end{aligned}$	$\begin{gathered} 15 \pm 3 \\ 7 \pm 1 \end{gathered}$	$\begin{aligned} & -38 \pm 1 \\ & -43 \pm 1 \end{aligned}$	$\frac{\mathrm{CH}_{2} \mathrm{Py}}{\mathrm{CH}\left((\mathrm{~S})-\mathrm{CH}_{3}\right) \mathrm{Py}}$	BTZ ${ }^{[b]}$	Ethyl
	$\begin{gathered} 200 \pm 66 \\ 20 \pm 4 \end{gathered}$	$\begin{aligned} & -64 \pm 2 \\ & -63 \pm 1 \end{aligned}$	$\begin{gathered} 26 \pm 3 \\ 19 \pm 1 \end{gathered}$	$\begin{aligned} & -39 \pm 1 \\ & -44 \pm 1 \end{aligned}$	$\begin{gathered} \mathrm{CH}_{2} \mathrm{Py} \\ \mathrm{CH}\left((\mathrm{~S})-\mathrm{CH}_{3}\right) \mathrm{Py} \end{gathered}$	BTZ ${ }^{[b]}$	$\mathrm{CH}_{2} \mathrm{OH}$
22 $22^{(\mathrm{S})-\mathrm{Me}}$	$\begin{gathered} 237 \pm 80 \\ 14 \pm 5 \end{gathered}$	$\begin{aligned} & -50 \pm 2 \\ & -50 \pm 2 \end{aligned}$	$\begin{gathered} 12 \pm 2 \\ 5 \pm 2 \end{gathered}$	$\begin{aligned} & -38 \pm 1 \\ & -45 \pm 1 \end{aligned}$	$\begin{gathered} \mathrm{CH}_{2} \mathrm{Py} \\ \mathrm{CH}\left((\mathrm{~S})-\mathrm{CH}_{3}\right) \mathrm{Py} \end{gathered}$	BTZ ${ }^{[b]}$	$\mathrm{CH}_{2} \mathrm{OMe}$

[a] DCB = 3,5-Dichlorobenzene. [b] BTZ = 6-Benzothiazole.

Figure S13. Correlation of FP-assay and ITC data.

Figure S14. Thermodynamic signature of the affinity increases of selected compound pairs with and without α-methyl group.

A

1

B
18

Figure S15. Example ITC traces of compounds $1,1^{(\mathrm{S})-\mathrm{Me}}(\mathrm{A}), 18$ and $18^{(\mathrm{S})-\mathrm{Me}}(\mathrm{B})$ binding to FKBP51FK1 at $25^{\circ} \mathrm{C}$. In general, a $10 \mu \mathrm{M}$ solution of FKBP51FK1 formulated in 20 mM HEPES pH 8.0, 20 mM NaCl and 1% DMSO was placed in the sample cell of a PEAK-ITC instrument. The syringe was filled with a $100 \mu \mathrm{M}$ solution of the respective compound formulated in the very same buffer. After equilibration the compound was titrated to the FKBP51FK1 solution by 18 injections of $2 \mu \mathrm{l}$ each. The obtained data was analyzed using the provided software package and fitted to a one-site binding model yielding the thermodynamic parameters (mean \pm SD from 3 independent experiments) summarized in table S4.

6. Crystallographic data

6.1 Crystallization of the complex of FKBP51fk1 with $1^{(\mathrm{s})-\mathrm{Me}}$

Complexes were prepared by mixing FKBP51fk1 at 2.19 mM with $1^{(\mathrm{S})-\mathrm{Me}}$ at 6.25 mM . Crystallization was performed at $20^{\circ} \mathrm{C}$ using the hanging drop vapor-diffusion method, equilibrating mixtures of $1 \mu \mathrm{l}$ protein complex and $1 \mu \mathrm{l}$ reservoir against $500 \mu \mathrm{l}$ reservoir solution. Crystals were obtained after seeding with reservoir solutions containing 38\% PEG-3350, $0.2 \mathrm{M} \mathrm{NH}_{4}$-acetate and HEPES-NaOH pH 7.5.

6.2 Structure solution and refinement of the complex of FKBP51fk1 with $1^{(\mathrm{s})-\mathrm{Me}}$

Diffraction data were collected at beamline ID30B of the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. Diffraction data were integrated with XDS ${ }^{9}$ and further processed with the implemented programs of the CCP4i interface (Collaborative Computational Project). ${ }^{10-11}$ The data reduction was conducted with Aimless ${ }^{11-13}$. Crystal structures were solved by molecular replacement employing the program Molrep. ${ }^{14-15}$ Iterative model improvement and refinement were performed with Coot ${ }^{16}$ and Refmac5. ${ }^{17-21}$ The dictionary for the compound was generated with PRODRG implemented in CCP4i. ${ }^{22}$ Residues facing solvent channels without detectable side chain density were truncated at $C \beta$.

6.3 Crystallization of the complex of FKBP51fk1 with 1

Complexes were prepared by mixing FKBP51fk1 at 2.19 mM with 1 at 2.5 mM . Crystallization was performed at $20^{\circ} \mathrm{C}$ using the hanging drop vapor-diffusion method, equilibrating mixtures of $1 \mu \mathrm{l}$ protein complex and $1 \mu \mathrm{l}$ reservoir against $500 \mu \mathrm{l}$ reservoir solution. Crystals were obtained after seeding with reservoir solutions containing 38\% PEG-3350, $0.2 \mathrm{M} \mathrm{NH}_{4}$-acetate and HEPES-NaOH pH 7.5.

6.4 Structure solution and refinement of the complex of FKBP51fk1 with 1

Diffraction data were collected at beamline ID29 of the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. The GrenADeS/EDNA (Ref. PMID: 23682196) pipeline was used for data processing. Crystal structures were solved by molecular replacement employing the program Molrep. ${ }^{14-}$ 15 Iterative model improvement and refinement were performed with Coot ${ }^{16}$ and Refmac5. ${ }^{17-20}$ The dictionary for the compound was generated with PRODRG implemented in CCP4i. ${ }^{22}$ Residues facing solvent channels without detectable side chain density were truncated at $\mathrm{C} \beta$.

6.5 Crystallization of the complex of FKBP51fk1 with 22

Complexes were prepared by mixing FKBP51fk1 at 2.19 mM with 22 at 2.5 mM . Crystallization was performed at $20^{\circ} \mathrm{C}$ using the hanging drop vapor-diffusion method, equilibrating mixtures of $1 \mu \mathrm{l}$ protein complex and $1 \mu \mathrm{l}$ reservoir against $500 \mu \mathrm{l}$ reservoir solution. Crystals were obtained after seeding with reservoir solutions containing 36% or 40% PEG-3350, $0.2 \mathrm{M} \mathrm{NH}_{4}$-acetate and HEPES-NaOH pH 7.5.

6.6 Structure solution and refinement of the complex of FKBP51fk1 with 22

Diffraction data were collected at beamline ID29 of the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. The GrenADeS/EDNA (Ref. PMID: 23682196) pipeline was used for data processing. Crystal structures were solved by molecular replacement employing the program Molrep. ${ }^{14-}$ ${ }^{15}$ Iterative model improvement and refinement were performed with Coot ${ }^{16}$ and Refmac5. ${ }^{17-21}$ The dictionary for the compound was generated with PRODRG implemented in CCP4i. ${ }^{22}$ Residues facing solvent channels without detectable side chain density were truncated at $C \beta$.

6.7 Crystallization of the complex of FKBP51fk1 with 22(S)-Me

Complexes were prepared by mixing FKBP51fk1 at 2.08 mM with $\mathbf{2 2}^{(\mathbf{S})}$-Me at 4.17 mM . Crystallization was performed at $20^{\circ} \mathrm{C}$ using the hanging drop vapor-diffusion method, equilibrating mixtures of $1 \mu \mathrm{l}$ protein complex and 1μ reservoir against $500 \mu \mathrm{l}$ reservoir solution. Crystals were obtained after seeding with reservoir solutions containing 36% PEG-3350, $0.2 \mathrm{M} \mathrm{NH} 4-$ acetate and HEPES-NaOH pH 7.5.

6.8 Structure solution and refinement of the complex of FKBP51fk1 with 22(S)-Me

Diffraction data were collected by Jerome Basquin (MPI of Biochemistry, Martinsried, Germany) at beamline X10SA of the Swiss Light Source (SLS) in Villigen, Switzerland. Diffraction data were integrated with XDS ${ }^{[6]}$ and further processed with the implemented programs of the CCP4i interface (Collaborative Computational Project). ${ }^{[7]}$ The data reduction was conducted with Aimless. ${ }^{[7 \mathrm{~b}, ~ 8]}$ Crystal structures were solved by molecular replacement employing the program Molrep. ${ }^{14-15}$ Iterative model improvement and refinement were performed with Coot ${ }^{[10]}$ and Refmac5. ${ }^{[11]}$ The dictionary for the compound was generated with PRODRG implemented in CCP4i. ${ }^{[12]}$ Residues facing solvent channels without detectable side chain density were truncated at $C \beta$.

6.3 Refinement data

Table S5. Data collection and refinement statistics of the complexes with compounds $\mathbf{2 2}, \mathbf{2 2}{ }^{(\mathrm{S})-\mathrm{Me}}, \mathbf{1}$ and $1^{(\mathrm{s}) \text {-Me. }}$

Ligand	$122(22.4)$	$62(10.4)$	$47(19.8)$	$50(9.5), 50(12.5)$
Water	$118(16.7)$	$289(27.9)$	$155(30.7)$	$141(23.9), 131(21.9)$
R.m.s.d. bonds (Å)	0.015	0.026	0.021	0.014
R.m.s.d. angles $\left({ }^{\circ}\right)$	1.888	2.335	2.200	1.950

7 DFT calculations

All quantum chemical calculations were run with the ORCA suite of programs, version 4.1 .2 or higher ${ }^{23}$. All structures were taken from crystallographic data published herein. Geometries were optimized with the density functional BP86 under the resolution of the identity approximation using Ahlrich's def2-TZVP basis set with a def2/J auxiliary basis ${ }^{24-28}$. Environmental effects were considered using the CPCM model with water as the solvent modeled ${ }^{29}$. Dispersion corrections were introduced with Grimme's D3zero scheme ${ }^{30}$. The integration grid was increased to 6 in ORCA nomenclature and no final grid was set. The SCF convergence criteria were set to tight in ORCA nomenclature.

For the potential energy surface scan used to estimate rotational degrees of freedom, the CNCC and NCCN dihedral angles (see Fig. 6) were kept fixed at values between -180° and $+180^{\circ}$ in increments of 20°, while relaxing the positions of all other atoms. This results in a grid of 18×18 calculations that covers the complete rotation about the central NC and CC bonds, respectively. For energetic minima identified under these constraints, full geometry relaxations were performed. The resulting geometric parameters and energies are shown in Tab. S6.

For all fully relaxed geometries, thermodynamic corrections at the same level of theory as the geometry optimization were calculated, except omitting the solvent model. To gauge the influence of the density functional, additional single point energies with the B2PLYP density functional were performed ${ }^{31}$. For these B2PLYP calculations, the RIJONX approximation with an automatically selected auxiliary basis was used, keeping all other settings identical to those above. No significant differences are seen (Tab. S6).

In order to estimate the stabilization energies upon introduction of the ligand into the binding pocket, computational models of the binding pocket with the most relevant amino acids and some crystallographically resolved water molecules were constructed. The resulting models contained at least 299 atoms. Only the positions of the hydrogen atoms of the binding pocket were optimized. The amino acids included are: Tyr57, Phe67, Asp68, Arg73, Phe77, Val86, Ile87, Trp90, Tyr113, Ser118, Lys121, lle122, Leu128, (Phe130), strongly bound $\mathrm{H}_{2} \mathrm{O}$; Cartesian coordinates are supplied below.

The stabilization energies $\Delta E_{\text {stab }}{ }^{\text {all }}$ shown in Tab. S7 were calculated as the energy difference between a model in which the ligand is bound in the pocket and models for the individual components, i.e. the empty binding pocket and the free ligand. Similarly, to evaluate individual interactions between amino acids that form the pocket and the ligand, smaller models that contain only individual amino acids or
chains of amino acids that are covalently bound were constructed. Analogously to the total stabilization energy described above, individual stabilization energies were computed as energy differences between the complete model (ligand with amino acid(s)) and individual components (separate ligand and amino $\operatorname{acid}(\mathrm{s}))$. No geometry relaxation effects were considered for these energies. The differences between the methylated and unmethylated ligand are approximately the same in both cases, see $\Delta \Delta E$-values in

Tab. S7.

Table S6. Final single point energies (Eh) calculated with the BP and B2PLYP density functionals, relative final single point energies within each set of ligand conformations ($\mathrm{kcal} / \mathrm{mol}$) and thermodynamic data ($\mathrm{kcal} / \mathrm{mol}$) calculated with the BP density functional for the ligands in different conformations as denoted by the CNCC and NCCN dihedral angles. XRD corresponds to the conformation found in the crystal structure.

Ligand	$\theta(\mathrm{CNCC})$	$\delta(\mathrm{NCCN})$	FSPE(BP) [Eh]	\triangle FSPE(BP) [kcal/mol]	$\begin{gathered} \text { FSPE(B2PLYP) } \\ \text { [Eh] } \end{gathered}$	$\triangle \mathrm{FSPE}(\mathrm{B} 2 \mathrm{PLYP})$ [kcal/mol]	$\Delta \mathrm{H}$ [kcal/mol]	ΔS [kcal/mol]	Δ G [kcal/mol]
22	106.3	142.3	-2209.1672	1.4	-2207.5972	1.2	2.3	0.7	1.6
	109.8	-55.4	-2209.1661	2.1	-2207.5964	1.7	3.5	0.8	2.7
	-112.4	64.8	-2209.1681	0.9	-2207.5982	0.6	3.1	0.0	3.1
	-108.3	-115.2	-2209.1695	0.0	-2207.5992	0.0	0.0	0.0	0.0
22 ${ }_{\text {XRD }}$	-119.5	39.0	-2209.1666	1.8	-2207.5971	1.3	2.5	-1.0	3.5
$22^{(S)-M e}$	54.7	48.9	-2248.4936	4.5	-2246.8832	4.2	4.6	0.1	4.5
	56.2	-140.1	-2248.4939	4.3	-2246.8832	4.2	6.5	0.1	6.4
	-121.4	66.0	-2248.4994	0.9	-2246.8887	0.7	3.1	-0.2	3.2
	-121.2	-111.1	-2248.5008	0.0	-2246.8898	0.0	0.0	0.0	0.0
$22^{(S)-M e}{ }^{\text {PRD }}$	-123.5	48.2	-2248.4985	1.5	-2246.8879	1.2	3.2	0.1	3.1
$22^{(\mathrm{R})-\mathrm{Me}}$	119.3	118.9	-2248.4970	0.0	-2246.8858	0.0	0.0	0.0	0.0
	-97.7	65.0	-2248.4891	4.9	-2246.8791	4.2	7.3	0.9	6.4
	-83.6	-97.7	-2248.4925	2.8	-2246.8813	2.9	2.3	0.5	1.8
	-55.5	142.2	-2248.4940	1.8	-2246.8839	1.2	3.5	1.0	2.5

Table S7. Stabilization energies ($\mathrm{kcal} / \mathrm{mol}$) calculated for the complete binding pocket ($\Delta E_{\text {stab }}{ }^{\text {all }}$) or individual amino acids ($\Delta E_{\text {stab }}{ }^{A A}$), and differences between the stabilisation energies between the (S)methylated ligand and the unmethylated ligand denotes as $\Delta \Delta E$.

	$\boldsymbol{\Delta E}\left(\mathbf{2 2}^{(H)}\right)$	$\begin{gathered} \Delta \mathrm{E}\left(\mathbf{2 2 ^ { (\mathbf { S }) }}\right. \\ -\mathrm{Me}) \end{gathered}$	$\begin{aligned} & \Delta \Delta \mathrm{E}\left(22^{(\mathrm{S})-}\right. \\ & \left.\mathrm{Me}-22^{(\mathrm{H})}\right) \\ & \hline \end{aligned}$	$\Delta \mathrm{E}\left(\mathbf{1}^{(\mathrm{H})}\right)$	$\begin{gathered} \Delta \mathrm{E}\left(\mathbf{1}^{(\mathrm{S})-}\right. \\ \mathrm{Me}) \end{gathered}$	$\Delta \Delta E\left(1^{(S)-M e}-\right.$ 1)
$\Delta E_{\text {stab }}{ }^{\text {all }}$	-42.6	-49.0	-6.4	-29.5	-37.7	-8.2
$\Delta E_{\text {stab }}{ }^{\text {Val86/lle }}$ 87	-6.8	-7.6	-0.8	-5.8	-7.0	-1.2
$\Delta E_{\text {stab }}{ }^{\text {Tyr1 } 13}$	-11.4	-11.7	-0.3	-9.5	-9.9	-0.4
$\Delta E_{\text {stab }}{ }^{\text {Ser1 } 18}$	-3.7 ${ }^{\text {[a] }}$	-3.9 [a]	$-0.2{ }^{\text {[a] }}$	+0.2	-1.0	-1.2
$\begin{aligned} & \Delta E_{\text {stab }}^{\text {Phe67/Asp68 }} \\ & \text { /Tyr57/Arg73 } \end{aligned}$	-9.9	-13.2	-3.3	-4.6	-8.9	-4.3
$\begin{aligned} & \Delta E_{\text {stab }} \text { W...Lys121/II } \\ & \text { e122 } \end{aligned}$	-0.3	-3.2	-2.9	-1.5	-3.8	-2.3
$\Delta E_{\text {stab }}{ }^{\text {Trp90 }}$	-5.3	-5.4	-0.1	-4.3	-5.1	-0.8
$\Delta \mathrm{E}_{\text {stab }} \mathrm{Phe}^{\text {Pr }}$	-5.0	-5.5	-0.5	-3.6	-3.6	0

${ }^{[a]}$ model incl. W86.

Figure S17. Structures/Models of the binding pocket of FKBP51 (grey surface) in complex with 22 (green sticks) highlighting the interactions (yellow dotted lines) to the amino acids (yellow sticks) calculated in Table S7.

