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Abstract
We study efficiency in a proof-of-work blockchain with non-zero

latencies, focusing in particular on the (inequality in) individual

miners’ efficiencies. Prior work attributed differences in miners’

efficiencies mostly to attacks, but we pursue a different question:

Can inequality in miners’ efficiencies be explained by delays, even
when all miners are honest? Traditionally, such efficiency-related

questions were tackled only at the level of the overall system, and

in a peer-to-peer (P2P) setting where miners directly connect to one

another. Despite it being common today for miners to pool compute

capacities in a mining pool managed by a centralized coordinator,

efficiency in such a coordinated setting has barely been studied.

In this paper, we propose a simple model of a proof-of-work

blockchain with latencies for both the P2P and the coordinated

settings. We derive a closed-form expression for the efficiency in

the coordinated setting with an arbitrary number of miners and

arbitrary latencies, both for the overall system and for each indi-

vidual miner. We leverage this result to show that inequalities arise

from variability in the delays, but that if all miners are equidistant

from the coordinator, they have equal efficiency irrespective of

their compute capacities. We then prove that, under a natural con-

sistency condition, the overall system efficiency in the P2P setting

is higher than that in the coordinated setting. Finally, we perform a

simulation-based study to demonstrate that even in the P2P setting

delays between miners introduce inequalities, and that there is a

more complex interplay between delays and compute capacities.

1 Introduction
At its core, a blockchain is a timestamped append-only chain of

blocks, each of which record a set of transactions. Many widely

used blockchains, e.g., Bitcoin and Ethereum, are based on a proof-

of-work (PoW) scheme, where a set of globally distributed miners

simultaneously try to solve a cryptographic puzzle based on the

current chain. When a miner succeeds—which acts as proof of

the miner’s work—they bundle a set of pending transactions to

create a new block that is added on top of the chain. Miners then

restart mining a new cryptographic puzzle based on the new chain.

While these terms and definitions may vary slightly across different

blockchains, the central role of miners remains essentially the same:

They grow the chain by using their compute capacity to solve

cryptographic puzzles, and they maintain it by exchanging updates

about the chain.

Due to communication delays between miners, a blockchain

may occasionally fork into two or more parallel branches. In such

scenarios, the PoW protocol specifies that miners should accept

and build upon the longest branch. The blocks in the other shorter,

ignored branches represent lost or unrewarded work for the miners

that generated these blocks, and lowers their efficiency.

In this work, we study the efficiency with which miners’ com-

putational work is recorded in a blockchain, and we focus more

specifically on the unfairness or inequality in the efficiency of in-

dividual miners. We illustrate the questions motivating our study

using data from the Ethereum blockchain (see §6.2 for more details).

The efficiency of the top five Ethereum mining pools (computed as

the fraction of blocks generated by the individual mining pools that

are included in the main chain) are observed to be 93.58%, 93.45%,

93%, 90.52%, and 88.68%, respectively. The 5% disparity in efficiency

between the largest and fifth largest mining pool raises the ques-

tion:What explains such a difference in their observed efficiencies?
Prior work attribute the differences to dishonest miners, who can

intentionally deviate from the protocol to get more than their “fair

share” of blocks—that is, proportional to their compute capacity—

included in the longest chain [17]. Whether such unfairness can

naturally arise even when all miners truthfully follow the PoW

protocol remains, however, an unexplored question.

To derive high-level insights, we propose a simple model that

abstracts away the technical details of PoW blockchains and focuses

on delay modeled as a latency parameter between any two miners.

Then, using simulations of our model, we show that when miners

form a peer-to-peer (P2P) network to exchange information, signif-

icant inequality in their efficiencies can arise, even when all miners

truthfully follow the protocol. While some prior work modeled

the effects of latency on mining efficiency in this traditional P2P
setting (e.g., [47]), they focused primarily on the overall system

efficiency and ignored whether the overall efficiency is equitably

shared across miners—the only exception is a partial result for a

simple case with two miners [30].

In practice, miners increasingly prefer to join mining pools
1

and the P2P nodes would correspond to mining pools rather than

individual miners. Then, our observation suggests the possibility

for a miner to be strategic when choosing which mining pool to

join. The Ethereum data above appears, for instance, to suggest that

joining a larger pool results in greater efficiency than a smaller one.

However, within mining pools, a centralized coordinator typically

1
to reduce temporal variance in their mining rewards
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harnesses the aggregate compute capacities of the participating

miners. This coordinated setting is quite different from the P2P

setting and opens up the following question: Do all miners in a
mining pool achieve equitable efficiency?

To answer this question, we modify our model to include a co-

ordinator in addition to the miners. In that case, we analytically

derive the individual miners’ efficiency, even in the most general

setting. We infer that a miner’s inefficiency in coordinated settings

varies strictly monotonically with the miner’s latency to the coor-

dinator. Consequently, any (dis)parity in a miner’s latency to the

coordinator will result in (dis)parity in the miner’s efficiency. Min-

ing efficiency in coordinated settings has not been studied before,

except for the overall system efficiency in the simple case where

each miner is equidistant from the coordinator [30].

Finally, using our models of P2P and coordinated settings, we

investigate the following question:Wouldmining pools have a higher
overall efficiency if the participating miners interacted in a P2P rather
than a coordinated setting (everything else being kept constant)? We

answer this question in the affirmative. Our finding suggests that

the coordinated setting impacts both the overall efficiency and

its distribution across miners, and sheds light on the underlying

mechanisms behind this effect.

In summary, we propose a simple model of a PoW blockchain

with non-zero latencies for both the P2P and the coordinated set-

tings. Our model has three components: the miners’ compute ca-

pacities, the puzzle hardness, and the inter-miner latency matrix.

We focus on two metrics of efficiency: the overall system efficiency

and the individual efficiency; they capture the number of blocks

included in the longest chain relative to the compute capacity of

the whole system and that of an individual miner, respectively. The

individual efficiency allows us, in particular, to analyze fairness in

the efficiency distribution. Then we have the following results:

1. We provide an analytical solution for both the overall system

efficiency and the individual efficiency of any miner in the coordi-

nated setting, in the most general case with an arbitrary number

of miners and arbitrary delays. Our computations are based on

renewal theory and provide closed-form expressions that may be

used as an input to other research questions.

2. Our analytical solution enables us to infer a number of interesting

implications. First, as expected, we observe that increasing delays
decreases the overall system efficiency. Second, we show that for

arbitrary delays miners have unequal efficiencies—miners that are

more distant from the coordinator have lower efficiency. Last, we
show that if all miners are equidistant from the coordinator, they

have equal efficiency irrespective of the compute capacity distribu-
tion. Our observations suggest that a way to remove inequality in

efficiency would be by placing the coordinator at an equidistant

position from all miners. We also discuss the issue of optimizing

the coordinator position to maximize the overall system efficiency.

3. We prove that the overall system efficiency in the P2P setting is

always higher than that in the coordinated setting (under a natural

assumption that a link through a coordinator cannot have lower

delay than a direct connection between miners). To our knowledge,

this result is the first comparison between the P2P and coordinated

settings in terms of efficiency. It shows that the cost of reducing

inequality in efficiency may be to lose on the overall system ef-

ficiency. Interestingly, it also gives a lower bound for the overall

system efficiency in the P2P setting—which is notably intractable.

4. We perform extensive simulations to complement our analytical

results. In particular, we use simulations to investigate the inequal-

ity in individual miner efficiency for the P2P setting and, in general

cases, we connect the observed inequality in efficiency empirically

to the relative centrality of the miners in the latency graph. Our

simulations are based on a new discrete-event simulator that we

developed to faithfully emulate our theoretical models. We release

the simulator [36] as an open source software, which may be of

independent interest to the community.

Overall, our results shed light on the impact of latency on indi-

vidual efficiency in blockchains. They may be of interest for fur-

ther studies, in particular on various strategic aspects related to

miners’ choices. For instance, many recent work analyze strategic

considerations in a miner’s choice of the compute capacity they

exert [18, 24, 27, 38]. All these work, however, ignore latency and

assume that each miner, conditioned on their choice of compute

capacity, gets their fair share of reward. Our work shows that this

assumption does not hold with non-zero latency. As such, it offers

valuable input to refine studies of strategic considerations.

2 Related Work
There is a rich body of work on security and scalability aspects

relevant to the decentralized nature of PoW blockchains. It is well

known, for instance, that amajority of honest nodes is insufficient to

maintain a consistent ledger [3, 12, 17, 20, 41, 47, 53]. These studies

show that PoW blockchains are subject to attacks by dishonest

miners. In contrast, our work explores the impact of (inevitable)

network delays on the overall system efficiency and the inequality

in the (individual) efficiency of completely honest miners.

Delays in blockchains. Delay has been the focus in many prior

work, but from a different perspective. For instance, Bitcoin Relay

Network [33], FIBRE [19], Falcon [4], and more recently BDN [29]

focus on improving the underlying (P2P) network by reducing

latencies. From the security standpoint, a propagation advantage

(i.e., reduced latency) can help adversaries in launching selfish-

mining, double-spending, feather-forking, and other attacks [12,

17, 20, 23, 53]. Interestingly, the Bitcoin Backbone Protocol [20]

formalized the chain quality property, as a measure of how mined

blocks are distributed amongst miners with respect to their hashing

power, and explicitly mentions that the chain quality is trivially

ideal if all miners are honest—which, as we shall see, our results

contradict. The interaction between puzzle hardness and network

delays has a huge impact on the security of blockchains, as discussed

in [20, 23, 46, 47]—we use the same ratio metric.

Efficiency of blockchains. Many prior work studied efficiency as a

global notion to capture wasted resources by miners [12, 17, 20, 23,

53]. The identification of forks as a measure of wasted efforts, in

particular, was clearly explained in [12]. Similarly, [28] looked at

wasted work of different miners in ethereum, and, similar to what

we show in § 6.2, they highlight that the top miners are more likely

to have their blocks as part of the main chain rather than ending

up as an “uncle” or prune due to having a network advantage. The

fork-measure was used as an indicator to study the resilience of a
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blockchain against different classes of attacks (e.g., double spending

and selfish mining). We prefer the term efficiency as it precisely

conveys our intent: capture wasted work from an altruistic point

of view to understand its effects on honest miners.

Selfish mining strategies and inequality. Selfish-mining strate-

gies [17, 42] and other attacks [20, 23, 53] show that inequality

in efficiency in blockchains may happen when some miners are

dishonest; they do not consider the intrinsic inequality in a system

where all miners are honest but experience different network delays.

Network delays were taken into account by [42] and [25], albeit

still with a focus on selfish mining: [42] provides an algorithm

that computes an optimal selfish mining strategy and shows that

it is profitable even for attackers with less than 25% of the collec-

tive hashing capacity. [25] shows an example where selfish mining

strategies allow pooled selfish miners with a collective hashing

capacity higher than 25% to gain more than their fair share of the

total reward, but the strategy decreases the total reward such that

it is not profitable (under the assumption that all miners are honest,

equally powerful, and randomly spatially-distributed).

Inequality in efficiency. A few prior work discuss efficiency and

inequality in efficiency outside selfish mining. The work of [21]

uses well-established networking techniques to measure the latency

across Bitcoin nodes and discuss its impact on the efficiency of the

blockchain. They also discuss the inequality in miners’ efficien-

cies (or fairness) in Bitcoin and Ethereum networks. They do not,

however, analyze the root causes of such inequality and instead

state this fairness issue as a measured observation; they also do

not consider the coordinated setting. [31] and [45] develop the idea

of inclusive blockchains in the form of Directed Acyclic Graphs

(DAGs) that allow for higher transaction throughput through a

secure, yet more forgiving block-acceptance policy. By virtue of

their blockchain design and more forgiving policy, their protocol

decreases the inequality in miners’ efficiencies (increases fairness).

However, [31, 45] focus on the properties of the new protocol only

in the P2P model in particular settings.

Blockchain models. While nearly all PoW-blockchain-related pa-

pers implicitly assume a model along the lines of what was in-

formally described by [37], few explicitly formalize the model. Of

those, [47] looks at the overall system efficiency in the P2P setting,

provides efficiency bounds based on the network diameter delay

and partial results hinting at the inequality in the two-miners case.

