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Inverses Design künstlicher Wenig-Zustands-Quantensysteme mit
Mössbauer-Kernen in Dünnschicht-Kavitäten:

In der vorliegenden Masterarbeit wird ein Ansatz zum inversen Design künstlicher
quantenoptischer Wenig-Zustands-Systeme im Bereich harter Röntgenstrahlung
entwickelt. Derartige Quantensysteme lassen sich mit Schichten schwach getriebe-
ner Mössbauer-Kerne in Dünnschicht-Kavitäten verwirklichen. Der in dieser Arbeit
verfolgte inverse Ansatz erlaubt es, umfassend zu untersuchen, welche quantenop-
tischen Schemata realisiert werden können und gibt unmittelbaren Zugang zu den
entsprechenden Geometrien der Kavitäten. Die Konstruktion der Kavitäten durch
Ausprobieren kann weitgehend durch die entwickelte Methode ersetzt werden.
Aufgrund der systematischen Natur des inversen Designs ergeben sich allgemeine
und teils unerwartete Erkenntnisse, die womöglich auch die Entwicklung anderer
Resonatoren im Röntgenbereich beeinflussen werden. Der Ansatz wird zuerst
am Beispiel eines künstlichen Zwei-Level-Systems vorgestellt. Anschließend wird
die Verallgemeinerung auf komplexere Niveau-Schemata anhand des Designs von
quantenoptischen Effekten im Rahmen eines künstlichen Drei-Level-Systems ver-
anschaulicht. Jenseits dessen kann das inverse Design auch direkt zur Gestaltung
des experimentell messbaren Reflektionsspektrums des Kern-Kavität-Systems
verwendet werden. Der entwickelte Ansatz verspricht, bestehende Anwendungen
zu verbessern und wird mit großer Wahrscheinlichkeit dazu beitragen, den An-
wendungsbereich der Röntgenquantenoptik um neue Ideen zu erweitern.

Inverse design of artificial few-level schemes with Mössbauer nuclei in
thin-film cavities:

In this thesis, an inverse design approach to the engineering of quantum optical
few-level schemes at hard x-ray energies is introduced. Such quantum systems can
be realized with layers of Mössbauer nuclei embedded in thin-film cavities and
probed with low-intensity x-rays. The approach pursued in the thesis allows to
comprehensively study the realizable quantum optical setups and gives immediate
access to the geometries they are realized in. This feature alleviates the need for
trial-and-error methods and – due to its systematic nature – enables general and
partly unexpected insights that might impact x-ray cavities beyond the system
under study. The approach is introduced using the example of an artificial two-
level scheme and its generalization to more complex level schemes is illustrated
with the design of quantum optical effects in an artificial three-level system.
Finally, the inverse design is applied to directly shape the observable spectrum of
the joint nuclei-cavity system. The results of the thesis promise to enlarge the
performance of existing applications and will likely help to extend the scope of
x-ray quantum optics towards novel ideas.
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1 Introduction

At present, a multitude of applications making use of quantum mechanics, so-
called quantum technologies, are experiencing tremendous advancement, both in
academia as well as industrially [3–6]. The trend towards deliberately using the
quantum advantage over classical systems to perform tasks better or more efficiently
is commonly termed the second quantum revolution [5, 7]. Where the first quantum
revolution is thought to have explained the foundations of quantum mechanics, the
second one goes beyond and enables the development of technologies, or in the words
of Dowling and Milburn [7],

“The difference between science and technology is the ability to engineer
your surroundings to your own ends, and not just explain them.”

A key ingredient to many emerging quantum technologies has been progress in
the field of quantum optics [8–10]. Among a multitude of examples, schemes of
quantum computation [11], quantum simulation [12], quantum communication [13]
and quantum metrology [14] have been developed on the basis of photonic technologies.
Using integrated designs, photonic quantum technologies are guided to a stage where
scalability and industrial mass production become feasible [15, 16].

Much of the progress in quantum optics was achieved with light of visible, infrared
or microwave frequencies (see [17, 18] and references therein). Opposed to that,
the comparatively new field of x-ray quantum optics – the field which this thesis
is situated in – strives to realize quantum optical setups at far higher energies [19].
The major reason for the imbalance in the development of x-ray quantum optics is
found in the lack of intense coherent light sources [20, 21] comparable to lasers at
longer wavelengths. However, x-ray photons themselves also feature properties that
are desirable for quantum optics, e.g., a high quantum efficiency in detection [18]
and superior focusing capabilities [22]. With the realization and suggestion of ever
more powerful x-ray sources [23–26], the field of x-ray quantum optics has gained
considerable momentum [18, 27, 28]. On that basis, advancing quantum optical
setups in the x-ray regime paves the way towards future x-ray quantum technologies.

Besides using electronic transitions, a complementary approach to x-ray quantum
optics is to employ the extreme properties of transitions in Mössbauer nuclei [29–41].
Being subject to the Mössbauer effect, the nuclei may emit and absorb photons with
negligible recoil and thus exhibit exceptionally small linewidths [43–45]. The most
prominent representative employed in the field of nuclear quantum optics is the 57Fe
isotope, which in the absence of magnetic fields can be treated as a two-level system
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1 Introduction

|E〉

|G〉

Ω

∆CLS

ωnuc

ΓSR

+
γ0Inverse desig

n

Ab
initio theory

Fig. 1.1: Schematic setup of an archetypal thin-film cavity system and illustration of its relation
to the artificial two-level scheme. The cavity consists of a stack of different layers (thicknesses
and exemplary materials are indicated) and a single, thin layer of Mössbauer nuclei (here: 57Fe).
The cavity is illuminated in grazing incidence with x-rays near-resonant to the nuclear transition
frequency. θ, k and k‖ are the x-ray incidence angle, the wave vector, and its projection onto the
cavity surface, respectively. At low probing intensities, the system features an effective description
as an artificial two-level system. As compared to the bare two-level system of individual nuclei
with transition frequency ωnuc and decay rate γ0, it is driven by a cavity- and collectively enhanced
Rabi-frequency Ω, and features a level shift ∆CLS and a decay rate enhancement ΓSR. A recently
developed ab initio theory allows one to readily derive the artificial level scheme from a given cavity
structure [48]. In this thesis, we introduce and develop the inverse design of such artificial few-level
systems, i.e., we determine cavity structures suitable to the realization of desired level schemes.

with a transition frequency of 14.4 keV and a linewidth as small as 4.7 neV [46]. Such
small linewidths correspond to desirably long coherence lifetimes, but also render
the strong driving of Mössbauer nuclei a challenge, even at accelerator based x-ray
sources. A particularly promising approach to nevertheless work with the nuclei is,
firstly, to take a macroscopically large number of nuclei [O(1023)], and secondly, to
couple the nuclei to one another by placing them in a photonic structure. In the
spirit of the Dicke superatom [47], the dynamics can then be described in terms of
a collectively excited state of the nuclei. This state does not only show enhanced
decay, but also has strongly increased coupling to the external driving field.
Efficiently coupling the nuclei by the modes of a photonic structure requires

design capabilities on the scale of the light’s wavelength. For Mössbauer nuclei,
the wavelengths usually lie in the sub-Ångström regime (57Fe: λ = 86 pm) which is
below standard lattice constants and hence prevents the design on these scales. One
can, however, overcome this problem by using so-called thin-film cavities. The most
archetypal setup comprises a guiding layer sandwiched between two cladding layers,
where layer thicknesses typically lie on the nm-scale. A layer of Mössbauer nuclei –
commonly referred to as resonant layer – can then be placed inside the guiding layer,
see Fig. 1.1(left). When the structure is probed in grazing incidence, that is at very
small angles θ, the top and bottom layers act as mirrors and a standing wave can
form normal to the layer surfaces. From a technical perspective, due to the grazing
incidence setup, the wave number in this direction is significantly reduced and hence
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the effective wavelength normal to the layers enhanced to the nm-scale. Using this
waveguide-like setup thus allows the design of a photonic environment at hard x-ray
energies.

The key property making the joint nuclei-cavity system of Fig. 1.1 particularly
interesting for x-ray quantum optics is that it features an effective description as
a two-level scheme in the experimentally relevant low-excitation regime [49]. The
levels of the two-level system comprise the true many-body ground state |G〉 and a
collectively excited state |E〉 where a single excitation is coherently spread across all
nuclei – the latter we will refer to as a nuclear exciton in the layer. The properties
of this collective state strongly depend on the couplings between the nuclei, which
are dictated by the cavity. Changing the cavity’s geometry thus allows to tune the
driving Rabi-frequency, decay rate and transition energy, where the bare properties
of the Mössbauer nuclei serve as a reference, see Fig. 1.1(right).
While the inclusion of a single layer of nuclei amounts to the realization of an

artificial two-level scheme, more complicated level schemes can be designed embedding
several resonant layers into a thin-film cavity. In this case, several collectively excited
states take part in the dynamics, and, notably, also cavity-mediated coherent and
incoherent couplings between the excited states can be present. These processes
are of great interest as they can take the role of coherent driving fields which may
compensate for the unavailability of suitable lasers with fixed phase relation in the
x-ray regime. In this way, Mössbauer nuclei allow for the realization of advanced
quantum optical level schemes otherwise unavailable at hard x-ray energies.
Within this platform for x-ray quantum optics, a number of setups have already

been realized experimentally. Among these, one finds the realization of the collec-
tive Lamb shift (CLS) and superradiance (SR) [50], electromagnetically induced
transparency (EIT) [51], vacuum generated coherences [52], realization of strong
coupling [53], Rabi-oscillations [54] and sub-luminal propagation of x-ray pulses [55].
Regarding the theoretical description, extensive work has been devoted to the

precise characterization of the nuclear dynamics in the cavity and the resulting
observables. Initially, the nuclei-cavity systems were interpreted phenomenologically
as effective level schemes on the basis of the experimentally accessible linear reflection
spectrum that can be calculated within the semi-classical layer formalism [46, 50, 51].
A quantum optical few-mode theory was subsequently able to provide justification of
the level scheme description on a microscopic basis [49, 56]. Remaining inconsistencies
in the description were resolved with the introduction of an ab initio few-mode
theory [48]. Finally, theories were developed that allow one to calculate the level
scheme’s parameters on the basis of the electromagnetic Green’s function of the thin-
film cavity [48, 57]. In particular, the ab initio theory [48] allows for the calculation
of the level scheme without the need for any fitting procedure. Since the Green’s
function for the thin-film cavity is known analytically [58] the level scheme can be
calculated efficiently.
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1 Introduction

While the work cited above primarily focused on the precise description of the
nuclear dynamics and the resulting artificial level schemes, this thesis shall – much
in the spirit of the above quote by Dowling and Milburn – provide the means
“to engineer your surroundings to your own ends” in the realm of x-ray quantum
optics with Mössbauer nuclei. So far, most suggested and realized setups within the
platform have been developed on the basis of intuition and optimized by trial-and-
error approaches. However, this is not only cumbersome, but also limits the scope
of quantum optical setups by the ever incomplete understanding of the underlying
physical processes. A systematic approach to the assessment and design of level-
schemes is thus indispensable to exploit the full potential of x-ray cavities with
Mössbauer nuclei.

Central results and insights

In the course of this thesis, we develop such an approach on the basis of the ab initio
theory in [48]. We address the question which level schemes can be realized with
Mössbauer nuclei in thin-film cavities and specify how to realize them. Being able to
give explicit cavity geometries for accessible few-level schemes, we implement their
inverse design [59–61].

To introduce and develop the inverse design, much of the thesis is devoted to
the archetypal system shown in Fig. 1.1 – a single resonant layer of nuclei which
is associated with a two-level scheme. We provide a comprehensive determination
of the accessible properties of this scheme and explain these based on the cavity’s
underlying mode structure. To each possible choice of properties, we are able to give
the explicit cavity geometry, thus achieving the inverse design. We find, however, that
two-level schemes with extreme properties are typically not observable experimentally.
To allow for a quantitative balance between accessible properties and experimental
observability, we introduce a visibility criterion and show how it relates to the
properties of the two-level scheme.
While implementing the inverse design, we find a number of unexpected insights

into the properties of thin-film cavities with Mössbauer nuclei. Firstly, for practically
relevant settings, omitting the top cladding layer can be beneficial for the perfor-
mance. This comes unexpected as in the analogy to conventional cavities, this would
correspond to removing one of the mirrors. Within the grazing incidence operation
of the cavities, however, also the guiding material-air interface can take the role of a
moderate mirror.
Secondly, our analysis reveals that the decay enhancement ΓSR and the driving

Rabi-frequency Ω are maximized in opposite cavity geometries. For standard cavities,
however, the maxima of driving field and decay enhancement can typically be
expected to coincide. We illustrate this feature by considering the same quantities
for a two-level system in a one-dimensional Fabry-Pérot cavity and ultimately find
the grazing incidence regime to be the reason for the qualitative difference.
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To arrive at a comprehensive discussion of the artificial two-level schemes, we
further study the influence of different layer materials on the accessible properties of
the two-level scheme. Our results show that low absorption in the cladding layer is
significant and suggest that employing a low-Z cladding – lower-Z guiding paradigm
(where Z is the atomic number) for the materials choice, the performance of thin-film
cavity systems can be enhanced. This is surprising as commonly materials are chosen
along a high-Z cladding – low-Z guiding guideline to enhance the refractive index
contrast, and thus the reflectivity, at the cladding-guiding interface.

To conclude the description of artificial two-level schemes, we consider the influence
of different Mössbauer isotopes on the capabilities of the inverse design. We find
that the intrinsic nuclear properties are not sufficient to evaluate the performance,
but the isotope’s impact on the photonic environment has to be taken into account.

To illustrate the applicability of the inverse design approach to more complex
setups, we subsequently address thin-film cavities comprising two resonant layers.
The corresponding level scheme can be shown to involve the ground state and two
excited states. One of the archetypal quantum optical setups [62, 63] that can be
realized with such a three-level system is the EIT scheme [51, 56]. In its common
form, a transition between an upper and a lower level is weakly probed while a strong
control laser field couples the upper state to a third one. When the probing field is
on resonance with the transition between upper and lower state, it can be shown
that instead of the maximal absorption, the probe field can pass the three-level
scheme without attenuation in a narrow frequency window – the medium is rendered
transparent by the control field.

As the outset of the discussion on artificial three-level systems, we determine the
accessible properties for a scheme realized in a cavity setting analogous to Fig. 1.1,
but with a second resonant layer embedded in the guiding layer. Analyzing the setup,
we find that due to the common mode structure, the properties of the three-level
scheme have similar dependencies, e.g., on the angle of incidence, and thus cannot
be tuned fully independently from one another. Therefore, a systematic approach to
the design is highly beneficial.

On this basis, we then show that not only the inverse design of three-level systems
is possible within our approach, but also the design of level scheme parameter ratios
which is relevant for tailoring the quantum dynamics in such systems.

We further find that many of the qualitative insights obtained for a single resonant
layer, e.g., the significance of low absorption in the cladding or the relevance of
cavities without upper cladding, readily extend to the case of multiple layers of
nuclei.

Using the example of the EIT scheme, we show that we can design relevant nuclear
quantum optical effects. The results suggest, however, that not all interesting nuclear
dynamics imprint themselves onto the reflection spectrum. This is possible because
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1 Introduction

the calculation of the reflection spectrum comprises an additional step of coupling
out of the cavity that affects the visible nuclear response.
An alternative approach to the problem is not to consider the bare excitons in

both resonant layers, but to diagonalize their non-hermitian coupling matrix. This
gives direct access to the spectral imprint of the resulting nuclear excitonic normal
modes. On this basis, the suppression of certain spectral signatures can indeed be
explained.
Moreover, introducing the description with excitonic normal modes leads to a

significant reduction of the number of relevant level-scheme parameters and thus
greatly simplifies the inverse design problem for several layers of nuclei. To illustrate
the potential, we show that it is possible to suppress the influence of one normal
mode while the second one exhibits decay enhancement beyond what is possible with
a single resonant layer in an analogous setting. This establishes a two-level scheme
with superior tuning capabilities. Only by a systematic analysis of the accessible
properties for the normal modes, and the subsequent inverse design, it was possible
to reach this novel regime. These results certify the relevance of the inverse design
approach also for systems with several resonant layers and illustrate the method’s
applicability to the design of the observable reflection spectrum.