8 Cellular assays

8.1 Competitve NanoBRET assay

The fluorescent ligands 2 b or 2 c [from M. Gnatzy and T. Geiger et.al ${ }^{32}$] were dissolved in Opti-MEM at eightfold concentration required for the final sample. For the target engagement matrix different final tracer concentrations were chosen. HEK293T cells expressing the FKBP-NanoLuc fusion protein (FKBP12-NLuc or FKBP51-NLuc) were detached from the culture dish and resuspended in Opti-MEM I Reduced Serum Media. The cell number was adjusted to 1.81×106 cells $/ \mathrm{mL}$ using the stable FKBPNanoLuc cell line. A cell-tracer mixture was prepared mixing one part of the tracer stock solution with three parts of the cell suspension (e.g., $500 \mu \mathrm{~L}$ tracer stock solution $+1500 \mu \mathrm{~L}$ cell suspension). Test ligands were dissolved in DMSO at thousand-fold the concentration required for the final sample. This ligand stock was used to prepare a 1:2 serial dilution in DMSO. Each dilution was then diluted with OptiMEM I Reduced Serum Media to generate a ligand dilution series with double the concentration required for the final sample. To a white non-binding 384-well assay plate (No.: 3574; Corning Life Sciences B.V., Schiphol-Rijk, Netherlands) $20 \mu \mathrm{~L}$ of cell-tracer mixture and $20 \mu \mathrm{~L}$ of test compound solution were added and the plate was incubated at $37^{\circ} \mathrm{C}$ for two hours. Afterwards the plate was equilibrated at room temperature for 15 minutes. For BRET detection the Intracellular TE NanoGlo® (No.:N2160; Promega) was used diluting the NanoBRETTM NanoGlo® Substrate 1: 664 and the extracellular NanoLuc® inhibitor 1:2000 in Opti-MEM I Reduced Serum Media. $20 \mu \mathrm{~L}$ of the detection solution was added per well and the plate was incubated for three minutes at room temperature. The donor emission was measured at 450 nm and the acceptor emission at 660 nm using a ClarioStar plate reader (BMG Labtech, Ortenberg, Germany) or a Tecan Spark (Cailsheim, Germany). The BRET ratio was calculated as shown in the supplementary information. IC50 values were determined by a four-parameter fitting. $\mathrm{Ki}, \mathrm{app}$ values were determined according a linear Cheng-Prusoff analysis ${ }^{33}$ using the following formula.

$$
I C_{50}=K_{i, a p p}\left(1+\frac{c(\text { tracer })}{K_{D, a p p}}\right)
$$

8.2 INA-6 BRE-luc reporter assay

INA-6 cells, a kind gift from Dr Martin Gramatzki (University of Erlangen-Nurnberg, Erlangen, Germany), were cultured in RPMI- 1640 with 2 mM L-glutamine, hereafter called RPMI (Sigma-Aldrich Norway, Oslo, Norway), supplemented with 10% fetal calf serum (FCS) and $1 \mathrm{ng} / \mathrm{mL}$ interleukin (IL)-6 (Gibco, Thermo Fisher Scientific, Waltham, MA, USA). The cells were maintained in $37{ }^{\circ} \mathrm{C}$ in a humidified atmosphere containing $5 \% \mathrm{CO}_{2}$ and tested regularly for mycoplasma.

In order to generate a bi-directional luciferase reporter plasmid that reports on SMAD1/5/8 transcriptional activity and baseline expression of renilla luciferase as internal control, the promoter sequence and firefly luciferase gene of pGL3 BRE Luciferase (Addgene plasmid \# 45126) was subcloned into pMuLE ENTR MCS L1-R5 (Addgene plasmid \# 62084) ${ }^{34}$. Using Gateway recombination cloning pMuLE ENTR BRE Luciferase L1-R5 was recombined with pMuLE ENTR CMV Renilla Luciferase L5-L2 (Addgene plasmid \#62186) and pLenti X1 Puro DEST (694-6) (Addgene plasmid \#17297) to generate a bidirectional BRE dual luciferase construct «pLenti X1 Puro BRE Luciferase rev Renilla Luciferase», in short pLentiX1-pBREFLrRL, following the protocol described by Albers et al. ${ }^{35}$ pGL3 BRE Luciferase was a gift from Martine Roussel (Memphis, United States of America) \& Peter ten Dijke (Amsterdam, The Netherlands), pLenti X1 Puro DEST (694-6) from Eric Campeau \& Paul Kaufman (Worcester, United States of America) and pMuLE ENTR CMV Renilla Luciferase L5-L2 and pMuLE ENTR MCS L1-R5 from Ian Frew (Zurich, Switzerland). Used primers are listed in S8 table.

The resulting plasmid pLentiX1-pBREFLrRL was cotransfected with 3rd generation lentiviral packaging plasmids using Genejuice (Novagen, Merck Life Science AS, Oslo, Norway) to transfect 293T packaging cells (Open Biosystems, Thermo Fisher Scientific). Supernatants containing lentivirus were used to transduce the INA-6 myeloma cell line. Positively transduced cells were selected in medium containing puromycin ($0,5 \mu \mathrm{~g} / \mathrm{mL}$) and single-cell cloned. One clone was selected for use in reporter assays which were performed as follows: Cells were washed once in Hanks' balanced salt solution and resuspended
in RPMI with $0,1 \%$ bovine serum albumin (BSA) and IL-6 ($1 \mathrm{ng} / \mathrm{mL}$). 50000 cells were seeded per well in 96 -well optical plates and treated as indicated. Recombinant human BMP-6 was from R\&D Systems (Cat. \# 507-BP-020, Bio-Techne, Abingdon, UK) and FK506 was from Selleckchem (Munich, Germany). After 18 hours Britelite ${ }^{T M}$ plus luciferase detection reagent (PerkinElmer Inc., Waltham, MA, USA) was added according to the manufacturer's protocol and luminescence was determined using Victor 1420 multilabel counter (PerkinEImer Inc.).

Table S8

pMuLE ENTR BRE Luciferase L1-R5 cloning	
BRE Luc BamHI for	GCAGCAGGATCCTGCAATTGTTGTTGTTAACTTGTTTATTG
BRE Luc Poly A EcoRI rev	TGCTGCGAATTCGGTACGGGAGGTACTTGGAGCG

Fig. S18. Intracellular FKBP51-NLuc engagement of compounds 18, 18 $\mathbf{1 8}^{(\mathrm{S})-\mathrm{Me}}, 19$ and $19^{(\mathrm{S})-\mathrm{Me}}$ determined by competitive NanoBRET assay. HEK293T cells stably expressing a full length FKBP51-NLuc constructs were treated with increasing concentrations of $18,18^{(\mathrm{S})-\mathrm{Me}}, 19$, or $19^{(\mathrm{S})-\mathrm{Me}}$ in the presence of varying concentrations of NanoBRET tracer as shown in the upper panels. Each curve was fitted to determine an IC50, which was plotted in the lower panels in dependence of the tracer concentration to determine the Ki,app by Cheng-Prusoff analysis.

9 Compound Synthesis

9.1 General Methods

All purchased chemicals were used without further purification. Reaction monitoring was performed on Merck silica gel sheets with fluorescence indicator UV254 using cyclohexane/ethyl acetate or dichloromethane/methanol as solvent systems. Column chromatography was performed with MacheryNagel silica $60 \mathrm{M}(0.04-0.063 \mathrm{~mm})$. Spots were visualized by irradiation with ultraviolet light and/or typical staining reagents (Hanessian and ninhydrin stain). All compounds were subjected to freeze drying by dissolving in acetonitrile/water mixtures (2:1), cooling to $-78^{\circ} \mathrm{C}$ and placing in a Heto FD 1.0 under reduced pressure. Purities were greater than 95% for all final compounds and were determined by high performance liquid chromatography utilizing a Dionex P580 pump, Dionex ASI-100 automated sample injector and Dionex UCD 340U Photodiode Array Detector. The column was a Phemomenex Kinetex $5 \mu \mathrm{~m}$ C18 100 A , $250 \times 4.6 \mathrm{~mm}$. Eluents were 0.1% TFA (Eluent A) in water and 0.1% TFA in acetonitrile (Eluent B). The measurement time was 20 minutes with a gradient from $0-100 \%$ Eluent B and a flowrate of 1.5 ml min- $1 .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at the Technical University Darmstadt on a Bruker Avance 500 (500.13 MHz for ${ }^{1} \mathrm{H}, 125.76 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$) or at the Department of Chemistry and Pharmacy at LMU Munich on a Bruker AC300, Bruker XL400 oder Bruker AMX600 using CDCl_{3} as a solvent. Chemical shifts are given in ppm relative to the residual solvent peak. Highresolution mass spectrometry analysis was performed for all new compounds using a quadrupole time-of-flight spectrometer from Bruker Daltonics. For previously synthesized intermediates mass spectrometry analysis was conducted on an LC-MS system with a Beckman Coulter System Gold 126 solvent module, Beckman Coulter System Gold 508 autosampler and Beckman Coulter System Gold 166 detector; a YMC-Pack Pro C18 $3 \mu \mathrm{~m} 120 \AA$ A , $100 \times 4.6 \mathrm{~mm}$ column and a Thermo Finnigan LCQ Deca XP Plus.

9.2 Synthesis

$\mathbf{1}^{\text {(S)-Me. }}$: (2S)-2-((1S,5R,6R)-10-((3,5-dichlorophenyl)sulfonyl)-2-oxo-5-vinyl-3,10-diazabicyclo[4.3.1]decan-3-yl)propanoic acid

$11^{(\mathrm{s})-\mathrm{Me}}$ ($103 \mathrm{mg}, 0.23 \mathrm{mmol}, 1 \mathrm{eq}$.) was dissolved in acetone (10 ml) and cooled to $0^{\circ} \mathrm{C}$ with an ice bath. Jones' reagent ($230 \mu \mathrm{l}, 0.46 \mathrm{mmol}, 2$ eq., 2 M in aq. $\mathrm{H}_{2} \mathrm{SO}_{4}$) was added and the mixture was stirred for 2 h at rt . The mixture was quenched with i-PrOH (10 ml) and stirred for 30 min . The mixture was diluted with DCM (50 ml) and washed with brine (30 ml). The organic phase was dried over MgSO_{4} and solvents were evaporated under reduced pressure. Column chromatography (10 g silica; $\mathrm{cycH} / \mathrm{EA}=1: 1+1 \%$ $\mathrm{HCOOC})$ afforded the title compound as white solids.

Yield: 90% ($95 \mathrm{mg}, 0.21 \mathrm{mmol})$

Appearance: white solids

TLC: $R_{f}=0.11(E A)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.24-1.32(\mathrm{~m}, 3 \mathrm{H}), 1.46(\mathrm{dd}, J=8.6,7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.53-1.59(\mathrm{~m}, 2 \mathrm{H})$, $1.60-1.71(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{ddd}, J=19.9,14.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{q}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.80(\mathrm{dd}, J=14.0,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-4.03(\mathrm{~m}, 1 \mathrm{H}), 4.95(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-5.18(\mathrm{~m}, 2 \mathrm{H}), 5.44$ $(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.78$ (dddd, $J=17.0,10.1,8.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=$ $1.8,0.8 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13}$ C-NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.5,15.6,26.6,27.9,49.7,50.1,54.7,55.1,56.9,57.5,117.2$, 125.1, 132.9, 136.5, 137.1, 144.0, 170.5, 175.3.

Mass (ESI/MicrOTOF) m/z: [M + H]+ Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S} 461.0605$; Found 461.0718

1 $^{\text {(R)-Me. }}$: 2 R)-2-((1S,5R,6R)-10-((3,5-dichlorophenyl)sulfonyl)-2-oxo-5-vinyl-3,10-
diazabicyclo[4.3.1]decan-3-yl)propanoic acid

$11^{(\mathrm{R})-\mathrm{Me}}$ ($51 \mathrm{mg}, 0.11 \mathrm{mmol}, 1 \mathrm{eq}$.) was dissolved in acetone (10 ml) and cooled to $0^{\circ} \mathrm{C}$ with an ice bath. Jones' reagent ($115 \mu \mathrm{l}, 0.23 \mathrm{mmol}, 2$ eq., 2 M in aq. $\mathrm{H}_{2} \mathrm{SO}_{4}$) was added and the mixture was stirred for 2 h at rt . The mixture was quenched with $\mathrm{i}-\mathrm{PrOH}(10 \mathrm{ml})$ and stirred for 30 min . The mixture was diluted with DCM (50 ml) and washed with brine (30 ml). The organic phase was dried over MgSO_{4} and solvents were evaporated under reduced pressure. Column chromatography (10 g silica; cycH/EA = 1:1 + 1\% HCOOC) afforded the title compound as white solids.

Yield: 65\% (32 mg, 0.07 mmol$)$

Appearance: white solids

TLC: $\mathrm{R}_{\mathrm{f}}=0.11$ (EA)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.25(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.29-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.65$ (dtd, $J=18.1,9.1,8.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.94-3.01(\mathrm{~m}, 1 \mathrm{H}), 3.80$ (dd, $J=14.0,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{tt}, J=8.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-5.17(\mathrm{~m}, 2 \mathrm{H})$, $5.43(\mathrm{q}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.74-5.83(\mathrm{~m}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=1.9,0.8 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR (150 MHz, CDCl_{3}): $\delta=14.9,15.6,26.2,27.6,48.2,48.4,54.7,55.0,57.0,117.4,125.0,132.9$, 136.5, 137.3, 144.1, 171.4, 175.7.

Mass (ESI/MicrOTOF) m/z: [M + H]+ Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ 461.0605; Found 461.0701
(S)-4: (S)-N-(1-(benzyloxy)propan-2-yl)-2-nitrobenzenesulfonamide

L-Alaninol (S)-3 ($2.00 \mathrm{~g}, 26.6 \mathrm{mmol}, 1 \mathrm{eq}$.) was dissolved in THF (0.9 molar) and treated with NaH (1.07 $\mathrm{g}, 26.6 \mathrm{mmol}, 1.0$ eq., 60% dispersion in mineral oil) and heated to reflux $\left(66^{\circ} \mathrm{C}\right)$ for 30 min . Benzyl chloride ($3.47 \mathrm{~g}, 27.4 \mathrm{mmol}, 1.03 \mathrm{eq}$.) was added and the mixture was refluxed for additional 2 h . After allowing the mixture to cool to rt, water was added (0.05 molar) and solvents were removed under reduced pressure. $\mathrm{NaOH}(1 \mathrm{M})$ was added and the mixture was extracted with DCM (3 x). The combined organic phases were dried over MgSO_{4} and solvents were removed under reduced pressure. The residue was dissolved in DCM (0.1 molar) and $\mathrm{Ns}-\mathrm{Cl}(5.9 \mathrm{~g}, 26.6 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and DIPEA ($3.4 \mathrm{~g}, 26.6$ mmol, 1.0 eq.) were added. The mixture was stirred for 2 h at rt , treated with NaOH and extracted with DCM (3 x). The combined organic phases were dried over MgSO_{4} and solvents were removed under reduced pressure. Column chromatography (300 g silica; $\mathrm{cycH} / \mathrm{EA}=7: 3$) afforded the product as yellow oil, which solidified upon standing.

Yield: 64 \% (5.9 g, 16.8 mmol, over 2 steps)

Appearance: yellow solid

TLC: $\mathrm{R}_{\mathrm{f}}=0.21(\mathrm{cycH} / \mathrm{EA} \mathrm{3:1)}$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.13(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}), 3.20-3.33(\mathrm{~m}, 2 \mathrm{H}), 3.55-3.70(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{~s}$, $1 \mathrm{H}), 5.60(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 7.03-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}$ $=7.2 / 2.1 \mathrm{~Hz}), 8.03(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=7.2 / 2.0 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}-$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=18.8,50.8,73.2,73.2,125.4,127.7,127.8,128.5,130.7,132.8,133.3$, 134.9, 137.6, 147.7.

Mass (ESI): $[\mathrm{M}+\mathrm{H}]^{+}=351.10$
(R)-4: (R)-N-(1-(benzyloxy)propan-2-yl)-2-nitrobenzenesulfonamide

D-Alaninol (R)-3 ($2.00 \mathrm{~g}, 26.6 \mathrm{mmol}, 1$ eq.) was dissolved in THF (0.9 molar) and treated with NaH (1.07 $\mathrm{g}, 26.6 \mathrm{mmol}, 1.0$ eq., 60% dispersion in mineral oil) and heated to reflux ($66^{\circ} \mathrm{C}$) for 30 min . Benzyl chloride ($3.47 \mathrm{~g}, 27.4 \mathrm{mmol}, 1.03 \mathrm{eq}$.) was added and the mixture was refluxed for additional 2 h . After allowing the mixture to cool to rt , water was added (0.05 molar) and solvents were removed under reduced pressure. $\mathrm{NaOH}(1 \mathrm{M})$ was added and the mixture was extracted with DCM (3 x). The combined organic phases were dried over MgSO_{4} and solvents were removed under reduced pressure. The residue was dissolved in DCM (0.1 molar) and $\mathrm{Ns}-\mathrm{Cl}(5.9 \mathrm{~g}, 26.6 \mathrm{mmol}, 1.0$ eq.) and DIPEA ($3.4 \mathrm{~g}, 26.6$ $\mathrm{mmol}, 1.0$ eq.) were added. The mixture was stirred for 2 h at rt , treated with NaOH and extracted with DCM (3 x). The combined organic phases were dried over MgSO_{4} and solvents were removed under reduced pressure. Column chromatography (300 g silica; $\mathrm{cycH} / \mathrm{EA}=7: 3$) afforded the product as yellow oil, which solidified upon standing.

Yield: 65% ($6.1 \mathrm{~g}, 17.4 \mathrm{mmol}$, over 2 steps)

Appearance: yellow oil

TLC: $\mathrm{R}_{\mathrm{f}}=0.44(\mathrm{cycH} / \mathrm{EA} 7: 3)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=1.22(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.30-3.38(\mathrm{~m}, 2 \mathrm{H}), 3.63-3.76(\mathrm{~m}, 1 \mathrm{H}), 4.28$ $-4.37(\mathrm{~m}, 2 \mathrm{H}), 5.67(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.59-7.69(\mathrm{~m}, 2 \mathrm{H})$, 7.76 (dd, J = 7.8, 1.4 Hz, 1H), 8.12 (dd, J=7.7, 1.6 Hz, 1H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=18.9,50.8,73.2,73.3,125.5,127.7,128.5,130.7,132.8,133.2,135.0$, 137.5, 147.8.

Mass (ESI): $[\mathrm{M}+\mathrm{H}]^{+}=350.95$
(S)-5: (S)-N-(1-(benzyloxy)propan-2-yl)-2-nitro-N-(4-(trimethylsilyl)but-2-en-1-yl)benzenesulfonamide

(S)-5
(S)-4 (48.76 g, $139.2 \mathrm{mmol}, 1.0$ eq.) was dissolved in DMF (400 ml). $\mathrm{K}_{2} \mathrm{CO}_{3}(38.74 \mathrm{~g}, 280.3 \mathrm{mmol}, 2.0$ eq.) and allyl bromide ($16 \mathrm{ml}, 184.9 \mathrm{mmol}, 1.3$ eq.) were added and the mixture was stirred at $60^{\circ} \mathrm{C}$ under argon atmosphere for 4.5 h . After cooling to room temperature, $\mathrm{Et}_{2} \mathrm{O}$ was added and it was washed with brine. The organic phase was dried over MgSO_{4}, filtered and the solvent was evaporated. The crude product was purified by column chromatography (Cy/EA 5:1) and a part ($8.0 \mathrm{~g}, 20.5 \mathrm{mmol}, 1$ eq.), p-benzoquinone ($0.33 \mathrm{~g}, 3.07 \mathrm{nmol}, 0.15 \mathrm{eq}$.), Grubbs Catalyst 2nd gen. ($0.96 \mathrm{~g}, 1.54 \mathrm{mmol}, 0.08$ eq.) and allyltrimethylsilane ($23.4 \mathrm{~g}, 205 \mathrm{mmol}, 10 \mathrm{eq}$.) were dissolved in DCM under argon atmosphere and refluxed for 6 h . Tris(hydroxymethyl)phosphine (1 M aqueous solution, 0.04 molar of catalyst) was added and refluxed overnight. The reaction mixture was washed with brine, dried over MgSO_{4}, filtered and the solvent was evaporated. The crude product was purified by column chromatography (300 g silica, Cy/EA 4:1) to afford the desired product as yellow oil.

Yield: 44% ($4.3 \mathrm{~g}, 9.02 \mathrm{mmol}$, based on 8.0 g intermediate)

Appearance: yellow oil

TLC: $\mathrm{R}_{\mathrm{f}}=0.41(\mathrm{cycH} / \mathrm{EA} \mathrm{3:1)}$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.02-0.04(\mathrm{~m}, 9 \mathrm{H}), 1.26(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}), 1.40(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz})$, $1.48(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.8 \mathrm{~Hz}), 3.40-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.80-4.09(\mathrm{~m}, 2 \mathrm{H}), 4.19-4.36(\mathrm{~m}, 1 \mathrm{H})$, 4.37-4.51 (m, 2H), 5.23-5.37 (m, 1H), 5.39-5.63(m, 1H), 7.22-7.29 (m, 2H), 7.30-7.39 (m, 3H), 7.41$7.52(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.62(\mathrm{~m}, 2 \mathrm{H}), 8.05-8.14(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-1.6,17.1,22.8,46.8,53.7,72.1,73.2,124.0,125.5,127.9,128.5$, 131.1, 131.2, 131.4, 132.9, 137.9, 148.2.