Their results, however, do not generalize to more than 2 miners.

The authors of [30], on the other hand, compute individual effi-

ciencies for 2 nodes in the P2P setting, and compute the overall

system efficiency for 𝑛 nodes in the coordinated setting provided

all the nodes are equidistant. This result is a special case of our

more general result, which allows computing both the overall and

individual efficiencies in any coordinated setting. To the best of our

knowledge, this paper is the first to model the coordinated setting.

[39] studies the overall system efficiency as a function of network

delay, in the P2P setting under the assumption that delays follow

an exponential distribution. It provides expressions for the 2- and

3-miner cases. In contrast, we assume constant delays but focus on

more general scenarios. Finally, [34, 35] develop a queuing network

model in the P2P setting, but focus on metrics different than ours.

Simulators. There are several simulators to study blockchains

(e.g., [2, 22, 48]): [2] designed a simulator to test protocol modifica-

tions, and [48] focused on visualizing PoW simulations. [23]—the

work most relevant to ours—analyzed the security and performance

implications of various network and consensus parameters of PoW

blockchains. None of them analyzed the inequality in efficiency

induced by network delays. It was non-trivial to configure these

simulators to ignore implementation details irrelevant for studying

inequality; hence, they did not suit our purposes.

3 Models and Efficiency Measures
In this section, we present our models of the PoW blockchain, both

in the traditional P2P and the coordinated setting.We also introduce

two measures of efficiency (overall and individual).

3.1 Model Components
Our model of a PoW blockchain comprises three components: (i)

a set of miners with their compute capacities; (ii) the hardness
of mining a block; and (iii) the latency matrix, which implicitly

encodes the relative locations of miners in the underlying network

and abstracts away all sources of delay.

We denote the set of miners who collectively maintain the

blockchain as M = {𝑚1, · · · ,𝑚𝑛} with 𝑛 ≥ 2. Each miner𝑚𝑖 ∈ M
is endowed with computational capacity ℎ𝑖 ∈ R+, which is used

for solving cryptographic puzzles (essentially, mining blocks). We

assume that ℎ𝑖 is a relative computational capacity (compared to

the whole set of miners), i.e.,

∑𝑛
𝑖=1

ℎ𝑖 = 1.

We represent the hardness of solving the cryptographic puzzle by

parameter 𝜏 ∈ R+. It represents the average time to generate a block

with a normalized computational capacity of 1 (i.e., for the whole

system). The time taken by miner 𝑚𝑖 ∈ M to generate a block

is assumed to be an exponential random variable
2
of parameter

ℎ𝑖/𝜏 (i.e., of mean 𝜏/ℎ𝑖 ), independent of all other generation times

for other blocks and miners. We denote by
˜ℎ𝑖 = ℎ𝑖/𝜏 the effective

mining rate of miner𝑚𝑖 , i.e., the rate at which the miner discovers

new blocks. Recall that the minimum of 𝑛 exponential random

variables is an exponential random variable with parameter equal

to the sum of the parameters of the 𝑛 variables. Then, the time for

the whole system to generate a block is an exponential random

variable of parameter

∑𝑛
𝑖=1

˜ℎ𝑖 =
∑𝑛
𝑖=1

ℎ𝑖/𝜏 = 1/𝜏 , which indeed has

mean 𝜏 .

Miners are typically located at diverse geographical loca-

tions [7, 13, 40], and, hence, experience delays when exchanging

information (e.g., a newly generated block) with one another.

We assume, hence, a latency of 𝑙𝑖 𝑗 between any two miners

𝑚𝑖 ≠ 𝑚 𝑗 , and we denote by 𝐿 = [𝑙𝑖 𝑗 ]𝑖, 𝑗 ∈{1, · · · ,𝑛} the matrix

of all latencies. The matrix 𝐿 is symmetric with all diagonal

elements being zero, but we do not require that the latency

is nonzero between any two miners (i.e., two miners may be

at the same location). To capture the importance of the time

spent in exchanging information between miners compared to

the time spent in generating a block, we define the parameter

𝜆 as the ratio between the puzzle hardness 𝜏 and the mean latency
¯𝑙 :

2
The exponential assumption is ubiquitous in blockchain models and validated by

empirical observations [12, 23].
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𝜆 = 𝜏/¯𝑙, where
¯𝑙 =

2

𝑛(𝑛 − 1) ·
𝑛∑︁
𝑖=1

∑︁
𝑗>𝑖

𝑙𝑖 𝑗 .

We assume that the graph of all miners is connected, i.e., all latencies
are finite, and that all latencies 𝑙𝑖 𝑗 correspond to the shortest path

between𝑚𝑖 and𝑚 𝑗 , i.e., there is no path between𝑚𝑖 and𝑚 𝑗 such

that the sum of latencies on that path is smaller than 𝑙𝑖 𝑗 .

3.2 Mining and Communication models
The miners who maintain the blockchain typically exchange infor-

mation with one another using a protocol that can be modeled in

two ways: a decentralized, peer-to-peer model where all miners

act as peers communicating directly with one another, or a quasi-

centralized model wherein all communications transit through a

coordinator (i.e., miners never directly interact with one another).

In this paper, we only consider scenarios with a single coordina-

tor to which all miners inM are connected. Whether there exist

multiple coordinators that are, in turn, connected in a peer-to-peer

fashion is irrelevant from the perspective of the miners. In either

model, we assume that miners truthfully announce the blocks they

discover, to all other miners or to the coordinator.

Peer-to-peer (P2P) model. A miner𝑚𝑖 ∈ M upon discovering a

block truthfully appends it to the current longest chain and imme-

diately announces the updated chain to all other miners𝑚 𝑗 , who

receive it after a delay 𝑙𝑖 𝑗 . The miner then continues to mine the

next block on this chain. On receiving a longest-chain update from

another miner, miner𝑚𝑖 ∈ M compares it to their currently held

longest chain and acts as follows: If the received chain is longer

than𝑚𝑖 ’s current chain,𝑚𝑖 discards its current work, replaces its

chain with that received, and starts mining the next block of that

chain. If the chain received is, on the contrary, shorter than or of

equal length as𝑚𝑖 ’s current chain,𝑚𝑖 simply discards the chain

received, and continues mining the next block on their current

chain. The system under the P2P model is completely defined by

the vector of capacities 𝒉 = [ℎ𝑖 ]𝑖=1, · · · ,𝑛 , the puzzle hardness 𝜏 and

the latency matrix 𝐿; or alternatively by the vector of effective

capacities
˜𝒉 = [ ˜ℎ𝑖 ]𝑖=1, · · · ,𝑛 and the latency matrix 𝐿.

Coordinated model. The defining characteristic of this model

is the presence of a central coordinator 𝐶 . We denote by 𝑙𝑖 the

latency between miner𝑚𝑖 ∈ M and 𝐶 . Miners only communicate

with the central coordinator, so that the vector 𝒍 = [𝑙𝑖 ]𝑖∈{1, · · · ,𝑛}
is sufficient to define all latencies in the system. For consistency

in the comparison between the P2P setting with latency matrix 𝐿

and the coordinated setting with latency vector 𝒍 , we assume that

the coordinator does not introduce a shorter path between any

two miners, i.e., for all 𝑖 and 𝑗 , 𝑙𝑖 𝑗 ≤ 𝑙𝑖 + 𝑙 𝑗 .3 Unlike the P2P model,

the coordinator truthfully and unilaterally maintains the longest

chain. Upon discovering a block, a miner𝑚𝑖 ∈ M truthfully and

immediately announces the block to the coordinator and pauses
until receiving an updated chain from the coordinator (including a

template needed to mine the next block).
4
The update chain may be

either the chain that𝑚𝑖 extended or another chain, had a different

miner sent a different block to the coordinator before𝑚𝑖 . Miners

3
The assumption does not imply that network paths obey the triangle inequality, but

rather that the path connecting the miners is already the best one.

4
The same pause model is used, e.g., in [30].

alwaysmine the next block on the chain returned by the coordinator.

The system under the coordinated model is completely defined by

the vector of capacities 𝒉 = [ℎ𝑖 ]𝑖=1, · · · ,𝑛 , the puzzle hardness 𝜏

and the latency vector 𝒍 ; or by the vector of effective capacities

˜𝒉 = [ ˜ℎ𝑖 ]𝑖=1, · · · ,𝑛 and the latency vector 𝒍 .

3.3 The Rationale behind the Models
The miners in a blockchain (per the initial design in [37]) interact

with one another through a decentralized P2P network. Even to-

day, miners in permissionless blockchains such as Bitcoin [37] and

Ethereum [52] interact over such a P2P network. The P2P model

(in §3.2) represents this traditional connectivity model and attempts

to highlight the factors that affect the efficiency of miners.

Since the ability of an individual miner to successfully mine a

block has rapidly dwindled, miners typically join a mining pool

where a coordinator harnesses the aggregate compute capacity of

a set of miners for mining blocks. The (mining) pool significantly

improves the odds of mining a block, and miners can share the

rewards in such a way as to reduce the variance in their revenue.

The coordinated model (in §3.2) is meant to succinctly capture

the fundamental properties of this mining pool setting, where the

only interactions are between the miners and the coordinator. The

miners defer to the coordinator for ascertaining the longest chain

in the system, and the coordinator relays the work to the miners

and refreshes work periodically (hence the pause).

Today, both the P2P and coordinated communication paradigms

are employed in blockchains. In Bitcoin, for instance, four mining

pools account for 56.9% of the blocks mined in aggregate [10].

Miners within each mining pool follow a protocol resembling the

coordinated model, albeit documentation on the protocol specifics

is sparse [5]. Mining pool coordinators in turn form a peer-to-peer

network to exchange information between one another. We require,

therefore, the two models to understand the dynamics both within

the mining pools and between different mining pools (or miners).

While in practice there may be multiple sources of communi-

cation delays (i.e., propagation times, processing times, etc.), our

latency matrix abstracts them away. Seen differently, our model

assumes unlimited bandwidth to abstract away the message sizes.

Our comparison between the P2P and coordinated setting assumes

a consistency condition between the two models: 𝑙𝑖 𝑗 ≤ 𝑙𝑖 + 𝑙 𝑗 ,∀𝑖, 𝑗 .
This condition implies that the coordinator does not introduce a

shorter path between any two miners—a natural condition from

a theoretical perspective to make the models comparable. In prac-

tice, delays may be lower in the coordinated setting due to smaller

messages. There is, however, a fundamental limit on latency, gov-

erned by the speed of light in a medium, which in many cases

dominates the communication cost. Hence our model and consis-

tency condition abstract away this issue (as well as other technical

considerations) to formulate a clear mathematical result on the com-

parison between the overall efficiency in the P2P and coordinated

settings. Note also that this result, together with our closed-form

analysis of the coordinated setting, provide a valuable lower bound

for the P2P setting (see §5.2.2).
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3.4 Measures of Efficiency
We focus on characterizing the implications of network latencies

for efficiency. To this end, we compare the output of the mining

model with latency to a hypothetical case where there is no latency.

Formally, consider a time window of length𝑇 , and denote by 𝐵̂𝑖 (𝑇 )
(or simply 𝐵̂𝑖 ) the number of blocks generated by miner𝑚𝑖 ∈ M
that are included in the longest chain at time 𝑇 . The longest chain

at 𝑇 corresponds to the chain that would result if we were to let

the system evolve from time 𝑇 for long enough, after miners stop

mining, i.e., until the system resolves all ambiguities and converges

on the longest chain). Ties, if any, are broken uniformly at random.

We define the efficiency of miner𝑚𝑖 ∈ M as

𝜂𝑖 = lim

𝑇→∞

E
[
𝐵̂𝑖 (𝑇 )

]
ℎ𝑖𝑇 /𝜏

. (1)

We use the expectation of the random variable 𝐵̂𝑖 to define the

efficiency. In simulations, however, we use an empirical average

over many runs (of sufficient duration) to estimate the efficiency

(see below). While on a particular realization one might have

𝐵̂𝑖/(ℎ𝑖𝑇 /𝜏) > 1, the expectation in (1) clearly satisfies 𝜂𝑖 ≤ 1.