Brief outline of the thesis

In Chapter 2, the foundations of the description of Mössbauer nuclei in thin-film
cavities are presented. Sec. 2.1 introduces the classical description of empty thin-
film cavities using simple examples and demonstrates the calculation of relevant
observables. Sec. 2.2 revises the quantum optical treatment of nuclei in a thin-film
cavity based on the electromagnetic Green’s function and derives the description
as effective few-level scheme as well as general expressions for the linear reflection
spectrum.
In Chapter 3, artificial two-level systems are introduced and exemplified with

simple systems. Sec. 3.1 specializes the general theory to the case of a single resonant
layer and defines a visibility criterion for the spectral response of the nuclei. Sec. 3.2
subsequently illustrates general properties of the relevant Green’s function using the
example of a 56Fe/57Fe/56Fe single-layer cavity.
In Chapter 4, the inverse design of artificial two-level schemes is introduced and

applied to archetype cavity systems. Sec. 4.1 derives and explains the accessible
frequency shifts and decay enhancements. Sec. 4.2 adds the experimental visibility
criterion as a design goal. Sec. 4.3 incorporates the intra-cavity field enhancement
into the design and highlights differences in the accessible parameters for optical
Fabry-Pérot cavities. Finally, Sec. 4.4 and 4.5 discuss the influence of the material
and Mössbauer isotope choice on the two-level scheme design, respectively.
In Chapter 5, the inverse design of three-level systems is considered for cavities

comprising two resonant layers. Sec. 5.1 adapts the artificial level scheme description
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to two resonant layers and derives the reflection spectrum. Sec. 5.2 discusses
accessible level-scheme properties in a typical cavity setup and their dependencies
on one another. In Sec. 5.3, the inverse approach is applied to design level scheme
parameter ratios. Sec. 5.4 discusses the engineering of an EIT effect in a nuclear
three-level scheme and raises some open questions regarding the interpretation of the
effect. Sec. 5.5 introduces the description of the nuclear response by excitonic normal
modes to interpret the spectral response of the cavity-nuclei system and eventually
establishes a two-level scheme with enhanced tuning capabilities on the basis of two
resonant layers.
In Chapter 6, the numerical methods to determine the accessible properties of

few-level schemes are introduced and discussed.
Finally, Chapter 7 summarizes the results and outlines future perspectives.
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2 Theoretical description

In this chapter, we introduce the necessary theoretical tools that enable us to describe,
and on that basis design, artificial level schemes from Mössbauer nuclei in thin-film
cavities. We start out by considering classical observables and their calculation for
empty thin-film cavities, i.e., cavities without resonant nuclei. This sets the stage to
subsequently revise the quantum optical description of Mössbauer nuclei embedded in
such cavities, derive the effective level schemes and give expressions for the reflection
spectrum including the nuclear response.

2.1 Empty cavity – Parratt’s formalism
Fundamental observables of thin-film cavities are the reflected and transmitted
intensity. For an empty cavity these can be calculated using Parratt’s formalism [64].
The formalism provides the means to recursively solve for the response of a stratified
medium, that is a stack of layers made of different materials, to an incident plane-wave
in frequency space [65]. In the absence of any polarization scattering media, which
is assumed in this thesis, s- and p-polarization can be treated independently from
one another. Since both treatments are analogous and become equivalent for grazing
incidence illumination [65], we restrict the analysis to the case of s-polarization. In
order to acquaint ourselves with thin-film cavities, we consider simple single-layer
systems that can readily be generalized to more complicated layer stacks. In Sec. 2.1.1,
we introduce the calculation of the reflected intensity using a layer deposited on a
perfect mirror. Here, we also showcase the Mittag-Leffler pole expansion [66–68] that
will become important in Chapter 4. Subsequently, in Sec. 2.1.2, we calculate the
transmitted intensity for a single layer surrounded by vacuum.

2.1.1 Vacuum/layer/mirror-system
As a first system, we consider a single slab of material deposited on a perfect mirror
and probed with x-ray light under a small angle θ, i.e., in grazing incidence, see
Fig. 2.1(a). To calculate the response of this simple cavity system with Parratt’s
formalism, different scattering pathways contributing to the reflected intensity in
Fig. 2.1(b) are summed up. This finally leads to a field configuration that is
consistent with the incoming plane-wave as well as the boundary conditions imposed
by Maxwell’s equations [17].

9
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1

2

0

(a) (b)

Fig. 2.1: Single layer thin-film cavity deposited on a perfect mirror. (a) The layer of thickness d
and refractive index n is probed in grazing incidence under an angle θ with light of wave vector k.
(b) Schematic representation of the scattering pathways contributing to the calculation in Parratt’s
formalism.

The lowest order contribution to the reflection coefficient for an incident s-polarized
plane-wave with wave number k and the wave number’s component normal to the
surface, β0 = k sin θ, is given by the Fresnel coefficient [65],

r01 = β0 − β1

β0 + β1
. (2.1)

Here, θ is the angle between the surface of the layer and the incident wave vector.
For the grazing incidence regime it typically takes values of a few mrad. Further, β1
is the z-component of the refracted wave vector in the medium, given by

β1 =
√
n2k2 − (k2 − β2

0) = k
√
n2 − 1 + sin2 θ . (2.2)

Lastly, n = nR + inI is the complex-valued refractive index of the layer’s material.
For materials at x-ray energies, this refractive index is usually written in the form

n = 1− δ + iβ. (2.3)

The parameters δ and β are positive and very small, leading to the materials being
optically thinner than air [65] which in turn yields the effect of total external reflection.
For the Fresnel reflection coefficients we use the naming convention that rij indicates
the coefficient for light in material i being reflected at material j. Likewise, the
transmission coefficient tij describes the transmission of light from layer i to layer j.
The respective numbering of the layers can be taken from Fig. 2.1(b).

In the second order of the description of the reflected x-ray amplitude, the wave
penetrates the layer of thickness d with transmission coefficient t01 = 1+r01, picks up
a factor of exp(2iβ1d) upon propagation as well as an additional minus sign due to
the reflection at the mirror substrate and leaves the layer with transmission coefficient
t10 = 1 − r01. The third contribution to the reflection coefficient is additionally
weighted with the Fresnel coefficient r10 = −r01 and subsequently picks up another
factor analogously to the previous order.
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of the angle of incidence θ for a 25 nm slab
of iron (56Fe) on top of a perfect mirror, il-
luminated at 14.4 keV. Modes are visible in
the fringes of the rocking curve.

The total reflected amplitude thus reads

r = r01 + t01e
2iβ1d(−1)t10 + t01e

2iβ1d(−1)r10e
2iβ1d(−1)t10 + ... =

= r01 −
t01t10

r01

∞∑
m=1

(
e2iβ1dr01

)m
= r01 − e2iβ1d

1− r01e2iβ1d
, (2.4)

where we used the geometric series in the last step.
Since k cancels in the Fresnel coefficient r01, we can describe the reflection coefficient

in terms of a dimensionless wave number κ = kd and thus have

r = r01 − e2iκ
√
n2−1+sin2 θ

1− r01e2iκ
√
n2−1+sin2 θ

. (2.5)

Assuming a lossless medium can be used as a plausibility check. For that case,
the reflected intensity should amount to one, since there is no transmission through
the mirror. Abbreviating a = e2iκ

√
n2−1+sin2 θ, the reflected intensity reads

|r|2 =
∣∣∣∣ r01 − a
1− r01a

∣∣∣∣2 = |r01|2 − r01a
∗ − ar∗01 + |a|2

1− r∗01a
∗ − r01a+ |r01a|2

. (2.6)

One can distinguish between the case of θ being in the range of normal reflection or
total reflection, where the transition occurs sharply at the angle of total reflection
for lossless media. For the prior case r01 ∈ R and |a| = 1 hold, thus directly yielding
|r|2 = 1. For the case of total reflection, the reflection coefficient satisfies |r01| = 1
and with a ∈ R the reflectance is again equal to one.
A typical observable of x-ray thin-film cavities is the reflected intensity at fixed

x-ray wavelength as a function of the angle of incidence – typically referred to as
rocking curve. For a thin layer of ordinary iron (i.e. not yet Mössbauer nuclei) on
top of a perfect mirror, the rocking curve is shown in Fig. 2.2. For very small angles,
light can only enter the cavity evanescently due to total external reflection. For
higher angles, standing waves can form with respect to the wave vector component β1

11
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Fig. 2.3: Reflected intensity |r|2 as a function of the dimensionless wave number κ for the
vacuum/56Fe/mirror-system at an incident angle of 4.2 mrad. (a) |r|2 as a function of real κ. (b)
|r|2 in the complex κ plane. Poles (black xs) of |r|2 and their respective real parts (red dashed
lines) are marked in the figure. The inset figure in (a) illustrates the deviation of the real part of
the pole from the minimum in the reflected intensity.

normal to the layer’s surface. These manifest themselves as the modes of the cavity
in the dips of the rocking curve [49]. Towards even higher angles, the effect of the
perfectly reflecting mirror becomes dominant as the reflectivity at the vacuum/iron
interface decreases due to the comparatively large angle of incidence. Besides the
residual attenuation in the iron layer, the incoming light is essentially reflected. This
behavior will generally not be observed in realistic thin-film cavities as we cannot
realize such a perfect mirror by a simple base layer.

Mode structure and Mittag-Leffler pole expansion

Alternatively to the rocking curve, we can also look at the reflected intensity at
fixed angle as a function of the frequency of the probing light. We consider this in
Fig. 2.3(a), where we once again employ a 56Fe layer on a perfect mirror. Each of
the modes in the rocking curve can be associated to a simple pole in the complex
plane [2], which we illustrate in Fig. 2.3(b). Since the algebraic structure of the
reflection coefficient is simple, one can readily give analytical expressions for the
poles,

κm = 1
2i
√
n2 − 1 + sin2 θ

[
log
(
r−1

01

)
+ 2πim

]
, (2.7)

where m ∈ Z refers to the different branches of the logarithm and n is the refractive
index of iron. In Fig. 2.3, the minima in the reflection spectrum in terms of real κ
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Fig. 2.4: Mittag-Leffler pole expansion for the reflected intensity as a function of κ for the
vacuum/56Fe/mirror-system, illuminated at θ = 4.2 mrad. The Mittag-Leffler expansion (blue
curve) fits very well with the exact reflected intensity when a large number of poles (here about
1000) is taken into account. Attempting an approximation around a single pole (m is the pole
index) according to Eq. (2.11), as is done for the first three poles (green, red and purple lines) in
this figure, however, leads to non-physical results where the reflected intensity is partly larger than
the incoming one. This is to be attributed to overlapping modes of the simple iron-layer cavity.

agree well with the real part of the corresponding κ-pole. However, in the close-up
view we can see that deviations between pole and minimum positions are present
which can be associated with several modes contributing to the minimum’s position
in the reflected intensity [2].
We find the reflection coefficient r to have well separated, simple poles such that

we can heuristically assume that the conditions of the Mittag-Leffler expansion
theorem [66–68] (see Appendix A.2 for the full theorem) are met. For this case, we
can express the reflection coefficient as

r(κ) = r(0) +
∑
m

Res(r, κm)
( 1
κ− κm

+ 1
κm

)
. (2.8)

The residues can be evaluated analytically and we find all of them to take the same
value,

Res(r, κm) = 2i sin θ
n2 − 1 . (2.9)

Hence, we can express the total reflection coefficient as

r(κ) = −1 + 2i sin θ
n2 − 1

∑
m

( 1
κ− κm

+ 1
κm

)
. (2.10)

The convergence of the expansion is apparent from Fig. 2.4 when a sufficiently
large number of poles is taken into account (blue curve). Having the above expansion
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1

2

0

(a) (b)

Fig. 2.5: Single layer thin-film cavity surrounded by vacuum on both sides. (a) The layer of
thickness d and refractive index n is probed in grazing incidence under an angle θ with light of wave
vector k. (b) Schematic representation of the scattering pathways contributing to the calculation in
Parratt’s formalism.

suggests that, when being close to the frequency of one mode, i.e., κ ≈ κm, we might
be able to approximate the reflected intensity as

r(κ) ≈ C + 2i sin θ
n2 − 1

1
κ− κm

, (2.11)

where C = −1+ 2i sin θ
n2−1

∑
m

1
κm

. This is attempted for some poles in Fig. 2.4. The figure,
however, shows that we cannot arrive at a physically meaningful approximation as
the resulting approximated curves yield reflected intensities larger than one, that is
they violate energy conservation. The failure of the approximation can be attributed
to the overlapping mode structure of the spectrum. Only upon considering all
poles contributing to a local region, the different phases of the poles can add up
destructively to have an overall physical reflectance less than one. For well-separated
modes, however, we will later on see that the expansion may be used to approximate
relevant observables around a single mode.

In any case, the Mittag-Leffler expansion is found to be a useful tool to link cavity
modes to the pole structure of cavity observables. It will play an important role in
Chapter 4 and 5 of this thesis.

2.1.2 Vacuum/layer/vacuum-system

We can consider another simple system that will be instructive in the course of the
thesis. Here, the mirror from the previous section is replaced by vacuum, i.e. the
system acquires a mirror symmetry around the center of the layer, see Fig. 2.5. The
reflection coefficient is obtained in an analogous way to the previous setup,

r = r01
1− e2iκ

√
n2−1+sin2 θ

1− r2
01e

2iκ
√
n2−1+sin2 θ

, (2.12)
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where again κ = kd. Additionally, for the present system we can also calculate the
transmission coefficient by adding up the corresponding scattering contributions in
Fig. 2.5(b),

t = t01e
iβ1dt12 + t01e

iβ1dr12e
iβ1dr10e

iβ1dt12 + ... = t01e
iβ1dt12

∞∑
j=0

(
r12r10e

2iβ1d
)j

=

= t01e
iβ1dt12

1− r12r10e2iβ1d
. (2.13)

Since the layer is surrounded by vacuum on both sides, we have r10 = r12 and
t10 = t12. Therefore, we can rewrite the transmission coefficient as

t = (1 + r01)(1− r01)eiβ1d

1− r2
01e

2iβ1d
. (2.14)

Fig. 2.6 shows the reflected and transmitted intensity as calculated from the
formulae derived above. Modes are visible as for the respective system with mirror.
Unlike the previous setup, however, the reflected intensity vanishes for larger angles
as the x-rays can easily penetrate the single layer in this case.

This concludes the discussion of empty thin-film cavities. The calculations exem-
plified in this section readily apply to more complex cavity geometries. The reflected
intensity will again be of relevance when the reflection spectrum of thin-film cavities
with Mössbauer nuclei is considered.
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2.2 Mössbauer nuclei in thin-film cavities – Green’s
function description

In this section, we revise the quantum optical description of Mössbauer nuclei in
thin-film cavities. The key concept underlying the present work is the observation
that in the low-excitation limit, thin-film cavities doped with large ensembles of
resonant nuclei are analytically equivalent to single artificial few-level systems, see
Fig. 1.1. Thereby, they form a platform to realize level schemes otherwise inaccessible
at hard x-ray energies. In the following, we summarize the equations of motion
governing the nuclei in the waveguide, explain the above-mentioned equivalence to
a few-level system, and discuss the relevant observables, within the framework of
macroscopic QED. This framework allows one to express the Hamiltonian describing
the quantized light field in the cavity, and the coupling to the nuclei embedded
therein, in terms of the classical electromagnetic Green’s function. Details on the
derivation can be found in [28, 48].