Mass (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}=499.27$
(R)-5: (R)-N-(1-(benzyloxy)propan-2-yl)-2-nitro-N-(4-(trimethylsilyl)but-2-en-1-yl)benzenesulfonamide

(R)-5
(R)-4 ($6.1 \mathrm{~g}, 17.4 \mathrm{mmol}, 1.0$ eq.) was dissolved in DMF (100 ml). $\mathrm{K}_{2} \mathrm{CO}_{3}(4.8 \mathrm{~g}, 34.8 \mathrm{mmol}, 2.0 \mathrm{eq}$.$) and$ allyl bromide ($2.7 \mathrm{~g}, 22.6 \mathrm{mmol}, 1.3$ eq.) were added and the mixture was stirred at $60^{\circ} \mathrm{C}$ under argon atmosphere for 4.5 h . After cooling to room temperature, $\mathrm{Et}_{2} \mathrm{O}$ was added and it was washed with brine. The organic phase was dried over MgSO_{4}, filtered and the solvent was evaporated. The crude product was purified by column chromatography (Cy/EA $5: 1$) and a part ($4.0 \mathrm{~g}, 10.3 \mathrm{mmol}, 1 \mathrm{eq}$), pbenzoquinone ($0.17 \mathrm{~g}, 1.54 \mathrm{nmol}, 0.15 \mathrm{eq}$.), Grubbs Catalyst 2 nd gen. ($0.48 \mathrm{~g}, 0.72 \mathrm{mmol}, 0.08 \mathrm{eq}$.) and allyltrimethylsilane ($11.7 \mathrm{~g}, 103 \mathrm{mmol}, 10 \mathrm{eq}$.) were dissolved in DCM under argon atmosphere and refluxed for 6 h . Tris(hydroxymethyl)phosphine (1 M aqueous solution, 0.04 molar of catalyst) was added and refluxed overnight. The reaction mixture was washed with brine, dried over MgSO_{4}, filtered and the solvent was evaporated. The crude product was purified by column chromatography (100 g silica, Cy/EA $4: 1$) to afford the desired product as yellow oil.

Yield: 63% ($3.05 \mathrm{~g}, 6.4 \mathrm{mmol}$, based on 4.0 g intermediate)

Appearance: yellow oil

TLC: $\mathrm{R}_{\mathrm{f}}=0.38(\mathrm{cycH} / \mathrm{EA} 4: 1)$

Mass (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}=499.10$
(S)-6: (S)-tert-butyl 2-(((S)-1-(benzyloxy)propan-2-yl)(4-(trimethylsilyl)but-2-en-1-yl)carbamoyl)-6-oxopiperidine-1-carboxylate

(S)-5 (4.3 g, $9.0 \mathrm{mmol}, 1.0$ eq.) and $\mathrm{K}_{2} \mathrm{CO}_{3}(3.7 \mathrm{~g}, 27.1 \mathrm{mmol}, 3.0 \mathrm{eq}$.) were dissolved in DMF (0.1 molar) under argon atmosphere. Thiophenol ($1.2 \mathrm{~g}, 10.8 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was added and the reaction mixture was stirred at room temperature over night. $\mathrm{Et}_{2} \mathrm{O}$ was added and washed with 1 M NaOH , the organic phase was dried over MgSO_{4}, filtered and the solvent was evaporated. The crude product was purified by column chromatography (EA + 3% TEA) dissolved in DMF (0.1 molar) under argon atmosphere and cooled to $0^{\circ} \mathrm{C}$. (S)-6-Oxo-2-piperidinecarbocylic acid ($1.3 \mathrm{~g}, 9.1 \mathrm{mmol}, 1.2 \mathrm{eq}$), HATU ($3.4 \mathrm{~g}, 9.1 \mathrm{mmol}$, 1.2 eq.) and DIPEA ($2.3 \mathrm{~g}, 18.1 \mathrm{mmol}, 2.4$ eq.) were added. The reaction mixture was slowly heated to rt and stirred over night. $\mathrm{Et}_{2} \mathrm{O}$ was added and washed with brine, the aqueous phase was extracted three times with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic phases were dried over MgSO_{4}, filtered and the solvent was evaporated. The crude intermediate was dissolved in DCM (50 ml) under argon atmosphere, DIPEA ($1.7 \mathrm{~g}, 13.4 \mathrm{mmol}, 2.0$ eq.) and $\mathrm{Boc}_{2} \mathrm{O}(5.9 \mathrm{~g}, 27.0 \mathrm{mmol}, 4.0$ eq.) were added. DMAP was added in small portions until a continuous gas formation was visible. The reaction mixture was stirred at room temperature over night. It was washed with brine and the aqueous phase was extracted three times with DCM. The combined organic phases were dried over MgSO_{4}, filtered and the solvent was evaporated. The crude product was purified by column chromatography (Cy/EA 5:1 + 3% TEA).

Yield: 43% ($4.3 \mathrm{~g}, 9.02$ mmol, over 3 steps)

Appearance: yellow oil

TLC: $\mathrm{R}_{\mathrm{f}}=0.51(\mathrm{cycH} / \mathrm{EA} 1: 1)$
${ }^{1} \mathrm{H}-$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-0.06-0.06(\mathrm{~m}, 9 \mathrm{H}), 1.19(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}), 1.23-1.28(\mathrm{~m}, 2 \mathrm{H}), 1.47-$ $1.51(\mathrm{~m}, 9 \mathrm{H}), 1.58-1.98(\mathrm{~m}, 4 \mathrm{H}), 2.33-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.64(\mathrm{~m}, 1 \mathrm{H}), 3.36-3.77(\mathrm{~m}, 3 \mathrm{H}), 3.78-4.19$ $(\mathrm{m}, 2 \mathrm{H}), 4.45-4.57(\mathrm{~m}, 2 \mathrm{H}), 4.77-5.07(\mathrm{~m}, 1 \mathrm{H}), 5.22-5.46(\mathrm{~m}, 1 \mathrm{H}), 5.46-5.71(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.39(\mathrm{~m}$, 5H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-1.7,15.2,18.3,22.9,26.1,28.1,34.6,47.4,51.2,56.4,72.0,73.0$, 83.0, 125.0, 127.6, 127.7, 127.8, 128.4, 128.5, 130.4, 138.4, 153.6, 171.7, 171.8.

Mass (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}=539.29$
(R)-6: (R)-tert-butyl 2-(((S)-1-(benzyloxy)propan-2-yl)(4-(trimethylsilyl)but-2-en-1-yl)carbamoyl)-6-oxopiperidine-1-carboxylate

(R)-5 ($6.1 \mathrm{~g}, 12.8 \mathrm{mmol}, 1.0$ eq.) and $\mathrm{K}_{2} \mathrm{CO}_{3}(5.3 \mathrm{~g}, 38.6 \mathrm{mmol}, 3.0$ eq.) were dissolved in DMF (0.1 molar) under argon atmosphere. Thiophenol ($1.7 \mathrm{~g}, 15.4 \mathrm{mmol}, 1.2$ eq.) was added and the reaction mixture was stirred at room temperature over night. $\mathrm{Et}_{2} \mathrm{O}$ was added and washed with 1 M NaOH , the organic phase was dried over MgSO_{4}, filtered and the solvent was evaporated. The crude product was purified by column chromatography (EA + 3% TEA) and a part ($3.4 \mathrm{~g}, 11.7 \mathrm{mmol}, 1.0 \mathrm{eq}$.) dissolved in DMF (0.1 molar) under argon atmosphere and cooled to $0^{\circ} \mathrm{C}$. (S)-6-Oxo-2-piperidinecarbocylic acid ($2.0 \mathrm{~g}, 14.0 \mathrm{mmol}, 1.2 \mathrm{eq}$), HATU ($5.3 \mathrm{~g}, 14.0 \mathrm{mmol}, 1.2 \mathrm{eq}$.) and DIPEA ($3.6 \mathrm{~g}, 28.0 \mathrm{mmol}, 2.4 \mathrm{eq}$.) were added. The reaction mixture was slowly heated to rt and stirred over night. $\mathrm{Et}_{2} \mathrm{O}$ was added and washed with brine, the aqueous phase was extracted three times with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic phases were dried over MgSO_{4}, filtered and the solvent was evaporated. The crude intermediate was dissolved in DCM (50 ml) under argon atmosphere, DIPEA ($2.9 \mathrm{~g}, 22.6 \mathrm{mmol}, 2.0 \mathrm{eq}$.) and $\mathrm{Boc}_{2} \mathrm{O}$ (1.4 $\mathrm{g}, 11.3 \mathrm{mmol}, 1.0$ eq.) were added. DMAP was added in small portions until a continuous gas formation was visible. The reaction mixture was stirred at room temperature over night. It was washed with brine and the aqueous phase was extracted three times with DCM. The combined organic phases were dried over MgSO_{4}, filtered and the solvent was evaporated. The crude product was purified by column chromatography (300 g silica, cycH/EA 7:3).

Yield: 59% ($4.0 \mathrm{~g}, 7.7 \mathrm{mmol}$, over 3 steps)

Appearance: yellow oil

TLC: $\mathrm{R}_{\mathrm{f}}=0.52(\mathrm{cycH} / \mathrm{EA} \mathrm{3:2)}$

Mass (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}=539.08$

(S)-6 (11.48 g, $22.22 \mathrm{mmol}, 1.0$ eq.) was dissolved in THF (200 ml) under argon atmosphere. The solution was cooled to $-98^{\circ} \mathrm{C}$ and DIBAL-H ($22 \mathrm{ml}, 22.0 \mathrm{mmol}, 1.0 \mathrm{eq} ., 1 \mathrm{M}$ in DCM) was added dropwise. Glauber's salt was added excessively and the solution was allowed to warm to room temperature, then additional Glauber's salt was added. The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, filtered over celite and the solvent was evaporated. The crude intermediate was dissolved in DCM (500 ml) and cooled to $-84^{\circ} \mathrm{C}$. Then HF ($60 \mathrm{~mL}, 2.31 \mathrm{~mol}, 104$ eq., 70% in pyridine) was added and the reaction mixture was warmed to $0^{\circ} \mathrm{C}$. It was stirred at $0{ }^{\circ} \mathrm{C}$ for 4 h , then 500 ml sat. CaCO_{3} solution and 800 ml 10 M NaOH was added carefully. The slurry was filtered over celite and extracted with DCM, dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by column chromatography $(\mathrm{cycH} / \mathrm{EA} 1: 1+$ 3% TEA \rightarrow EA + $5 \% \mathrm{MeOH}+3 \%$ TEA) to afford the desired compound as yellow oil.

Yield: 76\% (5.51 g, over 2 steps)

Appearance: yellow oil

TLC: $\mathrm{R}_{\mathrm{f}}=0.33(\mathrm{EA}+5 \% \mathrm{MeOH}+3 \%$ TEA $)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.12(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}), 2.25-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=8.9 \mathrm{~Hz})$, $2.78-2.83(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=14.1 \mathrm{~Hz}), 3.42(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=10.5 / 5.1 \mathrm{~Hz}), 3.50(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=10.5 / 8.1$ $\mathrm{Hz}), 3.68(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=14.2 / 10.7 \mathrm{~Hz}), 3.76-3.80(\mathrm{~m}, 1 \mathrm{H}), 4.45(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.0 \mathrm{~Hz}), 4.55(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.1$ $\mathrm{Hz}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 5.01(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}), 5.07-5.15(\mathrm{~m}, 1 \mathrm{H}), 5.62-5.71(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.37(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR (125 MHz, CDCl_{3}): $\delta=14.5,17.0,28.1,29.7,44.4,49.6,50.5,53.1,58.2,71.7,72.8,115.0$, 127.8, 127.8, 128.5, 138.4, 139.4, 174.9.

Mass (ESI): $[\mathrm{M}+\mathrm{H}]^{+}=329.30$

(R)-6 ($4.0 \mathrm{~g}, 7.5 \mathrm{mmol}, 1.0$ eq.) was dissolved in THF (100 ml) under argon atmosphere. The solution was cooled to $-98^{\circ} \mathrm{C}$ and DIBAL-H ($9.1 \mathrm{ml}, 9.1 \mathrm{mmol}, 1.0$ eq., 1 M in toluene) was added dropwise. Glauber's salt was added excessively and the solution was allowed to warm to room temperature, then additional Glauber's salt was added. The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, filtered over celite and the solvent was evaporated. The crude intermediate was dissolved in DCM (400 ml) and cooled to $-84^{\circ} \mathrm{C}$. Then HF ($20 \mathrm{ml}, 0.77 \mathrm{~mol}, 104$ eq., 70% in pyridine) was added and the reaction mixture was warmed to $0^{\circ} \mathrm{C}$. It was stirred at $0^{\circ} \mathrm{C}$ for 4 h , then 300 ml sat. CaCO_{3} solution and 500 ml 10 M NaOH was added carefully. The slurry was filtered over celite and extracted with DCM, dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by column chromatography (400 g silica, $\mathrm{cycH} / \mathrm{EA} 1: 1+3 \%$ TEA $\rightarrow \mathrm{EA}+3 \% \mathrm{MeOH}+3 \%$ TEA) to afford the desired compound as yellow oil.

Yield: 69\% (1.7 g, 5.2 mmol, over 2 steps)

Appearance: yellow oil

TLC: $\mathrm{R}_{\mathrm{f}}=0.41(\mathrm{EA}+3 \% \mathrm{MeOH}+3 \%$ TEA $)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.12(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}), 1.20(\mathrm{ddt}, \mathrm{J}=10.0,6.6,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.24-$ $1.33(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.68(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{dt}, \mathrm{J}=8.9,2.8 \mathrm{~Hz}$, 1 H), $2.56-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{td}, \mathrm{J}=5.3,4.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dd}, \mathrm{J}=14.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{dd}, \mathrm{J}$ $=14.0,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{q}, \mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.55(\mathrm{~m}, 1 \mathrm{H}), 4.57(\mathrm{~d}, \mathrm{~J}=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.87-$ $4.98(\mathrm{~m}, 2 \mathrm{H}), 5.14(\mathrm{~m}, 1 \mathrm{H}), 5.64(\mathrm{ddd}, \mathrm{J}=17.0,10.3,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.36(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR (150 MHz, CDCl_{3}): $\delta=14.8,16.8,28.4,30.0,44.2,49.2,49.5,52.9,58.2,71.7,73.2,114.8$, 127.6, 128.3, 138.3, 139.6, 174.5.

Mass (ESI): $[\mathrm{M}+\mathrm{H}]^{+}=329.10$
$8^{\text {(S)-Me: }}$: $1 \mathrm{~S}, 5 \mathrm{R}, 6 \mathrm{R}$)-10-(benzo[d]thiazol-6-ylsulfonyl)-3-((S)-1-(benzyloxy)propan-2-yl)-5-vinyl-3,10-diazabicyclo[4.3.1]decan-2-one

$7^{(\mathrm{S})-\mathrm{Me}}$ ($400 \mathrm{mg}, 1.22 \mathrm{mmol}, 1.0 \mathrm{eq}$.), benzothiazole-6-sulfonyl chloride ($370 \mathrm{mg}, 1.58 \mathrm{mmol}, 1.3 \mathrm{eq}$.) and DMAP ($15 \mathrm{mg}, 0.12 \mathrm{mmol}, 0.1$ eq.) were dissolved in DCM under argon atmosphere and DIPEA (205 $\mathrm{mg}, 1.58 \mathrm{mmol}, 1.3$ eq.) was added. The reaction mixture was stirred for 16 h at room temperature. The solvent was evaporated and the crude product was purified by column chromatography (25 g silica, Cy/EA 7:3) to afford the desired compound as white solids.

Yield: 33\% (213 mg, 0.41 mmol$)$

Appearance: white solids

TLC: $\mathrm{R}_{\mathrm{f}}=0.27(\mathrm{cycH} / \mathrm{EA} \mathrm{3:2)}$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.14(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.16-1.22(\mathrm{~m}, 1 \mathrm{H}), 1.24-1.32(\mathrm{~m}, 2 \mathrm{H})$, $1.41-1.51(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{ddt}, J=14.2,4.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.49(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=14.5,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.38-3.50(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{dd}, J=14.5,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-4.08(\mathrm{~m}, 1 \mathrm{H}), 4.43-4.56(\mathrm{~m}$, 2 H), 4.83 (dt, $J=6.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.00$ (td, $J=7.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-5.10(\mathrm{~m}, 2 \mathrm{H}), 5.78$ (ddd, $J=$ $17.1,10.2,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{dd}, J=8.6,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.51$ (dd, $J=1.8$, $0.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.20(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right): ~ \delta=14.5,15.7,26.3,27.8,45.6,50.2,50.9,54.9,57.1,71.5,73.0,116.5$, 121.7, 124.3, 124.7, 127.7, 128.5, 134.4, 137.8, 138.2, 138.7, 155.5, 158.0, 170.4,

Mass (ESI/MicrOTOF) m/z: [M + H]+ Calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}$ 526.1834; Found 526.1887

8 $^{\text {(R)-Me }}$: (1S,5R,6R)-10-(benzo[d]thiazol-6-ylsulfonyl)-3-((R)-1-(benzyloxy)propan-2-yl)-5-vinyl-3,10-diazabicyclo[4.3.1]decan-2-one

$7^{(\mathrm{R})-\mathrm{Me}}$ ($500 \mathrm{mg}, 1.52 \mathrm{mmol}, 1.0 \mathrm{eq}$.), benzothiazole-6-sulfonyl chloride ($462 \mathrm{mg}, 1.98 \mathrm{mmol}, 1.3 \mathrm{eq}$.) and DMAP ($19 \mathrm{mg}, 0.15 \mathrm{mmol}, 0.1$ eq.) were dissolved in DCM under argon atmosphere and DIPEA (256 $\mathrm{mg}, 1.98 \mathrm{mmol}, 1.3 \mathrm{eq}$.$) was added. The reaction mixture was stirred for 16 \mathrm{~h}$ at room temperature. The solvent was evaporated and the crude product was purified by column chromatography (25 g silica, Cy/EA 7:3) to afford the desired compound as white solids.

Yield: 42% ($340 \mathrm{mg}, 0.65 \mathrm{mmol}$)

Appearance: white solids

TLC: $\mathrm{R}_{\mathrm{f}}=0.27(\mathrm{cycH} / \mathrm{EA} 3: 2)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.05(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{dt}, J=16.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.19-1.30(\mathrm{~m}$, 2H), $1.29-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{dt}, J=13.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.94$ (dd, $J=14.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.36-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{dd}, J=14.4,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.00$ (ddd, $J=7.0,4.2$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.58(\mathrm{~m}, 2 \mathrm{H}), 4.75(\mathrm{dt}, J=5.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.88-5.02(\mathrm{~m}, 2 \mathrm{H}), 5.15(\mathrm{pd}, J=7.0$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{ddd}, J=17.0,10.1,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.89(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 8.22 (dd, $J=8.6,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{dd}, J=1.9,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.17(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=14.6,15.4,26.6,28.1,44.5,49.1,49.5,55.0,57.3,71.2,73.2,116.3$, 121.6, 124.2, 124.7, 127.8, 127.0, 128.4, 134.4, 138.0, 138.7, 155.4, 158.0, 170.3.