Furthermore, in the coordinated model, the process 𝐵̂𝑖 (𝑇 ) is a re-
newal process and not a Markov process, owing to the pause after

discovering a block, and

E
[
𝐵̂𝑖 (𝑇 )

]
ℎ𝑖𝑇 /𝜏 will not be independent of 𝑇 .

We use, hence, a limit 𝑇 → ∞ to define the efficiency, which will

then be computed using the elementary renewal theorem (thereby

justifying the limit’s existence).

The denominator ℎ𝑖𝑇 /𝜏 , in (1), represents the average number

of blocks that the miner would have mined within the time window

of length 𝑇 when mining alone. In the P2P model, due to the mem-

oryless property of the exponential distribution, the actual number

𝐵𝑖 of blocks mined by𝑚𝑖 during the time window [0,𝑇 ] is such
that E[𝐵𝑖 ] = ℎ𝑖𝑇 /𝜏 . In the P2P model, our definition of efficiency

in (1) is, hence, equivalent to E
[
𝐵̂𝑖/𝑇

]
/E [𝐵𝑖/𝑇 ], which in turn is

equivalent to E
[
𝐵̂𝑖/𝐵𝑖

]
for a large enough 𝑇 , since both 𝐵̂𝑖/𝑇 and

𝐵𝑖/𝑇 converge to constant rate. Our measure of efficiency for the

P2P model is, therefore, equivalent to the average fraction of blocks

mined by 𝑚𝑖 that are included in the chain (for large 𝑇 ). In the

coordinated model where miners pause after discovering a block,

this equivalence does not hold and our definition characterizes the

inefficiency introduced by latencies rather than the inefficient use

of computing resources. Lastly, if all latencies are zero, we have

𝐵̂𝑖 = 𝐵𝑖 and E
[
𝐵̂𝑖
]
= E[𝐵𝑖 ] = ℎ𝑖𝑇 /𝜏 , so that 𝜂𝑖 = 1 for all miners

in both models.

Let 𝐵̂ denote the length of the longest chain at time 𝑇 . Clearly,

𝐵̂ =
∑𝑛
𝑖=1

𝐵̂𝑖 . Then we define the overall system efficiency as

𝜂 = lim

𝑇→∞

E
[
𝐵̂
]

𝑇 /𝜏 =

𝑛∑︁
𝑖=1

ℎ𝑖𝜂𝑖 . (2)

(Recall we assume

∑𝑛
𝑖=1

ℎ𝑖=1; otherwise we normalize by

∑𝑛
𝑖=1

ℎ𝑖 .)

Throughout the paper, to measure inequality in a quantity,

we use the Gini index, defined as half of the relative mean ab-

solute difference; for a vector (𝑥1, · · · , 𝑥𝑛) the Gini index is 𝛾 =

(∑𝑛
𝑖=1

∑𝑛
𝑗=1

|𝑥𝑖 − 𝑥 𝑗 |)/(2𝑛
∑𝑛
𝑖=1

𝑥𝑖 ) . Note that 𝛾 ∈ [0, 1] and 𝛾 = 0

corresponds to no inequality (𝑥𝑖 = 𝑥 𝑗 for all 𝑖, 𝑗 ), while 𝛾 = 1 cor-

responds to the maximum inequality. We denote by 𝛾𝑒 and 𝛾ℎ the

Gini indices of individual efficiency (𝜂1, · · · , 𝜂𝑛) and computational

capacity (ℎ1, · · · , ℎ𝑛) accross miners, respectively. We summarize

our notation in Tab. 2 (see App. A). In addition, we often use the

superscripts 𝐶 and 𝑃2𝑃 to distinguish between the two models:

We use 𝜂𝐶 and 𝜂𝑃2𝑃
to denote, for instance, the overall system

efficiency in the coordinated and P2P models, respectively.

4 Simulating the Models
The interactions between the different stochastic processes (i.e.,

miners), especially in the P2P setting, and their effect on the out-

comes, notwithstanding the simplicity of the models (§3.2), make it

hard to derive analytical solutions for some of the research ques-

tions we consider. To remedy this situation, we developed a discrete-

event simulator that simulates the operations of and interactions

between miners, and between miners and the coordinator. The sim-

ulator complements the theoretical model by providing insights

into complex P2P scenarios that are not tractable. We eschew sup-

port for features (e.g., transactions or bandwidth constraints) that

have no impact on our models. In this section, we describe our im-

plementation, elucidate the design choices, and explain simulation

configurations (or scenarios) used throughout the paper.

Miners have unit compute capacity in the simulations, and we

simulate miners of varying compute power by co-locating more

than one miner at the same location with zero network latency be-

tween them. We simulate the P2P model by specifying the compute

capacities of miners (𝒉), and the latency matrix (𝐿) representing

the (symmetric) network latencies between the miners. By fixing

the relative positions of miners via 𝐿, we can simulate any arbi-

trary peer-to-peer network topology. The simulator also supports

the notion of a coordinator. We simulate the coordinated model

by specifying the compute capacities (𝒉), the latency matrix (𝐿)

representing the latencies between the miners and the coordinator

position from which the latency vector 𝒍 is deduced. In addition, we

specify the puzzle hardness (𝜏) and the simulation time. The latter

limits the length of the simulation by specifying either directly the

duration of the simulation or, indirectly, the length of the longest

chain generated (in number of blocks).

We simulate mining by sampling the time taken to generate a

block from an exponential distribution with a mean (𝜏). We vary 𝜏

to explore different families of blockchains: 𝜏 values of 10 minutes

and 13 seconds, for instance, approximates the mining in Bitcoin

and Ethereum, respectively. The mining of a block in the simulation

is independent of the block size or contents, and transactions are

excluded. The time to propagate a block from one miner to an-

other depends only on the latency between the two miners, which

abstracts all sources of delays (see above). The miners do not re-
advertise the blocks they receive. Miners also receive blocks without

explicitly soliciting them, and they truthfully follow the protocol.

We implemented the simulator in Python as a single-threaded

application, with one event loop orchestrating the interactions be-

tween the different entities (e.g., miners) at the appropriate times.

The implementation spans approximately 1k lines of code (LoC).

Miners and coordinators are each implemented as a Python class

that encapsulates the characteristics and behavior of the concerned

entity. We added approximately 3k LoC for configuring the experi-

ments, analyzing, and visualizing the data. We release the source
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code of our implementation as an open source artifact [36]. The link

also contains a notebook that allows one to reproduce all graphs.

Simulation Scenarios A scenario specifies the relative positions

of miners in the network. In each scenario, we vary the distribution

of compute capacities of miners, succinctly represented using the

Gini index 𝛾ℎ . We use three scenarios, two to simplify the explica-

tion of observations and one modeled after the Bitcoin network to

highlight the real-world implications of our observations.

Two-miner and three-miner scenarios. Fig. 1 illustrates the 2-miner

and 3-miner scenarios in both the P2P and coordinated settings.

When presenting the simulation results, we annotate the plots with

the appropriate value of 𝛾ℎ to describe the distribution of compute

capacities. In the 2-miner scenario, assigning equal compute ca-

pacities to miners will result in 𝛾ℎ = 0, whereas assigning them a

40-60% split of the total compute capacity will result in 𝛾ℎ = 0.1.

Bitcoin-approximation Scenario. We mimic Bitcoin’s deployment,

to a first level of approximation, using a set of five miners. We

place these miners in cities that are well-known for hosting huge

mining infrastructures [1, 32, 49]: Linthal, Switzerland; Moscow,

Russia; Reykjavík, Iceland; Sichuan, China; and Washington D.C.,

US. They host the top Bitcoin mining pools (or pool operators),

which account for the majority of mined blocks [8, 21, 26]. We

derive the latency between a city pair using an optimistic estimate

of the latency between any two locations (cf. inflation in min. ping
in [9, 11]). We assume that any city pair is connected by an optical

fiber over the shortest distance between the pair, i.e., geodesic [50].

We divide this distance by the speed of light in glass to obtain the

optimistic latency. The resulting mean pairwise latency (or one-way

delay) is ≈52 ms, a factor of two lower than empirical observations

from [21] (Prior work do not provide, however, pairwise latencies

or miners’ locations)—note that it also neglects delays other than

the basic ping latency.

Typical values of 𝜆 for cryptocurrencies. Estimating the value of 𝜆

(i.e., the ratio of hardness to mean latency) for different cryptocur-

rencies is not a straightforward task. Different PoW blockchains use

different values for hardness (𝜏), but one can empirically measure

this value (by measuring, for instance, the average blocks mined

per unit time). Bitcoin’s hardness is 600 s and that of Ethereum is

10-20 s (13 s on average [16]). Measuring mean latency, in contrast,

is more difficult, albeit prior work have shown how to estimate

this value [12, 21, 43]. For Bitcoin, the most recently available esti-

mates, as of April 2017, indicate that it takes around 1-2 s (8-10 s)

for a block to reach 50% (90%) of all nodes [6]. A recent work, for

instance, pegs the average block propagation delay for Ethereum to

be at least 109 ms under ideal conditions [43]. Using these latency

estimates, we conservatively estimate the 𝜆 value for Bitcoin to be

between 100-1000 and for Ethereum to be between 10-100.

Simulation length. We run our simulations till the main chain con-

tains 100,000 blocks, which suffices for obtaining stable estimates

of the efficiency metrics (refer §3.4). We also repeat each simulation

10 times to estimate the standard deviation on the efficiency esti-

mates. We observe that the standard deviation is always very small

(it is shown as a halo in all plots, but is almost always invisible),

hence confirming that the simulation length is sufficient to obtain

statistically robust estimates.

5 Overall System Efficiency
In this section, we analyze the overall system efficiency in

blockchains with non-zero latency. We begin with the coordinated

setting where we have a complete analytical solution for analyzing

how latency affects overall utility. We then establish a relationship

between the overall system efficiency in the P2P and coordinated

settings. We conclude by discussing the optimal position of the

coordinator along with other implications of our results.

5.1 Coordinated Setting
Miners do not directly interact with one another, but only through

the coordinator in this setting(§3.2). Delays are, hence, captured

by the vector of latencies from each miner to the coordinator 𝒍 =
[𝑙𝑖 ]𝑖∈{1, · · · ,𝑛} . We compute the overall system efficiency in this

setting for arbitrary parameters (𝑛, 𝒉, 𝒍 , 𝜏), as formalized in the

following theorem.

Theorem 1 (Overall system efficiency in the coordinated setting).
Consider a coordinated model with 𝑛 miners, computational capacities
𝒉, latency vector 𝒍 , and puzzle hardness 𝜏 . Recall that ˜𝒉 = 𝒉/𝜏 and let
˜𝑙𝑖 = 2𝑙𝑖 for all 𝑖 ∈ {1, · · · , 𝑛}. Without loss of generality, assume that
𝑙1 ≤ · · · ≤ 𝑙𝑛 . Then the overall system efficiency is

𝜂𝐶 (𝒉, 𝒍, 𝜏) = 𝜂𝐶 ( ˜𝒉, ˜𝒍) = 1/𝜏
˜ℎ1 + · · · + ˜ℎ𝑛

; (3)

where

𝜏 =

𝑛∑︁
𝑖=1

{
𝑒
∑𝑖

𝑗=1

˜ℎ 𝑗
˜𝑙 𝑗∑𝑖

𝑗=1

˜ℎ 𝑗
·
[(

1 + (∑𝑖
𝑗=1

˜ℎ 𝑗 ) · ˜𝑙𝑖

)
𝑒
−(∑𝑖

𝑗=1

˜ℎ 𝑗 ) · ˜𝑙𝑖
(4)

−
(
1 + (∑𝑖

𝑗=1

˜ℎ 𝑗 ) · ˜𝑙𝑖+1

)
𝑒
−(∑𝑖

𝑗=1

˜ℎ 𝑗 ) · ˜𝑙𝑖+1

]}
.