2.2.1 Nuclear many-body description in the single-particle basis
The joint dynamics of nuclei and the quantized light field in absorbing media
can be described on the basis of macroscopic QED. In the absence of magnetic
fields, the Mössbauer nuclei represent two-level systems. Within the Born-Markov
approximation, the degrees of freedom of the quantized electromagnetic field are
traced out and the system’s dynamics can be described via its density operator ρ
using a Master equation,

ρ̇ = −i
[
Ĥ,ρ

]
+ L[ρ] , (2.15)

where we employ natural units, ~ = c = 1, and denote the commutator by [·,·]. The
Hamiltonian derived from macroscopic QED, given by [69, 70]

Ĥ =
∑
ln

ωnuc

2 σ̂zln −
∑
ln

∑
l′n′

Jll′nn′σ̂
+
ln σ̂

−
l′n′ −

∑
ln

[
d∗l ·Ein(rln)σ̂+

ln + h.c.
]
, (2.16)

is a standard many-body Hamiltonian and can be interpreted in a straightforward
way. The first term describes the excitation energy of the bare nuclei enumerated
by indices l, n and characterized by the Pauli operators σ̂zln, σ̂±ln. Here, l is chosen
to indicate which resonant layer the nucleus is located in (for the case of several
resonant layers) and n indexes the nuclei within one resonant layer. Further, ωnuc is
the bare nuclear transition frequency and dl the nuclear transition dipole moment.
The second part denotes couplings between nuclei ln and l′n′ with coupling constant
Jll′nn′ mediated by the cavity environment (the dependence of the coupling constants
on the Green’s function will be defined in Sec. 2.2.3 below). The last part describes
the driving of the nuclei by an externally applied classical electric field Ein(rln)
evaluated at the position of the nuclei. Note that this field in general differs from
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Jllnn′

Jl′l′nn′

Γllnn′

Γl′l′nn′

Jll′nn′
Γll′nn′

ensemble l

ensemble l′

Fig. 2.7: Schematic representation of the
different inter-nuclear coupling processes at
the example of a two resonant layer system
with resonant layers l and l′. Each layer
is considered as one ensemble of nuclei al-
though, in principle, very thick layers can
be treated as several ensembles. Within one
layer, the nuclei are indexed by the second
index n. Note that the single nucleus decay
enhancement and frequency shift as well as
the external driving are not shown.

its free-space value, due to reflections and absorption in the cavity structure, as
discussed in Sec. 2.2.3 below.
Similarly, the Lindbladian assumes a standard form,

L[ρ] =
∑
ln

∑
l′n′

Γll′nn′
2

[
2σ̂−l′n′ρσ̂+

ln −
{
σ̂+
ln σ̂

−
l′n′ ,ρ

}]
+ LIC[ρ] , (2.17)

where {·,·} is the anti-commutator. Here, Γll′nn′ describes spontaneous emission
in the presence of the cavity environment for ln = l′n′, and incoherent couplings
between the nuclei for ln 6= l′n′. The final part LIC[ρ] models the single-nucleus decay
due to internal conversion with rate γIC approximately equal to the bare nuclear
linewidth γ0. Fig. 2.7 illustrates the indexing of the nuclei and shows the coherent
and incoherent internuclear couplings for a structure comprising two resonant layers.

2.2.2 Nuclear few-level description in the spin-wave basis
Next, following [48], we show that in the low-excitation regime, the above many-body
Master equation given by Eqs. (2.16, 2.17) can be rewritten in terms of an effective
few-level system by means of a suitable basis transformation.

To motivate this basis transformation, we model the synchrotron radiation imping-
ing in grazing incidence onto the cavity as a classical plane-wave electromagnetic
field with wave vector k. Due to the grazing incidence geometry, nuclei at different
in-plane positions will be driven with relative phase offsets determined by the pro-
jection k‖ of k onto the nuclear plane (cf. Fig. 1.1). We take this into account by
introducing spin-wave operators

σ̂±l,k‖ =
∑
n

e±ik‖·rln‖ σ̂±ln , (2.18)

which describe the excitation (σ̂+
l,k‖

) and deexcitation (σ̂−l,k‖) of an excitonic spin-wave
with wave vector k‖ in the nuclear layer l due to the applied driving field, where rln‖
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is the projection of rln onto the nuclear plane. Upon operating the thin-film cavity
under a well defined angle of incidence, only a single parallel wave vector k‖ will be
driven. We show that for the present setting this wave vector will be preserved by
the dynamics.

Starting from the many-body description (2.15–2.17) the equations of motion for
the expectation values σ−ln(t) ≡

〈
σ̂−ln
〉
in the low-excitation regime read

σ̇−ln(t) = −i
(
ωnuc − i

γ0

2

)
σ−ln(t) + i

∑
l′n′

(
Jll′nn′ + i

Γll′nn′
2

)
σ−l′n′(t) + id∗l ·E(rln) ,

(2.19)

where we used that the nuclei are very close to their ground state, σzln(t) ≈ −1.
Inserting this equation into the definition of the spin-wave operators, Eq. (2.18), and
approximating the nuclear layers to be homogeneous, the discrete Fourier transforms
introduced by Eq. (2.18) become continuous ones and we can rewrite the equations
of motion for the expectation values of the spin-wave operators σ−l,k‖(t) ≡ 〈σ̂

−
l,k‖
〉 as

σ̇−l,k‖(t) = −i(ωnuc − i
γ0

2 )σ−l,k‖(t) + i
∑
l′

(
∆ll′ + i

γll′

2

)
σ−l′,k‖(t) + i

N

A
d∗l ·Ein(zl,k‖) ,

(2.20)

where zl is the position of ensemble l normal to the layer surfaces and the resulting
coupling constants are again discussed in the following Sec. 2.2.3. Clearly, only
spin-waves with the same parallel wave vector k‖ are coupled to one another and
thus the dynamics are bound to the subspace spanned by these spin-waves, i.e. the
light-matter dynamics in the cavity preserves the parallel wave vector k‖ [48]. This
is consistent with the expectation that in reflecting light on the cavity, the angles
of incidence and reflection coincide for a translationally invariant structure under
plane-wave illumination.
When assuming linear response, σzl,k‖(t) ≈ −1, the very same equation of mo-

tion, Eq. (2.20), can be derived upon calculating the dynamics of σ−l,k‖(t) from the
Hamiltonian

Ĥ =
∑
l

ωnuc

2 σ̂zl,k‖ −
∑
ll′

∆ll′σ̂
+
l,k‖
σ̂−l′,k‖ −

∑
l

(
Ωlσ̂

+
l,k‖

+ h.c.
)

(2.21)

and Lindbladian

L[ρ] =
∑
ll′

γll′ + δll′γ0

2
[
2σ̂−l′,k‖ρσ̂

+
l,k‖
−
{
σ̂+
l,k‖
σ̂−l′,k‖ ,ρ

}]
, (2.22)

where σ̂±l,k‖ and σ̂
z
l,k‖

are Pauli operators and Ωl = d∗l ·Ein(zl,k‖)N/A is the effective
Rabi-frequency, with the effective in-plane nuclear number density N/A. Since both
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descriptions, Eqs. (2.16, 2.17) and Eqs. (2.21, 2.22), yield the same equation of
motion, Eq. (2.20), the descriptions are equivalent in the low-excitation regime.

The dimension of the Hilbert space, on which the above Hamiltonian, Eq. (2.21),
acts, is significantly reduced as compared to the full many-body description ac-
cording to Eqs. (2.16) and (2.17). While for the latter case, the dynamics are
described by 2N (with the number of nuclei N) states, the spin-wave basis descrip-
tion uses only 2L states (with the number of resonant layers L). The number of
relevant states in the effective description Eq. (2.21) and (2.22) is reduced even
further to L + 1 relevant states when noticing that only singly excited states,
|El=1,Gl=2,Gl=3,...,Gl=L〉, |Gl=1,El=2,Gl=3,...,Gl=L〉, ..., |Gl=1,Gl=2,Gl=3,...,El=L〉 are
relevant in the low-excitation regime, where |El〉 (|Gl〉) denotes that the spin-wave
in layer l is excited (not excited).
Summarizing, by virtue of the accordance of the equations of motion in the low-

excitation regime, we can equally well describe the dynamics of the nuclei in the
thin-film cavity by a substantially simplified effective quantum few-level scheme with
the equations of motion given by Eqs. (2.21) and (2.22).

2.2.3 Coupling constants
It remains to discuss the coupling constants entering the equations of motion resulting
from Eqs. (2.16, 2.17) and (2.21, 2.22) in the many-body and the spin-wave basis,
respectively. Within macroscopic QED, these constants can be expressed in terms of
the Green’s function characterizing the cavity environment [69, 70]. Generally, the
electromagnetic Green’s function is defined as

∇×∇×G(r, r′, ω)− ω2ε(r, ω)G(r, r′, ω) = δ(r − r′) , (2.23)

where ε(r, ω) denotes the dielectric permittivity, δ(·) is the Dirac delta distribution
and ∇ is the nabla operator. Note, that the Green’s function is a 3× 3 matrix in
general.

In the many-body basis, the coupling and (cross-)decay constants evaluate to [48]

Jll′nn′ = µ0ω
2
nucd

∗
l · Re [G(rln, rl′n′ , ωnuc)] · dl′ , (2.24)

Γll′nn′ = 2µ0ω
2
nucd

∗
l · Im [G(rln, rl′n′ , ωnuc)] · dl′ , (2.25)

where µ0 is the vacuum permeability and G(rln, rl′n′ , ωnuc) the Green’s function
evaluated at the position of two nuclei rln, rl′n′ and the nuclear transition frequency
ωnuc.
In the few-level description, the couplings read

∆ll′ = N

A
µ0ω

2
nucd

∗
l · Re

[
G(zl, zl′ ,k‖, ωnuc)

]
· dl′ , (2.26)

γll′ = 2N
A
µ0ω

2
nucd

∗
l · Im

[
G(zl, zl′ ,k‖, ωnuc)

]
· dl′ , (2.27)
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where G(z, z′,k‖, ωnuc) is the in-plane Fourier transformed electromagnetic Green’s
function, related to the position-space Green’s function via

G(r, r′, ω) =
∫ d2k‖

(2π)2 G(z, z′,k‖, ω) eik‖·(r‖−r′‖) . (2.28)

Note that in the following mainly the in-plane Fourier transformed Green’s function
will be of importance such that we will simply refer to it as the Green’s function. For
the present case of a layered dielectric medium, analytic expressions for the Green’s
function are derived in [58] and summarized in Appendix A.1.
Finally, we discuss the driving field Ein(k‖, z) appearing in Eq. (2.21). It relates

to its real-space representation by the in-plane Fourier transform,

Ein(r) =
∫ d2k‖

(2π)2 Ein(z,k‖) eik‖·r‖ . (2.29)

Inside the cavity, the externally applied field is modified due to absorption and
reflection by the cavity materials. Quantitatively, its frequency space solution can be
obtained, e.g., by Parratt’s formalism [64] similarly to the calculations exemplified
in Sec. 2.1. Note that this field is to be calculated without considering the nuclear
resonance, but including the electronic index of refraction of the nuclear layer.

2.2.4 Reflection spectrum
The key observable for nuclei embedded in thin-film cavities, dominating the experi-
mental work up to now, is the linear spectrum of the reflected light measured for
a fixed angle of incidence of the probing x-rays. Following [48], we summarize the
relevant aspects of this observable in the present context.
Fourier transforming σ−l,k‖(t) =

∫
dω e−iωtσ−l,k‖(ω), Eq. (2.20) is readily solved in

frequency space. The collective dynamics of the nuclei modify the overall electric field
E(0,k‖, ω) at the surface which can be calculated by the generalized input-output
relation [69]

E(0,k‖, ω) = Ein(0,k‖, ωnuc) + µ0ω
2
nuc
∑
l

G(0, zl,k‖, ωnuc) · dl σ−l,k‖(ω) . (2.30)

Note that in Eq. (2.30) we used the fact that the incoming electric field and the
Green’s function can be approximated as constant in frequency on scales of the
nuclear linewidth.
Finally, for the incoming field strength normalized to one, the overall reflection

coefficient is given by subtracting the incident field strength from the overall electric
field,

r(k‖, ω) = E(0,k‖, ω)− 1 = rel + µ0ω
2
nuc
∑
l

G(0, zl,k‖, ωnuc) · dl σ−l,k‖(ω) , (2.31)
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where we used the electronic cavity reflectivity (including polarization),

rel = Ein(0,k‖, ωnuc)− 1 , (2.32)

given by the (cavity modified) electric field at the cavity surface without the incoming
field strength. Noting that the Fresnel coefficients for s- and p-polarization become
equivalent at grazing incidence [65], and that the electronic scattering and the
scattering on the single unsplit nuclear resonance leave the polarization of the incident
x-rays unchanged, we subsequently focus on the treatment of s-polarized light and
omit the vectorial nature of the electric field and Green’s function throughout the
remaining parts of the thesis.
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3 Artificial two-level schemes from
Mössbauer nuclei

In this chapter, the artificial two-level scheme on the basis of Mössbauer nuclei in
thin-film cavities is introduced and its fundamental properties are analyzed. We
start out by adapting the general few-level description to the simplest case of a
single resonant layer, thus yielding the two-level scheme. We consider the properties
of the reflection spectrum and define a criterion of experimental visibility on that
basis. Subsequently, we examine a simple thin-film cavity, where the single resonant
57Fe layer is embedded in ordinary 56Fe. Therefore, the electronic refractive index is
constant in the layer stack and the theoretical description rather straightforward.
This allows the analysis of the Green’s function on an analytical level and illustrates
fundamental characteristics for the systems.

3.1 Single resonant layer – two-level scheme
For a single resonant layer in the thin-film cavity, only a single spin-wave can be
excited and the corresponding effective description of Eqs. (2.21) and (2.22) simplifies
to

Ĥ = ωnuc

2 σ̂zk‖ + ∆CLSσ̂
+
k‖
σ̂−k‖ −

(
Ωσ̂+

k‖
+ h.c.

)
(3.1)

and

L[ρ] = ΓSR + γ0

2
[
2σ̂−k‖ρσ̂

+
k‖
−
{
σ̂+
k‖
σ̂−k‖ ,ρ

}]
, (3.2)

where we have omitted the nuclear layer index and used the decay enhancement ΓSR
and frequency shift ∆CLS as defined below. Further, the effective Rabi-frequency is
Ω = d∗Ein(z,k‖)N/A with the position z of the resonant layer normal to the layer
surfaces.

The Eqs. (3.1, 3.2) indeed have the form of a quantum mechanical two-level system.
However, the excited state is now a collective spin-wave excitation in the ensemble
of nuclei embedded in the cavity, rather than one of the single-nucleus excitations
considered in the many-body Eqs. (2.16, 2.17). Furthermore, the properties of
the effective two-level system are different compared to the bare nuclei. First, an
additional detuning term ∆CLS appears, which shifts the transition energy of the two-
level system, and which is known as the Collective Lamb Shift [50, 71–78]. Second,
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Fig. 3.1: Cavity observables and visibil-
ity of the nuclear response in the reflec-
tion spectrum. (a) Schematic represen-
tation of the leading interfering contribu-
tions to the electronic cavity reflectance.
For the actual calculation, reflections
at the remaining layers, e.g. the 57Fe
layer, have to be taken into account as
well. (b) Electronically reflected inten-
sity (“rocking curve”) as calculated by
the contributions in (a) using Parratt’s
formalism [64]. (c) Electronic rel and nu-
clear rnuc contributions to the reflectance
as function of the frequency ω for a fixed
angle of incidence θ = θin. (d) Full
reflection spectrum given by the sum
of both (complex-valued) contributions.
The peak-to-peak amplitude of the re-
sulting Fano-resonance is taken as the
visibility criterion.
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the radiative decay rate is enhanced by the additional superradiant [47, 75, 79–81]
contribution ΓSR as compared to the single-particle decay. Third, the light-matter
coupling depends on the effective in-plane nuclear number densityN/A, which appears
as a result of the two-dimensional in-plane Fourier transformation. The explicit
expressions for the frequency shift ∆CLS and the enhancement of the spontaneous
decay rate ΓSR can be written as

∆CLS = −N
A
µ0ω

2
nuc|d|2 Re

[
G(z, z,k‖, ωnuc)

]
, (3.3)

ΓSR = 2N
A
µ0ω

2
nuc|d|2 Im

[
G(z, z,k‖, ωnuc)

]
, (3.4)

where both remaining spatial arguments of the Green’s function are evaluated at
the nuclear layer depth z. Explicit expressions for the Green’s function and the field
configuration determining the Rabi frequency Ω for the single resonant layer are
provided in Appendix A.1. Importantly, they can be tuned via the cavity structure
and the angle of incidence of the x-rays. For this reason, we refer to the effective
description as a tunable artificial two-level system.