Mass (ESI): $[\mathrm{M}+\mathrm{H}]^{+}=526.08$

9(S)-Me: (1S,5R,6R)-10-(benzo[d]thiazol-6-ylsulfonyl)-3-((S)-1-hydroxypropan-2-yl)-5-vinyl-3,10-diazabicyclo[4.3.1]decan-2-one

Compound $8^{(\mathbf{s})-\mathrm{Me}}$ ($212 \mathrm{mg}, 0.4 \mathrm{mmol}, 1$ eq.) was dissolved in $\mathrm{DCM}(50 \mathrm{ml}) . \mathrm{BCl}_{3}{ }^{*} \mathrm{SMe}_{2}(1.0 \mathrm{ml}, 2.0$ mmol, 5 eq., 2 M in DCM) was added and the mixture was stirred for 16 h at rt . The reaction was washed with sat. aq. NaHCO_{3} solution (20 ml) and dried over MgSO_{4}. Solvents were removed under reduced pressure and the crude was purified by column chromatography ($25 \mathrm{~g} \mathrm{SiO}_{2}, \mathrm{cycH} / \mathrm{EA}=1: 4$).

Yield: 58\% (102 mg, 0.37 mmol$)$

Appearance: white solids

TLC: $\mathrm{R}_{\mathrm{f}}=0.16(\mathrm{cycH} /$ EA 1:9)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.13(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{td}, J=6.6,6.1,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.36-1.44$ $(\mathrm{m}, 1 \mathrm{H}), 1.35-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{~s}, 1 \mathrm{H}), 2.18-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{qd}, \mathrm{J}=8.0$, $3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J=14.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{dd}, J=14.4,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.07$ $-4.19(\mathrm{~m}, 1 \mathrm{H}), 4.68(\mathrm{dt}, J=6.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.78-4.89(\mathrm{~m}, 1 \mathrm{H}), 5.07-5.17(\mathrm{~m}, 2 \mathrm{H}), 5.84$ (ddd, $J=$ $17.2,9.9,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{dd}, J=8.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{dd}, J=8.7,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.53$ (dd, $J=1.8$, $0.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.22(\mathrm{~s}, 1 \mathrm{H})$.

[^0]Mass (ESI/MicrOTOF) m/z: [M + H]+ Calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2} 436.1365$; Found 436.1416

9(R)-Me. (1S,5R,6R)-10-(benzo[d]thiazol-6-ylsulfonyl)-3-((R)-1-hydroxypropan-2-yl)-5-vinyl-3,10-diazabicyclo[4.3.1]decan-2-one

Compound $\mathbf{8}^{(\mathrm{R})-\mathrm{Me}}$ ($289 \mathrm{mg}, 0.55 \mathrm{mmol}, 1 \mathrm{eq}$.) was dissolved in DCM (50 ml). $\mathrm{BCl}_{3}{ }^{*} \mathrm{SMe}_{2}(1.4 \mathrm{ml}, 2.7$ $\mathrm{mmol}, 5$ eq., 2 M in DCM) was added and the mixture was stirred for 16 h at rt . The reaction was washed with sat. aq. NaHCO_{3} solution (20 ml) and dried over MgSO_{4}. Solvents were removed under reduced pressure and the crude was purified by column chromatography ($25 \mathrm{~g} \mathrm{SiO}_{2}, \mathrm{cycH} / \mathrm{EA}=1: 9$).

Yield: 70% ($163 \mathrm{mg}, 0.37 \mathrm{mmol})$

Appearance: white solids

TLC: $\mathrm{R}_{\mathrm{f}}=0.16(\mathrm{cycH} / E A=1: 9)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.08(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.15$ (tdd, $\left.J=13.6,6.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.20-$ $1.27(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{qt}, \mathrm{J}=14.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.26(\mathrm{~m}$, 1 H), $2.66-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=14.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.40-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{dd}, J=14.3,10.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.05$ (ddd, $J=7.0,4.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{dt}, J=6.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{dqd}, J=9.8,7.0,4.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.09-5.18(\mathrm{~m}, 2 \mathrm{H}), 5.82(\mathrm{ddd}, J=17.0,10.1,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $8.26(\mathrm{dd}, J=8.6,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{dd}, J=1.9,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.21(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.2,15.6,26.0,27.6,45.1,48.8,53.3,55.1,57.3,64.6,117.0$, 121.6, 124.2, 124.7, 134.5, 137.7, 138.6, 155.5, 158.1, 172.7.

Mass (ESI): $[\mathrm{M}+\mathrm{H}]^{+}=436.06$
$\mathbf{1 0}^{\text {(S)-Me. }}$: (1S,5R,6R)-3-((S)-1-(benzyloxy)propan-2-yl)-10-((3,5-dichlorophenyl)sulfonyl)-5-vinyl-3,10-diazabicyclo[4.3.1]decan-2-one

$7^{(\mathrm{S})-\mathrm{Me}}$ ($410 \mathrm{mg}, 1.3 \mathrm{mmol}, 1.0$ eq.) and 3,5-dichlorobenzenesulfonyl chloride ($613 \mathrm{~g}, 2.5 \mathrm{mmol}, 2.0 \mathrm{eq}$.) were dissolved in DCM under argon atmosphere and DIPEA ($484 \mathrm{mg}, 3.7 \mathrm{mmol}, 3.0 \mathrm{eq}$.) and DMAP ($152 \mathrm{mg}, 1.3 \mathrm{mmol}, 1.0 \mathrm{eq}$.) were added. The reaction mixture was stirred for 16 h at room temperature. The solvent was evaporated and the crude product was purified by column chromatography (25 g silica, Cy/EA 5:1).

Yield: 46\% (290 mg, 0.54 mmol$)$

Appearance: white solids

TLC: $\mathrm{R}_{\mathrm{f}}=0.32(\mathrm{cycH} / \mathrm{EA}=3: 1)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.07(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}), 1.10-1.29(\mathrm{~m}, 3 \mathrm{H}), 1.38-1.51(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{~d}$, $1 H, J=13.7 \mathrm{~Hz}), 2.39(q, 1 H, J=9.2 \mathrm{~Hz}), 2.97(d d, 1 H, J=14.7 / 1.8 \mathrm{~Hz}), 3.34(d d, 1 H, J=10.2 / 5.1 \mathrm{~Hz})$, 3.43 (dd, $1 \mathrm{H}, \mathrm{J}=10.2 / 7.3 \mathrm{~Hz}$), 3.66 (dd, $1 \mathrm{H}, \mathrm{J}=14.6 / 10.6 \mathrm{~Hz}$), $3.88-3.94(\mathrm{~m}, 1 \mathrm{H}), 4.39(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.0$ $\mathrm{Hz}), 4.48(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.1 \mathrm{~Hz}), 4.63-4.69(\mathrm{~m}, 1 \mathrm{H}), 4.86-4.95(\mathrm{~m}, 1 \mathrm{H}), 4.96-5.05(\mathrm{~m}, 2 \mathrm{H}), 5.65-5.75(\mathrm{~m}$, $1 \mathrm{H}), 7.18-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.46(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=1.9 \mathrm{~Hz}), 7.63(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=1.8 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.5,15.6,26.4,27.9,45.7,50.2,51.2,55.2,57.2,71.6,73.0,116.7$, 125.1, 127.7, 127.7, 128.5, 132.7, 136.4, 137.6, 138.2, 144.4, 170.0.

Mass (ESI): $[\mathrm{M}+\mathrm{H}]^{+}=537.62$
$\mathbf{1 0}^{\text {(R)-Me: }}$: $\left.1 \mathrm{~S}, 5 \mathrm{R}, 6 \mathrm{R}\right)$-3-((R)-1-(benzyloxy)propan-2-yl)-10-((3,5-dichlorophenyl)sulfonyl)-5-vinyl-3,10-diazabicyclo[4.3.1]decan-2-one

$\mathbf{9}^{(\mathrm{R})-\mathrm{Me}}(800 \mathrm{mg}, 2.4 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and 3,5-dichlorobenzenesulfonyl chloride ($1.2 \mathrm{~g}, 4.9 \mathrm{mmol}, 2.0 \mathrm{eq}$.) were dissolved in DCM under argon atmosphere and DIPEA ($944 \mathrm{mg}, 7.3 \mathrm{mmol}, 3.0 \mathrm{eq}$.) and DMAP ($297 \mathrm{mg}, 2.4 \mathrm{mmol}, 1.0$ eq.) were added. The reaction mixture was stirred for 16 h at room temperature. The solvent was evaporated and the crude product was purified by column chromatography (40 g silica, $\mathrm{cycH} / \mathrm{EA}=5: 1$).

Yield: 47\% (614 mg, 1.14 mmol$)$

Appearance: white solids

TLC: $R_{f}=0.43(\mathrm{cycH} / E A=4: 1)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.10(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{tdd}, J=13.6,6.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.21-$ $1.27(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}), 1.30-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{dtt}, J=13.6,3.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.49$ (tdd, $J=13.7,8.5,4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.25(\mathrm{ddt}, J=13.7,3.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J=14.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.38$ $-3.48(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{dd}, J=14.5,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{ddd}, J=6.6,3.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{dd}, J=87.3$, $11.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.71(\mathrm{dt}, J=6.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.93-5.07(\mathrm{~m}, 2 \mathrm{H}), 5.14-5.23(\mathrm{~m}, 1 \mathrm{H}), 5.75$ (ddd, $J=$ $17.0,10.1,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.55(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.6,15.4,26.7,28.2,44.5,49.0,49.5,55.3,57.4,71.1,73.2,116.5$, 125.0, 127.8, 128.0, 128.4, 132.7, 136.4, 137.8, 144.3, 170.0.

Mass (ESI/MicrOTOF) m/z: [M + H]+ Calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} 537.1382$; Found 537.1404

11(S)-Me: (1S,5R,6R)-10-((3,5-dichlorophenyl)sulfonyl)-3-((S)-1-hydroxypropan-2-yl)-5-vinyl-3,10-diazabicyclo[4.3.1]decan-2-one

$\mathbf{1 0}^{\text {(s)-Me }}$ ($290 \mathrm{mg}, 0.5 \mathrm{mmol}, 1$ eq.) was dissolved in $\mathrm{DCM}\left(50 \mathrm{ml}\right.$). $\mathrm{BCl}_{3}{ }^{*} \mathrm{SMe}_{2}$ ($1.4 \mathrm{ml}, 2.7 \mathrm{mmol}, 5$ eq., 2 M in DCM) was added and the mixture was stirred for 16 h at rt . The reaction was washed with sat. aq. NaHCO_{3} solution (20 ml) and dried over MgSO_{4}. Solvents were removed under reduced pressure and the crude was purified by column chromatography ($25 \mathrm{~g} \mathrm{SiO}_{2}, \mathrm{cycH} / \mathrm{EA}=1: 4$).

Yield: 47\% (110 mg, 0.25 mmol$)$

Appearance: white solids

TLC: $\mathrm{R}_{\mathrm{f}}=0.38(\mathrm{cycH} / E A=2: 3)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.13(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.19-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.38$ (dtdd, $J=10.6,7.3$, $5.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{ddt}, J=13.9,10.5,3.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.86(\mathrm{~s}, 1 \mathrm{H}), 2.28$ (ddt, $J=12.1,3.5,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, 2.53 (dddd, $J=10.9,8.8,6.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.99(\mathrm{dd}, J=14.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.75$ (dd, $J=14.5,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.04$ (ddd, $J=6.8,4.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{dt}, J=6.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.82$ (dqd, $J=8.3,6.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{dd}, J=6.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.77-5.85(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.69 (d, J = $1.9 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}-$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.9,15.6,26.5,27.6,45.4,49.9,54.1,55.2,57.1,64.5,117.1,125.1$, 132.9, 137.2, 143.9, 171.2.

Mass (ESI/MicrOTOF) m/z: [M+H]+ Calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} 447.0812$; Found 447.0961

11 ${ }^{\text {(R)-Me }}$: (1S,5R,6R)-10-((3,5-dichlorophenyl)sulfonyl)-3-((R)-1-hydroxypropan-2-yl)-5-vinyl-3,10-diazabicyclo[4.3.1]decan-2-one

$\mathbf{1 0}^{(\mathrm{R})-\mathrm{Me}}$ ($604 \mathrm{mg}, 1.1 \mathrm{mmol}, 1.0$ eq.) was dissolved in $\mathrm{DCM}(50 \mathrm{ml}) . \mathrm{BCl}_{3}{ }^{*} \mathrm{SMe}_{2}(2.8 \mathrm{ml}, 5.6 \mathrm{mmol}, 5 \mathrm{eq} .$, 2 M in DCM) was added and the mixture was stirred for 16 h at rt . The reaction was washed with sat. aq. NaHCO_{3} solution (20 ml) and dried over MgSO_{4}. Solvents were removed under reduced pressure and the crude was purified by column chromatography ($25 \mathrm{~g} \mathrm{SiO}_{2}, \mathrm{cycH} / \mathrm{EA}=1: 4$).

Yield: 76\% (379 mg, 0.85 mmol$)$

Appearance: white solids

TLC: $R_{f}=0.40(\mathrm{cycH} / E A=1: 4)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.09(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.16-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.51$ (tdd, $J=10.0,6.6$, $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.59-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{~s}, 1 \mathrm{H}), 2.28(\mathrm{dt}, J=14.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.91$ (dd, $J=14.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=11.6,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.64-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.93-4.01(\mathrm{~m}, 1 \mathrm{H})$, $4.72(\mathrm{dt}, J=5.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{dqd}, J=10.0,7.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-5.20(\mathrm{~m}, 2 \mathrm{H}), 5.80$ (ddd, $J=$ $17.0,10.1,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.1,15.6,26.1,27.7,45.0,48.8,53.3,55.4,57.4,64.5,117.2,125.0$, 132.8, 136.5, 137.5, 144.2, 172.3.

Mass (ESI/MicrOTOF) m/z: [M + H]+ Calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} 447.0812$; Found 447.0910

13a: N-(Pyridin-2-ylmethyl)-4-(trimethylsilyl)but-2-en-1-amine

2-(4-(trimethylsilyl)but-2-en-1-yl)isoindoline-1,3-dione 12 ($33.7 \mathrm{~g}, 123.26 \mathrm{mmol}, 1 \mathrm{eq}$.) was dissolved in $\mathrm{MeOH}(500 \mathrm{ml})$ and Hydrazin ($8 \mathrm{ml}, 255 \mathrm{mmol}, 2$ eq.) was added. The mixture was refluxed for 20 h .1 $\mathrm{M} \mathrm{NaOH}(300 \mathrm{ml})$ and DCM (500 ml) were added and the organic phase was separated. The aqueous phase was extracted with DCM ($1 \times 100 \mathrm{ml}$). Both organic phases were combined, dried over MgSO_{4} and solvents were removed under reduced pressure (700 mbar). The residue was diluted with EtOH (150 ml) and picolinaldehyde ($11.8 \mathrm{ml}, 123 \mathrm{mmol}, 1 \mathrm{eq}$.) was added. The mixture was stirred at rt for 3 h. After adding $\mathrm{NaBH}_{4}(7 \mathrm{~g}, 185 \mathrm{mmol}, 1.5$ eq.) stirring was continued until no more gas formation was observed (4 h). Sat. aq. $\mathrm{NaHCO}_{3}(200 \mathrm{ml})$ was added carefully and the mixture was extracted with DCM $(3 \times 300 \mathrm{ml})$. The combined organic phases were dried over MgSO_{4} and solvents were reduced under reduced pressure. Column chromatography ($1000 \mathrm{~g} \mathrm{SiO}_{2}, \mathrm{EA}+3 \% \mathrm{TEA}$) afforded the title compound as yellow oil.

Yield: 69\% (31.20 g, 84.05 mmol, over 2 steps)

Appearance: yellow oil

TLC: $R_{f}=0.30$ (EA $+3 \%$ TEA; UV, ninhydrin)
${ }^{1} \mathrm{H}-$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-0.04-0.00(\mathrm{~m}, 9 \mathrm{H}), 1.42-1.48(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 1 \mathrm{H}), 3.20-3.30(\mathrm{~m}$, $2 \mathrm{H}), 3.87-3.91(\mathrm{~m}, 2 \mathrm{H}), 5.34-5.46(\mathrm{~m}, 1 \mathrm{H}), 5.49-5.62(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.32(\mathrm{~m}$, $1 \mathrm{H}), 7.58-7.65(\mathrm{~m}, 1 \mathrm{H}), 8.52-8.55(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-2.0,1.0,19.0,22.7,51.6,54.2,54.6,121.8,122.3,125.2,126.3,128.3$, 129.6, 136.4, 149.3, 159.7.

Mass (ESI): $[\mathrm{M}+\mathrm{H}]^{+}=235.02$

13b/c: N-(1-(pyridin-2-yl)ethyl)-4-(trimethylsilyl)but-2-en-1-amine

2-(4-(trimethylsilyl)but-2-en-1-yl)isoindoline-1,3-dione 12 ($5.0 \mathrm{~g}, 18.29 \mathrm{mmol}, 1 \mathrm{eq}$.) was dissolved in $\mathrm{MeOH}(70 \mathrm{ml})$ and Hydrazin ($1.2 \mathrm{ml}, 36.6 \mathrm{mmol}, 2$ eq.) was added. The mixture was refluxed for 24 h . $1 \mathrm{M} \mathrm{NaOH}(15 \mathrm{ml})$ and DCM (50 ml) were added and the organic phase was separated. The aqueous phase was extracted with DCM ($1 \times 50 \mathrm{ml}$). Both organic phases were combined, dried over MgSO_{4} and solvents were removed under reduced pressure (700 mbar). The residue was diluted with MeOH (10 ml). 1-(pyridine-2-yl)ethanone ($2.2 \mathrm{ml}, 18.3 \mathrm{mmol}, 1 \mathrm{eq}$.) and titanium(IV)isopropoxide ($5.4 \mathrm{ml}, 18.3$ $\mathrm{mmol}, 1$ eq.) were added and The mixture was stirred at rt for 4 h . After adding $\mathrm{NaBH}_{4}(1.0 \mathrm{~g}, 27.4 \mathrm{mmol}$, 1.5 eq.) stirring was continued until no more gas formation was observed (2 h). Sat. aq. NaHCO_{3} (100 $\mathrm{ml})$ was added carefully and the mixture was extracted with DCM $(3 \times 100 \mathrm{ml})$. The combined organic phases were dried over MgSO_{4} and solvents were reduced under reduced pressure. Column chromatography ($150 \mathrm{~g} \mathrm{SiO}_{2}, \mathrm{EA}+3 \%$ TEA) afforded the title compound as yellow oil.

Yield: 62% ($2.85 \mathrm{~g}, 11.47 \mathrm{mmol}$, over 2 steps)

Appearance: yellow oil

TLC: $R_{f}=0.30$ (EA $+3 \%$ TEA; UV, ninhydrin)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=-0.05(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 9 \mathrm{H}), 1.28-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.76(\mathrm{~s}, 2 \mathrm{H}), 2.91-3.14$ (m, 2H), 3.88 (q, J=6.7 Hz, 1H), 5.19-5.60 (m, 2H), 6.98-7.20 (m, 1H), 7.20-7.39 (m, 1H), $7.63(\mathrm{tt}$, $J=7.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.55$ (ddd, $J=4.9,1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-0.0,0.1,20.8,24.6,46.2,51.9,60.4,61.0,123.2,123.7,127.6,128.9$, 129.9, 130.9, 138.3, 151.3, 166.7.