Here, we used the convention 𝑙𝑛+1 = ∞ and 𝑙𝑛+1𝑒
−ℎ𝑙𝑛+1 = 0 for any

ℎ > 0 to simplify the expression.

A complete proof of Thm. 1 is provided in Appendix B. The idea

is to look at the process 𝐵̂, which corresponds to the number of

blocks mined from the viewpoint of the coordinator. We observe

that 𝐵̂ is a renewal process; then by the elementary renewal theorem

we can compute the efficiency as (3), where 𝜏 is the expected time

between two increments of 𝐵̂, i.e., between two block additions

to the chain. To conclude the proof, we show that 𝜏 satisfies (4).

Note that the formula in Thm. 1 assumes that nodes are ordered by

(weakly) increasing distance to the coordinator. If that was not the

case, we can re-order the nodes without loss of generality.

In Thm. 1, we write the efficiency as
1/𝜏

˜ℎ1+···+ ˜ℎ𝑛
to emphasize the

compute capacities. Recall, however, that
˜ℎ1 + · · · + ˜ℎ𝑛 = 1/𝜏 so

that the overall efficiency can also be written as 𝜏/𝜏 . While the

formula in (4) is somewhat involved, Thm. 1 allows the analytical

computation of the overall efficiency for arbitrary parameter values.

Below, we investigate a number of qualitative observations that

can be deduced from this general result. We start with the simple

case of 𝑛 = 2 miners.

Corollary 1 (Two-miners case). If 𝑛 = 2, then the overall system
efficiency reduces to 1/𝜏

˜ℎ1+ ˜ℎ2

with

𝜏 = ˜𝑙1 +
1

˜ℎ1

· (1 − 𝑒−
˜ℎ1 ( ˜𝑙2− ˜𝑙1) ) + 1

˜ℎ1 + ˜ℎ2

· 𝑒− ˜ℎ1 ( ˜𝑙2− ˜𝑙1) .
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(b) 2-miner coordinated scenario
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(c) 3-miner P2P scenario
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l 1 =
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l2  = 0.57 ms 

(d) 3-miner coordinated scenario
Figure 1: (P2P & coord. setting.) 2-miner and 3-miner scenarios with miners in red and the coordinator in green.

In Cor. 1,
˜𝑙1 = 2𝑙1 corresponds to the round-trip time from the

closest miner𝑚1 to the coordinator (recall that 𝑙1 ≤ 𝑙2 by assump-

tion), while
˜𝑙2− ˜𝑙1 = 2(𝑙2−𝑙1) corresponds to twice the extra distance

from𝑚2 to the coordinator compared to𝑚1. The formula for the

two-miners case in Cor. 1 is easy to analyze. For instance, if 𝑙2 = 𝑙1,

i.e., both miners are equidistant from the coordinator, then we get

𝜏 = ˜𝑙1 + 1/( ˜ℎ1 + ˜ℎ2) = ˜𝑙1 + 𝜏 , which directly states that the overall

efficiency is smaller than one and decreases as latency increases.

Equidistant miners yield a number of simplifications, even when

𝑛 > 2. Indeed, the relative position of a miner with respect to others

in the coordinated setting has no bearing on the overall system

efficiency, as long as the latencies between the miners and the

coordinator remain unchanged. Miners who are equidistant from

the coordinator can, hence, be merged without changing the overall

system efficiency, as shown in the next result.

Corollary 2 (Merging equidistant miners). Merging two min-
ers that are equidistant to the coordinator does not change the
overall efficiency. Formally, suppose that two miners 𝑚𝑖 and
𝑚𝑖+1 are equidistant from the coordinator, i.e., 𝑙𝑖 = 𝑙𝑖 + 1

and let 𝒉′ = [ℎ1, · · · , ℎ𝑖−1, ℎ𝑖 + ℎ𝑖+1, ℎ𝑖+2, · · · , ℎ𝑛] and 𝒍 ′ =

[𝑙1, · · · , 𝑙𝑖 , 𝑙𝑖+2, · · · , 𝑙𝑛]. Then 𝜂𝐶 (𝒉, 𝒍, 𝜏) = 𝜂𝐶 (𝒉′, 𝒍 ′, 𝜏).

Proof. The result follows directly from (4) applied to both sys-

tems (𝒉, 𝒍, 𝜏) and (𝒉′, 𝒍 ′, 𝜏). □

In the case where all 𝑛 > 2 miners are equidistant from the

coordinator, we deduce a very simple expression for the overall

efficiency, as stated in Cor. 3. Note that the case of all-equidistant

miners is the only case, to our knowledge, for which an expression

of the overall system efficiency in the coordinated setting was

available in the literature. Unsurprisingly, our expression above

coincides with that result (Lemma 2 in [30]).

Corollary 3 (All-equidistant miners). If all miners are equidistant
from the coordinator, i.e., 𝑙1 = · · · = 𝑙𝑛 , then the overall efficiency
reduces to

𝜂𝐶 ( ˜𝒉, ˜𝒍) = 𝜏/𝜏 ; with 𝜏 = ˜𝑙1 + 𝜏 .

Proof. The result follows directly from Thm. 1 applied in the

case where
˜𝑙1 = · · · = ˜𝑙𝑛 . □

The expression above also has an intuitive interpretation in light

of Cor. 2. If all miners are equidistant from the coordinator, we can

merge them all without changing the overall efficiency. We are then

left with a single miner of compute capacity 1 that has a round-trip

time of
˜𝑙1 to the coordinator. It is therefore natural that the average

time between two blocks is
˜𝑙1 + 𝜏 as the single miner has to wait

for
˜𝑙1 after mining a block.

To conclude, we examine how the overall efficiency varies with

the delays. Thm. 1 portrays a somewhat complex dependency on the

vector of latencies 𝒍 . In the next corollary, however, we show that

if the latency from one miner to the coordinator increases (while

retaining intact the latency of every other miner to the coordinator),

then the overall efficiency decreases.

Corollary 4 (Monotonicity). If the latency from one miner to the
coordinator is increased, everything else being kept equal, the overall
system efficiency decreases. Formally, consider a coordinated model
with parameters 𝒉, 𝒍 , 𝜏 and let, for some 𝑖 ∈ {1, · · · , 𝑛}, 𝒍 ′ be such
that 𝑙 ′

𝑗
= 𝑙 𝑗 for all 𝑗 ≠ 𝑖 and 𝑙 ′

𝑖
> 𝑙𝑖 . Then 𝜂𝐶 (𝒉, 𝒍 ′, 𝜏) < 𝜂𝐶 (𝒉, 𝒍, 𝜏).

From this, we also deduce that if all latencies (weakly) increase, i.e.,
if 𝒍 ′ is such that 𝑙 ′

𝑗
≥ 𝑙 𝑗 for all 𝑗 and 𝑙 ′𝑖 > 𝑙𝑖 for some 𝑖 ∈ {1, · · · , 𝑛},

then 𝜂𝐶 (𝒉, 𝒍 ′, 𝜏) < 𝜂𝐶 (𝒉, 𝒍, 𝜏).

Proof. The first point follows directly from (4) by noting that 𝜏

increases with 𝒍 ′ instead of 𝒍 , hence 𝜂𝐶 decreases. The second point

follows from applying the first sequentially for each miner whose

latency is increased. □

Fig. 2 illustrates the strong dependency of the overall system effi-

ciency on the latency between the miners and the coordinator in a

two-miners scenario. We fix the position of𝑚1 and of the coordina-

tor such that 𝑙1 = 0.5 ms, and we move𝑚2 away from𝐶 to increase

𝑙2 from the equidistant position 𝑙2 = 0.5 ms. Then we observe on

Fig. 2 that the overall efficiency decreases as𝑚2 moves away from

the coordinator. It also shows that the individual efficiency of𝑚1

increases—we discuss the effect of latency on individual efficien-

cies in detail in the next section. Finally, Fig. 2 clearly shows the

agreement between the theoretical curves and the results from our

simulations. We also notice that the standard deviation for the sim-

ulation results is so small that it is not visible—hence validating

that the length of our simulations is sufficient to obtain statistically

robust estimation of the overall system efficiency (cf. §4).

5.2 Peer-to-peer Setting
5.2.1 Empirical investigation of the efficiency as a function of la-
tency In the P2P setting, miners directly interact with one another

through a P2P networkwithout any central coordinator. This config-

urationmakes the efficiency less tractable analytically. The latencies

between miners in the P2P network, nevertheless, have implica-

tions for the overall system efficiency. We start by investigating

this trade-off through simulations.
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Figure 2: (Coordinated setting.) Overall and individual efficiencies
as a function of the distance 𝑙2 from𝑚2 to the coordinator; in a two-
miner scenariowith 𝑙1 = 0.5 ms. Here,ℎ1 = 0.3,ℎ2 = 0.7 (hence𝛾ℎ = 0.2),
and 𝜏 = 1 ms. The black lines on top of the other curves correspond to
the theoretical values from Thm. 1.

We simulate 3 different scenarios (cf. §4) and measure the overall

system efficiency as a function of 𝜆 (as shown in Fig. 3). Recall that

𝜆 is the ratio of puzzle hardness to mean latency and captures the

ratio between the average time to mine a block and the average

time to broadcast it. In both the 2-miner (Fig. 3a) and 3-miner

(Fig. 3b) scenarios, the overall system efficiency degrades quickly

with decreasing 𝜆 (i.e., with increasing latency). This observation

is consistent under all compute-capacity assignments (succinctly

represented by 𝛾ℎ), but we restrict the plots to a subset for clarity.

When 𝜆 < 1, the time spent in mining blocks, on average, is less

than that in advertising those blocks. Even in this regime of low 𝜆

values, a non-uniform, realistic compute-capacity assignment (i.e.,

𝛾ℎ > 0) ameliorates the overall system efficiency. Perhaps stronger

miners (with relatively high compute capacities) outpace theweaker

to bring about this improvement. We defer the discussion of such

inequalities to §6.

Latency across arbitrary endpoints in the Internet is quite high—

at least an order of magnitude more than what is theoretically

feasible—and reducing latency is a notoriously hard problem [44].

Such high network latencies make it impractical to reduce hardness

(𝜏 ), albeit low values of 𝜏 are crucial for increasing the (transaction)

throughput. With all other factors held constant, 𝜏 must be drasti-

cally increased to improve efficiency. Bitcoin and Ethereum operate,

for instance, with 𝜏 values of approximately 10 minutes and 13

seconds, respectively, most likely to keep 𝜆 and, consequently, the

overall system efficiency high. As we have discussed in §4, Bitcoin

and Ethereum operate at 𝜆 ranges of 100 − 1000 and 10 − 100 re-

spectively. Per Fig. 3c, 𝜂𝑃2𝑃
at a 𝜆 = 100 − 1000 is close to 100%

and at 𝜆 = 10 − 100 is around 90-99%, which is in agreement with

the estimated 𝜂𝑃2𝑃
of 99% and 90-94% for Bitcoin and Ethereum

respectively [21].

5.2.2 Comparison of the overall efficiency in the P2P and coordinated
settings We have seen that, for both the P2P and the coordinated

setting, overall efficiency decreases with latency. We now compare

the overall system efficiency of the two models. To that end, we fix

the number of miners, the vector of computational capacities 𝒉, and
the puzzle hardness 𝜏 identical across the models; and we assume

that the latency matrix 𝐿 of the P2P model and the latency vector 𝒍
of the coordinated model are consistent with each other (see §3.2),

i.e., the addition of the coordinator in the coordinated setting does

not shorten the path between any two miners in the P2P setting.

Our next result shows that, under that consistency condition, the

overall system efficiency is always higher in the P2P setting than

in the coordinated setting.

Theorem 2. For any 𝜏 and 𝒉 and for any 𝐿 and 𝒍 such that
𝑙𝑖 𝑗 ≤ 𝑙𝑖 + 𝑙 𝑗 for all 𝑖 and 𝑗 , we have

𝜂𝑃2𝑃 (𝒉, 𝐿, 𝜏) ≥ 𝜂𝐶 (𝒉, 𝒍, 𝜏) .