3.1.1 Reflection spectrum
The reflection spectrum comprises contributions by the purely electronic reflection
at the different layer boundaries and by the artificial nuclear two-level system. We
illustrate these in Fig. 3.1. We calculate the purely electronic reflection rel using
Parrat’s formalism [64], which sums all the different scattering contributions arising
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3.1 Single resonant layer – two-level scheme

from the material boundaries (see Sec. 2.1). Although the electronically reflected
light is in principle frequency dependent, the dependency can be neglected on scales
of the linewidth of the nuclei.
The dynamics of the artificial two-level system from Eq. (2.20) can be solved for

in frequency space,

σ−k‖(ω) = − d∗Ein(z,k‖, ωnuc)N/A
ω − ωnuc −∆CLS + i(γ0 + ΓSR)/2 , (3.5)

giving rise to a Lorentzian spectrum in linear response. According to Eq. (2.31), the
nuclear response acquires an additional complex-valued weight upon propagation
to the cavity surface, and interferes with the complex-valued electronically reflected
background, see Fig. 3.1.
Inserting Eq. (3.5) into Eq. (2.31), in turn, yields the overall reflected intensity

normalized to the incoming intensity,

|r(ω)|2 =
∣∣∣∣∣|rel|+

|C|eiϕ

∆ + iΓ

∣∣∣∣∣
2

, (3.6)

where the parameters Eqs. (3.7 - 3.10) can be read off.
Depending on the relative phase ϕ of both contributions, different nuclear Fano

lineshapes arise in the spectra [82–85]. The response is centered at the transition
frequency ωnuc +∆CLS of the collective two-level system and superradiantly broadened
by ΓSR, such that

∆ = ω − (ωnuc + ∆CLS) , (3.7)
Γ = (γ0 + ΓSR)/2 . (3.8)

The relative weight of the nuclear contribution C, resulting from the coupling of the
nuclei to the driving field as well as the propagation of the nuclear response to the
cavity surface, can be expressed as

C = −N
A
µ0ω

2
nuc|d|2G(0, z,k‖, ωnuc)Ein(z,k‖, ωnuc) , (3.9)

again using the Green’s function. Finally, the relative phase between these two
contributions determining the line shape of the nuclear resonance is [82–84]

ϕ = arg(C)− arg(rel) . (3.10)

Explicit expressions for the Green’s function, the electric field configuration and
the electronic cavity reflection in the archetype system of Fig. 1.1 are provided in
Appendix A.1.1.
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3 Artificial two-level schemes from Mössbauer nuclei

3.1.2 Visibility of the nuclear response
From Eqs. (3.6) and (3.9) it is clear that the nuclear signatures in the reflection
spectrum can be strongly suppressed, e.g., by the Green’s function contribution. One
obvious reason for strong attenuation are thick or highly absorptive cavity layers.
This poses the problem that some two-level systems might be not observable via the
reflection spectrum. In such situations, the formally best cavity structures may not
be the most relevant ones for experimental purposes. This challenge can be tackled
by including conditions on the practical relevance, such as the observability, into the
design rules.

Considering the lineshape of a Fano-resonance, a suitable criterion for the visibility
of the nuclear signature is the peak-to-peak amplitude of the resonance in the
normalized reflection spectrum, see. Fig. 3.1(d). In the optimization, one may then
set a minimum visibility as a boundary condition, or optimize the visibility for an
otherwise specified design goal.

An efficient calculation of the visibility criterion is possible via analytical expressions
for the positions of the two extrema of Eq. (3.6) in terms of ∆,

∆± = − 1
2|rel|

[
|C| sec(ϕ) + 2|rel|Γ tan(ϕ)

± sec(ϕ)
√
|C|2 + 4|rel|2Γ2 + 4|C||rel|Γ sin(ϕ)

]
. (3.11)

The visibility is then defined to be∣∣∣∣∣∣
∣∣∣∣∣|rel|+

|C|eiϕ

∆+ + iΓ

∣∣∣∣∣
2

−
∣∣∣∣∣|rel|+

|C|eiϕ

∆− + iΓ

∣∣∣∣∣
2
∣∣∣∣∣∣ . (3.12)

In part of the calculations in Chapter 4, we will use this visibility criterion as a
design goal.

3.2 Two-level schemes from 56Fe/57Fe/56Fe systems –
analytical treatment

According to Eqs. (3.3) and (3.4), the CLS and SR are proportional to the Green’s
function, ∆CLS, ΓSR ∝ G(z, z,k‖, ωnuc). A simple setting where we can acquaint
ourselves with the Green’s function and its relation to the mode structure is a
56Fe/57Fe/56Fe layer stack, as is shown in Fig. 3.2. Since the Green’s function
description is only concerned with the off-resonant field, and the electronic refractive
indices of the iron isotopes are the same, the electromagnetic environment corresponds
to a single layer, similarly to the ones considered in Sec. 2.1. Hence, the cavity
features a comparatively simple description. It should, however, be noted that iron

26



3.2 Two-level schemes from 56Fe/57Fe/56Fe systems – analytical treatment
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z

Fig. 3.2: Schematic repre-
sentation of the 56Fe/57Fe/
56Fe cavity setup. The
57Fe layer is chosen ultrathin
such that evaluation of the
Green’s function in its cen-
ter is justified. Different sub-
strate materials are used in
the main text. The enumer-
ation of the layers as well as
relevant parameters are indi-
cated on the right hand side.

as a guiding layer is not the most favorable cavity material and the setup thus rather
serves as a testbed for the theory that will be applied to realistic settings in the
following chapters. For the explicit formulae we will further neglect the absorption
in the iron layers for simplicity, while, however, comparing to the absorptive system
throughout the analysis.
The Green’s function for a single layer cavity, evaluated at the same coordinates

z = z′, is given by (see Appendix A.1.1 and [58])

G(z, z,k‖, ωnuc) = 2πi
β1

(
1 + r12e

2iβ1(d−z)
) (

1− r01e
2iβ1z

)
1 + r01r12e2iβ1d

, (3.13)

where the layer indices and coordinate conventions are according to Fig. 3.2 or
previous sections. We want to consider two special cases of simple iron layers that
we already encountered in Sec. 2.1: Firstly, we assume the iron to be deposited on a
perfect mirror as was considered in Sec. 2.1.1. Secondly, we will look at a symmetric
system, having vacuum at both sides of the iron layer, see Sec. 2.1.2.

3.2.1 Vacuum/56Fe/57Fe/56Fe/mirror-system
Specializing the general expression Eq. (3.13) to the mirror substrate, we have to set
r12 = −1 and hence arrive at

G(z, z,k‖, ωnuc) = 2πi
β1

(
1− e2iβ1(d−z)

) (
1− r01e

2iβ1z
)

1− r01e2iβ1d
. (3.14)

Comparing the denominator of this equation to the one of the corresponding reflection
coefficient, Eq. (2.4), we see that both expressions have the same poles, i.e. they
share their mode structure.

For incident angles below the angle of total external reflection, light can only enter
the layer evanescently, which is why we restrict the analysis to angles above this
critical angle. Approximating the iron layers to be without absorption, we find the
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3 Artificial two-level schemes from Mössbauer nuclei

Fresnel coefficient r01, β1 ∈ R. Separating real and imaginary part, we rephrase the
Green’s function as

G =2π
β

1
1− 2r cos(2βd) + r2

×
{[

(1 + r2) sin(2β(d− z))− 4r cos(β(z + d)) sin(β(d− z))
]

+i(1− r2) [1− cos(2β(d− z))]
}
, (3.15)

where we renamed β ≡ β1, r ≡ r01 and omitted the Green’s function’s arguments for
simplicity. To access the properties of the Green’s function we start out considering
the imaginary part that determines the decay enhancement.

Superradiance – imaginary part

A relevant question is where the SR can be expected to be maximal or minimal. The
critical points of the imaginary part as a function of z are determined by

d Im(G)
dz = 0⇔ (r2 − 1) sin(2β(d− z)) = 0 , (3.16)

with the respective solutions,
zm = d− mπ

2β , (3.17)

for m ∈ N in the appropriate range. Being on one of the curves zm is a necessary
condition for an extremum. We can hence eliminate z in the Green’s function,

Im(G(zm(d), d)) =


0 , m even,
4π
β

1− r2

(1 + r2)− 4r cos2(βd) , m odd .
(3.18)

We find vanishing imaginary part for even integers on the whole curve and a single
result for all odd integers. Specializing to odd integers, we can now determine the
extrema of the imaginary part in terms of d to be

dl = lπ

β
. (3.19)

For a fixed incident angle, Fig. 3.3 shows the SR in the (z, d) parameter space for
the non-absorptive approximation as well as the full absorbing system. Here, the
critical points in z are shown and the local extrema in the (z, d) plane are clearly
visible. Although the maxima are reduced in height and less distinguished when
absorption is taken into account in Fig. 3.3(a), all structures from the approximated
system, Fig. 3.3(b), can be recognized. Thus, we can still retrieve qualitative insights
from the approximated formulae.
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Fig. 3.3: ΓSR for the vacuum/56Fe/57Fe(0.57 nm)/56Fe/mirror-system in terms of non-
dimensionalized thickness dβ/π and relative 57Fe position z/d at fixed incident angle of θ = 4.2 mrad.
Panel (a) shows the SR taking into account absorption whereas absorption is neglected in panel
(b). The colored lines in (a) and (b) correspond to the critical points in z in the non-absorptive
case for different m according to Eq. (3.17) and are the same for both panels. Panel (c) shows
ΓSR corresponding to the maximal and (d) for the minimal zm(d) curves, each for the absorptive
(dashed) as well as the non-absorptive (dotted) case. The respective colors link the graphs in (a, b)
to the ones in (c, d).

To that end, one can define an effective wavelength normal to the layer surfaces,
λn = 2π/β (where we take β real as from the non-absorbing system). Of course, this
wavelength is larger than the physical wavelength in the iron layer, hence allowing
for resonances with nano-meter scale layer thicknesses. The thickness d of the iron
slab is non-dimensionalized by dividing by half of this effective wavelength in Fig. 3.3.
The local maxima in the SR thus occur whenever the thickness is a multiple of λn/2.
This fits with the expectation that the photonic density of states, accessible for the
spontaneous emission [86], is largest in the anti-nodes of eigenmodes of the system.
The in-plane Fourier transformed Green’s function (3.13) is analytically equivalent to
the real space Green’s function of a one-dimensional resonator in combination with
the effective wavelength λn and suitable reflection coefficients [87]. Although the
nuclei are in principle coupled by the cavity and only therefore become an artificial
quantum system, this suggests that an instructive viewpoint is to also consider the
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3 Artificial two-level schemes from Mössbauer nuclei

nuclei as a collective quantum system placed inside a one-dimensional cavity. In
Sec. 4.3.2, we will, however, compare the properties of a genuine two-level system
inside a lossy one-dimensional cavity and also find differences to the x-ray thin-film
setting that are based on the different behavior of the reflection coefficients.
Fig. 3.3(c) and (d) show the evaluation of the SR on the maximal and minimal

curves zm(d), respectively, where dotted lines correspond to the non-absorptive and
dashed lines describe the SR for absorbing system. For the absorbing system one
can see that with increasing thickness d, i.e. with increasing length of the path in
the absorbing medium, the local maxima loose in height whereas they stay constant
for the non-absorptive approximation. For realistic systems, the first mode therefore
is of special significance for large SR.
In a last step we can now evaluate the imaginary part for the non-absorptive

approximation for dl and arrive at

Im [G(θ)] = 4π
β1

1 + r01

1− r01
= 4πβ0

β2
1

= 4π
k0

sin θ
n2

Fe − cos2 θ
= 4π
k0

sin θ
cos2 θc − cos2 θ

, (3.20)

where θc = arccos(Re[nFe]) denotes the angle of total reflection and, for clarity, we
added the indices to β1 and r01. For the non-absorbing system, all maxima have
the same value and diverge for the angle approaching total reflection. Clearly, this
is where the absorption plays a crucial part as the transition from total to normal
reflection is smoothed out.

Collective Lamb shift – real part

For the frequency shift of the two-level system we can in principle proceed as we did
for the SR. The critical points in terms of z for the real part are given by

d Re(G)
dz = 0⇔ (1 + r2) cos(2β(d− z))− 4r cos(2βz) = 0. (3.21)

The solution of this equation, however, turns out to be not as simple as it was for the
case of the SR. Therefore, we will not consider the CLS at this point, but perform
the respective analysis in the context of the subsequent part where the substrate
mirror layer is replaced by vacuum.

3.2.2 Vacuum/56Fe/57Fe/56Fe/vacuum-system
Specializing the bottom layer to vacuum we have to set r12 = −r01 and hence arrive
at

G(z, z,k‖, ω) = 2πi
β1

(
1− r01e

2iβ1(d−z)
) (

1− r01e
2iβ1z

)
1− (r01)2e2iβ1d

. (3.22)

Again, the mode structure of the Green’s function function agrees with the one of
the respective reflection coefficient, Eq. (2.12). We proceed as before and separate
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3.2 Two-level schemes from 56Fe/57Fe/56Fe systems – analytical treatment

real and imaginary part of the Green’s function in the non-absorptive case for angles
above the critical one,

G =2π
β

1
1− 2r2 cos(2βd) + r4

×
{

2r
[
(1 + r2) sin(βd) cos(β(d− 2z))− r sin(2βd)

]
+i(1− r2)

[
1 + r2 − 2r cos(βd) cos(β(d− 2z))

]}
, (3.23)

again having simplified the notation of r and β.

Superradiance – imaginary part

For the discussion we start out with the analysis of extrema of the imaginary part,
i.e. of the SR. The critical points as a function of z are determined by

d Im(G)
dz = 0⇔ r

(
r2 − 1

)
cos(βd) sin(β(d− 2z)) = 0, (3.24)

with the solutions
zm = d

2 + πm

2β . (3.25)

Evaluating the imaginary part on these extremal curves, we arrive at

Im [G(zm(d), d)] = 2π(1− r2)
β

1 + r2 − 2r cos(βd)(−1)m
(1 + r2)2 − 4r2 cos2(βd) . (3.26)

For odd (even) m we get maxima (minima) for βd = 2mπ and minima (maxima) for
βd = (2m+ 1)π.

For an exemplary angle, we again show the SR as a function of d and z in Fig. 3.4.
As before, the overall structure found in the non-absorbing approximation is preserved
in the absorbing one. Additionally, the SR also reflects the symmetry of the cavity
around z = d/2. Unlike for the system with mirror substrate, the SR does not reach
zero for the present system.
From Eq. (3.24) we see that besides the critical points there are parameters

βd = (2m + 1)π/2 where the derivative vanishes irrespective of the value of z, i.e.
throughout the layer the SR is constant for the non-absorptive medium. Fig. 3.4(d)
relates this behavior to the absorptive system. One can see that for the lowest m,
i.e. a thin sample, the feature of constant SR is well reproduced whereas for higher
ones the effect is lost as the influence of absorption dominates.
Finally, we evaluate the imaginary part at the maxima for the non-absorbing

approximation,
Im(G) = 2π

β1

1 + r01

1− r01
= 2π
k0

sin θ
cos2 θc − cos2 θ

, (3.27)
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Fig. 3.4: ΓSR for the vacuum/56Fe/57Fe(0.57 nm)/56Fe/vacuum-system in terms of non-
dimensionalized thickness dβ/π and relative 57Fe position z/d at fixed incident angle of θ = 4.2 mrad.
Panel (a) shows the SR taking into account absorption whereas absorption is neglected in panel (b).
The horizontal and bent colored plots in (a) and (b) correspond to the critical points in z in the
non-absorptive case for different m according to Eq. (3.25) and are the same for both panels. Panel
(c) shows ΓSR corresponding to these curves. Vertical curves in (a) and (b) indicate constant ΓSR
for the non-absorptive case. The respective evaluations of ΓSR in the absorptive and non-absorptive
systems is given in panel (d) as a function of z/d. The colors link the graphs in (a), (b), (c) and
(d) and dashed lines correspond to the absorptive description whereas dotted lines indicate the
non-absorptive approximation.
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again using the full notation. Analogously to the previous section, all maxima have
the same height and diverge for the angle approaching the critical one. As compared
to the maximal height in Eq. (3.27), the value is reduced by a factor of two for the
system with vacuum on both sides. This can be understood upon noting that for the
latter system the transmission provides an additional loss channel out of the cavity,
telling us that a good substrate reflectivity is of significance for high SR.