Mass (ESI): $[\mathrm{M}+\mathrm{H}]^{+}=248.99$

14a: (S)-tert-butyl-2-[(pyridine-2-ylmethyl)(4-(trimethylsilyl)but-2-en-1-yl)carbomyl]piperidine-1carboxylate

Compound 13a ($5.0 \mathrm{~g}, 21.3 \mathrm{mmol}$, 1 eq.) and (S)-6-oxopiperidine-2-carboxylic acid ($3.05 \mathrm{~g}, 21.3 \mathrm{mmol}$, 1 eq.) were dissolved in DMF (50 ml). After stirring for 30 min at rt a mixture of EDC-HCI ($4.91 \mathrm{~g}, 25.6$ $\mathrm{mmol}, 1.2 \mathrm{eq}$) and $\mathrm{HOBt}(3.92 \mathrm{~g}, 25.6 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was added and the reaction mixture was stirred at rt for $3 \mathrm{~h} . \mathrm{Et}_{2} \mathrm{O}(400 \mathrm{ml})$ was added and the mixture was washed with brine ($1 \times 100 \mathrm{ml}, 3 \times 20 \mathrm{ml}$) dried over MgSO_{4} and concentrated in vacuo. The resulting brown oil (10.9 g) was dissolved in DCM (5 ml) and DIPEA ($20 \mathrm{ml}, 6$ eq.) was added. The mixture was stirred for 15 min before $\mathrm{Boc}_{2} \mathrm{O}(23.3 \mathrm{~g}, 107.0$ mmol, 5 eq.) and DMAP ($0.25 \mathrm{~g}, 2.0 \mathrm{mmol}, 0.1 \mathrm{eq}$.) were added. Stirring was continued at rt for 2 h . The reaction mixture was washed with brine ($2 \times 100 \mathrm{ml}$), dried over MgSO_{4} and concentrated in vacuo. Column chromatography ($400 \mathrm{~g} \mathrm{SiO}_{2}, \mathrm{cycH} / \mathrm{EA}=2: 3 \rightarrow \mathrm{EA}$) afforded the desired product as yellow oil.

Yield: 61\% (6.01 g, 13.0 mmol, over 2 steps)

Appearance: yellow oil

TLC: $\mathrm{Rf}_{\mathrm{f}}=0.47$ (EA; UV)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-0.04-0.00(\mathrm{~m}, 9 \mathrm{H}), 1.47-1.51(\mathrm{~m}, 11 \mathrm{H}), 1.65-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.80-$ $1.95(\mathrm{~m}, 2 \mathrm{H}), 2.00-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.62(\mathrm{~m}, 1 \mathrm{H}), 3.90-4.30(\mathrm{~m}, 2 \mathrm{H}), 4.45-$ $4.85(\mathrm{~m}, 1 \mathrm{H}), 4.90-5.10(\mathrm{~m}, 2 \mathrm{H}), 5.20-5.40(\mathrm{~m}, 1 \mathrm{H}), 5.50-6.00(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.36-$ $7.42(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.74(\mathrm{~m}, 1 \mathrm{H}), 8.48-8.58(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta=-1.9,-1.5,18.2,22.8,23.0,25.7,25.9,34.4,34.5,48.6,50.2,50.4,51.5$, $55.7,55.9,83.1,121.6,122.0,122.4,122.7,132.0,132.4,137.1,139.5,149.5,153.7,156.8,157.0$, 171.3, 171.4.

Mass (ESI): $[\mathrm{M}+\mathrm{H}]^{+}=460.01$

14b/c: (6S)-tert-butyl 2-oxo-6-((1-(pyridin-2-yl)ethyl)(4-(trimethylsilyl)but-2-en-1-yl)carbamoyl)piperidine-1-carboxylate

(S)-6-oxopiperidine-2-carboxylic acid ($1.32 \mathrm{~g}, 9.2 \mathrm{mmol}, 1.1 \mathrm{eq}$.) was dissolved in DMF (15 ml) and HATU ($3.8 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.2$ eq.) was added. After adding DIPEA ($3.0 \mathrm{ml}, 16.8 \mathrm{mmol}, 2$ eq.) the mixture was stirred for 15 min . Compound $\mathbf{1 3 b} / \mathbf{c}(2.1 \mathrm{~g}, 8.4 \mathrm{mmol}, 1 \mathrm{eq}$.$) was added and the reaction was stirred$ for 3 h at rt . The reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}(70 \mathrm{ml})$ and washed with brine $(50 \mathrm{ml})$. Solvents were evaporated and the residue was dissolved in DCM (20 ml). Boc ${ }_{2} \mathrm{O}(7.33 \mathrm{~g}, 33.6 \mathrm{mmol}, 4 \mathrm{eq}$.), DIPEA ($4.0 \mathrm{ml}, 42.0 \mathrm{mmol}, 5$ eq.) and DMAP ($210 \mathrm{mg}, 1.7 \mathrm{mmol}, 0.2$ eq.) were added and the mixture was stirred for 14 h at rt . DCM (100 ml) was added and the mixture was washed with brine. Solvents were removed under reduced pressure and the crude material was purified by column chromatography (250 g silica, $\mathrm{cycH} / \mathrm{EA}=1: 1$).

Yield: 37\% (1.45 g, 3.4 mmol, over 2 steps)

Appearance: yellow oil

TLC: $R_{f}=0.56(E A ; U V)$
${ }^{1} \mathrm{H}-$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-0.17-0.07(\mathrm{~m}, 9 \mathrm{H}), 1.19-1.78(\mathrm{~m}, 18 \mathrm{H}), 1.86-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.37-$ $2.51(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.68(\mathrm{~m}, 1 \mathrm{H}), 3.48-4.29(\mathrm{~m}, 3 \mathrm{H}), 4.74-4.96(\mathrm{~m}, \mathrm{~J}=48.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.03-$ $5.42(\mathrm{~m}, 1 \mathrm{H}), 5.43-5.64(\mathrm{~m}, 1 \mathrm{H}), 5.75-5.93(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.49-$ $7.75(\mathrm{~m}, 1 \mathrm{H}), 8.46-8.64(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.0,0.1,16.1,18.1,18.3,20.1,20.2,20.3,21.1,22.9,24.5,24.7,27.8$, 28.2, 29.9, 29.9, 30.0, 36.3, 36.6, 43.5, 47.3, 48.9, 55.8, 56.1, 57.8, 59.6, 62.3, 84.9, 123.0, 124.0, $124.1,124.5,124.9,125.1,126.3,127.0,127.4,130.1,131.0,132.2,138.2,138.3,138.5,150.4,151.5$, 155.8, 162.0, 173.4, 174.2, 174.4.

Mass (APCI): $[\mathrm{M}+\mathrm{H}]^{+}=474.28$

Compound 14a ($15.0 \mathrm{~g}, 32.6 \mathrm{mmol}, 1$ eq.) was dissolved in THF (200 ml , dry) and the reaction mixture was cooled to $-78^{\circ} \mathrm{C}$. DIBAL-H ($42.4 \mathrm{ml}, 42.4 \mathrm{mmol}, 1.3$ eq., 1 M in DCM) was added over 1 h after which no more starting material was detectable by TLC. The reaction was quenched with Glauber's salt and was allowed to warm to rt. Solids were filtered off over celite and the solvent was removed under reduced pressure. The resulting yellow oil (13.6 g) was dissolved in 1800 ml DCM in a fluorinated HDPE bottle and cooled to $-78^{\circ} \mathrm{C}$. $\mathrm{HF}(74 \mathrm{ml}, 4061 \mathrm{mmol}, 125 \mathrm{eq} ., 70 \%$ in pyridine) was added and the mixture stirred for 15 min . The bottle was transferred to an ice-bath and stirred for 2 h . The reaction was quenched with sat. aq. CaCO_{3} solution (500 ml) and $10 \mathrm{M} \mathrm{NaOH}(600 \mathrm{ml})$. The phases were separated and the aqueous phase was extracted with DCM ($5 \times 300 \mathrm{ml}$). The combined organic phases were dried over MgSO_{4} and solvents were removed under reduced pressure. Column chromatography (500 g SiO 2 , $\mathrm{EA}+3 \% \mathrm{TEA}+5 \% \mathrm{MeOH})$ afforded the desired product as an orange resin.

Yield: 37\% (3.31 g, 12.1 mmol, over 2 steps)

Appearance: orange resin

TLC: $R_{f}=0.11$ (EA $+3 \%$ TEA $+5 \%$ MeOH; UV, ninhydrin)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.44-1.74(\mathrm{~m}, 5 \mathrm{H}), 2.07(\mathrm{~s}, 1 \mathrm{H}), 2.20-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.70(\mathrm{~m}$, $1 \mathrm{H}), 2.75-2.90(\mathrm{~m}, 1 \mathrm{H}), 3.05-3.15(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.96-4.10(\mathrm{~m}, 1 \mathrm{H}), 4.67-4.96(\mathrm{~m}$, $1 \mathrm{H}), 4.81-4.95(\mathrm{~m}, 3 \mathrm{H}), 5.50-5.66(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.70(\mathrm{~m}$, 1H), $8.46-8.58(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=16.9,28.1,29.4,49.5,51.2,52.6,55.9,57.8,115.0,122.3$ (2C), 136.7, 139.0, 149.1, 157.8, 174.9.

Mass (ESI): $[\mathrm{M}+\mathrm{H}]^{+}=272.11$

Compound 14b/c ($1.45 \mathrm{~g}, 3.07 \mathrm{mmol}$, 1 eq.) was dissolved in THF (35 ml , dry) and the reaction mixture was cooled to $-78^{\circ} \mathrm{C}$. DIBAL-H ($3.4 \mathrm{ml}, 3.37 \mathrm{mmol}, 1.1$ eq., 1 M in DCM) was added over 1 h after which no more starting material was detectable by TLC. The reaction was quenched with Glauber's salt and was allowed to warm to rt . Solids were filtered off over celite and solvents were removed under reduced pressure. The resulting yellow oil was dissolved in 150 ml DCM in a HDPE bottle and cooled to $-78{ }^{\circ} \mathrm{C}$. HF ($6.5 \mathrm{ml}, 306 \mathrm{mmol}, 100 \mathrm{eq}$., 70% in pyridine) was added and the mixture stirred for 15 min . The bottle was transferred to an ice-bath and stirred for 2 h . The reaction was quenched with sat. aq. CaCO_{3} solution (50 ml) and $10 \mathrm{M} \mathrm{NaOH}(60 \mathrm{ml})$. The phases were separated and the aqueous phase was extracted with DCM ($5 \times 100 \mathrm{ml}$). The combined organic phases were dried over MgSO_{4} and solvents were removed under reduced pressure. Column chromatography (50 g SiO 2 , $\mathrm{EA}+3 \% \mathrm{TEA}+5 \% \mathrm{MeOH}$) afforded the desired product as a yellow resin.

Yield: 19\% (166 mg, 0.58 mmol , over 2 steps)

Appearance: yellow resin

TLC: $\mathrm{R}_{\mathrm{f}}=0.15$ (EA $+3 \%$ TEA $+5 \% \mathrm{MeOH}$; UV, ninhydrin)

HPLC: $\mathrm{R}_{\mathrm{t}}=8.27 \mathrm{~min}(0-100 \% \mathrm{~B}$ in 20 min$)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.45-1.73(\mathrm{~m}, 8 \mathrm{H}), 2.13-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.42-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.79(\mathrm{dd}$, $J=7.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.90(\mathrm{dd}, J=14.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=14.3,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{q}, J=2.1$ Hz, 1H), $4.84-5.08$ (m, 2H), 5.58 (ddd, $J=17.0,10.2,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.18$ (q, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.15$ (ddt, $J=7.6,4.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.62$ (td, $J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.55$ (ddd, $J=4.9,1.9,0.9$ Hz, 1H).

[^1] 136.4, 139.0, 148.9, 160.0, 174.3.

Mass (ESI): $[\mathrm{M}+\mathrm{H}]^{+}=286.19$

15 ${ }^{\text {(R)-Me. }}$: $(1 \mathrm{~S}, 5 \mathrm{~S}, 6 \mathrm{R})$-3-((R)-1-(pyridin-2-yl)ethyl)-5-vinyl-3,10-diazabicyclo[4.3.1] decan-2-one

Compound $15^{(R)-M e}$ was obtained in the previous reaction and was isolated by column chromatography.

Yield: 16% ($140 \mathrm{mg}, 0.49 \mathrm{mmol}$, over 2 steps)

Appearance: yellow resin

TLC: $R_{f}=0.29$ (EA $+3 \%$ TEA $+5 \% \mathrm{MeOH} ;$ UV, ninhydrin)

HPLC: $R_{t}=8.33 \min (0-100 \% B$ in 20 min$)$
${ }^{1} \mathrm{H}-$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.30-1.73(\mathrm{~m}, 8 \mathrm{H}), 2.09(\mathrm{~m}, J=18.3,9.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.29-2.40(\mathrm{~m}, 1 \mathrm{H})$, $2.74(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=13.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=13.8,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.90(\mathrm{~m}$, $1 \mathrm{H}), 4.52(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{ddd}, J=17.9,10.1,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{q}$, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=7.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 8.53 (d, $J=4.9 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=15.5,16.9,28.0,29.7,44.9,49.7,52.6,54.0,58.0,114.8,122.3,122.9$, 136.4, 139.1, 148.7, 160.2, 174.4.

Mass (ESI): $[\mathrm{M}+\mathrm{H}]^{+}=286.20$

16: (1S,5S,6R)-10-[(3,5-dichlorophenyl)sulfonyl]3-(pyridine-2-ylmethyl)-5-vinyl-3,10-diazobicyclo[4.3.1]decan-2-one

Compound 15 ($280 \mathrm{mg}, 1.03 \mathrm{mmol}, 1$ eq.), 3,5-dichlorobenzenesulfonyl chloride ($330 \mathrm{mg}, 1.34 \mathrm{mmol}$, 1.3 eq.) and ZnO ($168 \mathrm{mg}, 2.07 \mathrm{mmol}, 2$ eq.) were placed in a flask under argon atmosphere. MeCN $(30 \mathrm{ml})$ was added and the mixture was stirred for 16 h at rt . The reaction mixture was diluted with DCM $(80 \mathrm{ml})$ and washed with brine (20 ml). The organic layer was dried over MgSO_{4} and solvents were removed under reduced pressure. Column chromatography ($25 \mathrm{~g} \mathrm{SiO}_{2}, \mathrm{cycH} / \mathrm{EA}=1: 1$) afforded the title compound as colorless resin.

Yield: 63\% (301 mg, 0.65 mmol$)$

Appearance: colorless solids

TLC: $R_{f}=0.27(\mathrm{cycH} / E A=1: 1 ; U V, P M A)$

HPLC: $R_{t}=13.46 \min (0-100 \% B$ in $20 \min)$
${ }^{1} \mathrm{H}-$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.01-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.73(\mathrm{~m}, 3 \mathrm{H}), 2.31(\mathrm{dt}, J=15.2,2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.62-2.83(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=14.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-4.12(\mathrm{~m}, 2 \mathrm{H}), 4.62-5.19(\mathrm{~m}, 5 \mathrm{H}), 5.71$ (ddd, $J=16.9,10.2,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{dd}, J=7.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.63-7.81(\mathrm{~m}, 3 \mathrm{H}), 8.43-8.59(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=15.5,26.4,27.6,49.1,52.1,54.9,56.1,56.9,116.9,122.1,122.5,124.9$, 132.7, 136.3, 137.2, 144.1, 149.0, 156.8, 170.4.

HRMS (ESI/QTOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S} 480.0910$; Found 480.0916

16(S)-Me: (1S,5S,6R)-10-((3,5-dichlorophenyl)sulfonyl)-3-((S)-1-(pyridin-2-yl) ethyl)-5-vinyl-3,10-diazabicyclo[4.3.1]decan-2-one

Compound $15^{(5)}$)-Me ($150 \mathrm{mg}, 0.55 \mathrm{mmol}, 1 \mathrm{eq}$), 3,5-dichlorobenzene-1-sulfonyl chloride ($203 \mathrm{mg}, 0.83$ mmol, 1.5 eq.) and DIPEA ($290 \mu \mathrm{l}, 1.66 \mathrm{mmol}, 3$ eq.) were placed in a flask under argon atmosphere. $\mathrm{MeCN}(50 \mathrm{ml})$ was added and the mixture was stirred for 16 h at rt . The reaction mixture was diluted with EA (150 ml) and washed with brine (50 ml). The organic layer was dried over MgSO_{4} and solvents were removed under reduced pressure. Column chromatography ($50 \mathrm{~g} \mathrm{SiO} 2, \mathrm{cycH} / \mathrm{EA}=1: 1$) afforded the title compound as colorless resin.

Yield: 42\% (110 mg, 0.23 mmol$)$

Appearance: white solids

TLC: $\mathrm{R}_{\mathrm{f}}=0.50(\mathrm{cycH} / E A=1: 1 ;$ UV, Hanessian $)$

HPLC: $R_{t}=14.10 \min (0-100 \% B$ in 20 min$)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.15-1.25(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{tt}, J=13.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.42-1.58(\mathrm{~m}, 6 \mathrm{H})$, $2.23-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=14.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=14.8,10.7 \mathrm{~Hz}$, 1 H), 3.93 (ddd, $J=7.0,4.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.69 (dt, $J=6.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}$), $4.94-5.09$ (m, 2H), 5.63 (ddd, $J=16.9,10.1,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{dq}, J=7.9,0.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.48(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.66(\mathrm{~m}, 3 \mathrm{H}), 8.49(\mathrm{ddd}, J=4.8,1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR (126 MHz, CDCl_{3}): $\delta=15.0,15.6,26.5,27.9,46.0,50.2,55.0,55.1,57.1,116.8,122.4,122.9$, 124.9, 132.7, 136.3, 136.8, 137.1, 144.1, 148.9, 159.0, 169.9.

HRMS (ESI/QTOF) m/z: [M + H]+ Calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S} 494.1066$; Found 494.1069

16(R)-Me: (1S,5S,6R)-10-((3,5-dichlorophenyl)sulfonyl)-3-((R)-1-(pyridin-2-yl) ethyl)-5-vinyl-3,10-diazabicyclo[4.3.1]decan-2-one

Compound $15^{(R)-M e}$ ($90 \mathrm{mg}, 0.32 \mathrm{mmol}, 1$ eq.), 3,5 -dichlorobenzene-1-sulfonyl chloride ($116 \mathrm{mg}, 0.47$ $\mathrm{mmol}, 1.5 \mathrm{eq}$.$) and DIPEA (165 \mu \mathrm{l}, 0.95 \mathrm{mmol}, 3$ eq.) were placed in a flask under argon atmosphere. $\mathrm{MeCN}(30 \mathrm{ml})$ was added and the mixture was stirred for 16 h at rt . The reaction mixture was diluted with DCM (150 ml) and washed with brine (50 ml). The organic layer was dried over MgSO_{4} and solvents were removed under reduced pressure. Column chromatography ($50 \mathrm{~g} \mathrm{SiO}, \mathrm{cycH} / \mathrm{EA}=1: 1$) afforded the title compound as colorless resin.

Yield: 42% ($65 \mathrm{mg}, 0.13 \mathrm{mmol}$)

Appearance: white solids

TLC: $R_{f}=0.48(\mathrm{cycH} / E A=1: 1 ; U V$, Hanessian $)$

HPLC: $R_{t}=14.38 \min (0-100 \% B$ in $20 \min)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.28-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.52$ (tdd, $J=8.4,5.4,2.6 \mathrm{~Hz}$, $2 \mathrm{H}), 1.59(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.20(\mathrm{q}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.45(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=14.2,1.9 \mathrm{~Hz}$, 1 H), 3.70 (dd, $J=14.3,10.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.95 (ddd, $J=7.0,4.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), $4.69(\mathrm{dt}, J=16.9,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.79(\mathrm{dt}, J=6.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{dd}, J=10.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{ddd}, J=16.9,10.1,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.15$ $(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.80$ (m, 3H), $8.50-8.69(m, 1 H)$.
${ }^{13} \mathbf{C}-$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=15.6,15.8,26.3,27.8,45.8,49.2,54.8,54.9,57.1,116.5,122.6,122.8$, $124.9,132.6,136.3,137.0,137.3,144.2,148.6,159.6,170.0$.