Proof. This proof relies on constructing, from a base set of

independent Poisson processes on each miner, two coupled sets

of block discovery times—one statistically consistent with the P2P

setting and the other with the C setting. The construction is such

that the second set is a strict subset of the first, and allows us to

compare the longest chain obtained from the two sets of discovery

times under the P2P and C settings, respectively. A complete proof

is included in Appendix B. □

Thm. 2 only requires the consistency condition that 𝑙𝑖 𝑗 ≤ 𝑙𝑖 + 𝑙 𝑗
for all 𝑖 and 𝑗 . The requirement implies that, even if the coordina-

tor does not introduce any extra delay between any two miners

(which is possible in the two-miners case, for instance, when the

coordinator is in between the miners), the result still holds and

the overall efficiency is higher for the P2P than the coordinated

setting. An intuitive reason is that miners in the coordinated setting

must pause after discovering a block (waiting for information from

the coordinator to resume mining). In the P2P setting, this time

can lead to a new block discovery, which can (although it will not

always) end up growing the chain. In most cases, however, the path

between any two miners via the coordinator will be longer than

that in the P2P setting, i.e., the coordinator will add extra delays.

These additional delays introduce a second source of efficiency loss

in the coordinated setting as described in Cor. 4.

To illustrate the result of Thm. 2, we perform simulations of both

the two-miner and three-miner scenarios under different 𝜆 values

and compute-capacity distributions. Fig. 4 shows the results for

selected configurations. For the coordinated setting, we used the

“best” position for the coordinator, i.e., the position that results in

a maximal overall system efficiency for each point (found via an

exhaustive search). We observe that, in most cases, the inequality

in Thm. 2 is strict; even in the two-miners case where adding the

coordinator does not add any extra delay (i.e., where the best posi-

tion of the coordinator is also in between the two miners). In the

next subsection, we delve into what position(s) of the coordinator

lead to maximal overall system efficiency and why.

To conclude this subsection, let us observe that the result of

Thm. 2 can also be interpreted as a lower bound on the overall sys-

tem efficiency for the P2P setting. Then, to obtain the best possible

lower bound for a P2P setting with fixed 𝜏 , 𝒉 and 𝐿, one simply

needs to search for the latency vector 𝒍 consistent with 𝐿 that max-

imizes the overall efficiency of the coordinated setting, i.e., solve

max𝜂𝐶 (𝒉, 𝒍, 𝜏) over the space of all vectors 𝒍 such that 𝑙𝑖 + 𝑙 𝑗 ≥ 𝑙𝑖 𝑗
for all 𝑖 and 𝑗 . (Note that this problem is different from the problem

of the next subsection where we search only in the space of vectors

𝒍 induced by physically possible locations of the coordinator.) Such

a lower bound is valuable because no closed-form expression exists

for the P2P setting; we also observe on Fig. 4 that is seems close to

the actual efficiency.
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Figure 4: (P2P vs. coordinated setting.) Overall system efficiency as
a function of 𝜆 in the two settings for the scenarios described in §4.
For each point in the coordinated setting, the optimal coordinator’s
position is set.

5.3 Optimal Placement of Coordinator
Where should a coordinator be placed with respect to the miners to

maximize the overall system efficiency in the coordinated setting?

This question naturally arises in practice where a mining pool

operator (MPO) has to decide where to place the coordinator in

their pool for maximizing the overall system efficiency such as

those in Bitcoin [10]. Unfortunately, as the expression of 𝜂𝐶 as a

function of 𝒍 (or of the coordinator’s position) is complex, it is not

feasible to find analytically the optimal position of the coordinator.

Rather, we use simulations to provide some insights.

Fig. 5 shows the results for simulations of the two-miner scenario.

We observe that for small values of 𝜆 (i.e., 𝜆 ≤ 0.1) with two equally

powerful miners (i.e.,𝛾ℎ = 0), the overall system efficiency increases

when the coordinator moves close to either miner (in Fig. 5a). When

the total compute capacity is unequally distributed (as in the case

of Fig. 5b & Fig. 5c), the overall system efficiency peaks as the

coordinator moves close to the stronger miner. For high values of

𝜆, however, this question of optimal placement becomes moot as

the efficiency is close to one for all locations.

The difficulty in finding the optimal coordinator position be-

comes more pronounced in the three-miner scenario (Fig. 6). The

optimal position(s) might correspond to that of one miner or those

of several miners (Fig. 6a and 6c), but might be completely different

in other scenarios. In case of an unequal distribution of compute

capacities (Fig. 6d) the optimal location of the coordinator is closer

to the stronger miner, whereas when compute capacities are shared

equally across miners (Fig. 6b) the optimal location is in the middle

(i.e., equidistant from all three miners). These simulation results

attest to the difficulty in determining the optimal coordinator lo-

cation with respect to known positions (and capacities) of miners.

5.4 Takeaways and Implications
The overall system efficiency is affected by latencies in both the

P2P and coordinated models; but it is always higher in the P2P

model. In the coordinated model, finding the optimal location of the

coordinator is a non-trivial challenge for general 𝑛-miner scenario.

It may be possible to use a variant of gradient descent based on

our closed-form expression, but the non-convexity of the overall

system efficiency makes its analysis challenging.

6 Inequality in Efficiency
In this section, we turn to the analysis of individual efficiency of

miners (and the inequality thereof) in a blockchain with non-zero

latency, in both the coordinated and the P2P setting.

6.1 Coordinated Setting
We start by investigating how latency affects the individual ef-

ficiency of miners in the coordinated setting, in two main steps.

As for the overall efficiency, we provide a closed-form expression

(Thm. 3) for computing the efficiency of any individual miner under

arbitrary parameters.

Theorem 3 (Individual efficiency in the coordinated setting).
Consider a coordinated model with 𝑛 miners, with computational
capacities 𝒉, latency vector 𝒍 , and puzzle hardness 𝜏 . Recall that
˜𝒉 = 𝒉/𝜏 and let ˜𝑙𝑖 = 2𝑙𝑖 for all 𝑖 ∈ {1, · · · , 𝑛}. Without loss of
generality, assume that 𝑙1 ≤ · · · ≤ 𝑙𝑛 . Then the individual efficiency
of miner𝑚𝑖 ∈ M is

𝜂𝐶𝑖 (𝒉, 𝒍, 𝜏) = 𝜂𝐶𝑖 ( ˜𝒉, ˜𝒍) = 𝑝𝑖/𝜏
˜ℎ𝑖

; (5)

where 𝜏 is given by (4) and

𝑝𝑖 = ˜ℎ𝑖 ·
𝑛∑︁
𝑘=𝑖

1

˜ℎ1+· · ·+ ˜ℎ𝑘

·
(
𝑒
∑𝑘

𝑗=1
− ˜ℎ 𝑗 ( ˜𝑙𝑘− ˜𝑙 𝑗 )− 𝑒

∑𝑘
𝑗=1

− ˜ℎ 𝑗 ( ˜𝑙𝑘+1− ˜𝑙 𝑗 )
)
. (6)

Here, we used the convention 𝑙𝑛+1 = ∞ to simplify the expression.

A proof of Thm. 3 is provided in Appendix B; it follows similar

ideas as in the proof of Thm. 1. The term 𝑝𝑖 in Thm. 3 corresponds

to the probability that a block included in the chain was mined by

miner 𝑚𝑖 . From (6), one can check that

∑𝑛
𝑖=1

𝑝𝑖 = 1. Then, with
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Figure 5: (Coordinated setting.) Overall efficiency as a function of the distance 𝑙1 from𝑚1 to the coordinator (with 𝑙1 +𝑙2 = 1 ms), in the two-miners
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Figure 6: (Coordinated setting.) Optimal position of the coordinator in the 3-miner scenario. The color map represents𝜂𝐶 as a function of the coor-
dinator position in the 2D plane, white squares showminers, and the green circle shows the coordinator positionmaximizing𝜂𝐶 . The distribution
of compute capacities in (a) and (b) is equal, while (c) and (d) have a distribution of 30%-40%-30%.

𝜂𝐶
𝑖
(𝒉, 𝒍, 𝜏) given by (5) we recover

∑𝑛
𝑖=1

ℎ𝑖𝜂
𝐶
𝑖
(𝒉, 𝒍, 𝜏) = 𝜂𝐶 (𝒉, 𝒍, 𝜏),

where the overall system efficiency in the coordinated setting,

𝜂𝐶 (𝒉, 𝒍, 𝜏), is given by (3)—recall that

∑𝑛
𝑖=1

˜ℎ𝑖 = 1/𝜏 .
Using the general result of Thm. 3, we analyze a number of

consequences and special cases. We start with the case of two

miners.

Corollary 5 (Two-miners case). If 𝑛 = 2, then the individual
efficiency of𝑚𝑖 is

𝑝𝑖/𝜏
˜ℎ𝑖

, where

𝑝1 = 1 − ℎ2

ℎ1 + ℎ2

𝑒−
˜ℎ1 ( ˜𝑙2− ˜𝑙1) , and 𝑝2 = 1 − 𝑝1 .

Proof. This directly follows by applying Thm. 3 with 𝑛 = 2. □

We observe in Cor. 5 that 𝑝1 > ℎ1 and 𝑝2 < ℎ2 as soon as 𝑙2 > 𝑙1.

This observation implies that, unless the two miners are exactly

equidistant from the coordinator, the miner which is farther from

the coordinator will have a lower individual efficiency than the

other—the former will receive less than its “fair share” of blocks

in the longest chain. This result holds irrespective of the compute
capacity of the two miners. Extending that idea, we show next that

if 𝑛 ≥ 2, for any pair of miners that are equidistant from the coor-

dinator the individual miners’ efficiencies are identical, regardless

of their and of other miners’ compute capacities in the system.

Corollary 6 (Equidistantminers). Twominers which are equidistant
from the coordinator have the same individual efficiency, irrespective
of their computational capacity. Formally, suppose that two miners
𝑚𝑖 and𝑚𝑖+1 are equidistant from the coordinator, i.e., 𝑙𝑖 = 𝑙𝑖+1. Then
𝜂𝐶
𝑖
(𝒉, 𝒍, 𝜏) = 𝜂𝐶

𝑖+1
(𝒉, 𝒍, 𝜏).

Proof. Since the factor multiplying the effective capacity is the

same for 𝑖 and 𝑖 + 1 in (6) when 𝑙𝑖 = 𝑙𝑖+1, the individual efficiencies

are identical, even if
˜ℎ𝑖 and ˜ℎ𝑖+1 are different. □

The observation in Cor. 6 trivially extends to the case with more

than two miners equidistant from the coordinator. In particular, if

all miners are equidistant from the coordinator, then they all have

the same (individual) efficiency. This result can also be directly

observed from Thm. 3: if all latencies are equal, then 𝑝𝑖 = ℎ𝑖 for all

𝑖 . This result also highlights an equivalence: All miners have the

same (individual) efficiency (i.e., get their “fair share”) if and only

if they are equidistant from the coordinator.

The above result states that all miners must be equidistant from
the coordinator to guarantee fairness. In practice, it is always pos-

sible to achieve such a configuration in the coordinated setting,

potentially via addition of artificial delays where needed. Now, to

optimize the overall efficiency under a no-inequality (or “fairness”)

constraint, it is enough to choose a configuration that minimizes

the delay from each miner to the coordinator.

To illustrate these theoretical results, we performed simulations

of the two-miner and three-miner scenarios with various distribu-

tions of compute capacity. The results are presented in Fig. 7 and 8.

We vary the compute capacities of the miners in both scenarios and

succinctly annotate each plot with the corresponding 𝛾ℎ value. We

observe that, when the coordinator is equidistant from the miners,

the individual efficiencies of the miners are identical.