Collective Lamb shift – real part

We now analyze the properties of the real part of the Green’s function. The critical
points in z are determined by the equation[

r01 + (r01)3
]

sin(βd) sin(β(d− 2z)) = 0, (3.28)

where the solutions as a function of z are the same as for the imaginary part. The
factor sin(βd) enforces constant CLS irrespective of the position of the nuclei if the
product βd is chosen suitably. This means that the CLS has the same extrema as
the SR in terms of z, however, while the SR is constant for βd = mπ+ π/2, the CLS
is constant for βd = mπ. Finding the maxima on the curves of critical points in z as
done for the SR is in principle possible, however, cumbersome. Since quantitative
results for the CLS in the non-absorbing approximation are of little relevance, we
omit the explicit calculation at this point.
Unlike the SR the CLS can have zeros which for the non-absorptive system are

given by

z(0)
m = d

2 ±
1

2β arccos
(

4r2

1 + r2 cos(βd)
)

+ πm

β
, (3.29)

in simplified notation for β and r. Furthermore one finds zeros at βd = πm
irrespective of z where we previously saw that the CLS is constant.

Analogously to the previous discussions, in Fig. 3.5, we finally show the CLS in the
(z, d) plane for a fixed, exemplary angle. As before, we find a close correspondence
between the non-absorptive approximation and the full description that becomes
less pronounced for higher order modes. Unlike the SR, the CLS can take positive
as well as negative values. A characteristic feature, that can already be seen in the
comparison of Fig. 3.4(c) and 3.5(c) is the intertwined occurrence of maxima in the
SR with zeros in the CLS. We will link this to the pole structure of the Green’s
function in a slightly different context in Chapter 4.
This brief discussion shall suffice to give us a first qualitative impression of the

dependencies of the frequency shift and decay enhancement on different parameters.
In particular, we saw the correspondence of thin-film cavity settings with standing
waves in simple one-dimensional resonators.

Next, we want to turn to the description, and design, of archetype thin-film cavity
systems. For a quantitative description of these, we only occasionally can resort to
analytical methods but mostly employ numerical means in the following.
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Fig. 3.5: ∆CLS for the vacuum/56Fe/57Fe(0.57 nm)/56Fe/vacuum-system in terms of non-
dimensionalized thickness dβ/π and relative 57Fe position z/d at fixed incident angle of θ = 4.2 mrad.
The panels are analogous to Fig. 3.4. Panel (b) additionally includes zeros of the CLS in the
non-absorptive case according to Eq. (3.29) as black dotted lines which are, however, not shown in
(a) and (c) for readability.
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In this chapter, we introduce the inverse design of artificial two-level systems from
Mössbauer nuclei in thin-film cavities.

For the discussion, we employ the archetype Pt/C/57Fe/C/Pt/Si cavity of Fig. 1.1,
similar to cavities commonly used in experiments. The resonant layer is chosen to be
about two atomic layers of 57Fe which corresponds to a layer thickness of 0.574 nm,
as has been utilized in [50]. At such low layer thicknesses, long-range magnetic order
and magnetic hyperfine splittings are suppressed, such that the iron nuclei can indeed
be approximated as unsplit two-level systems. The other layer thicknesses as well as
the angle of incidence remain as tuning parameters.

A successful implementation of the inverse design requires that one can specify the
cavity geometry that realizes a desired level scheme. Naturally, not all imaginable
level schemes will be realizable, such that a major objective of the subsequent
analysis is to find the accessible parameters of the two-level scheme resulting from
the archetype setup described above. Of course, for cavity geometries beyond the
one under study, different parameters may be accessible. Partly, we will tackle this
fact by considering different materials and resonant isotopes. In general, however,
the methods developed and insights acquired hereafter readily generalize to systems
beyond the archetype one such that focusing on the experimentally relevant archetype
setup is no in-principle restriction. This will become evident in the treatment of
more complex systems in Sec. 5.

We will start the analysis by exploring the combinations of CLS and SR that are
accessible in the archetype cavity and subsequently add further relevant properties
of the level scheme. The CLS and SR are determined by Eq. (3.3) and (3.4) where
the Green’s function is known analytically, see Appendix A.1.1. The task is thus
to explore how far the Green’s function can be tuned as a function of the layer
thicknesses d1, d2, d4, d5 and the angle of incidence θ (see Fig. 1.1 for the declaration
of the parameters). This task is solved when the surface of the space spanned by
CLS and SR as a function of the above parameters is known. In the course of the
implementation of the inverse design, a versatile method was developed to determine
this surface numerically. The method essentially relies on the construction of suitable
scalar cost functions from linear and nonlinear combinations of two-level scheme
properties such as the CLS and SR. Maximizing the scalar cost function is then
equivalent to determining surface points. To keep this chapter’s focus on the physical
results, however, the in-detail explanation of the numerical approach has been moved
to the self-contained Chapter 6, where we illustrate the basic concept of the method
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with an example and give a comprehensive overview of the workflow of our numerical
computations.

In the course of the present chapter, various properties of the two-level scheme will
be considered. To keep the naming of different quantities concise, from now on the
set of all possible values of a given combination of properties of the level scheme will
be denoted as the observables space (OS) and we frequently refer to the properties
themselves as observables. The OS could for example be spanned by the accessible
combinations of CLS and SR. As opposed to that, we will denote the set of variables
over which we perform optimizations as the cavity parameter space. For the present
case, this would be the space of all sensible values for d1, d2, d4, d5 and for the angle
of incidence θ. Note that throughout the analysis, we will consider different OSs,
depending on the respective desired design goals.

4.1 Frequency shift and decay enhancement
As a start, we consider the frequency shift and decay enhancement of the two-level
scheme as the design goals. Results for the OS of CLS and SR in the archetype cavity
of Fig. 1.1 are shown in Fig. 4.1(a). The blue-shaded area indicates the combinations
of ∆CLS and ΓSR that can be realized. Interestingly, we find this set to be circular.
Enhanced spontaneous emission is found everywhere, except at the lowest point of
the circle, whereas the CLS can take positive, zero, as well as negative values. The
whole circle is slightly shifted to negative CLS.

In order to explain the highly symmetric set of CLS and SR, we can consider a
cavity at the boundary of the blue circle in Fig. 4.1(a), e.g., the cavity featuring
highest SR. Fixing this cavity structure and tuning the angle of incidence around the
first cavity resonance, the outermost black dash-dotted trajectory (i), indicated in
Fig. 4.1(a), is traversed clockwise with increasing incidence angle. Raising the angle
further towards the next-higher relevant cavity resonance, the second-largest circle
(iii) indicated in the figure is gone through, and so on. The explicit parametrization of
this trajectory with the angle of incidence is shown in Fig. 4.1(b). For each resonance
structure, indicated by a peak in the SR and a zero in the CLS, a circle of different
radius is traversed. Since the circle with largest diameter constitutes the boundary
of the accessible CLSs and SRs, we find that the highest possible CLSs and SRs
can be achieved within a single cavity geometry. This is consistent with previous
predictions [88].
Fig. 4.1(c) shows the pole structure of the Green’s function as a function of the

angle of incidence. Noting that the resonant layer is placed precisely in the center of
the guiding (carbon) layer for the cavity considered in Fig. 4.1, the thick, absorptive
cladding (platinum) layers on both sides of the guiding layer effectively ensure a
mirror-symmetry around the resonant layer. Therefore, the odd parity modes in the
guiding layer feature nodes at the nuclear layer while the even parity modes can
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Fig. 4.1: Accessible OS for the resonance frequency shift ∆CLS and the linewidth broaden-
ing ΓSR of the artificial x-ray two-level system. The figure shows the archetype cavity with
Pt/C/57Fe/C/Pt/Si structure, as illustrated in Fig. 1.1(left). (a) The blue shaded area indicates
the accessible combinations of ∆CLS and ΓSR. Starting from the topmost point with highest SR,
the outermost, black dash-dotted circle is traversed upon tuning the angle of incidence around
the first cavity resonance. The circles with smaller radii are accessed by tuning the incidence
angles around the higher cavity modes. (b) Explicit parametrization of the trajectory in (a) in
terms of ∆CLS and ΓSR via the angle of incidence. (c) shows the poles of the Green’s function
against the angle of incidence, which can be associated with the individual cavity modes. The
dots on the curve in (a), labeled with lower-case roman numerals, relate the structures in (a) to
the poles in (c). The cavity structure corresponding to the circles in (a) and the results in (b, c)
is Pt(80.4 nm)/C(46.0 nm)/57Fe(0.57 nm)/C(46.1 nm)/Pt(17.8 nm)/Si, where the notation gives
the layer thicknesses in parenthesis after the layer material and Si is the substrate and therefore
semi-infinitely extended to the bottom.

couple to the nuclei and, thus, are visible in Fig. 4.1(b) and (c). For this reason
we leave out every second roman numeral for the labeling of the poles in Fig. 4.1.
In Sec. 4.2 we will discuss cases for which also the modes (ii) and (iv) have visible
contributions.
Notably, we find that each circle in Fig. 4.1(a) is associated to a respective pole

in panel (c). The circles are traversed in a continuous way upon passing by the
corresponding poles. To understand this behavior, we can express the Green’s
function by a Mittag-Leffler pole expansion [2, 66–68] (see also Sec. 2.1.1) in the
angle of incidence θ at constant frequency, i.e. we write it as

G(θ) = G(θ = 0) +
∑
θ0

Res(G, θ0)
( 1
θ0

+ 1
θ − θ0

)
, (4.1)

where θ0 are the poles of the Green’s function and Res(G, θ0) the respective residua.
Each pole can be associated to a cavity mode coupling to the resonant layer [2]. The
imaginary part of the pole then sets the width of the respective mode. For the cavity
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at hand, Fig. 4.1(c) indicates that the imaginary parts of the poles are very small
as compared to their real part separation. Being close to one pole thus allows to
accurately describe the Green’s function by a single-mode approximation,

GSM(θ) = C + Res(G, θ0)
θ − θ0

, (4.2)

where C accounts for the relevant terms constant in θ. Upon tuning θ, the expression
maps to a circle in the complex plane spanning CLS and SR1. Explicitly, it can
be shown that the circle has radius r = |Res(G, θ0)|/2 Im(θ0) and is centered at
C + iRes(G, θ0)/2 Im(θ0) in the complex plane. For the present case, we find that
Res(G, θ0) and C are essentially always real. The Green’s function then fulfills the
simpler circle equation for all real θ,

[Re (GSM(θ)− C)]2 +
[
Im

(
GSM(θ)− iRes(G, θ0)

2 Im(θ0)

)]2

=
[

Res(G, θ0)
2 Im(θ0)

]2

, (4.3)

which is in accordance with the position of the circles in Fig. 4.1(a).
The residues and imaginary parts may vary among the different poles, which

explains the distinct radii for the first three modes, visible in the trajectory in
Fig. 4.1(a).
The small imaginary part of the poles is understood when realizing that the

cavity design chosen for this discussion (i.e. the one at the boundary of the circle)
features very thick cladding layers. This is not surprising since the latter raise the
intra-cavity reflectivity and hence form the basis for stronger inter-nuclear couplings,
thus accounting for larger collective effects. Likewise, larger intra-cavity reflectivity
allows for more narrow modes which explains the poles’ behavior.

4.2 Visibility as additional design goal
In the preceding Section 4.1, we found that the highest possible CLSs and SRs at
the circle’s boundary in Fig. 4.1(a) are realized in a cavity with thick cladding layers.
However, while this increases the cavity-mediated couplings between the nuclei and
thereby enhances the collective effects, it at the same time suppresses the coupling
of light into and out of the cavity mode. Practically, this means that the associated
artificial two-level schemes cannot be observed via the reflectance with high visibility
in experiments. In order to quantify this practical restriction, we add the visibility,
defined in Sec. 3.1.2, as a third observable characterizing the cavity performance.
To arrive at a comprehensive description of the relation between visibility and

quantum optical parameters of the two-level scheme, we numerically determine the
1Actually, this behavior is not surprising, as the single mode approximated Green’s function is a
Möbius transformation. Those map the set of lines and circles in the complex plane to itself [89].
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Fig. 4.2: Accessible OS for the ar-
tificial x-ray two-level system with
the three design goals ΓSR, ∆CLS
and visibility as obtained upon vary-
ing all layer thicknesses and the an-
gle of incidence. Results are shown
for Pt/C/57Fe/C/Pt/Si cavity struc-
tures. (a) Projection of the OS into
the ∆CLS-ΓSR-plane with the visibil-
ity color-coded. (b) Three dimen-
sional representation of the OS in (a),
which shows a plateau of high visi-
bility as a distinct parameter region.
Note that the accessible parameter
combinations are not restricted to the
surface only, but also encompass com-
binations inside the shown structure2.
The cavities used for Figs. 4.1, 4.3 and
4.4 are marked in the figure by the
symbols 1©, 2© and 3©, respectively.
Details on the numerical approach to
generate the shown data are provided
in Chapter 6.

surface of the OS for the visibility, the CLS and the SR. The result of this optimization
is shown in Fig. 4.2. Note that the ring-like structures visible in Fig. 4.2(a) do not
correspond to the seemingly similar structures in Fig. 4.1(a). While the former
are obtained with different cavity structures, the latter are drawn for a single one.
Likewise, Fig. 4.2(b) shows a three-dimensional representation of the overall possible

2By calculating the surface of panel (b), we indeed certify that the circular OS of CLS and SR
is densely filled, that is for all observables within the circle a cavity can be found. Whether
also the volume inside the 3D-surface of panel (b) is densely filled is not studied rigorously.
However, many cavities’ observables are found beneath the surface which indeed suggests a
filled OS. Under this assumption, the numerical inverse design of the corresponding cavities is
straightforward. Further, from an experimental point of view, the CLS and SR are proportional
to the abundance of 57Fe in the resonant layer. Reducing the abundance of 57Fe in the resonant
layer leaves the electromagnetic environment unchanged while – within the limits of discrete
atoms – allowing to “shrink” the surface towards zero and thus obtain any combination of CLS
and SR within the surface. In view of these points, the knowledge of the OS surface is sufficient
for the inverse design in most cases.
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Fig. 4.3: Characterization of a cavity setup with the additional constraint of a 50%-visibility of
the nuclear Fano line signature in the reflection spectrum. Panels (a), (c) and (d) are analogous
to the corresponding panels in Fig. 4.1. Panel (b) further shows the reflected intensity (“rocking
curve”) as function of the angle of incidence θ. The cavity structure corresponding to the circles in
(a) and the results in (b-d) is Pt(2.7 nm)/C(45.7 nm)/57Fe(0.57 nm)/C(46.1 nm)/Pt(307.3 nm)/Si.
The cavity is marked in the OS shown in Fig. 4.2(b). Note, that the visibility of about 50% is only
achieved around (i) as also the visibility depends on the angle of incidence.

combinations of CLS, SR and visibility. Clearly, as discussed above, the maximum
SRs and CLSs result in near-zero signatures in the reflectance. As we move away
from the extremal values of CLS and SR, the accessible visibilities become larger,
and eventually and indeed quite abruptly, a saturation to values very close to one
(color-coded red in Fig. 4.2) is observed, while still allowing for comparatively high
SR and CLS.
As a first example of practically relevant settings, we consider a cavity with a

visibility of about 50%, i.e. the reflection spectrum is modulated by half the intensity
impinging on the cavity. Within this constraint, we again search for the cavity
realizing highest SR. The observables of the resulting cavity are indicated by the
symbol 2© in Fig. 4.2(b). Again fixing the different layer thicknesses and varying the
angle of incidence, Fig. 4.3 shows the characteristics of the cavity, in a representation
analogous to Fig. 4.1. Owing to the considerably reduced top cladding layer thickness
(2.7 nm), that is necessary for the enlarged visibility, the SR accessible in this cavity
is clearly lower, however, still significant. In addition to the previous panels, we also
consider the intensity as reflected on the cavity in Fig. 4.3(b) which has not been
a meaningful observable in Fig. 4.1 because of the high top-layer thickness leading
to a vanishing signature of the cavity modes in the reflected intensity. Comparing
Fig. 4.3(b) and (c), we see that only every second mode couples to the resonant layer.
Although the poles in the Green’s function are in principle present for modes (ii)
and (iv), their numerical effect in Fig. 4.3(c) is negligible due to their odd parity
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Fig. 4.4: Characterization of a C(80.1 nm)/57Fe(0.57 nm)/C(102.6 nm)/Pt(17.6 nm)/Si cavity-
setup, corresponding to a two-level system with high visibility of about 94%. This cavity is marked
in the OS shown in Fig. 4.2(b). The panels are analogous to those in Fig. 4.3.