HRMS (ESI/QTOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{3} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S} 494.1066$; Found 494.1068

18: (1S,5S,6R))-10-((3,5-dichlorophenyl)sulfonyl)-5-(hydroxymethyl)-3-(pyridin-2-ylmethyl)-3,10-diazabicyclo[4.3.1]decan-2-one

Compound 16 ($230 \mathrm{mg}, 0.48 \mathrm{mmol}, 1 \mathrm{eq}$.) was dissolved in Aceton (9 ml) and water (1 ml), 2,6-lutidine ($110 \mu \mathrm{l}, 0.96 \mathrm{mmol}, 2 \mathrm{eq}$.$) , \mathrm{NMO}\left(84 \mathrm{mg}, 0.96 \mathrm{mmol}, 2 \mathrm{eq}\right.$.) and $\mathrm{OsO}_{4}(120 \mu \mathrm{~L}, 0.0096 \mathrm{mmol}, 0.02 \mathrm{eq} .$, 2.5% in t-BuOH) were added successively. After full conversion (2 h , monitored by TLC) Phl(OAc)2 (308 $\mathrm{mg}, 0.96 \mathrm{mmol}, 2$ eq.) was added and the mixture stirred for 3 h . The reaction was quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (0 ml), extracted with $\mathrm{EA}(50 \mathrm{ml})$, washed with sat. aq. CuSO_{4} solution, dried over MgSO_{4} and filtered over silica. Solvents were removed under reduced pressure and the residue was dissolved in $\mathrm{EtOH}(15 \mathrm{ml})$. After cooling to $0{ }^{\circ} \mathrm{C} \mathrm{NaBH}_{4}(15 \mathrm{mg}, 0.40 \mathrm{mmol}, 1.5 \mathrm{eq}$.) was added, the mixture stirred for 15 min at $0^{\circ} \mathrm{C}$ and 1 h at rt . The reaction was quenched with sat. aq. NaHCO_{3} solution, extracted with DCM, dried over MgSO_{4} and solvents were removed under reduced pressure. Column chromatography (EA) afforded the title compound as white solids.

Yield: 56\% (130 mg, 0.27 mmolover 2 steps)

Appearance: white solids

TLC: $R_{f}=0.14$ (EA; UV)

HPLC: $R_{t}=10.72 \min (0-100 \% B$ in $20 \min)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.11-1.58(\mathrm{~m}, 5 \mathrm{H}), 2.10-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{bs}, 1 \mathrm{H}), 3.32(\mathrm{dd}, \mathrm{J}=$ $14.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.47 (d, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}$), 3.78 (dd, $J=14.4,10.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.88 (td, $J=5.2,2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.61-4.81(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{dd}, J=7.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.63 (dd, $J=4.6,1.8 \mathrm{~Hz}, 3 \mathrm{H}), 8.43(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=15.5,27.9,27.9,46.8,49.5,52.4,56.0,57.1,63.3,122.6,124.9,132.7$, 136.3, 137.2, 144.0, 149.0, 156.9, 170.4.

Mass (ESI): $[\mathrm{M}+\mathrm{H}]^{+}=484.54$

18(S)-Me: (1S,5S,6R)-10-((3,5-dichlorophenyl)sulfonyl)-5-(hydroxymethyl)-3-((S)-1-(pyridin-2-yl)ethyl)-3,10-diazabicyclo[4.3.1]decan-2-one

Compound $\mathbf{1 6}^{(\mathrm{S})-\mathrm{Me}}$ ($100 \mathrm{mg}, 0.20 \mathrm{mmol}$, 1 eq.) was dissolved in Aceton (5.5 ml) and water (0.5 ml), 2,6lutidine ($47 \mu \mathrm{l}, 0.40 \mathrm{mmol}, 2 \mathrm{eq}$.), $\mathrm{NMO}\left(48 \mathrm{mg}, 0.40 \mathrm{mmol}, 2\right.$ eq.) and $\mathrm{OsO}_{4}(50 \mu \mathrm{~L}, 0.0040 \mathrm{mmol}$, 0.02 eq., 2.5% in $t-\mathrm{BuOH}$) were added successively. After full conversion (2 h , monitored by TLC) $\mathrm{Phl}(\mathrm{OAc})_{2}$ ($130 \mathrm{mg}, 0.40 \mathrm{mmol}, 2$ eq.) was added and the mixture stirred for 3 h . The reaction was quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution, extracted with EA , washed with sat. aq. CuSO_{4} solution, dried over MgSO_{4} and filtered over silica. Solvents were removed under reduced pressure and the residue was dissolved in $\mathrm{EtOH}(10 \mathrm{ml})$. After cooling to $0^{\circ} \mathrm{C} \mathrm{NaBH} 4(7.5 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was added, the mixture stirred for 15 min at $0^{\circ} \mathrm{C}$ and 1 h at rt . The reaction was quenched with sat. aq. NaHCO_{3} solution, extracted with DCM, dried over MgSO_{4} and solvents were removed under reduced pressure. Column chromatography (EA) afforded the title compound as white solids.

Yield: 54\% (54 mg, 0.11 mmol, over 2 steps)

Appearance: white solids

TLC: $\mathrm{R}_{\mathrm{f}}=0.38$ (EA; UV, Hanessian)

HPLC: $R_{t}=11.45 \min (0-100 \% B$ in 20 min$)$
${ }^{1} \mathrm{H}$-NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.18-1.26(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.58(\mathrm{~m}, 6 \mathrm{H}), 2.12(\mathrm{tq}$, $J=12.9,10.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.29(\mathrm{dq}, ~ J=14.8,2.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.10-3.21(\mathrm{~m}, 2 \mathrm{H}), 3.44-3.57(\mathrm{~m}$, $2 \mathrm{H}), 3.89$ (ddd, $J=6.7,4.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{dt}, J=6.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.15$ (ddd, $J=7.8,4.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{dd}, J=7.4,1.9$ $\mathrm{Hz}, 3 \mathrm{H}$), 8.49 (ddd, $J=4.9,1.9,0.9 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR (126 MHz, CDCl_{3}): $\delta=15.1,15.6,28.2,28.3,43.5,47.7,52.5,55.1,57.2,63.6,122.5,123.0$, 124.9, 132.7, 136.3, 137.1, 144.0, 148.6, 158.9, 169.9.

HRMS (ESI/QTOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S} 498.1016$; Found 498.1016

19: (1S,5S,6R))-10-((3,5-dichlorophenyl)sulfonyl)-5-(methoxymethyl)-3-(pyridin-2-ylmethyl)-3,10-diazabicyclo[4.3.1]decan-2-one

Compound 18 ($85 \mathrm{mg}, 0.18 \mathrm{mmol}, 1$ eq.) was dissolved in DMF (8 ml) and cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{NaH}(21 \mathrm{mg}$, $0.53 \mathrm{mmol}, 3 \mathrm{eq}$.$) and \mathrm{Mel}(44 \mu \mathrm{~L}, 0.70 \mathrm{mmol}, 4 \mathrm{eq}$.) were added successively. After 90 min the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution, extracted with EA and dried over MgSO_{4}. Removal of solvents followed by column chromatography (EA) afforded the title compound as colorless oil.

Yield: 89% ($77 \mathrm{mg}, 0.16 \mathrm{mmol}$)

Appearance: colorless oil

TLC: $\mathrm{R}_{\mathrm{f}}=0.32$ (EA; UV)

HPLC: $R_{t}=14.88 \min (0-100 \% B$ in $20 \min)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.19-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{ddd}, J=18.3,8.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.50-1.73$ $(\mathrm{m}, 3 \mathrm{H}), 2.25-2.41(\mathrm{~m}, 2 \mathrm{H}), 3.14-3.30(\mathrm{~m}, 6 \mathrm{H}), 3.73(\mathrm{dd}, J=14.3,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=6.8$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.68-4.81(\mathrm{~m}, 2 \mathrm{H}), 4.87(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.55(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H}), 8.54(\mathrm{ddd}, J=4.9,1.9,0.9 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=15.6,28.1,28.1,44.5,49.6,52.7,56.1,57.0,59.0,73.3,122.0,122.5$, 125.0, 132.6, 136.3, 137.2, 144.0, 149.0, 156.8, 170.4.

Mass (ESI): $[\mathrm{M}+\mathrm{H}]^{+}=498.28$

19(S)-Me: (1S,5S,6R)-10-((3,5-dichlorophenyl)sulfonyl)-5-(methoxymethyl)-3-((S)-1-(pyridin-2-yl)ethyl)-3,10-diazabicyclo[4.3.1]decan-2-one

Compound $18^{(\mathrm{S})-\mathrm{Me}}(50 \mathrm{mg}, 0.10 \mathrm{mmol}, 1$ eq.) was dissolved in DMF (5 ml). $\mathrm{NaH}(12 \mathrm{mg}, 0.30 \mathrm{mmol}, 3$ eq.) and $\mathrm{Mel}(25 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 4 \mathrm{eq}$.) were added successively and the mixture was stirred for 4 h at $r t$. The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 ml), extracted with $\mathrm{EA}(80 \mathrm{ml})$ and dried over MgSO_{4}. Solvents were removed under reduced pressure and the crude was purified by column chromatography ($10 \mathrm{~g} \mathrm{SiO}_{2}, \mathrm{cycH} / \mathrm{EA}=1: 1$)

Yield: 92\% (47 mg, 0.09 mmol$)$

Appearance: white solids

TLC: $R_{f}=0.23(c y c H / E A=1: 1 ; ~ U V$, Hanessian $)$

HPLC: $R_{t}=13.31 \min (0-100 \% B$ in 20 min$)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta=1.25$ (ddt, $\left.J=13.5,11.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.37-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.58$ (m, 6H), $2.09-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{dq}, J=13.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=14.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.08$ (dd, $J=14.7,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-3.22(\mathrm{~m}, 2 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 3.88$ (td, $J=5.8,4.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.72$ (dt, J $=6.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=7.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ (t, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.65(\mathrm{~m}, 3 \mathrm{H}), 8.50$ (ddd, $J=4.9,1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR (126 MHz, CDCl_{3}): $\delta=15.1,15.6,28.2,28.4,43.6,45.6,52.9,55.0,57.2,59.1,73.4,122.4$, 122.8, 125.0 (2C), 132.6, 136.2 (2C), 137.0, 144.0, 148.6, 159.0, 170.0.

HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S} 512.1172$; Found 512.1173

17: (1S,5S,6R)-10-(benzo[d]thiazol-6-ylsulfonyl)-3-(pyridin-2-ylmethyl)-5-vinyl-3,10-diazabicyclo[4.3.1]decan-2-one

Compound 15 ($30 \mathrm{mg}, 0.11 \mathrm{mmol}, 1 \mathrm{eq}$.), 1,3-benzothiazole- 6 -sulfonyl chloride ($39 \mathrm{mg}, 0.17 \mathrm{mmol}, 1.5$ eq.) and DIPEA ($40 \mu \mathrm{l}, 0.2 \mathrm{mmol}, 2 \mathrm{eq}$.) were placed in a flask under argon atmosphere. MeCN (20 ml) was added and the mixture was stirred for 16 h at rt . The reaction mixture was diluted with EA (50 ml) and washed with brine (20 ml). The organic layer was dried over MgSO_{4} and solvents were removed under reduced pressure. Column chromatography ($12 \mathrm{~g} \mathrm{SiO}_{2}$, EA) afforded the title compound as colorless resin.

Yield: 29\% (15 mg, 0.032 mmol$)$

Appearance: colorless resin

TLC: $R_{f}=0.17(E A ; U V)$

HPLC: $R_{t}=10.21 \min (0-100 \% B$ in 20 min$)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.13$ (tdd, $\left.J=13.2,6.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.25$ (ddt, $J=13.8,9.1,4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.34-1.63(\mathrm{~m}, 3 \mathrm{H}), 2.06-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.71(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=14.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.87$ $-4.19(\mathrm{~m}, 2 \mathrm{H}), 4.68-4.85(\mathrm{~m}, 2 \mathrm{H}), 4.89-5.12(\mathrm{~m}, 3 \mathrm{H}), 5.68(\mathrm{ddd}, \mathrm{J}=17.0,10.2,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{t}$, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dd}, J=8.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.41-8.54(\mathrm{~m}, 2 \mathrm{H}), 9.15(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=15.5,26.3,27.4,49.1,52.4,54.7,55.2,56.8,116.9,121.6,122.9,123.0$, 124.0, 124.7, 134.4, 137.1, 138.4, 139.0, 147.1, 155.5, 156.2, 158.0, 171.1.

HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}_{2} 469.1363$; Found 469.1362

17 ${ }^{\text {(S)-Me: }}$: $1 \mathrm{~S}, 5 \mathrm{~S}, 6 \mathrm{R}$)-10-(benzo[d]thiazol-6-ylsulfonyl)-3-((S)-1-(pyridin-2-yl)ethyl)-5-vinyl-3,10-
diazabicyclo[4.3.1]decan-2-one

Compound $\mathbf{1 5}^{(\mathrm{S})-\mathrm{Me}}$ ($15 \mathrm{mg}, 0.053 \mathrm{mmol}, 1 \mathrm{eq}$.), 1,3-benzothiazole-6-sulfonyl chloride ($24.6 \mathrm{mg}, 0.105$ $\mathrm{mmol}, 1.5 \mathrm{eq}$.$) and DIPEA (18 \mu \mathrm{l}, 0.105 \mathrm{mmol}, 1.5 \mathrm{eq}$.) were placed in a flask under argon atmosphere. DCM (0.5 ml) was added and the mixture was stirred for 20 h at rt . The reaction mixture was loaded on silica and purified by column chromatography ($10 \mathrm{~g} \mathrm{SiO}_{2}, \mathrm{cycH} / \mathrm{EA}=1: 4$) afforded the title compound as colorless resin.

Yield: 43% (11 mg, 0.020 mmol$)$

Appearance: colorless resin

TLC: $R_{f}=0.50(\mathrm{cycH} / E A=1: 4 ; U V)$

HPLC: $R_{t}=13.50 \min (0-100 \% B$ in $20 \min)$
${ }^{1} \mathrm{H}-$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.19-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.57(\mathrm{~m}, 3 \mathrm{H}), 1.59(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.25-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.90(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{dd}, \mathrm{J}=14.6,10.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.07-4.10(\mathrm{~m}, 1 \mathrm{H}), 4.83(\mathrm{dt}, \mathrm{J}=6.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-5.13(\mathrm{~m}, 2 \mathrm{H}), 5.72(\mathrm{ddd}, \mathrm{J}=17.0$, $10.1,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{td}, \mathrm{J}=$ $7.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{dd}, \mathrm{J}=8.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{dd}, \mathrm{J}=8.6,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.51(\mathrm{dd}, \mathrm{J}=1.9,0.6 \mathrm{~Hz}$, 1 H), 8.55 (ddd, J = 4.9, 1.9, $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 9.22(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=15.0,15.5,26.3,27.7,46.1,50.1,54.8,54.9,56.9,116.6,121.5,122.3$, 122.9, 124.0, 124.6, 134.3, 136.8, 137.2, 138.3, 148.6, 155.4, 157.8, 158.9, 170.3.

Mass (ESI): $[\mathrm{M}+\mathrm{H}]^{+}=483.11$

17 ${ }^{\text {(R)-Me: }}$: $1 \mathrm{~S}, 5 \mathrm{~S}, 6 \mathrm{R}$)-10-(benzo[d]thiazol-6-ylsulfonyl)-3-((R)-1-(pyridin-2-yl)ethyl)-5-vinyl-3,10-diazabicyclo[4.3.1]decan-2-one

Compound $\mathbf{1 5}^{(\mathrm{R})-\mathrm{Me}}$ (15 mg, $0.053 \mathrm{mmol}, 1$ eq.), 1,3-benzothiazole-6-sulfonyl chloride ($24.6 \mathrm{mg}, 0.105$ $\mathrm{mmol}, 1.5 \mathrm{eq}$.) and DIPEA ($18 \mu \mathrm{l}, 0.105 \mathrm{mmol}, 1.5 \mathrm{eq}$.) were placed in a flask under argon atmosphere. DCM (0.5 ml) was added and the mixture was stirred for 20 h at rt . The reaction mixture was loaded on silica and purified by column chromatography ($10 \mathrm{~g} \mathrm{SiO}_{2}, \mathrm{cycH} / \mathrm{EA}=1: 4$) afforded the title compound as colorless resin.

Yield: 43% (11 mg, 0.020 mmol$)$

Appearance: colorless resin

TLC: $R_{f}=0.50(\mathrm{cycH} / E A=1: 4 ; U V)$

HPLC: $R_{t}=14.00 \min (0-100 \% B$ in $20 \min)$
${ }^{1} \mathrm{H}-$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.24-1.26(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.51(\mathrm{~m}, 3 \mathrm{H}), 1.53(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.09$ $-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.32(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{dd}, \mathrm{J}=14.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dd}, \mathrm{J}=14.2,10.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.97-4.03(\mathrm{~m}, 1 \mathrm{H}), 4.63(\mathrm{dt}, \mathrm{J}=17.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{dt}, \mathrm{J}=6.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.87-4.91(\mathrm{~m}, 1 \mathrm{H})$, 5.61 (ddd, $J=17.0,10.1,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.36$ (dd, J=7.9, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{td}, \mathrm{J}=7.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{dd}, \mathrm{J}=8.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{dd}, \mathrm{J}=8.7,0.6 \mathrm{~Hz}, 1 \mathrm{H})$, 8.52 (dd, J = 1.8, $0.6 \mathrm{~Hz}, 1 \mathrm{H}$), 8.55 (ddd, J = 5.0, $1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 9.21 (s, 1H).
${ }^{13} \mathbf{C}-$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=15.7,26.1,27.7,29.7,45.6,49.2,54.5,54.6,57.0,116.3,121.5,122.4$, $122.7,124.1,124.6,134.3,136.6,137.5,138.5,148.8,155.4,157.8,159.7,170.2$.

Mass (ESI): $[\mathrm{M}+\mathrm{H}]^{+}=483.13$

20: (1S,5S,6R)-10-(benzo[d]thiazol-6-ylsulfonyl)-5-ethyl-3-(pyridin-2-ylmethyl)-3,10-diazabicyclo[4.3.1]decan-2-one

To a solution of 17 ($10.0 \mathrm{mg}, 0.021 \mathrm{mmol}$) in $\mathrm{MeOH}(0.5 \mathrm{~mL})$ was added $\mathrm{Pd} / \mathrm{C}(10 \%, 2.27 \mathrm{mg}, 0.0021$ mmol) and the solution was saturated with H_{2}. After 1 h the mixture was filtered through SiO_{2} and washed with EA. The solvent was removed under reduced pressure affording the title compound as colorless solids.

Yield: quant. ($10 \mathrm{mg}, 0.021 \mathrm{mmol})$

Appearance: colorless solids

TLC: $R_{f}=0.17(E A=1: 4 ; U V)$

HPLC: $R_{t}=7.30 \min (0-100 \% B$ in 20 min$)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.30-1.36(\mathrm{~m}, 5 \mathrm{H}), 1.47-1.73(\mathrm{~m}, 5 \mathrm{H}), 1.82-1.88(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~d}$, $J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, \mathrm{J}=14.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, \mathrm{J}=14.2,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.95(\mathrm{~m}, 1 \mathrm{H})$, $4.71(\mathrm{~d}, \mathrm{~J}=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{dt}, \mathrm{J}=6.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, \mathrm{~J}=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{ddd}, \mathrm{J}=7.5$, $4.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.67(\mathrm{td}, \mathrm{J}=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{dd}, \mathrm{J}=8.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.26$ (d, J = 8.6 Hz, 1H), $8.50-8.55(\mathrm{~m}, 2 \mathrm{H}), 9.22(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (150 MHz, CDCl_{3}): $\delta=11.51,15.68,26.22,27.32,27.49,29.67,45.60,51.04,55.26,55.95$, $56.81,121.57,122.18,122.47,124.09,124.59,134.32,136.99,138.54,148.99,155.37,157.12,157.87$, 170.84 .