6.2 P2P Setting
As the computation of individual efficiency in the P2P setting does

not lend itself to a theoretical analysis, we rely on simulations to

analyze it. To first observe the presence of inequality, we look at the

Gini index 𝛾𝑒 of individual efficiencies in the scenarios of §4. The

results are presented in Fig. 9. We observe that when the compute

capacities of miners are identical (𝛾ℎ = 0), the effect of latency on

the individual efficiency of miners is also uniform. When 𝛾ℎ = 0,
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Figure 7: (Coordinated setting.) Effect of the coordinator’s position on the individual efficiencies of miners in the two-miners scenario of §4. The
distribution of compute capacity is (a) equal, (b) a 30-70%, and (c) a 10-90%.
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Figure 8: (Coordinated setting.) Effect of the coordinator’s position on the individual efficiencies in the three-miners scenario of §4. The distribu-
tion of compute capacity is (a) equal, (b) a 20-60-20%, and (c) a 10-80-10%.

there is no inequality in efficiency (𝛾𝑒 ) across miners in the two-

miner (Fig. 9a) and three-miner (Fig. 9b) scenarios. The figures,

however, also make it readily apparent that any variability in the

compute capacity of miners is significantly exaggerated by latency:

as 𝛾ℎ increases, 𝛾𝑒 deviates from zero (i.e., miners do not experience

a fair share of the overall system efficiency). Fig. 10a and Fig. 10b

plot the individual efficiency of miners, instead of the inequality,

to emphasize the unfairness in efficiency affected by the network

latencies between miners; for clarity, we restrict these plots to only

one compute-capacity distribution. When 𝜆 < 10 network latencies

have a measurable impact on the individual efficiency of miners,

albeit weak miners suffer a higher drop in efficiency compared

to strong miners—in the extreme case, as 𝜆 tends towards zero, it

appears that only the most powerful miner obtains an efficiency of

one; the efficiency of all others tends to reduce to zero. In the two-

miner and three-miner scenarios above, theminers were equidistant

from one another. Yet we observed inequality in the efficiency. This

observation brings an interesting contrast between the P2P and

coordinated setting: Whereas the inequality in efficiency of miners

in the coordinated setting depends only on the variability of delay

from the coordinator to the different miners, in the P2P setting it is

also dictated by the compute capacities of miners.

To explore cases with variability in the latencies in the P2P

setting, Fig. 9c examines the impact of latency on 𝛾𝑒 in the Bitcoin-

approximation scenario, where the miners are not equidistant from

one another but potentially reflect a realistic deployment (cf. §4).

Even if the miners were all assigned the same compute-capacity, the

differences in pairwise latencies between them results in an unequal,

unfair distribution of efficiency across the miners (as shown in

Fig. 10c). These observations offer a new rationale for the use of

high 𝜆 values in practice (e.g., in Bitcoin and Ethereum): A high

value of 𝜆 helps ameliorate the inequality in efficiency acrossminers.

They also reveal that a change in the operating parameters, e.g.,

use of a lower value of 𝜏 for improving the transaction throughput,

has significant implications for fairness in efficiency.

To supplement the simulation results with empirical observa-

tions, we analyzed the Ethereum blockchain data for the entire year

of 2019. Specifically, we retrieved all the blocks in the longest (i.e.,

main) chain as well as blocks that were “uncled” or “forked” from

Etherscan [15].
5
This data set comprises 2,204,109 blocks in the

main chain, 148,530 uncled blocks, and 39,580 forked blocks. We

estimate the compute capacities of Ethereum mining pools based

on the fraction of blocks contributed by each to the main chain.

Per Fig. 11a there is a significant variance in compute capacities of

mining pools. Given this estimate of compute capacities of miners,

we simply ask whether the loss in contributions of the miners is

proportional to their relative share of compute capacities. The loss

in a miner’s contribution of blocks to the main chain is captured

by the count of uncled and forked blocks of that miner. Fig. 11a

shows that the miners with high compute capacities experienced

proportionally less “uncling” and “forking” of their blocks com-

pared to the miners with weak compute capacities. Fig. 11b depicts

the efficiency of each mining pool computed as the fraction of the

blocks contributed to the main chain relative to the total number

of mined blocks (main chain, uncles, and forked blocks) per each

mining pool, and it confirms this observation.

To conclude this section, we investigate how the individual effi-

ciency is affected by the position of a miner in the P2P network. We

focus here on the case where all compute capacities are the same

and use the closeness centrality measure [14, 51] to capture how

“well-connected” a miner is. To explore the relationship between

5
In Ethereum, when two blocks are mined roughly at the same time only one will

eventually be part of the main chain; but the other still has an opportunity to get

included as an uncle—or ommer, see §4.2 in [52]—block (with a reduced reward) that

contributes to the security of the main chain. If a block was not included as an uncle,

it will become a forked block.
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Figure 9: (P2P Setting.) Inequality (𝛾𝑒 ) in efficiency of miners as a function of 𝜆 in the scenarios of §4 under various configurations of compute
capacity.
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Figure 11: Empirical evaluation of efficiency in Ethereum mining
pools: (a) Forked and uncled blocks of each pool as a fraction of blocks
contributed by it to the longest chain; (b) Estimated efficiency of the
different mining pools.

centrality and individual efficiency of a miner, we consider a hypo-

thetical scenario where we place a miner in each of the 240 capital

cities in the world. We use an optimistic measure of the latency

by assuming all miners are connected with a high speed optical

fiber connection. As before, we simulate the blockchain in this P2P

setting up to a longest chain of 100,000 blocks, we repeat the simu-

lation 10 times and take the average individual efficiency for each

miner. We then calculate two measures of correlation between the

centrality and the individual efficiency vectors: the Pearson and

the Spearman correlation coefficients. The Pearson coefficient mea-

sures the correlation between the values of centrality and individual
efficiency (it is the standard correlation coefficient), whereas the

Spearman coefficient measures the correlation between the ranks
of miners according to those two metrics. The results are shown in

Tab. 1a. Focusing first on the Pearson correlation, we observe that

it is almost zero for large 𝜆. This result might be due to the fact that

at such small delays all miners have efficiency close to one. When 𝜆

decreases to one, the Pearson correlation coefficient becomes very

close to one, meaning that individual efficiency here is essentially

proportional to the centrality. When 𝜆 gets smaller, the Pearson

correlation coefficient decreases again. Interestingly though, when

looking at the Spearman correlation coefficient, we observe the

same trend for 𝜆 going from large values to one, but we do not ob-

serve the decrease for smaller values of 𝜆 (or at least not as marked

as for the Pearson coefficient). This result implies that, for small

values of 𝜆, while the values of centrality and individual efficiency

become less correlated, their ranks remain highly correlated. From

a deeper investigation, we observed that the result is due to the

fact that, as 𝜆 gets smaller, the curve of individual efficiency as a

function of centrality gets highly superlinear: only the most cen-

tral miners get non-negligible individual efficiency, the others get

individual efficiency close to zero. This observation also explains,

at least in part, the small decrease of the Spearman coefficient for

𝜆 = 0.01: as many miners have individual efficiency close to zero

(and hence close to each other), estimating the rank correlation

becomes difficult. To confirm that, we performed simulations with

only 15 cities (instead of 240 so as to have more reasonable simula-

tion times), varying the length of the simulation. The results are

shown in Tab. 1b. We observe indeed that with longer simulations,

the decrease in the Spearman correlation coefficient for very small

𝜆 is much less pronounced.

6.3 Takeaways and Implications
We showed that in the P2P setting the distribution of compute ca-

pacities and relative locations of miners in the network, captured

via the closeness centrality measure, have non-trivial consequences

on the inequality in efficiency across miners. In the coordinated set-

ting, however, inequality in efficiency of miners is simply dictated

by the latencies between the miners and the coordinator, and can be

alleviated by making all miners equidistant from the coordinator.
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Table 1: Correlation between the closeness centrality measure and in-
dividual miners’ efficiencies in a hypothetical setting. In (a), we do
simulations of 100K blocks; in (b) we vary the length from 10K to
10M blocks.

(a) 240 cities

𝜆
Pearson Spearman
100K 100K

0.01 0.587 0.801

0.1 0.862 0.975

1.0 0.995 0.992

10.0 0.934 0.914

100.0 0.308 0.296

1000.0 0.062 0.077

10000.0 0.060 0.055

(b) 15 cities

𝜆
Pearson Spearman

10K 100K 1M 10M 10K 100K 1M 10M

0.01 0.484 0.484 0.484 0.484 0.862 0.924 0.948 0.924

0.1 0.791 0.791 0.792 0.792 0.967 0.96 0.961 0.964

1.0 0.997 0.998 0.998 0.998 0.968 0.975 0.975 0.975

10.0 0.978 0.985 0.982 0.983 0.868 0.929 0.996 0.996

100.0 0.644 0.92 0.954 0.975 0.643 0.839 0.857 0.921

1000.0 0.158 0.503 0.415 0.82 0.161 0.361 0.236 0.679

10000.0 0.096 0.31 -0.165 0.094 0.154 0.243 -0.161 0.021

7 Conclusion
In this paper, we presented closed-form expressions for both the

overall system efficiency and the individual miner efficiency in

the coordinated setting, with an arbitrary number of miners and

arbitrary delays. We derived a lower bound for the overall system

efficiency of the P2P setting using that of the coordinated setting,

showing that the former is at least as high as the latter.

Hybrid-hierarchical model. Although we discussed the P2P and

coordinated models as if they are alternatives for how a blockchain

could operate, these models coexist in a real-world system. The

mining pool operator in Bitcoin, for instance, operates both as a

coordinator within their mining pool (coordinated setting) and as

a peer, interacting with other miners and pools, outside of their

pool (P2P setting). We leave a precise modeling of the interactions

between the two settings and investigation of the implications of

this hybrid model for efficiency to future work. Yet, we empha-

size that our current results provide a number of interesting direct

consequences. For instance, our coordinated model with a single

coordinator is equivalent to a multi-coordinator setting with zero

delay between the coordinators, hence it provides an upper bound

on the efficiency of the hybrid model with delay between the coor-

dinators. In the other extreme, clearly the hybrid model can be as

efficient as the P2P model if each miner is its own coordinator.

New notions of efficiency. Our analyses focus on one measure of

efficiency based on the computational work performed by miners.

There may exist, however, other notions of efficiency, e.g., focusing

on energy consumption. The results may change under such a

notion: A miner may achieve less than its proportional share of

blocks, but still obtain a better share with respect to the energy

consumed. We hope our work motivates others to investigate other

relevant efficiency notions.
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A Summary of notation

Table 2: Summary of notations along with their descriptions

Notation Description

𝑚𝑖 𝑖-th miner

M set of miners {𝑚1, · · · ,𝑚𝑛 }
ℎ𝑖 relative computational capacity of miner𝑚𝑖

𝒉 vector of relative computational capacities [ℎ𝑖 ]𝑖=1,··· ,𝑛
˜ℎ𝑖 effective computational capacity of miner𝑚𝑖

˜𝒉 vector of effective computational capacities [ ˜ℎ𝑖 ]𝑖=1,··· ,𝑛
𝜏 puzzle hardness

𝑙𝑖 𝑗 latency between𝑚𝑖 and𝑚 𝑗

𝐿 latency matrix [𝑙𝑖 𝑗 ]𝑖,𝑗∈{1,··· ,𝑛} (for P2P)
¯𝑙 mean latency 2/(𝑛 (𝑛 − 1)) ·∑𝑛

𝑖=1

∑
𝑗>𝑖 𝑙𝑖 𝑗

𝜆 hardness to latency ratio 𝜏/¯𝑙

𝑙𝑖 latency between miner𝑚𝑖 and𝐶

𝒍 latency vector [𝑙𝑖 ]𝑖∈{1,··· ,𝑛} (for coordinated)
˜𝑙𝑖 round-trip time 2𝑙𝑖 between miner𝑚𝑖 and𝐶
˜𝒍 round-trip time vector [ ˜𝑙𝑖 ]𝑖∈{1,··· ,𝑛} (for coordinated)
𝑇 length of the time window

𝜂𝑖 efficiency of miner𝑚𝑖

𝜂 overall system efficiency

𝛾𝑒 , 𝛾ℎ Gini index of efficiencies, capacities

B Proofs
B.1 Proof of Theorem 1

Proof of Theorem 1. In the coordinated model, miners wait for a message from the coordinator to start mining a block and a block is

added to the chain if it is the first on top of the current chain that reaches the coordinator. We consider the process 𝐵̂ that corresponds to the

number of blocks mined from the viewpoint of the coordinator. When 𝐵̂ increases by one, the coordinator sends a message to all miners,

who then start mining the next block upon receiving the message, and 𝐵̂ increases by one again when the first block reaches the coordinator;

and so on. Hence, 𝐵̂ is a renewal process and by the elementary renewal theorem (and by definition of 𝜂) we have (3) where 𝜏 is the expected

time between two increments of 𝐵̂. To conclude the proof, we show that 𝜏 satisfies (4).