resulting in nodes at the resonant layer. While for higher order modes the minima
of the reflected intensity in Fig. 4.3(b) do not coincide with the poles’ real parts
due to overlapping modes, these multi-mode effects [2] are suppressed in the Green’s
function since relevant modes have roughly twice the distance. Thus, the Green’s
function can still be treated by the single mode expression Eq. (4.2) and we find
circles in Fig. 4.3(a).
Regarding the abrupt saturation to high visibilities in Fig. 4.2, we can explain

this peculiar behavior by a qualitative change in the optimum geometries of the
cavities. Counter-intuitively, the optimum cavities giving rise to this plateau of
highest visibilities do not have any upper cladding layer. This is unexpected, as such
structures are more similar to single-mirror settings, rather than cavities. Within
the grazing incidence illumination, however, the reflection at the carbon-air interface
can be of significant magnitude.
We illustrate the performance of such a cavity without top cladding in Fig. 4.4

(cf. indication 3© in Fig. 4.2). For the specific setting, the SR takes values up to
about 40 γ0 while maintaining a large visibility. In contrast to the previous examples
Figs. 4.1 and 4.3, the cavity is not symmetric anymore and the coupling of different
modes to the nuclei in the resonant layer in Fig. 4.4(c) does not follow a simple
pattern as before. Prominently, the in-coupling into the first mode and the coupling
of the first mode to the resonant layer are most pronounced. Since neighboring modes
are not well-separated on the scale of their widths, the single-mode approximation
of Eq. (4.2) is not applicable. In particular for higher order modes, the trajectories
in Fig. 4.4 thus lose their circular appearance and become spiral-like as also nearby
poles contribute.
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Fig. 4.5: Inverse design of the artificial two-level system. Results are shown for Pt/C/57Fe/C/Pt/Si
cavity systems. The panels show cavity parameters that allow for the design of the two-level systems
of optimal visibility, see Fig. 4.2. These include (a) the angle of incidence, (b) the top cladding
layer thickness, (c) the guiding layer thickness, (d) the relative position of the resonant layer in the
guiding layer and (e) the bottom cladding layer thickness. See Fig. 1.1 for the illustration of the
cavity parameters. From this figure, cavity parameters for all accessible two-level schemes can in
principle be read off.

For future experiments, the plateau in Fig. 4.2 points to a new, possibly preferential
approach since cavities without upper cladding provide very clear spectral signatures
while still showing significant collective effects.

With the foregoing discussion we are not only able to give precise cavity structures
for the realization of a desired quantum optical two-level scheme, but can also quantify
to what extent it will be visible in the reflectance. To showcase the successful inverse
design, Fig. 4.5 presents the cavity parameters that constitute the surface of optimal
visibility at fixed CLS and SR in Fig. 4.2. The cavities are characterized by five
parameters which are shown in Fig. 4.5(a)-(e). For each desired parameter set of the
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4.3 Intra-cavity field enhancement

artificial two-level system, the corresponding cavity design can in principle directly
be read off.
From Fig. 4.5(e) we clearly see that the bottom cladding layer thickness is not

described by a function continuous in the CLS and SR. This can be understood by
the fact that from a certain thickness on, the system for all practical purposes is
indifferent to a further increase in this thickness as the transmission through the
bottom cladding is suppressed exponentially. Figure 4.5 also suggests that for most
applications the usage of a thick bottom cladding is preferential. For the remaining
parameters we find mostly continuous dependencies on the CLS and SR, which is
somewhat unexpected as only three external constraints (CLS, SR and visibility)
were imposed and our numerical procedure was not biased towards this continuous
dependency. Overall, this completes the inverse design of artificial two-level schemes
under the constraint of the nuclear response visibility in the reflection spectrum.

4.3 Intra-cavity field enhancement
In the previous sections, we found that the highest SRs and CLSs are realized in
cavity structures with thick cladding layers, which do not allow for efficient in- and
out-coupling of light, and therefore lack good visibility in the reflectance. In this
section, we further explore this aspect by contrasting the CLS and SR with the
intra-cavity enhancement of an external driving field at the resonant layer. The
driving field strength is an important quantity as it enters the artificial two-level
scheme via the effective Rabi-frequency Ω. We take this field enhancement as an
additional design goal.

We illustrate the field enhancement by considering the field intensity distribution
for an exemplary cavity in Fig. 4.6. When a plane-wave impinges on the cavity, part
of it is directly reflected, leading to an intensity pattern outside the cavity. Inside
the cavity, the light is “trapped” and therefore an enhanced intensity is found. The
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Fig. 4.6: Electric field intensity distribu-
tion in a Pt(0.89 nm)/C(50.0 nm)/57Fe(0.57 nm)/
C(52.4 nm)/Pt(55.3 nm)/Si cavity illuminated at
2.18 mrad with a plane-wave. Note that the inten-
sity plotted is normalized to the incoming intensity,
such that the enhancement at the nuclear layer can
be directly read off to be about 40. The field dis-
tribution can be calculated, e.g., with Parratt’s
formalism [64] or using the PYNUSS [90] software
package. Note that we show the off-resonant field,
i.e. the 57Fe contributes to the calculation only
with its electronic refractive index, as is necessary
within the used formalism.
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Fig. 4.7: Accessible OS for the arti-
ficial x-ray two-level system with the
cavity-induced field enhancement at
the position of the nuclei as an addi-
tional design goal. (a) The surface
of all accessible combinations of the
three observables CLS, SR and field
enhancement is obtained, and shown
as a 3d plot with color coding. Com-
binations on and beneath the surface
are accessible. The coloring highlights
the double tip structure of the OS
close to the highest possible field en-
hancements. This panel shows results
for Pt/C/57Fe/C/Pt/Si cavity struc-
tures. (b) Section through panel (a)
along the SR axis. The graph further
compares the results for cavities with
and without top cladding, as well as
Pd and Pt as cladding materials, to
explain the origin of the double-tip
structure visible in (a).
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archetypal standing wave structure is however disturbed by the impedance mismatch
between the guiding layer and the isotope material. The height of the intensity at
the nuclear layer (red) is what we refer to as field enhancement inside the cavity.

In comparison to CLS and SR, different optimal cavity designs may occur for
the field enhancement. While the optimization of the latter relies on a compromise
between coupling of external fields into the cavity mode and enhancement of the
intensity inside the cavity by multiple reflections, CLS and SR are maximized in the
absence of coupling into- and out of the cavity mode, as was discussed in Sec. 4.2.

In a first step, we analyze the accessible OS for CLS, SR and field enhancement in
the archetype cavity of Fig. 1.1 and comment on the peculiarities of this very setting.
Subsequently, we proceed to compare the results to the behavior expected for an
optical Fabry-Pérot cavity and outline the conceptional differences.
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4.3 Intra-cavity field enhancement

4.3.1 Results for x-ray thin-film cavities
The accessible combinations of CLS, SR and field enhancement at the nuclear layer
are shown in Fig. 4.7(a). As expected, we find minimal field enhancement for the
case of maximum CLS and SR. In going towards higher field enhancement, the
maximum possible CLS and SR decrease. Interestingly, the OS features a double
tip near the maximum field enhancements, which is marked in black for clarity. To
analyze its origin, we show a cut through panel (a) along the SR axis in Fig. 4.7(b)
(green shaded area). This panel also shows corresponding results for a cavity without
the topmost cladding layer (orange shaded area). One can clearly see that one of
the two peaks can be attributed to cavities without the topmost layer. The second
peak with similar maximal field enhancement is due to an entirely different cavity
structure with a cladding layer. The respective cavity was tacitly shown in Fig. 4.6.
As in Sec. 4.2, we again find that cavities without upper cladding layer may form an
equally good, or even superior, approach to designing x-ray layer structures.
To contextualize these observations, we finally consider cavities in which the

cladding material is changed from Pt to Pd. Results are shown with (blue) and
without (red) top cladding in Fig. 4.7(b). For this material combination, no double-
tip appears, and the non-cladded system is outperformed by the system with topmost
Pd layer. This indicates that the Pt/C cavity system is peculiar, but also that the
material choice is of great significance.
However, before elaborating on the topic of different materials in Sec. 4.4, there

is yet another striking feature visible in Fig. 4.7(b). The decay enhancement for a
quantum system is linked to the photonic density of states (DOS) at its position [86].
In Fig. 4.7, we see that the maximum in the field enhancement is reached at
moderate SRs. This shows that the field enhancement is maximized in a different
cavity geometry than the SR. In view of the standing wave-patterns shown in Sec. 3.2,
one might have suspected that these are closely related to the field distribution inside
the cavity which makes the difference in the maxima of SR and field enhancement
somewhat counter-intuitive. Considering standard Fabry-Pérot cavities, we illustrate
in the following section that one indeed can expect the coincidence of maximal field-
and decay enhancement in optical cavities.

4.3.2 Comparison with optical Fabry-Pérot cavities
To illustrate this qualitative difference, we analyze a one-dimensional lossy Fabry-
Pérot cavity as shown in Fig. 4.8(a). The mirror material is chosen as diamond for
its comparatively large refractive index of n = 2.4, yet noting that variations of this
refractive index only lead to quantitative, but not qualitative, changes. The cavity
is illuminated at the resonance frequency of the two-level system (chosen around
a wavelength of 700 nm) orthogonally to the mirror surface. For this setting, we
seek the achievable combinations of frequency shift, decay enhancement and field
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4 Inverse design of two-level schemes

Fig. 4.8: Accessible OS for a two-level
atom in a Fabry-Pérot cavity, as a
reference for comparison with the x-
ray thin-film cavity case in Fig. 4.7.
(a) Schematic layout of the setup. The
cavity is formed by diamond front and
rear mirrors with rear thickness cho-
sen large. A single two-level atom is
coupled to the cavity field. The cavity
is probed with light resonant to the
atomic transition frequency. (b) OS
of the accessible frequency shifts ∆
and decay rate enhancements Γ in the
Fabry-Pérot cavity. For each pair ∆,Γ,
the possible field enhancements at the
atom’s position z are obtained, and
shown as the third axis. The projec-
tion of the OS onto the Γ−|Ein(z, ω)|2
plane is indicated. Unlike in the x-
ray cavity case, the maxima of the line
broadening Γ and the field enhance-
ment |Ein(z, ω)|2 coincide.

enhancement at the two-level system. It is readily described by the previously used
formalism of Eqs. (2.15-2.17) in the limit of a single atom. The coupling constants
can be obtained from the Green’s function in Appendix A.1.1, which reduces to the
one-dimensional real-space Green’s function upon setting k‖ = 0 [87].

To ensure comparability to the x-ray scenario, we not only vary the thicknesses of
the layers and the position of the two-level atom therein, but also take its resonance
frequency as a parameter. Varying the frequency in this setting is tantamount to
changing the angle in the x-ray case, as the angle can be used to tune the thin-
film cavity in and out of its resonances, which can be mapped to changing the
frequency [49].
Fig. 4.8(b) shows the set of accessible combinations of field enhancement at the

two-level system’s position, level shift and decay enhancement. For clarity, we also
show the projection of the set onto the SR-field enhancement-plane. Clearly, the
maximal SR coincides with the largest possible field enhancement, as was suspected
for this setting.
We can identify two major differences between the x-ray cavities and the Fabry-

Pérot setting: Firstly, x-ray materials tend to have high absorption compared to
dielectrics available in the optical regime, and, secondly, the grazing incidence setup
allows for total reflection and thus provides a different mechanism of trapping light.
Regarding the second point, it is important to note that x-ray cavities as in Fig. 1.1
are operated below the angle of total reflection of the cladding layer, such that the
in- and out-coupling will take place evanescently. Therefore, the coupling of light
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into and out of the cavity may be suppressed by thick cladding layers even in the
absence of absorption in the mirror material. In contrast, in this case, the photonic
DOS may still be high, since it is limited essentially only by the absorption of the
guiding layer. Hence, we can attribute the counter-intuitive behavior of photonic
DOS and field enhancement to the grazing incidence setup.

This illustrates that not all intuition from well-understood standard optical cavities
can be directly translated to x-ray thin-film cavities, but systematic analysis is
necessary. Striving for higher finesse cavities, as is done in the visible domain, would
go in line with neither driving the nuclei nor observing the nuclear dynamics in the
reflection spectrum. We note, however, that different in- and out-coupling schemes
such as front-coupling [41, 91, 92] or intra-cavity generation of light [85] could allow
one to enhance the intra-cavity field enhancement without reducing the SR and CLS.

Finally, for the x-ray thin-film case, we further note that although the SR and the
field enhancement at the nuclear layer assume their respective maxima at different
cavity parameters, the maxima may still coincide as a function of the angle of
incidence only, for a single cavity structure.
Even though the qualitative behavior of the OS is not affected by absorption,

we nevertheless find it to exert striking influence on the quantitative performance
of cavities. Therefore, the influence of guiding and cladding material properties is
discussed in the following section.

4.4 Influence of the material choice
At x-ray frequencies, materials are commonly found to have refractive indices close
to and slightly below one, see Eq. (2.3). For the design of x-ray thin-film cavities, the
guiding principle to choose materials commonly is taking high-Z, i.e. high atomic
number and thus high electron density, materials for the cladding and low-Z materials
for the guiding layer [19, 27, 50, 52, 54, 55, 93]. This guideline ensures high contrast
in the real parts of the refractive indices and thus a comparatively large Fresnel
reflectivity between adjacent layers. High electron densities, however, come along
with high absorption, which affects the cavity performance. The interplay between
absorption and reflectivity of the cladding is not immediately clear, which is why we
devote this section to the systematic analysis of the performance of different material
combinations for the archetype cavity of Fig. 1.1.
To derive trends for the material choice, we sample the cladding and guiding

materials from a range of elements as well as few chemical compounds known to
be suitable for the manufacturing process3. The 57Fe-layer as well as the silicon
substrate are left unchanged and the materials of the two cladding layers are taken

3The sampled materials are Ag, Al, Au, B4C, Ba, Bi, B, Ca, Cd, Ce, Co, Cr, Cu, C, Dy, Er, Eu,
Fe, Ga, Gd, Ge, Hf, Ho, In, Ir, J, La, Lu, MgO, Mg, Mn, Mo, Nb, Nd, Ni, Os, Pb, Pd, Pr, Pt,
P, Re, Rh, Ru, Sb, Sc, Se, Si, Sm, Sn, Sr, S, Ta, Tb, Te, Ti, Tl, Tm, V, W, Yb, Y, Zn, Zr.
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Fig. 4.9: Survey of the tunability of
the artificial x-ray two-level system as
a function of the chosen layer mate-
rials. Panel (a) shows the achievable
SR, while panel (b) shows the field
enhancement at the position of the nu-
clei. In each panel, the top [left] axes
denote the real [imaginary] part of the
refractive index n = 1− δ + iβ of the
guiding layer material. Analogously,
the bottom [right] axes characterize
the refractive index of the cladding
material. The different cladding [guid-
ing] materials are shown as blue rect-
angular boxes [red circles] in the plot.
Each line connecting a guiding-layer
with a cladding-layer material defines
a cavity structure. The optimum per-
formance possible with this material
combination is then color-coded in the
line linking the two materials.

to be the same. We note that related material samplings have previously been
reported in the context of bandpass filtering of broadband synchrotron radiation
with grazing-incidence anti-reflection (GIAR) films [94].