Mass (ESI): $[\mathrm{M}+\mathrm{H}]^{+}=471.16$

20(S)-Me: (1S,5S,6R)-10-(benzo[d]thiazol-6-ylsulfonyl)-5-ethyl-3-((S)-1-(pyridin-2-yl)ethyl)-3,10-diazabicyclo[4.3.1]decan-2-one

To a solution of $\mathbf{1 7}^{(\mathrm{S})-\mathrm{Me}}(9.0 \mathrm{mg}, 0.019 \mathrm{mmol})$ in $\mathrm{MeOH}(0.5 \mathrm{~mL})$ was added $\mathrm{Pd} / \mathrm{C}(10 \%, 2.0 \mathrm{mg}, 0.00187$ mmol) and the solution was saturated with H_{2}. After 16 h the mixture was filtered through SiO_{2} and washed with EA, affording the title compound as a colorless solid.

Yield: quant. ($9 \mathrm{mg}, 0.019 \mathrm{mmol}$)

Appearance: colorless solid

TLC: $R_{f}=0.50(\mathrm{cycH} / E A=1: 4 ; U V)$

HPLC: $R_{t}=13.65 \min (0-100 \% B$ in $20 \min)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.21-1.26(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.48-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.54-$ $1.60(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.83-1.89(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{dd}, \mathrm{J}=14.6,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.27$ (dd, J = 14.7, $10.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.96(\mathrm{dt}, \mathrm{J}=6.7,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{dt}, \mathrm{J}=5.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.18$ $(q, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.94(\mathrm{dd}, \mathrm{J}=8.6,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.53(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.57-8.58(\mathrm{~m}, 1 \mathrm{H}), 9.24(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=10.88,14.13,14.71,25.58,26.59,26.92,28.68,44.30,45.58,53.98$, $54.53,55.95,120.57,121.37,121.96,123.09,123.61,133.33,137.52,147.71,154.39,156.84,158.15$, 169.38.

Mass (ESI): $[\mathrm{M}+\mathrm{H}]^{+}=485.19$

21: (1S,5S,6R)-10-(benzo[d]thiazol-6-ylsulfonyl)-5-(hydroxymethyl)-3-(pyridin-2-ylmethyl)-3,10-diazabicyclo[4.3.1]decan-2-one

To a solution $17(60 \mathrm{mg}, 0.128 \mathrm{mmol})$ in dioxane $/ \mathrm{H}_{2} \mathrm{O}(0.8 \mathrm{~mL}, 3: 1)$ was added $\mathrm{NaIO}_{4}(110 \mathrm{mg}, 0.512$ mmol), $\mathrm{OsO}_{4}(2.5 \%$ Solution in tert-Butanol, $0.00178 \mathrm{mmol}, 0.022 \mathrm{~mL}$) and 2,6 -Lutidine ($59 \mu \mathrm{~L} \mathrm{~mL}$, $0.512 \mathrm{mmol})$. The solution was stirred for 20 h at room temperature, then $\mathrm{Et}_{2} \mathrm{O}(90 \mathrm{~mL})$ was added to the reaction and washed with sat. aq. NaCl solution ($3 \times 10 \mathrm{~mL}$). The solvent was removed under reduced pressure, the obtained crude product was dissolved in $\mathrm{EtOH}(1 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(7.27 \mathrm{mg}, 0.192$ mmol) was added and stirred for 1 h at room temperature. $\mathrm{Et}_{2} \mathrm{O}(90 \mathrm{~mL})$ was added to the reaction and washed with sat. aq. NaCl solution ($3 \times 10 \mathrm{~mL}$). Column chromatography over $\mathrm{SiO}_{2}(\mathrm{EA})$ afforded the title compound as a colorless solid.

Yield: 27\% (16 mg, 0.034 mmol$)$

Appearance: colorless solid

HPLC: $R_{t}=10.88 \min (0-100 \% B$ in $20 \min)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.34-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.49(\mathrm{~m}, 3 \mathrm{H}), 2.22-2.27(\mathrm{~m}, 2 \mathrm{H}), 3.38-$ $3.42(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{dd}, \mathrm{J}=14.3,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-4.06$ $(\mathrm{m}, 1 \mathrm{H}), 4.75-4.86(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.94$ (dd, $J=8.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{dd}, \mathrm{J}=8.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.49-8.54(\mathrm{~m}, 2 \mathrm{H}), 9.22(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=15.58,27.71,29.67,46.86,49.57,56.02,56.95,61.85,63.59,72.25$, 121.60, 122.36, 124.03, 124.64, 134.35, 137.09, 138.35, 149.01, 155.43, 156.96, 157.92, 170.66.

Mass (ESI): $[\mathrm{M}+\mathrm{H}]^{+}=475.12$

21(S)-Me: (1S,5S,6R)-10-(benzo[d]thiazol-6-ylsulfonyl)-5-(hydroxymethyl)-3-((S)-1-(pyridin-2-yl)ethyl)-3,10-diazabicyclo[4.3.1]decan-2-one

To a solution of $17^{(\mathrm{s})-\mathrm{Me}}(200 \mathrm{mg}, 0.414 \mathrm{mmol})$ in dioxane $/ \mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL}, 3: 1)$ was added $\mathrm{NaIO}_{4}(355 \mathrm{mg}$, 1.66 mmol), OsO_{4} (2.5% Solution in tert-Butanol, $0.009 \mathrm{mmol}, 0.104 \mathrm{~mL}$) and 2,6 -Lutidine (0.096 mL , $0.829 \mathrm{mmol})$. The solution was stirred for 3 h at room temperature, then sat. aq. NaCl solution (30 mL) was added to the reaction and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and the solvent removed under reduced pressure. The obtained crude product was dissolved in $\mathrm{EtOH}(12 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(23.5 \mathrm{mg}, 0.622 \mathrm{mmol})$ was added and stirred for 1 h at room temperature. $\mathrm{Et}_{2} \mathrm{O}(90 \mathrm{~mL})$ was added to the reaction and washed with sat. aq. NaCl solution ($3 \times$ 10 mL). Column chromatography over $\mathrm{SiO}_{2}($ Cyclohexane $/ \mathrm{EtOAc}=3: 7$) afforded the title compound as a colorless solid.

Yield: 70% ($140 \mathrm{mg}, 0.28 \mathrm{mmol})$

Appearance: colorless solid

HPLC: $R_{t}=10.96 \min (0-100 \% B$ in $20 \min)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.40-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.61(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.16$ $-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.31(\mathrm{~m}, 1 \mathrm{H}), 3.16-3.24(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{dd}, \mathrm{J}=14.6,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.61$ $(\mathrm{m}, 2 \mathrm{H}), 4.00-4.04(\mathrm{~m}, 1 \mathrm{H}), 4.84(\mathrm{dt}, \mathrm{J}=6.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{q}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.24(\mathrm{~m}, 1 \mathrm{H})$, 7.27 (d, J = $8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.65 (td, J = 7.6, 1.8 Hz, 1H), 7.91 (dd, J = 8.5, 1.8 Hz, 1H), $8.24(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.51(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{ddd}, \mathrm{J}=5.0,1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 9.22(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=15.10,15.66,28.06,28.17,43.62,47.76,52.24,55.08,57.12,60.41$, $63.68,121.63,122.52,123.07,124.06,124.67,134.37,138.35,148.53,155.46,157.96,158.97,170.29$.

Mass (ESI): $[\mathrm{M}+\mathrm{H}]^{+}=487.21$

22: (1S,5S,6R)-10-(benzo[d]thiazol-6-ylsulfonyl)-5-(methoxymethyl)-3-(pyridin-2-ylmethyl)-3,10-diazabicyclo[4.3.1]decan-2-one

Compound 21 ($7.6 \mathrm{mg}, 0.016 \mathrm{mmol}, 1$ eq.) was dissolved in DMF (2 ml). $\mathrm{NaH}(1.2 \mathrm{mg}, 0.048 \mathrm{mmol}, 3$ eq.) and $\mathrm{Mel}(4 \mu \mathrm{~L}, 0.064 \mathrm{mmol}, 4$ eq.) were added successively and the mixture was stirred for 2 h at $r t$. The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 ml), extracted with EA ($2 \times 40 \mathrm{ml}$) and dried over MgSO_{4}. Solvents were removed under reduced pressure and the crude was purified by column chromatography ($5 \mathrm{~g} \mathrm{SiO} 2, \mathrm{cycH} / \mathrm{EA}=1: 1$)

Yield: 89% ($7 \mathrm{mg}, 0.014 \mathrm{mmol})$

Appearance: white solids
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.15-1.68(\mathrm{~m}, 5 \mathrm{H}), 2.17-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~m}, 1 \mathrm{H}), 3.18-3.28(\mathrm{~m}$, $6 \mathrm{H}), 3.83(\mathrm{dd}, \mathrm{J}=14.2,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~m}, 1 \mathrm{H}), 4.73(\mathrm{~d}, \mathrm{~J}=15.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.84(\mathrm{~d}, \mathrm{~J}=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, \mathrm{~J}=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{ddd}, \mathrm{J}=7.5,4.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 3 \mathrm{H}), 7.67$ (td, $J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.95(\mathrm{ddd}, \mathrm{J}=12.8,8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.27$ (ddd, $\mathrm{J}=13.9,8.7,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.38$ $-8.59(m, 2 H), 9.23(d, J=7.5 H z, 1 H)$.
${ }^{13} \mathbf{C}-$ NMR (100 MHz, CDCl_{3}): $\delta=14.2,15.6,20.6,22.7,27.8,28.0,29.7,31.9,44.5,49.7,52.4,56.1$, $56.9,58.9,60.4,73.4,76.7,77.0,77.2,77.3,121.7,122.0,122.5,123.2,124.1,124.5,124.6,134.3$, $137.2,138.4,148.9,155.4,156.9,158.0,170.8,174.5$.

Mass (ESI): $[\mathrm{M}+\mathrm{H}]^{+}=487.18$
$\mathbf{2 2}^{\text {(S)-Me: }}$: $1 \mathrm{~S}, 5 \mathrm{~S}, 6 \mathrm{R}$)-10-(benzo[d]thiazol-6-ylsulfonyl)-5-(methoxymethyl)-3-((S)-1-(pyridin-2-yl)ethyl)-3,10-diazabicyclo[4.3.1]decan-2-one

To a solution of $\mathbf{2 7}{ }^{(\mathrm{S})}$-Me $(8.00 \mathrm{mg}, 0.026 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ were added DIPEA $(9.21 \mu \mathrm{~L}, 0.053$ $\mathrm{mmol})$, DMAP ($0.322 \mathrm{mg}, 2.64 \mu \mathrm{~mol}$) and benzo[d]thiazole-6-sulfonyl chloride ($12.3 \mathrm{mg}, 0.053 \mathrm{mmol}$). The mixture was stirred for 20 h at room temperature and then loaded on SiO_{2} and purified by column chromatography (100% EtOAc) affording the title compound ($6 \mathrm{mg}, 0.0120 \mathrm{mmol}, 46 \%$) as a colorless solid.

$\mathbf{R f}_{\mathbf{f}}: 0.27$ (EtOAc)

${ }^{1} \mathrm{H}$ NMR $\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.28(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.48-1.54(\mathrm{~m}, 3 \mathrm{H}), 1.59(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.21$ $-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.31(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{dd}, J=14.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.21-3.26(\mathrm{~m}, 2 \mathrm{H}), 3.27-3.32$ $(\mathrm{m}, 4 \mathrm{H}), 3.97-4.02(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{dt}, J=6.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.20(\mathrm{~m}, 1 \mathrm{H})$, $7.20-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.62(\mathrm{td}, J=7.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{dd}, J=8.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.51(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.53-8.56(\mathrm{~m}, 1 \mathrm{H}), 9.22(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (200 MHz, CDCl_{3}) $\delta 13.11,14.01,19.46,26.99,27.15,28.34,28.64,28.67,42.49,44.54$, $53.91,58.05,72.44,98.73,120.61,123.05,123.57,133.27,137.32,147.80,154.34,156.92,158.08$, 169.30.

HPLC ($0-100 \%$ B in A in 20 min$): R_{t}=12.73 \mathrm{~min}$

22 ${ }^{\text {(R)-Me }}$: (1S,5S,6R)-10-(benzo[d]thiazol-6-ylsulfonyl)-5-(methoxymethyl)-3-((R)-1-(pyridin-2-yl)ethyl)-3,10-diazabicyclo[4.3.1]decan-2-one

To a solution of $\mathbf{2 2 ^ { (R) - M e }}(15 \mathrm{mg}, 0.049 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ were added DIPEA ($17.0 \mu \mathrm{~L}, 0.099 \mathrm{mmol}$), DMAP ($0.904 \mathrm{mg}, 4.94 \mu \mathrm{~mol}$) and benzo[d]thiazole-6-sulfonyl chloride ($23.1 \mathrm{mg}, 0.099 \mathrm{mmol}$). The mixture was stirred for 20 h at room temperature and then loaded on SiO_{2} and purified by column chromatography (100% EtOAc) affording the title compound ($10 \mathrm{mg}, 0.0200 \mathrm{mmol}, 40 \%$) as a colorless solid.

$\mathbf{R}_{\mathrm{f}}: 0.27$ (EtOAc)

${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 1.33-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.45(\mathrm{~m}, 3 \mathrm{H}), 1.50(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.73-1.79(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.34(\mathrm{~m}, 1 \mathrm{H}), 3.01-3.18(\mathrm{~m}, 6 \mathrm{H}), 3.45(\mathrm{dd}, J=14.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-$ $3.97(\mathrm{~m}, 1 \mathrm{H}), 4.88(\mathrm{dt}, J=6.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.36$ $(\mathrm{m}, 1 \mathrm{H}), 7.64(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{dd}, J=8.7,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.51$ (dd, $J=1.9,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.55$ (ddd, $J=4.9,1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 9.21(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 17.46,27.88,28.13,29.70,42.85,44.28,52.48,54.60,57.17,58.76$, $73.45,76.70,77.02,77.22,77.34,121.63,122.45,122.83,124.18,124.55,134.31,136.59,138.55$, 148.87, 155.38, 157.90, 159.62, 170.32.

HPLC ($0-100 \%$ B in A in 20 min$): R_{t}=12.84 \mathrm{~min}$

23: (1S,5R,6R)-3-(4-methoxybenzyl)-5-vinyl-3,10-diazabicyclo[4.3.1]decan-2-one

25

23 was synthesized in 8 steps from 12, as previously published within our group ${ }^{7}$.

Appearance: yellow resin

TLC: $R_{f}=0.19$ (EA $+3 \%$ TEA $+2 \% M e O H ; U V$, ninhydrin)
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta=1.44-1.82(\mathrm{~m}, 5 \mathrm{H}), 2.11-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{dd}$, $J=7.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=13.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 4 \mathrm{H}), 3.85-4.01(\mathrm{~m}, 2 \mathrm{H}), 4.47(\mathrm{~d}, J=14.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.71-4.98(\mathrm{~m}, 3 \mathrm{H}), 5.58(\mathrm{~m}, 1 \mathrm{H}), 6.84-6.93(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.29(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=16.8,28.1,29.4,49.5,50.2,52.5,53.0,55.3,57.8,113.9,115.1,129.4$, 129.9, 139.1, 158.9, 174.5.

Mass (ESI): $[\mathrm{M}+\mathrm{H}]^{+}=301.01$

24: (1S,5R,6R)-benzyl 3-(4-methoxybenzyl)-2-oxo-5-vinyl-3,10-diazabicyclo[4.3.1]decane-10carboxylate

To a solution of $23(600 \mathrm{mg}, 2.00 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ were added $\mathrm{CbzCl}(375 \mathrm{mg} .2 .20 \mathrm{mmol})$ and DIPEA ($698 \mathrm{~mL}, 3.99 \mathrm{mmol}$) and the reaction was stirred for 1 h at room temperature. Sat. aq. NaHCO_{3} solution (25 mL) was added to the mixture and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL})$. The organic layer was dried over MgSO_{4} and the solvent removed under reduced pressure affording the crude product which was used for the next step without further purification.

25: (1S,5R,6R)-benzyl 5-(hydroxymethyl)-3-(4-methoxybenzyl)-2-oxo-3,10-diazabicyclo[4.3.1]decane-10-carboxylate

To a solution of $24(445 \mathrm{mg}, 1.024 \mathrm{mmol})$ in Dioxane $/ \mathrm{H}_{2} \mathrm{O}(12 \mathrm{~mL}, 3: 1)$ was added $\mathrm{NaIO}_{4}(876 \mathrm{mg}, 4.10$ mmol), OsO_{4} (2.5% Solution in tert-Butanol, $0.020 \mathrm{mmol}, 0.257 \mathrm{~mL}$) and 2,6-Lutidine ($0.474 \mathrm{~mL}, 4.10$ $\mathrm{mmol})$. The solution was stirred for 3 h at room temperature, then sat. aq. NaCl solution (30 mL) was added to the reaction and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and the solvent removed under reduced pressure. The obtained crude product was dissolved in EtOH (12 mL) and $\mathrm{NaBH}_{4}(58.1 \mathrm{mg}, 1.54 \mathrm{mmol})$ was added and stirred for 1 h at room temperature. $\mathrm{Et}_{2} \mathrm{O}(90 \mathrm{~mL})$ was added to the reaction and washed with sat. aq. NaCl solution ($3 \times$ 10 mL). Column chromatography over SiO_{2} (Cyclohexane/EtOAc $=3 / 7$) afforded the title compound ($295 \mathrm{mg}, 0.672 \mathrm{mmol}, 66 \%$) as a colorless solid.

Yield: 66\% (295 mg, 0.672 mmol)

Appearance: colorless solids
${ }^{1} \mathrm{H}$ NMR (400 MHz CDCl 3) $\delta=1.51-1.75(\mathrm{~m}, 5 \mathrm{H}), 1.89-2.00(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{~s}$, $2 \mathrm{H}), 3.06-3.28(\mathrm{~m}, 2 \mathrm{H}), 3.43-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.77-3.85(\mathrm{~m}, 3 \mathrm{H}), 4.02-4.18(\mathrm{~m}, 1 \mathrm{H}), 4.31-4.43(\mathrm{~m}$, $1 \mathrm{H}), 4.72-4.85(\mathrm{~m}, 1 \mathrm{H}), 5.05-5.28(\mathrm{~m}, 3 \mathrm{H}), 6.79-6.89(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.43(\mathrm{~m}$, 5H).
${ }^{13}{ }^{3}$ CNMR (100 MHz, CDCl_{3}) $\delta 15.93,28.49,28.97,47.23,47.32,47.53,49.17,49.45,53.02,53.15$, $55.26,56.03,56.37,63.81,64.09,67.80,67.86,113.99,114.02,120.24,127.92,128.15,128.27$, 128.61, 129.25, 129.45, 129.53, 156.31, 159.05, 171.59.

26: (1S,5R,6R)benzyl 5-(methoxymethyl)-2-oxo-3,10-diazabicyclo[4.3.1]decane-10-carboxylate

A solution of $25(295 \mathrm{mg}, 0.673 \mathrm{mmol})$ in DMF (5 mL) was cooled to $0^{\circ} \mathrm{C}$. $\mathrm{NaH}(60 \%$ dispersion in mineral oil, $19.4 \mathrm{mg}, 0.807 \mathrm{mmol}$) was added and the solution was stirred for 30 minutes. $\mathrm{CH}_{3} \mathrm{I}$ (477 mg ,
 aq. NaCl sol. ($3 \times 10 \mathrm{~mL}$). The organic layer was dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude product obtained was used for the next step without further purification.