𝜏 is the expected duration between the time when the coordinator sends a new message and the time when it receives the corresponding

block back. Let 𝜏1, · · · , 𝜏𝑛 be the times taken by each miner to discover that block; 𝜏𝑖 is a random variable of distribution exponential with

parameter
˜ℎ𝑖 . If the block arriving first to the coordinator is from miner𝑚1, then the duration for the coordinator to receive the block after

sending the message is 𝜏1 + 2𝑙1 = 𝜏1 + ˜𝑙1, where 2𝑙1 is the communication delay to receive the initial message from the coordinator and to

send the block back after mining it. Similarly, the duration is 𝜏𝑖 + ˜𝑙𝑖 if the block is first received from miner𝑚𝑖 . Hence we have

𝜏 = 𝜏1 + · · · + 𝜏𝑛,

where

𝜏𝑖 =

∫
𝜏1≥0

˜ℎ1𝑒
− ˜ℎ1𝜏1

d𝜏1 · · ·
∫
𝜏𝑛≥0

˜ℎ𝑛𝑒
− ˜ℎ𝑛𝜏𝑛

d𝜏𝑛 (𝜏𝑖 + ˜𝑙𝑖 ) · 1𝜏𝑖+ ˜𝑙𝑖 ≤𝜏 𝑗+ ˜𝑙 𝑗 for all 𝑗≠𝑖
,

where 1𝐸 is 1 if 𝐸 holds and 0 otherwise.

We compute separately each 𝜏𝑖 . We first do a change of variable, for all 𝑖 , 𝜏𝑖 + ˜𝑙𝑖 → 𝜏𝑖 ; this gives

𝜏𝑖 = 𝑒
∑𝑛

𝑗=1

˜ℎ 𝑗
˜𝑙 𝑗

∫
𝜏1≥ ˜𝑙1

˜ℎ1𝑒
− ˜ℎ1𝜏1

d𝜏1 · · ·
∫
𝜏𝑛≥ ˜𝑙𝑛

˜ℎ𝑛𝑒
− ˜ℎ𝑛𝜏𝑛

d𝜏𝑛 𝜏𝑖 · 1𝜏𝑖 ≤𝜏 𝑗 for all 𝑗≠𝑖 .

Then, we isolate the integral on 𝜏𝑖 :

𝜏𝑖 = 𝑒
∑𝑛

𝑗=1

˜ℎ 𝑗
˜𝑙 𝑗

∫
𝜏𝑖 ≥ ˜𝑙𝑖

𝜏𝑖 ˜ℎ𝑖𝑒
− ˜ℎ𝑖𝜏𝑖

d𝜏𝑖

∫
𝜏1≥ ˜𝑙1
𝜏1≥𝜏𝑖

˜ℎ1𝑒
− ˜ℎ1𝜏1

d𝜏1 · · ·
∫
𝜏𝑖−1≥ ˜𝑙𝑖−1

𝜏𝑖−1≥𝜏𝑖

˜ℎ𝑖−1𝑒
− ˜ℎ𝑖−1𝜏𝑖−1

d𝜏𝑖−1∫
𝜏𝑖+1≥ ˜𝑙𝑖+1

𝜏𝑖+1≥𝜏𝑖

˜ℎ𝑖+1𝑒
− ˜ℎ𝑖+1𝜏𝑖+1

d𝜏𝑖+1 · · ·
∫
𝜏𝑛≥ ˜𝑙𝑛
𝜏𝑛≥𝜏𝑖

˜ℎ𝑛𝑒
− ˜ℎ𝑛𝜏𝑛

d𝜏𝑛 .
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Observe that for 𝑗 = 1, · · · , 𝑖 − 1, condition 𝜏 𝑗 ≥ ˜𝑙 𝑗 is automatically satisfied as soon as 𝜏 𝑗 ≥ 𝜏𝑖 since we integrate 𝜏𝑖 on the domain 𝜏𝑖 ≥ ˜𝑙𝑖

and by assumption
˜𝑙𝑖 ≥ ˜𝑙 𝑗 . On the other hand, this is not the case for 𝑗 = 𝑖 + 1, · · · , 𝑛. To be able to compute the corresponding integrals we

need to split the domain 𝜏𝑖 ≥ ˜𝑙𝑖 into segments [ ˜𝑙𝑘 ,
˜𝑙𝑘+1

] for 𝑘 = 𝑖, · · · , 𝑛 (recall that 𝑙𝑛+1 = ∞). In such a segment, the domain of integration

for 𝜏 𝑗 is either 𝜏 𝑗 ≥ 𝜏𝑖 or 𝜏 𝑗 ≥ ˜𝑙 𝑗 :

𝜏𝑖 = 𝑒
∑𝑛

𝑗=1

˜ℎ 𝑗
˜𝑙 𝑗 ·

𝑛∑︁
𝑘=𝑖

∫
𝜏𝑖 ∈[ ˜𝑙𝑘 ,

˜𝑙𝑘+1 ]
𝜏𝑖 ˜ℎ𝑖𝑒

− ˜ℎ𝑖𝜏𝑖
d𝜏𝑖

∫
𝜏1≥𝜏𝑖

˜ℎ1𝑒
− ˜ℎ1𝜏1

d𝜏1 · · ·
∫
𝜏𝑖−1≥𝜏𝑖

˜ℎ𝑖−1𝑒
− ˜ℎ𝑖−1𝜏𝑖−1

d𝜏𝑖−1∫
𝜏𝑖+1≥𝜏𝑖

˜ℎ𝑖+1𝑒
− ˜ℎ𝑖+1𝜏𝑖+1

d𝜏𝑖+1 · · ·
∫
𝜏𝑘 ≥𝜏𝑖

˜ℎ𝑘𝑒
− ˜ℎ𝑘𝜏𝑘

d𝜏𝑘∫
𝜏𝑘+1≥ ˜𝑙𝑘+1

˜ℎ𝑘+1
𝑒−

˜ℎ𝑘+1𝜏𝑘+1
d𝜏𝑘+1

· · ·
∫
𝜏𝑛≥ ˜𝑙𝑛

˜ℎ𝑛𝑒
− ˜ℎ𝑛𝜏𝑛

d𝜏𝑛 .

Next, using the standard equality

∫
𝜏≥𝑦 ℎ𝑒

−ℎ𝜏
d𝜏 = 𝑒−ℎ𝑦 , we get

𝜏𝑖 = 𝑒
∑𝑛

𝑗=1

˜ℎ 𝑗
˜𝑙 𝑗 ·

𝑛∑︁
𝑘=𝑖

𝑒−(
˜ℎ𝑘+1

˜𝑙𝑘+1+···+ ˜ℎ𝑛 ˜𝑙𝑛)
∫
𝜏𝑖 ∈[ ˜𝑙𝑘 ,

˜𝑙𝑘+1 ]
𝜏𝑖 ˜ℎ𝑖𝑒

−( ˜ℎ1+···+ ˜ℎ𝑘 )𝜏𝑖
d𝜏𝑖

Finally, using that ∫
𝜏 ∈[𝑦1,𝑦2 ]

ℎ𝜏𝑒−ℎ𝜏 d𝜏 =
1

ℎ

(
(ℎ𝑦1 + 1)𝑒−ℎ𝑦1 − (ℎ𝑦2 + 1)𝑒−ℎ𝑦2

)
,

we obtain

𝜏𝑖 = 𝑒
∑𝑛

𝑗=1

˜ℎ 𝑗
˜𝑙 𝑗 ·

𝑛∑︁
𝑘=𝑖

˜ℎ𝑖 · 𝑒−(
˜ℎ𝑘+1

˜𝑙𝑘+1+···+ ˜ℎ𝑛 ˜𝑙𝑛)

( ˜ℎ1 + · · · + ˜ℎ𝑘 )2

((
( ˜ℎ1 + · · · + ˜ℎ𝑘 ) ˜𝑙𝑘 + 1

)
𝑒−(

˜ℎ1+···+ ˜ℎ𝑘 ) ˜𝑙𝑘

−
(
( ˜ℎ1 + · · · + ˜ℎ𝑘 ) ˜𝑙𝑘+1

+ 1

)
𝑒−(

˜ℎ1+···+ ˜ℎ𝑘 ) ˜𝑙𝑘+1

)
= ˜ℎ𝑖 ·

𝑛∑︁
𝑘=𝑖

𝑒−(
˜ℎ1

˜𝑙1+···+ ˜ℎ𝑘
˜𝑙𝑘 )

( ˜ℎ1 + · · · + ˜ℎ𝑘 )2

((
( ˜ℎ1 + · · · + ˜ℎ𝑘 ) ˜𝑙𝑘 + 1

)
𝑒−(

˜ℎ1+···+ ˜ℎ𝑘 ) ˜𝑙𝑘

−
(
( ˜ℎ1 + · · · + ˜ℎ𝑘 ) ˜𝑙𝑘+1

+ 1

)
𝑒−(

˜ℎ1+···+ ˜ℎ𝑘 ) ˜𝑙𝑘+1

)
.

To conclude, we sum the 𝜏𝑖 ’s for all 𝑖’s, exchange the sums on 𝑖 and 𝑘 (i.e.,

∑𝑛
𝑖=1

∑𝑛
𝑘=𝑖

· · · = ∑𝑛
𝑘=1

∑𝑛
𝑖=𝑘

· · · ), and merge the different terms

with the same denominator ( ˜ℎ1 + · · · + ˜ℎ𝑘 )2
. This yields (4), where we write the only remaining summation index as 𝑖 instead of 𝑘 . □

Remark. In the proof above, if all latencies are zero (i.e.,
˜𝑙𝑖 = 0 for all 𝑖), we get 𝜏𝑖 = ˜ℎ𝑖/( ˜ℎ1 + · · · + ˜ℎ𝑛)2

. (Recall that by convention
˜𝑙𝑛+1 = ∞

and
˜𝑙𝑛+1𝑒

−ℎ ˜𝑙𝑛+1 = 0 for any ℎ > 0.) This yields 𝜏 = 1/( ˜ℎ1 + · · · + ˜ℎ𝑛) = 𝜏 , consistent with intuition.

B.2 Proof of Theorem 2
Proof of Theorem 2. We prove the result under the assumption that 𝑙𝑖 𝑗 = 𝑙𝑖 + 𝑙 𝑗 for all 𝑖 and 𝑗 ; that is, the coordinator introduces no

extra delay. The result when 𝑙𝑖 𝑗 ≤ 𝑙𝑖 + 𝑙 𝑗 for all 𝑖 and 𝑗 then immediately follows by applying Corollary 4.

Consider 𝑛 independent Poisson point processes 𝑁 (1) , · · · , 𝑁 (𝑛)
starting at time 0 with rates

˜ℎ1, · · · , ˜ℎ𝑛 respectively; and let (𝑇 (𝑖)
𝑗

≥ 0) 𝑗≥1

be the sequence of increment times of point process 𝑁 (𝑖) , 𝑖 ∈ {1, · · · , 𝑛}. Based on these 𝑛 processes, we will derive sequences of block

discovery times statistically consistent with the P2P and the C models and show that the longest chain is always longer in the former than in

the latter.