For each material combination we seek the highest possible field enhancement
at the nuclear layer as well as highest possible SR. From the circular structures in
Fig. 4.1(a) and the pole expansion Eq. (4.2) it can be expected that the cavities
optimizing the SR also optimize the CLS. The best extremization outcomes for the
SR and the field enhancement are shown in Fig. 4.9(a) and (b), respectively.
We explain the plot at the example of the maximum SR for a cavity comprising

Ag cladding layers and a B4C guiding layer. From the top and left axes in Fig. 4.9(a)
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4.5 Influence of the resonant isotope choice

we can read off that B4C (red circle) has a refractive index of roughly n = 1− 2.36×
10−6 + 0.9× 10−9i. Similarly, we extract from the bottom and right axes that the
refractive index of silver (blue rectangle) is about n = 1− 9× 10−6 + 3× 10−7i. Of
course, the performance of the cavity is determined by both, cladding and guiding
material. Therefore, the color of the line linking both materials (here: orange)
indicates that ΓSR/2 ≈ 115 γ0, as can be read off from the color bar. Analogously,
all remaining pairs can be evaluated, also for Fig. 4.9(b).
As expected, we find that the best cavities feature low absorption in the guiding

layers. For the cladding materials, however, common materials such as Pt are neither
among the best cavities for SR nor for the field enhancement (and hence do not even
appear in the sampling in Fig. 4.9 where only the best combinations were included).
This is unexpected, since Pt is a high-Z-material with comparatively high δ which
gives rise to a high Fresnel reflectivity at the cladding-guiding boundary. Overall,
we find that Pt is not an exception, because the best cavities are not achieved via a
high contrast in the refractive indices’ real parts, but rather with the low absorption
in the cladding as a selection criterion. Most strikingly, all metals are outperformed
by the MgO compound as cladding material which shows the lowest β among the
cladding materials present in Fig. 4.9. Nevertheless, it should be stressed that also
for low-absorption cladding materials it remains important that δcladding > δguiding
to maintain the mirror-like function of the cladding while having low guiding layer
absorption.
Summarizing, the results indicate that the paradigm of high-Z-cladding – low-

Z-guiding material as a cavity design criterion has to be reconsidered. Instead,
implementing low-Z-cladding – lower-Z-guiding layer materials shows a clear poten-
tial for improving the performance of state-of-the-art cavities and their applications.
Finally, we note that sampling the top and the bottom cladding layer materials

independently still suggests that the best performance is achieved if both layers are
of the same material and lowest sensible absorption.

4.5 Influence of the resonant isotope choice
Having discussed the accessible CLSs and SRs, the reflection spectrum visibility
of the nuclear response, the field enhancement and relevant material aspects for
thin-film cavities, it remains to address the influence of different resonant isotopes
on the performance of archetype cavities. Taking a key role in the properties of the
artificial quantum system to be designed, their influence is two-fold.

Firstly, each isotope comes with intrinsic properties. They determine the coupling
of the nuclear transition to the electromagnetic environment and thus fix the scale
of collective effects. Secondly, even ultra-thin layers of resonant isotopes modify the
field configuration in the cavity by their electronic refractive index. Exchanging the
resonant isotope thus strongly affects the cavity mode structure. Furthermore, the
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4 Inverse design of two-level schemes

ωnuc (keV) δiso + iβiso (10−6) δC + iβC (10−6)
57Fe 14.4 7.3 + 0.33i 2.3 + 1.2× 10−3i
119Sn 23.9 2.2 + 0.037i 0.82 + 2.8× 10−4i
45Sc 12.4 3.8 + 0.13i 3.1 + 2.2× 10−3i

Tab. 4.1: Properties of the Mössbauer isotopes 57Fe, 119Sn and 45Sc and the Carbon guiding layer
at the respective Mössbauer resonance frequencies. The electronic refractive index of the resonant
isotope at its transition frequency is denoted as nisotope = 1− δiso + iβiso and the respective one of
Carbon reads nC = 1− δC + iβC. The isotope’s transition frequency is given by ωnuc. Parameters
are taken from [46] or calculated with the PYNUSS [90] software package.

refractive indices of the cavity materials and the optimal geometries are subject to
the light’s wavelength and thus to the nuclear transition frequency, which thereby
also influences the modal structure.
In the following, we disentangle the influence of both effects on the cavity per-

formance and outline the consequences on the design of artificial few-level systems.
To this end, we consider the OSs of the SR and the field enhancement at the res-
onant layer for the isotopes 57Fe, 119Sn and 45Sc. These isotopes have transition
frequencies accessible with state-of-the-art pulsed x-ray sources, but feature rather
different properties. The transition frequencies and electronic refractive indices of
these isotopes are given in Tab. 4.1. The isotopes are chosen to be embedded in a
Pd/C/isotope/C/Pd/Si cavity. We note that for better comparability, we chose the
thickness of the resonant layer as 0.574 nm in all cases, as was previously used for the
57Fe cavities. The accessible parameter combinations are shown in Fig. 4.10. 45Sc
and 119Sn stand out with very high field enhancements, but comparably low tuning
capability in the SR. In comparison, 57Fe exhibits comparatively high possible SR in
combination with moderate field enhancement. This highlights that in optimizing
x-ray cavity structures towards a given design goal, also the resonant isotope should
be considered as an important design parameter.

4.5.1 Direct impact of the nuclear properties
To disentangle the effects of exchanging the nuclear isotope on the cavity performance,
we first try to compare the results for the different isotopes via a naive scaling of
their parameters.
Following Eqs. (3.3) and (3.4), the dependencies of CLS and SR on the nuclear

properties are given by

∆CLS,ΓSR ∝ ω2
nuc|d|2G(ωnuc)

N

A
. (4.4)

We can express the dipole moment in this relation as [48]

|d|2 = 2πγ0

ω3
nuc

1
2(1 + α)

2Ie + 1
2Ig + 1 , (4.5)
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Fig. 4.10: Accessible OS for the SR of the ar-
tificial x-ray two-level system and the cavity-
induced field enhancement at the position
of the nuclei for several resonant isotopes.
In all cases, the optimization was performed
with a Pd/C/isotope/C/Pd/Si cavity struc-
ture. It can be seen that cavities with 119Sn
and 45Sc feature superior field enhancements,
while the use of 57Fe offers comparably large
SRs in units of the respective natural line
width γ0.

where α is the coefficient of internal conversion and Ie (Ig) is the nuclear spin of
the excited (ground) state of the transition. Moreover, the effective in-plane nuclear
number density can be written as

N

A
= d3ρVafLM , (4.6)

with the Lamb-Mössbauer factor fLM, the number density per volume of the material
ρN, the thickness of the resonant layer d3 and the abundance a of the resonant
isotopes therein.
Regarding the Green’s function (A.1), we note that the Fresnel coefficients in

Eq. (A.2) are unaffected by the frequency dependence, such that we find a scaling
G(ωnuc) ∝ 1/ωnuc with the isotope’s transition frequency, owing to βj ∝ ωnuc.

Taking into account all these scalings, we can estimate the CLS and SR of a specific
isotope on the basis of the numerically calculated performance of 57Fe. However, upon
comparing these estimates to the results in Fig. 4.10, we find that the SRs actually
calculated for 119Sn and 45Sc are significantly higher than those expected from the
naive scaling. This is a clear indication that the nuclear transition’s properties alone
are not sufficient to characterize the performance of an isotope in a thin-film cavity.
Instead, also the modification of the cavity environment due to the exchange of the
isotope layer must be considered.

4.5.2 Impact of the nuclear isotope on the cavity environment
Next, we study the influence of the isotope choice on the electromagnetic environment
provided by the cavity. Exchanging the resonant isotope alters the photonic DOS as,
on the one hand, each resonant isotope comes with its specific electronic refractive
index, and, on the other hand, its resonance frequency affects the refractive indices
of the remaining layers. As can be seen from Tab. 4.1, the carbon guiding layer’s
refractive index approaches unity with increasing frequency of the isotopes, as
common for x-ray materials [65]. For the refractive index of the resonant isotopes
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4 Inverse design of two-level schemes

themselves there is no such clear trend with respect to the transition frequency as it
competes with their electron density.
To estimate the effect of the isotope choice on the photonic DOS, we consider

the achievable field enhancement at the nuclear layer as shown in Fig. 4.10. Even
though in Sec. 4.3 we noted that field enhancement and SR are realized in different
geometries, this is a sensible choice as we do not compare geometries but the materials
of the resonant layer. In that respect, the results in Sec. 4.4 suggest that within
one setting of materials, the maximum achievable SR and field enhancement are
correlated to each other. Finally, the field enhancement is particularly useful as it is
irrespective of the nuclear properties.

Comparing the refractive indices in Tab. 4.1 to the results in Fig. 4.10, it is clear
that low absorption in the cavity, and, in particular, in the resonant layer, is the
driving factor for the photonic environment. The very high field enhancement for
119Sn and significantly reduced enhancement for 57Fe due to the electromagnetic
environment complement very well the incompleteness of the description found in
Sec. 4.5.1 upon considering the nuclear properties only.

This shows that considering the nuclear properties alone is not sufficient to estimate
an isotope’s potential. Rather, the effect of the isotope on the electromagnetic
environment has to be taken into account for a comprehensive description.
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Having discussed in detail archetypal cavity geometries with a single layer of resonant
nuclei, this chapter illustrates that the inverse design approach can be extended
to more complex systems. Specifically, in this chapter, we demonstrate the inverse
design of three-level systems as they are realized in cavities comprising two resonant
layers. Such level schemes are of great interest as they allow for the realization of
advanced quantum optical effects.
We start by adapting the general theory of Sec. 2.2 to the two resonant layer

case, which yields the effective three-level scheme description. We then consider
the accessible properties of the three-level scheme and relate these to the cavity’s
mode structure. Subsequently, we turn towards the design of ratios of level scheme
paramters as they are relevant for the realization of quantum optical effects. On that
basis, we address the design of a nuclear EIT scheme and comment on open questions
regarding its interpretation. Finally, we introduce an approach that describes the
nuclear imprint on the reflection spectrum on the basis of excitonic normal modes.
This method directly allows to understand and engineer the reflection spectrum.

5.1 Two resonant layers – three-level scheme
An archetypal cavity geometry with two resonant layers is shown in Fig. 5.1(a).
Having two resonant layers placed in the cavity, a spin-wave can be excited in each
of the layers, leaving us with the Hamiltonian of two coupled two-level systems
according to Eq. (2.21),

Ĥ =ωnuc

2 σ̂z1 + ∆CLS,1σ̂
+
1 σ̂
−
1 + ωnuc

2 σ̂z2 + ∆CLS,2σ̂
+
2 σ̂
−
2

−
(
∆12σ̂

+
1 σ̂
−
2 + h.c.

)
−
(
Ω1σ̂

+
1 + h.c.

)
−
(
Ω2σ̂

+
2 + h.c.

)
, (5.1)

where we omitted the k‖ index for readability. Here, we introduced the frequency
shifts

∆CLS,1 = −∆11 , ∆CLS,2 = −∆22 , (5.2)

which are defined via Eq. (2.26).
In principle, this Hamiltonian describes the effective dynamics in a four dimensional

space. For the dynamics in the low-excitation regime, however, we already noted in
Sec. 2.2.2 that the doubly excited state is irrelevant for the dynamics, thus leaving
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Fig. 5.1: Schematic setup of an exemplary thin-film cavity with two resonant layers (a) and
illustration of the respective level scheme (b). Both resonant layers are embedded in a single guiding
layer for the presented system. The layer thicknesses as well as exemplary materials are indicated
in panel (a). The resulting level scheme shown in panel (b) comprises three levels. A ground state
|G〉 with no excitation in the resonant layers and excited states |E1〉 (|E2〉) whose energy is shifted
by ∆CLS,1 (∆CLS,2) as compared to the bare nuclear transition frequency and which decay with
rates enhanced by ΓSR,1 (ΓSR,2). The field that impinges on the cavity leads to a driving of the
transitions from |G〉 to |E1〉 (|E2〉) with Rabi frequency Ω1 (Ω2). Additionally, coherent ∆12 and
incoherent γ12 couplings between the excited states are mediated by the cavity. Note that we often
refer to the excited states as nuclear excitons.

us with a three-level description. Since the dipole moments in the first and second
resonant layer are identical d1 = d2, the dipole-dipole coupling of strength ∆12
between the spin-waves is real and hence symmetric in the present case, ∆12 = ∆21.
Additionally to the decay enhancements of the spin-waves [see Eq. (2.27)],

ΓSR,1 = γ11 , ΓSR,2 = γ22 , (5.3)

the Lindbladian comprises an incoherent coupling γ12 between the spin-wave excita-
tions according to Eqs. (2.22) and (2.27). This coupling is also real and symmetric
for the present case, γ12 = γ21. Such cross-decay terms are typically not present for
standard three-level systems. The resulting level scheme is shown in Fig. 5.1(b).

5.1.1 Reflection spectrum
According to Eq. (2.20), the two spin-wave operators’ expectation values form a
system of linear coupled differential equations,

σ̇−1 (t) =− i(ωnuc + ∆CLS,1 − i
γ0 + ΓSR,1

2 )σ−1 (t) + i
(

∆12 + i
γ12

2

)
σ−2 (t)

+ i
N

A
d∗1Ein(z1,k‖) ,
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σ̇−2 (t) =− i(ωnuc + ∆CLS,2 − i
γ0 + ΓSR,2

2 )σ−2 (t) + i
(

∆12 + i
γ12

2

)
σ−1 (t)

+ i
N

A
d∗2Ein(z2,k‖) . (5.4)

As before, we transform to frequency space, and approximate the driving fields as
constant in frequency on the scale of the nuclear linewidth. In frequency space, we
can conveniently rewrite the resulting expressions in matrix-vector notation,

Ω̃ = −M(ω) · σ−(ω) , (5.5)

where we defined the vector comprising the expectation values of the spin-wave
operators and the driving vector,

σ−(ω) =
(
σ−1 (ω)
σ−2 (ω)

)
, Ω̃ = i

N

A

(
d∗1Ein(z1,k‖, ωnuc)
d∗2Ein(z2,k‖, ωnuc)

)
, (5.6)

respectively. We further introduced the matrices,

M(ω) = i
[
(ω − ωnuc + i

γ0

2 )1 +C
]
, (5.7)

C =
(
−∆CLS,1 + iΓSR,1/2 ∆12 + iγ12/2

∆12 + iγ12/2 −∆CLS,2 + iΓSR,2/2

)
, (5.8)

where the coupling matrix C is frequency independent and comprises all collective
cavity-mediated couplings. We can readily obtain the frequency space solution of
the dynamics, σ−(ω) = −M−1(ω) · Ω̃, which is subsequently inserted in Eq. (2.31)
to yield the reflection spectrum. Keeping the matrix-vector notation it reads

r(ω) = rel − µ0ω
2
nucG̃ ·M−1(ω) · Ω̃ , (5.9)

where the propagation to the surface is included in the expression

G̃ =
(
G(0, z1,k‖, ωnuc)d1

G(0, z2,k‖, ωnuc)d2

)
. (5.10)

This allows to determine the reflection spectrum of the system on the basis of the
electromagnetic Green’s function.

Hence, we now have the necessary tools to describe the artificial three-level scheme
and calculate its experimentally observable reflection spectrum.

5.2 Designing three-level scheme properties
Having described the theoretical foundations of artificial three-level schemes, we turn
towards the determination of the accessible properties of these systems.
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As a cavity setup, we consider the thin-film cavity illustrated in Fig. 5.1(a).
Basically, the cavity is analogous to the single resonant layer cavity analyzed in the
previous chapter (see Fig. 1.1), however, with two resonant layers embedded in the
guiding layer. We use Pd as the cladding material and B4C as the guiding material.
Qualitatively, different cavity setups comprising two resonant layers are possible and
we will give another example in Sec. 5.5.3, see Fig. 5.15.

The level scheme resulting from two resonant layers in Fig. 5.1(b) is subject to
the various layer thicknesses and the angle of incidence. As before, we fix the 57Fe
layer thicknesses to 0.574 nm for them to be ultrathin, such that the treatment of
the nuclei as two-level systems is adequate. Within this setting, we determine the
accessible quantum optical properties. We first consider the cavity-mediated coupling
of the excited states to each other as well as the modification of their transition
frequencies and decay enhancements. Subsequently, we also take into account the
field enhancements at the resonant layers, similarly to Sec. 4.3.

5.2.1 Excitonic coupling and self-coupling
According to Eq. (5.8), the coupling matrix C depends on the frequency shifts of
both excited states and their decay enhancements (i.e., their excitonic self-coupling)
as well as the coherent and incoherent couplings of the excitons to each other. The
accessible OSs for these observables are shown in Fig. 5.2. We first discuss the OSs
accessible and then explain their appearance on the basis of the mode structure of
the cavity.