To a solution of (1S,5R,6R)-benzyl 3-(4-methoxybenzyl)-5-(methoxymethyl)-2-oxo-3,10-diazabicyclo[4.3.1]decane-10-carboxylate ($304 \mathrm{mg}, 0.672 \mathrm{mmol}$) in $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(7.50 \mathrm{~mL}, 2: 1$) was added CAN ($1.11 \mathrm{~g}, 2.02 \mathrm{mmol}$). After 4 h stirring at room temperature sat. aq. NaCl solution (50 mL) was added to the mixture and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 150 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and the solvent removed under reduced pressure. Column chromatography over SiO_{2} (Cyclohexane/EtOAc = 1:4) afforded the title compound ($120 \mathrm{mg}, 0.361 \mathrm{mmol}, 55 \%$) as a colorless solid.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.53-1.78(\mathrm{~m}, 5 \mathrm{H}), 2.25-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.97-3.20(\mathrm{~m}, 3 \mathrm{H}), 3.23-3.28$ $(\mathrm{m}, 2 \mathrm{H}), 3.28-3.34(\mathrm{~m}, 2 \mathrm{H}), 4.09-4.19(\mathrm{~m}, 1 \mathrm{H}), 4.91-5.30(\mathrm{~m}, 3 \mathrm{H}), 6.30-6.42(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.40$ ($\mathrm{m}, 5 \mathrm{H}$).

27(S)-Me: (1S,5R,6R)-5-(methoxymethyl)-3-((S)-1-(pyridin-2-yl)ethyl)-3,10-diazabicyclo[4.3.1]decan-2one

$27^{(\mathrm{S})-\mathrm{Me}}$

A solution of $26(100 \mathrm{mg}, 0.301 \mathrm{mmol})$ in dry DMF (3 mL) was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{NaH}(15.6 \mathrm{mg}, 0.391$ mmol) was added. After 20 minutes 2-(1-bromoethyl)pyridine ($72.8 \mathrm{mg}, 0.391 \mathrm{mmol}$) was added and the reaction was allowed to reach room temperature. After 1 h the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and washed with sat. aq. NaCl sol. $(3 \times 10 \mathrm{~mL})$. The organic layer was dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude product was then dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and BCl_{3} dimethylsulfide complex (2 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.743 \mathrm{~mL}, 1.486 \mathrm{mmol}$) was added to the solution. After $1 \mathrm{~h} \mathrm{NaOH}\left(1 \mathrm{~m}\right.$ in $\mathrm{H}_{2} \mathrm{O}, 25 \mathrm{~mL}$) was added to the mixture and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and he solvent was removed under reduced pressure. Column chromatography over SiO_{2} ($\mathrm{EtOAc}+5 \% \mathrm{MeOH}+5 \%$ TEA) afforded the title compounds (11 $\mathrm{mg}, 0.0363 \mathrm{mmol}, 12 \%)$.
$\mathbf{R}_{\mathrm{f}}:(\mathrm{EtOAc}+5 \% \mathrm{MeOH}+5 \% \mathrm{TEA}): 0.15$
${ }^{1} \mathrm{H}$ NMR (800 MHz , Chloroform-d) $\delta 1.50(\mathrm{dtd}, J=12.6,2.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.62$ $-1.67(\mathrm{~m}, 3 \mathrm{H}), 1.73$ (dddd, $J=12.8,8.4,4.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.36(\mathrm{~m}, 1 \mathrm{H})$, 2.68 (ddd, $J=7.1,4.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.09-3.13(\mathrm{~m}, 2 \mathrm{H}), 3.18(\mathrm{dd}, J=9.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.25-3.31(\mathrm{~m}$, $4 \mathrm{H}), 3.33-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.92(\mathrm{~m}, 1 \mathrm{H}), 6.21(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{dq}, J$ $=7.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{td}, J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.56-8.60(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (200 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 15.17,29.45,30.18,34.50,43.05,46.23,49.63,54.35,58.10,58.94$, 74.33, 122.14, 122.81, 136.51, 148.94, 160.09, 174.26.

MS (ESI): $m / z(\%)=304.05[\mathrm{M}+\mathrm{H}]^{+}$

27 ${ }^{\text {(R)-Me }}:(1 \mathrm{~S}, 5 \mathrm{R}, 6 \mathrm{R})$-5-(methoxymethyl)-3-((R)-1-(pyridin-2-yl)ethyl)-3,10-diazabicyclo[4.3.1]decan-2one

$\mathbf{2 7}{ }^{(\mathrm{R})-\mathrm{Me}}$ was isolated from the same reaction as $\mathbf{2 7} \mathbf{7}^{(\mathrm{S})-\mathrm{Me}}$.
$\mathbf{R}_{\mathrm{f}}:(\mathrm{EtOAc}+5 \% \mathrm{MeOH}+5 \% \mathrm{TEA}): 0.29$
${ }^{1} \mathrm{H}$ NMR $\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.55-1.59(\mathrm{~m}, 5 \mathrm{H}), 1.65-1.74(\mathrm{~m}, 3 \mathrm{H}), 2.05-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.37$ $(\mathrm{m}, 1 \mathrm{H}), 2.65-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.88-3.00(\mathrm{~m}, 2 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H}), 3.16-3.23(\mathrm{~m}, 1 \mathrm{H}), 3.24-3.31(\mathrm{~m}, 1 \mathrm{H})$, $3.64(\mathrm{dd}, J=14.1,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=5.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ (ddd, $J=$ $7.5,4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.65(\mathrm{td}, J=7.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.55-8.59(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (200 MHz, CDCl_{3}) $\delta 21.09,29.24,29.90,42.62,44.86,49.50,54.11,58.08,58.59,60.43$, 74.13, 122.27, 123.05, 136.48, 148.66, 160.13, 171.20.

MS (ESI): $m / z(\%)=304.05[M+H]^{+}$

10 Analytical data

Figure S17. ${ }^{1} \mathrm{H}$-NMR of compound 1.

Figure S18. ${ }^{13} \mathrm{C}$-NMR of compound 1.

Figure S19. ${ }^{1} \mathrm{H}$-NMR of compound $1^{(\mathrm{R})-\mathrm{Me}}$.

Figure S20. ${ }^{13} \mathrm{C}$-NMR of compound $\mathbf{1}^{(\mathrm{R})}$-Me.

Figure S21. ${ }^{1} \mathrm{H}$-NMR of compound $\mathbf{1}^{(\mathrm{s})}$-Me.

Figure S22. ${ }^{13} \mathrm{C}$-NMR of compound $\mathbf{1}^{(\mathrm{s})}$-Me .

Figure S23. ${ }^{1} \mathrm{H}$-NMR of compound $\mathbf{8}^{(\mathrm{R})-\mathrm{Me}}$.

Figure S24. ${ }^{13} \mathrm{C}$-NMR of compound $\mathbf{8}^{(\mathrm{R}) \text {-Me }}$

Figure S25. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $\mathbf{8}^{(\mathrm{s})-\mathrm{Me}}$.

Figure S26. ${ }^{13}$ C-NMR of compound $\mathbf{8}^{(\mathrm{s})-\mathrm{Me}}$.

Figure S27. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $\mathbf{9}^{(\mathrm{R})-\mathrm{Me} \text {. }}$

Figure S28. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $\mathbf{9}^{(\mathrm{R}) \text {-Me. }}$.

Figure S29. ${ }^{1} \mathrm{H}$-NMR of compound $9(\mathrm{~s})$-Me.

Figure S30. ${ }^{13} \mathrm{C}$-NMR of compound $9(\mathrm{~s})$-Me.

Figure S31. ${ }^{1} \mathrm{H}$-NMR of compound $\mathbf{1 0}^{(\mathrm{R})-\mathrm{Me}}$.

Figure S32. ${ }^{13} \mathrm{C}$-NMR of compound $1 \mathbf{1 0}^{(\mathrm{R})-\mathrm{Me}}$.

Figure S33. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $\mathbf{1 0}^{(\mathrm{s})} \mathrm{Me}$.

Figure S34. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $\mathbf{1 0}^{(\mathrm{S})-\mathrm{Me}}$.

Figure S35. ${ }^{1} \mathrm{H}$-NMR of compound $11^{(\mathrm{R})-\mathrm{Me}}$.

Figure S36. ${ }^{13} \mathrm{C}$-NMR of compound $11^{(\mathrm{R})-\mathrm{Me}}$.

Figure S37. ${ }^{1} \mathrm{H}$-NMR of compound $11^{(\mathrm{s})}{ }^{1} \mathrm{Me}$.

Figure S38. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $\mathbf{1 1}^{(\mathrm{S})}$-Me.

Figure S39. ${ }^{1} \mathrm{H}$-NMR of compound 16.

Figure S40. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound 16.

Figure S41. ${ }^{1} \mathrm{H}$-NMR of compound $\mathbf{1 6}^{(\mathrm{S})}{ }^{\mathrm{M}}$. .

Figure S42. ${ }^{13} \mathrm{C}$-NMR of compound $16{ }^{(\mathrm{S})-\mathrm{Me}}$.

Figure S43. ${ }^{1} \mathrm{H}$-NMR of compound $16{ }^{(\mathrm{R})-\mathrm{Me}}$

Figure $\mathrm{S} 44 .{ }^{13} \mathrm{C}$-NMR of compound $16^{(\mathrm{R})}$-Me.

Figure S45. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound 17.

Figure S46. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound 17.

Figure S47. ${ }^{1} \mathrm{H}$-NMR of compound $17{ }^{(\mathrm{R})}$-Me

Figure S48. ${ }^{13} \mathrm{C}$-NMR of compound $\mathbf{1 7}^{(\mathrm{R}) \text {-Me }}$.

Figure S49. ${ }^{1} \mathrm{H}$-NMR of compound $1 \mathbf{1 7}^{(\mathrm{s})-\mathrm{Me}}$.

Figure S50. ${ }^{13} \mathrm{C}$-NMR of compound $\mathbf{1 7}{ }^{(\mathrm{S})}$-Me.

Figure S51. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound 18.

Figure S52. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound 18.

Figure S53. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $18(\mathrm{~S})-\mathrm{Me}$

Figure S54. ${ }^{13} \mathrm{C}$-NMR of compound $18^{(\mathrm{S})-\mathrm{Me}}$.

Figure S55. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound 19.

Figure S56. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound 19.

Figure S57. ${ }^{1} \mathrm{H}$-NMR of compound $19(\mathrm{~s})$-Me

Figure S58. ${ }^{13} \mathrm{C}$-NMR of compound $19(\mathrm{~s})$-Me .

Figure S59. ${ }^{1} \mathrm{H}$-NMR of compound 20.

Figure S60. ${ }^{13} \mathrm{C}$-NMR of compound 20.

Figure S61. ${ }^{1} \mathrm{H}$-NMR of compound $\mathbf{2 0}^{(\mathrm{s})}{ }^{2}$-Me.

Figure S62. ${ }^{13} \mathrm{C}$-NMR of compound $\mathbf{2 0}^{(\mathrm{s})-\mathrm{Me}}$.

Figure S63. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound 21.

Figure S64. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound 21.

Figure S65. ${ }^{1} \mathrm{H}$-NMR of compound $\mathbf{2 1}{ }^{(\mathrm{s})} \mathrm{Me}$.

Figure S66. ${ }^{13} \mathrm{C}$-NMR of compound $\mathbf{2 1}{ }^{(\mathrm{S})}$-Me.

Figure S67. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound 22.

Figure S68. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound 22.

Figure S69. ${ }^{1} \mathrm{H}$-NMR of compound $\mathbf{2 2}^{(\mathrm{R})-\mathrm{Me}}$

Figure $\mathbf{S 7 0} .{ }^{13} \mathrm{C}$-NMR of compound $\mathbf{2 2}^{(\mathrm{R})-\mathrm{Me}}$.

Figure S71. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $\mathbf{2 2}^{(\mathrm{s})-\mathrm{Me}}$.

Figure $\mathbf{S 7 2} .{ }^{13} \mathrm{C}$-NMR of compound $\mathbf{2 2}^{(\mathrm{s})}$-Me.

11 References

1. Beglov, D.; Roux, B., An Integral Equation To Describe the Solvation of Polar Molecules in Liquid Water. J. Phys. Chem. B 1997, 101 (39), 7821-7826.
2. Ornstein LS, Z. F., Accidental deviations of density and opalescence at the critical point of a single substance. KNAW 1914, 17, 793.
3. Chandler, D.; Andersen, H. C., Optimized Cluster Expansions for Classical Fluids. II. Theory of Molecular Liquids. J. Chem. Phys. 1972, 57 (5), 1930-1937.
4. Molecular Operating Environment (MOE), C. C. G. U., 1010 Sherbooke St. West, Suite \#910, Montreal, QC, Canada, H3A 2R7, 2020.
5. Ratkova, E. L.; Dawidowski, M.; Napolitano, V.; Dubin, G.; Fino, R.; Ostertag, M. S.; Sattler, M.; Popowicz, G.; Tetko, I. V., Water envelope has a critical impact on the design of protein-protein interaction inhibitors. Chem. Commun. 2020, 56 (31), 4360-4363.
6. Kovalenko, A.; Hirata, F., Self-consistent description of a metal-water interface by the KohnSham density functional theory and the three-dimensional reference interaction site model. J. Chem. Phys. 1999, 110 (20), 10095-10112.
7. Pomplun, S.; Sippel, C.; Hahle, A.; Tay, D.; Shima, K.; Klages, A.; Unal, C. M.; Riess, B.; Toh, H. T.; Hansen, G.; Yoon, H. S.; Bracher, A.; Preiser, P.; Rupp, J.; Steinert, M.; Hausch, F., Chemogenomic Profiling of Human and Microbial FK506-Binding Proteins. J. Med. Chem. 2018, 61 (8), 3660-3673.
8. Kozany, C.; Marz, A.; Kress, C.; Hausch, F., Fluorescent probes to characterise FK506-binding proteins. ChemBioChem 2009, 10 (8), 1402-10.
9. Kabsch, W., Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. D Biol. Crystallogr. 2010, 66 (Pt 2), 133-144.
10. Potterton, E.; Briggs, P.; Turkenburg, M.; Dodson, E., A graphical user interface to the CCP4 program suite. Acta Cryst. D 2003, 59 (7), 1131-1137.
11. Potterton, L.; Agirre, J.; Ballard, C.; Cowtan, K.; Dodson, E.; Evans, P. R.; Jenkins, H. T.; Keegan, R.; Krissinel, E.; Stevenson, K.; Lebedev, A.; McNicholas, S. J.; Nicholls, R. A.; Noble, M.; Pannu, N. S.; Roth, C.; Sheldrick, G.; Skubak, P.; Turkenburg, J.; Uski, V.; von Delft, F.; Waterman, D.; Wilson, K.; Winn, M.; Wojdyr, M., CCP4i2: the new graphical user interface to the CCP4 program suite. Acta Crystallogr. D Struct. Biol. 2018, 74 (Pt 2), 68-84.
12. Evans, P. R., An introduction to data reduction: space-group determination, scaling and intensity statistics. Acta Crystallogr. D Biol. Crystallogr. 2011, 67 (Pt 4), 282-92.
13. Evans, P. R.; Murshudov, G. N., How good are my data and what is the resolution? Acta Cryst. D 2013, 69 (7), 1204-1214.
14. Lebedev, A. A.; Vagin, A. A.; Murshudov, G. N., Model preparation in MOLREP and examples of model improvement using X-ray data. Acta Crystallogr. D Biol. Crystallogr. 2008, 64 (Pt 1), 33-39.
15. Vagin, A.; Teplyakov, A., Molecular replacement with MOLREP. Acta Cryst. D 2010, 66 (1), 22-
16.
17. Emsley, P.; Lohkamp, B.; Scott, W. G.; Cowtan, K., Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 2010, 66 (Pt 4), 486-501.
18. Murshudov, G. N.; Skubak, P.; Lebedev, A. A.; Pannu, N. S.; Steiner, R. A.; Nicholls, R. A.; Winn, M. D.; Long, F.; Vagin, A. A., REFMAC5 for the refinement of macromolecular crystal structures.
Acta Cryst. D 2011, 67 (4), 355-367.
19. Vagin, A. A.; Steiner, R. A.; Lebedev, A. A.; Potterton, L.; McNicholas, S.; Long, F.; Murshudov, G. N., REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr. D Biol. Crystallogr. 2004, 60 (Pt 12 Pt 1), 2184-95.
20. Nicholls, R. A.; Long, F.; Murshudov, G. N., Low-resolution refinement tools in REFMAC5. Acta Crystallogr. D Biol. Crystallogr. 2012, 68 (Pt 4), 404-417.
21. Murshudov, G. N.; Vagin, A. A.; Dodson, E. J., Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 1997, 53 (Pt 3), 240-55.
22. Winn, M. D.; Murshudov, G. N.; Papiz, M. Z., Macromolecular TLS refinement in REFMAC at moderate resolutions. Meth. Enzymol. 2003, 374, 300-21.
23. van Aalten, D. M. F.; Bywater, R.; Findlay, J. B. C.; Hendlich, M.; Hooft, R. W. W.; Vriend, G., PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. J. Comput. Aided Mol. Des. 1996, 10 (3), 255-262.
24. Neese, F., The ORCA program system. Wiley Interdiscip. Rev.-Comput. Mol. Sci. 2012, 2 (1), 73-78.
25. Becke, A. D., Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38 (6), 3098-3100.
26. Perdew, J. P., Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 1986, 33 (12), 8822-8824.
27. Neese, F., An improvement of the resolution of the identity approximation for the formation of the Coulomb matrix. J. Comput. Chem. 2003, 24 (14), 1740-1747.
28. Weigend, F.; Ahlrichs, R., Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn : Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7 (18), 3297-3305.
29. Weigend, F., Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8 (9), 1057-1065.
30. Barone, V.; Cossi, M., Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. J. Phys. Chem. A 1998, 102 (11), 1995-2001.
31. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132 (15), 154104.
32. Grimme, S., Semiempirical hybrid density functional with perturbative second-order correlation. J. Chem. Phys. 2006, 124 (3), 034108.
33. Gnatzy, M. T.; Geiger, T. M.; Kuehn, A.; Gutfreund, N.; Walz, M.; Kolos, J. M.; Hausch, F., Development of NanoBRET-Binding Assays for FKBP-Ligand Profiling in Living Cells. ChemBioChem 2021, 22 (13), 2257-2261.
34. Cheng, Y.; Prusoff, W. H., Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 1973, 22 (23), 3099-108.
35. Korchynskyi, O.; ten Dijke, P., Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter. J. Biol. Chem. 2002, 277 (7), 4883-91.
36. Albers, J.; Danzer, C.; Rechsteiner, M.; Lehmann, H.; Brandt, L. P.; Hejhal, T.; Catalano, A.; Busenhart, P.; Gonçalves, A. F.; Brandt, S.; Bode, P. K.; Bode-Lesniewska, B.; Wild, P. J.; Frew, I. J., A versatile modular vector system for rapid combinatorial mammalian genetics. J. Clin. Investig. 2015, 125 (4), 1603-19.

[^0]: ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.9,15.6,26.4,27.5,45.5,49.8,54.1,55.0,57.0,64.5,116.9$, 121.9, 124.2, 124.7, 134.5, 137.5, 138.2, 155.6, 158.1, 171.7.

[^1]: ${ }^{13} \mathrm{C}-$ NMR (75 MHz, CDCl_{3}): $\delta=15.2,16.9,28.1,29.8,45.3,50.6,52.8,54.3,58.0,115.0,122.1,122.9$,