Let𝑚𝑖 ∈ M be an arbitrary miner. First note that the sequence (𝑇 (𝑖)
𝑗

) 𝑗≥1 without any modification is statistically consistent with block

discovery times in the P2P model. Indeed, consider a time where miner𝑚𝑖 starts mining a new block. This can be either upon discovering a

block, or upon receiving a new chain from another miner𝑚 𝑗 ≠𝑚𝑖 . Either way, by Markov property, since this start time is independent from

the future, the time to the next increment of 𝑁 (𝑖)
is still exponentially distributed with parameter

˜ℎ𝑖 . Hence, denoting by 𝐵̂𝑃2𝑃

{𝑇 (𝑖 ) }𝑖=1,··· ,𝑛
(𝑇 )

the size of the longest chain at time 𝑇 in the P2P model where blocks are discovered at times (𝑇 (𝑖)
𝑗

) 𝑗≥1, we have

𝜂𝑃2𝑃 (𝒉, 𝐿, 𝜏) = lim

𝑇→∞

E
[
𝐵̂𝑃2𝑃

{𝑇 (𝑖 ) }𝑖=1,··· ,𝑛
(𝑇 )

]
𝑇 /𝜏 .
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Second, consider the C model. From the sequence (𝑇 (𝑖)
𝑗

) 𝑗≥1, we construct the set of block discovery times {𝑇 (𝑖)
𝑗

} 𝑗≥1 of miner𝑚𝑖 in the

coordinated model by removing all the points from (𝑇 (𝑖)
𝑗

) 𝑗≥1 that correspond to blocks that “would not have been discovered” in the C

model due to the pause after discovering a block. Note that it is not possible to simply remove all points within a window of size
˜𝑙𝑖 of a

previous point at each miner𝑚𝑖 ; this would remove too many points and no longer be consistent with the C model. Indeed, when a message

arrives at𝑚𝑖 from the coordinator announcing a block discovered by𝑚 𝑗 ≠𝑚𝑖 , miner𝑚𝑖 resumes mining before the end of the
˜𝑙𝑖 -duration

pause and we need to keep the following point even if it is within
˜𝑙𝑖 from the previous point. Concretely, to generate {𝑇 (𝑖)

𝑗
} 𝑗≥1, we simply

run the C mining protocol chronologically assuming that blocks are discovered at times (𝑇 (𝑖)
𝑗

) 𝑗≥1 at each miner𝑚𝑖 but removing each point

that is after a discovered block and before the next message from the coordinator (which can be either an ack of𝑚𝑖 ’s discovered block

arriving a fixed
˜𝑙𝑖 later, or a message announcing a block discovered by another miner that arrives earlier). Since these messages are at times

that do not depend on the future, the time to mine a block is still exponentially distributed with parameter
˜ℎ𝑖 . Hence, the new set of block

discovery times {𝑇 (𝑖)
𝑗

} 𝑗≥1 is statistically consistent with the C model; that is, denoting by 𝐵̂𝐶
{𝑇 (𝑖 ) }𝑖=1,··· ,𝑛

(𝑇 ) the size of the chain at time 𝑇 in

the C model where blocks are discovered at times (𝑇 (𝑖)
𝑗

) 𝑗≥1, we have

𝜂𝐶 (𝒉, 𝐿, 𝜏) = lim

𝑇→∞

E

[
𝐵̂𝐶
{𝑇 (𝑖 ) }𝑖=1,··· ,𝑛

(𝑇 )
]

𝑇 /𝜏 .

Next, observe that the length of the chain at any miner with discovery times {𝑇 (𝑖)
𝑗

} 𝑗≥1 is the same under the P2P and C model; therefore

𝐵̂𝐶{𝑇 (𝑖 ) }𝑖=1,··· ,𝑛
(𝑇 ) = 𝐵̂𝑃2𝑃

{𝑇 (𝑖 ) }𝑖=1,··· ,𝑛
(𝑇 ) .

To see that, consider the sequence of events in the C model and imagine removing the coordinator. Due to our assumption that 𝑙𝑖 𝑗 = 𝑙𝑖 + 𝑙 𝑗
for all 𝑖 and 𝑗 , a block (or chain) sent from one miner will reach every other miners at exactly the same time in the C and P2P models. The

only difference is that some of the chains that would have been blocked by the coordinator will now be forwarded to the other miner in the

P2P model. However, in such cases, when the chain reaches the other miner, it will not make it switch because it will be of the same length

or smaller than the chain held by that miner.

To conclude, observe that {𝑇 (𝑖)
𝑗

} 𝑗≥1 is a subset of {𝑇 (𝑖)
𝑗

} 𝑗≥1 for all miners𝑚𝑖 ∈ M. Hence the longest chain obtained under the P2P

model with discovery times {𝑇 (𝑖)
𝑗

} 𝑗≥1 is smaller than or equal to that obtained under the P2P model with discovery times {𝑇 (𝑖)
𝑗

} 𝑗≥1; that is

𝐵̂𝑃2𝑃

{𝑇 (𝑖 ) }𝑖=1,··· ,𝑛
(𝑇 ) ≤ 𝐵̂𝑃2𝑃

{𝑇 (𝑖 ) }𝑖=1,··· ,𝑛
(𝑇 ) .

Combining the four equations above concludes the proof. □

B.3 Proof of Theorem 3
Proof of Theorem 3. As in the proof of Theorem 1, we consider the process 𝐵𝑖 (the number of blocks from𝑚𝑖 included in the chain) as

a function of time. This process is a renewal reward process where the reward is one if a block is “won” by miner𝑚𝑖 and zero otherwise.

Hence, applying the elementary renewal theorem to 𝐵̂𝑖 (and given the definition of 𝐵̂𝑖 in (1)) immediately gives (5) where 𝑝𝑖 is the probability

that the first block coming back to the coordinator is from miner𝑚𝑖 . To conclude the proof we show that 𝑝𝑖 satisfies (6).

The probability 𝑝𝑖 can be written as

𝑝𝑖 =

∫
𝜏1≥0

˜ℎ1𝑒
− ˜ℎ1𝜏1

d𝜏1 · · ·
∫
𝜏𝑛≥0

˜ℎ𝑛𝑒
− ˜ℎ𝑛𝜏𝑛

d𝜏𝑛 1
𝜏𝑖+ ˜𝑙𝑖 ≤𝜏 𝑗+ ˜𝑙 𝑗 for all 𝑗≠𝑖

.

We compute it similarly to the computation of 𝜏𝑖 is the proof of Theorem 1 (it is the same expression with the 𝜏𝑖 in the integral). We first do a

change of variable, for all 𝑖 , 𝜏𝑖 + ˜𝑙𝑖 → 𝜏𝑖 ; this gives

𝑝𝑖 = 𝑒
∑𝑛

𝑗=1

˜ℎ 𝑗
˜𝑙 𝑗

∫
𝜏1≥ ˜𝑙1

˜ℎ1𝑒
− ˜ℎ1𝜏1

d𝜏1 · · ·
∫
𝜏𝑛≥ ˜𝑙𝑛

˜ℎ𝑛𝑒
− ˜ℎ𝑛𝜏𝑛

d𝜏𝑛 1𝜏𝑖 ≤𝜏 𝑗 for all 𝑗≠𝑖 .

Then, we isolate the integral on 𝜏𝑖 :

𝑝𝑖 = 𝑒
∑𝑛

𝑗=1

˜ℎ 𝑗
˜𝑙 𝑗

∫
𝜏𝑖 ≥ ˜𝑙𝑖

˜ℎ𝑖𝑒
− ˜ℎ𝑖𝜏𝑖

d𝜏𝑖

∫
𝜏1≥ ˜𝑙1
𝜏1≥𝜏𝑖

˜ℎ1𝑒
− ˜ℎ1𝜏1

d𝜏1 · · ·
∫
𝜏𝑖−1≥ ˜𝑙𝑖−1

𝜏𝑖−1≥𝜏𝑖

˜ℎ𝑖−1𝑒
− ˜ℎ𝑖−1𝜏𝑖−1

d𝜏𝑖−1∫
𝜏𝑖+1≥ ˜𝑙𝑖+1

𝜏𝑖+1≥𝜏𝑖

˜ℎ𝑖+1𝑒
− ˜ℎ𝑖+1𝜏𝑖+1

d𝜏𝑖+1 · · ·
∫
𝜏𝑛≥ ˜𝑙𝑛
𝜏𝑛≥𝜏𝑖

˜ℎ𝑛𝑒
− ˜ℎ𝑛𝜏𝑛

d𝜏𝑛 .
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We break up the domain 𝜏𝑖 ≥ ˜𝑙𝑖 into segments [ ˜𝑙𝑘 ,
˜𝑙𝑘+1

] for 𝑘 = 𝑖, · · · , 𝑛 (recall that 𝑙𝑛+1 = ∞):

𝑝𝑖 = 𝑒
∑𝑛

𝑗=1

˜ℎ 𝑗
˜𝑙 𝑗 ·

𝑛∑︁
𝑘=𝑖

∫
𝜏𝑖 ∈[ ˜𝑙𝑘 ,

˜𝑙𝑘+1 ]
˜ℎ𝑖𝑒

− ˜ℎ𝑖𝜏𝑖
d𝜏𝑖

∫
𝜏1≥𝜏𝑖

˜ℎ1𝑒
− ˜ℎ1𝜏1

d𝜏1 · · ·
∫
𝜏𝑖−1≥𝜏𝑖

˜ℎ𝑖−1𝑒
− ˜ℎ𝑖−1𝜏𝑖−1

d𝜏𝑖−1∫
𝜏𝑖+1≥𝜏𝑖

˜ℎ𝑖+1𝑒
− ˜ℎ𝑖+1𝜏𝑖+1

d𝜏𝑖+1 · · ·
∫
𝜏𝑘 ≥𝜏𝑖

˜ℎ𝑘𝑒
− ˜ℎ𝑘𝜏𝑘

d𝜏𝑘∫
𝜏𝑘+1≥ ˜𝑙𝑘+1

˜ℎ𝑘+1
𝑒−

˜ℎ𝑘+1𝜏𝑘+1
d𝜏𝑘+1

· · ·
∫
𝜏𝑛≥ ˜𝑙𝑛

˜ℎ𝑛𝑒
− ˜ℎ𝑛𝜏𝑛

d𝜏𝑛 .

Finally using the standard integral expression for the exponential distribution we get

𝑝𝑖 = 𝑒
∑𝑛

𝑗=1

˜ℎ 𝑗
˜𝑙 𝑗 ·

𝑛∑︁
𝑘=𝑖

𝑒−(
˜ℎ𝑘+1

˜𝑙𝑘+1+···+ ˜ℎ𝑛 ˜𝑙𝑛)
∫
𝜏𝑖 ∈[ ˜𝑙𝑘 ,

˜𝑙𝑘+1 ]
˜ℎ𝑖𝑒

−( ˜ℎ1+···+ ˜ℎ𝑘 )𝜏𝑖
d𝜏𝑖

= 𝑒
∑𝑛

𝑗=1

˜ℎ 𝑗
˜𝑙 𝑗 ·

𝑛∑︁
𝑘=𝑖

𝑒−(
˜ℎ𝑘+1

˜𝑙𝑘+1+···+ ˜ℎ𝑛 ˜𝑙𝑛) ·
˜ℎ𝑖

˜ℎ1 + · · · + ˜ℎ𝑘

·
(
𝑒−(

˜ℎ1+···+ ˜ℎ𝑘 ) ˜𝑙𝑘 − 𝑒−(
˜ℎ1+···+ ˜ℎ𝑘 ) ˜𝑙𝑘+1

)
=

𝑛∑︁
𝑘=𝑖

𝑒
˜ℎ1

˜𝑙1+···+ ˜ℎ𝑘
˜𝑙𝑘 ·

˜ℎ𝑖

˜ℎ1 + · · · + ˜ℎ𝑘

·
(
𝑒−(

˜ℎ1+···+ ˜ℎ𝑘 ) ˜𝑙𝑘 − 𝑒−(
˜ℎ1+···+ ˜ℎ𝑘 ) ˜𝑙𝑘+1

)
=

𝑛∑︁
𝑘=𝑖

˜ℎ𝑖

˜ℎ1 + · · · + ˜ℎ𝑘

·
(
𝑒
∑𝑘

𝑗=1
− ˜ℎ 𝑗 ( ˜𝑙𝑘− ˜𝑙 𝑗 ) − 𝑒

∑𝑘
𝑗=1

− ˜ℎ 𝑗 ( ˜𝑙𝑘+1− ˜𝑙 𝑗 )
)
.

This is exactly (6), which concludes the proof. □
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