From Fig. 5.2(b) and (c), we see that circular OSs are accessible for the frequency
shifts and decay enhancements of both excited states. These observables concern a
single resonant layer only and the OSs are reminiscent of the ones we have seen for
the single resonant layer setup, see Fig. 4.1. Opposed to that, Fig. 5.2(a) shows the
OS for the coherent and incoherent coupling between the excited states. The OS is
found to essentially consist of two circles, one of which is oriented towards positive
and another one oriented towards negative values for the incoherent coupling γ12.
To understand the shapes of the OSs, we proceed similarly to Sec. 4.1. We

consider the cavity of highest possible incoherent coupling in Fig. 5.2(a), fix the
cavity geometry and tune the angle of incidence. This then leads to the black dashed
trajectories visible in Fig. 5.2(a), (b) and (c).
To allow for a detailed analysis, we explicitly show the above observables’ trajec-

tories as a function of θ in Fig. 5.3(a), (c) and (e). Further, we plot their absolute
values in the complex θ plane in Fig. 5.3(b), (d) and (f) to relate the observables
of the three-level scheme to their poles as a function of θ. From the analyses in
Chapter 3 and 4 we already saw that those poles can be related to the mode structure
of the cavity. Since all observables considered in Figs. 5.2 and 5.3 are calculated
from different evaluations of the same Green’s function (see Appendix A.1.2 for the
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Fig. 5.2: OSs for relevant properties of the three-level system for a Pd/B4C/57Fe/B4C/57Fe/B4C/
Pd/Si cavity setup. The blue shaded areas indicate the accessible OSs. Panel (a) shows the coherent
∆12 and incoherent γ12 coupling between the excited states. Panels (b) and (c) show the OSs of
CLS and SR of the first and second excited state, respectively. Note that the panels only resolve
the accessible combinations within the pair of observables given in each panel. For example, the
figure does not allow to read off, which combinations of ∆12 and ∆CLS,1 can be achieved. We will,
however, consider further relevant combinations of observables in Sec. 5.3. The black dash-dotted
lines represent trajectories that are obtained upon changing the angle of incidence for the specific
cavity of highest incoherent coupling, described in Fig. 5.3. The arrow denotes the direction of
increasing θ. Red dots on the curves, labeled with lower-case roman numerals, relate the structures
in the panels to the poles in Fig. 5.3. Note, that the range of angles used for the trajectories is
smaller than in Fig. 5.3, for readability. However, the angular range is the same for all panels of
the present plot.

explicit formulae), they share the same poles as a function of θ which is confirmed
by Fig. 5.3.
As before, upon passing the first pole [indicated by (i)] on the real θ-axis, an

(approximate) circle is traversed for all three observables pairs in Fig. 5.2. This is
expected when the single-mode approximation is applicable according to Eqs. (4.2)
and (4.3). In contrast to the previous observations in the context of Fig. 4.1(a),
however, the couplings traverse a downward oriented circle in Fig. 5.2(a) when
passing the second pole (ii). Using the single mode approximation Eq. (4.2), this can
be explained by a sign switch for the residues of neighboring poles for the couplings.
Eventually, this also explains the why the OS of Fig. 5.2(a) comprises a circle towards
positive as well as negative incoherent couplings. Note that in Fig. 5.2(a), one finds
a small region of accessible observables in between the two circular structures. This
region can be associated to very small angles of incidence.
A particular trait of the trajectory in Fig. 5.2(a) is that it partly runs on the

surface of the OS. Therefore, some extremal coupling values are found in a single
cavity geometry. This is reminiscent of the behavior of CLS and SR in Fig. 4.1.
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Fig. 5.3: Observables determining the coupling matrix C as a function of the angle of incidence θ
for the Pd(105.1 nm)/B4C(27.7 nm)/57Fe (0.57 nm)/B4C(23.8 nm)/57Fe (0.57 nm)/B4C(28.8 nm)/
Pd(12.5 nm)/Si cavity setup of highest incoherent coupling in Fig. 5.2(a). Panel (a) shows the
coherent ∆12 and incoherent γ12 coupling between the excited states. Panel (b) shows the absolute
value of the couplings in the complex plane. The poles are indicated by red crosses and correspond
to the resonant structures in (a). Panels (c, d) and (e, f) are analogous but for the CLS and SR
of the respective layer one or two. The black dashed lines in the plots indicate the real parts of
the respective poles. The latter are enumerated by roman numerals and relate the poles to the
corresponding circular trajectories in Fig. 5.2. We see that all poles coincide which is expected as
all shown observables result from different evaluations of the same Green’s function.
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Fig. 5.4: Comparison of OSs for the accessible coherent and
incoherent couplings for Pt and Pd as cladding materials in a
cladding/B4C/57Fe/B4C/57Fe/B4C/cladding/Si cavity setup. The
less absorptive Pd allows for larger tunability than Pt cladding layers,
as would be expected from Sec. 4.4.

Since all observables share the same poles, their resonant behavior close to the
poles of the Green’s function is locked to one another as a function of the angle of
incidence. This emphasizes that the observables cannot be tuned independently from
each other. To nevertheless exploit the full tuning capabilities, a systematic analysis
of the accessible observables, as provided in this thesis, is highly beneficial.

To conclude the discussion of the observables determining the coupling matrix C,
we can ask whether the guidelines we derived in Sec. 4.4 for the materials choice
generalize to more complex systems. To this end, we consider the coherent and
incoherent couplings for the cavity of Fig. 5.1(a), but with the cladding layers being
made of Pt instead of Pd. The resulting OS is shown in Fig. 5.4 and compared to
the corresponding OS for Pd cladding. Here, it is obvious that Pd, which is the less
absorptive, βPd < βPt, but also less refractive, δPd < δPt, outperforms cladding layers
made of Pt. This indicates that the significance of low absorption in the cladding
layer indeed translates to more complex systems.

5.2.2 Intra-cavity field enhancements
Besides the elements of the coupling matrix C, also the Rabi-frequencies Ω1 and Ω2
are important for the level scheme. For the cavity used in Fig. 5.3, these driving fields
are negligible as the thick top cladding layer effectively prevents any outside field from
entering the cavity. The Rabi-frequencies Ω1 and Ω2 enter the reflection spectrum
in the form of their Fourier transforms with respect to time. In turn, the latter are
proportional to the field strength at the respective layer, Ein(zl,k‖, ωnuc). To arrive
at a comprehensive description of the three-level scheme observables, we therefore
subsequently determine the OSs of accessible field strengths, Ein(z1,k‖, ωnuc) and
Ein(z2,k‖, ωnuc), at the resonant layers. In contrast to Sec. 4.3, we do not consider
the intensity of the driving fields, but show their accessible real and imaginary
parts. This helps to illustrate similarities of the field enhancements’ behaviors to the
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remaining level scheme properties. First, we consider the accessible OSs for the field
enhancements. Subsequently, we again specialize to one cavity geometry and tune
the angle of incidence to explain the structure of the OSs found on the basis of the
poles of the field enhancements.

The resulting OSs for the field enhancements are shown in Fig. 5.5(a) and (b). The
OS for the real and imaginary field enhancement in the first resonant layer is found
similar, but not identical, to the one in the second resonant layer. Overall, both
OSs have some reminiscence of the OS for the coherent and incoherent couplings in
Fig. 5.2(a).
For the cavity of highest real field enhancement at the first nuclear layer, we

again fix the geometry and tune the angle of incidence. The resulting trajectories
are plotted in Fig. 5.5(a) and (b) as black lines. The right hand side of Fig. 5.5
further shows the resulting field enhancements as a function of the angle of incidence.
Since the field strengths have not been analyzed in Fig. 5.3, we also show their pole
structures in Fig. 5.5(d) and (f).

Clearly, the poles, and thus the resonant behavior, coincide for both driving field
enhancements. In fact, it can also be shown that for a specific cavity structure,
the poles of the field enhancements are the same as for the observables considered
in Figs. 5.2 and 5.3 (not shown explicitly here). This is a result of the common
underlying mode structure of the cavity and can in principle also be understood from
the explicit formulae, see Appendix A.1.2.

From Fig. 5.5(a) and (b) it is apparent that also the field strengths traverse circular
trajectories when θ passes by a respective pole, indicated by (i) or (ii). However, as
compared to Fig. 5.2, the circles are found to be more freely rotated in the complex
plane. This can be attributed to the fact that the residues of the field enhancement
can be complex-valued, thus allowing for different orientations of the single-mode
circles, cf. Sec. 4.1. As a consequence, this explains that the accessible OSs obey
different symmetries as compared to those found for the remaining observables of
the level scheme.
This comprises the fundamental discussion of OSs for relevant properties of the

three-level scheme. The determination is achieved much in the same way as it was
for the two-level schemes, such that the inverse design is applied successfully also
for systems with two resonant layers. Due to the higher number of level-scheme
properties involved, not all relations between relevant observables were explicitly
given. Using the formalism of Chapter 6, however, the OSs of arbitrary observable
combinations can be readily calculated.

In the following, we extend the discussion to ratios of three-level scheme observables,
e.g. ∆12/(ΓSR,1 + γ0). Such ratios are of relevance as the timescale of the dynamics
in the three-level system is set by the decay rates of the excited states. We thus need
to know the relative size of the observables to assess which quantum optical effects
can be realized.
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Fig. 5.5: OSs for the field enhancements at the resonant layers. The blue shaded areas in (a)
and (b) show the accessible real and imaginary parts of the field strength at the first and second
nuclear layer for Pd/B4C/57Fe/B4C/57Fe/B4C/Pd/Si cavity setups, respectively. The black lines
in (a) and (b) correspond to the trajectories traversed upon tuning the angle of incidence θ for the
Pd(3.7 nm)/B4C(27.6 nm)/57Fe (0.57 nm)/B4C(28.0 nm)/57Fe (0.57 nm)/B4C(0 nm)/Pd(19.9 nm)/
Si cavity of highest real part field enhancement in the first resonant layer. Here, the arrows indicate
increasing θ. For this cavity, the explicit dependency of the field enhancement in the first resonant
layer on θ is shown in panel (c) and its absolute value in the complex θ plane plotted in panel (d).
Here, the poles are indicated in red. Likewise, panel (e) and (f) show the analogous plots for the
second resonant layer. The black dashed lines in the right hand side plots indicate the real part of
the poles which are common for all quantities shown. Lastly, the red dots with annotated roman
numerals link the circular structures in (a) and (b) to the poles on the right hand side of the figure.
The trajectories with the angle of incidence are reminiscent of the ones in Fig. 5.2. Together with
the common pole structure of all observables, this emphasizes the intertwined dependencies of the
observables on some cavity parameters.
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5 Inverse design of three-level systems

5.3 Designing three-level scheme parameter ratios
In the previous section, we discussed the relevant properties of the three-level system.
In this context, we have seen that the different observables determining the effective
level scheme cannot be chosen independently from one another. From a quantum
optical perspective, however, the qualitative nature of the dynamics is not governed
by the properties of the level scheme only, but also their relative size is of importance.
Particularly, the decay times set the relevant timescales of the dynamics. In order
to design quantum optical setups, it is therefore useful to consider the three-level
scheme’s properties scaled by the decay times in the system. In this section, we
illustrate that the inverse design is applicable to such ratios of three-level scheme
properties. In the introduction, we motivated that the cavity-mediated coupling
between the excited states can take the role of a coherent driving field and thus
compensate for the unavailability of suitable lasers at x-ray energies. The couplings
are thus of great significance to the design of advanced quantum optical schemes and
will be in the focus of this section.

Since the effective level scheme comprises two excited states |E1,2〉, which can set
the relevant timescale, we will in the following start the discussion by considering
the coherent and incoherent couplings scaled by the first, ΓSR,1 + γ0, and second,
ΓSR,2 + γ0, excited state decay rate. Subsequently we will complement the results by
adding the remaining decay rate as a third observable.

5.3.1 Scaled coherent and incoherent couplings

For the coherent and incoherent couplings scaled by the first and second decay rate,
we show the OSs as blue shaded areas in Fig. 5.6(a) and (b), respectively.

Allowing for arbitrarily thick top cladding layers, we find the OSs to exhibit a
roughly circular shape. Moreover, the two OSs are found to be very similar. In
principle, the two resonant layers are embedded in different photonic environments
as the upper layer is closer to the top surface, i.e., vacuum, while the lower layer is
closer to the Si-substrate, see Fig. 5.1(a). Generally, the OSs for the scaled couplings
should therefore be expected to be different depending on which decay rate is used for
scaling. Since many of the outermost observables are, however, realized for very thick
cladding layers, the absorption within these claddings suppresses the asymmetry
such that both OSs are similar nevertheless.

In the context of the visibility in Sec. 4.2, we already noted that for thick cladding
layers, the in- and out-coupling vanishes. In order to ensure non-zero in- and out-
coupling of the fields, we subsequently restrict the top cladding layer to thicknesses
of 3 nm, 2 nm, 1 nm as well as no cladding layer at all, and compute the OSs under
these constraints. The results are shown by the differently colored areas in Fig. 5.6.
Generally, introducing stronger constraints reduces the tunability of the achievable
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Fig. 5.6: Accessible OSs for the excited states’ coherent and incoherent couplings scaled by decay
rate of the first (a) and second (b) excited state. To ensure the in-coupling of the driving field and
the out-coupling of the nuclear signal, different maximal thicknesses for the top cladding layer d1
(see Fig. 5.1(a)) were allowed for. Observables were calculated in a Pd/B4C/57Fe/B4C/57Fe/B4C/
Pd/Si cavity setup.

scaled coupling strength. As these constraints restrict the cladding layer thickness,
the changes to the OSs in Fig. 5.6(a) and (b) are further asymmetric.

Interestingly, in Fig. 5.6(a) we find that large absolute values of the scaled coherent
coupling ∆12 can be realized with cavities without upper cladding layer. Similarly, on
the right hand side of the OSs in Fig. 5.6(b), one can see that a peculiar tip is visible.
The tip emerges when the top cladding layer is restricted to thicknesses below 2 nm,
but doesn’t change upon further restriction of this thickness (the green and cyan areas
vanish behind the purple one). Consequently, also for this OS comparatively large
scaled coherent couplings are obtained for non-cladded cavities. The insight that
such cavities can form relevant and interesting settings can therefore be translated
from the single resonant layer systems in Chapter 4 to encompass more complex
thin-film cavities.

5.3.2 Scaled couplings and decay rate ratios
So far, we considered the coupling between both excited states scaled by each of the
decay rates independently. Yet, also the interplay between both decay rates together
with the coupling strength is of importance to the design of quantum optical effects
(e.g., see the following section). Hence, we add the remaining excited state decay
rate as a third observable. We scale this remaining decay rate with the decay rate
that also scales the coherent and incoherent coupling and calculate the respective
OSs for the three scaled observables, see Fig. 5.7.
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Fig. 5.7: Accessible OSs for the scaled excited state coherent and incoherent couplings combined
with a scaled excited state decay rate. All quantities are scaled by the decay rate of the first (a) and
second (b) excited state. The third axis represents the decay rate that is not used for scaling. The
OSs were calculated for a Pd/B4C/57Fe/B4C/57Fe/B4C/Pd/Si cavity setup. As the topology of
the surfaces of the OSs (a) and (b) is complex, we only give the surface points calculated with the
methods of Chapter 6, rather than trying to plot an explicit surface. We support the readability by
projecting the points to the axes planes.

Fig. 5.7(a) shows the surface of the OS for the coherent and incoherent coupling
scaled by the first excited state decay rate as well as the ratio of the second and first
excited state decay rates. Likewise, Fig. 5.7(b) shows the same OS, but for the roles
of first and second excited state exchanged.
Since each observable chosen for the calculation is a ratio of three-level scheme

observables, the respective OSs turn out not to be smooth surfaces, but show more
complex topology in certain regions. We therefore restrict ourselves to plotting the
surface points calculated and omit the interpolation by a smooth surface. For clarity,
the projections to the axes planes are indicated. For the projection to the bottom
see Fig. 5.6.
Overall, Fig. 5.7(a) and (b) show that a large set of observables combinations is

accessible for the design. As previously, the two surfaces are found to be very similar
for the reason that we did not restrict the top cladding layer thickness. However,
this again has to be considered a problem for the driving and the observation of the
artificial three-level scheme.

Considering the same observables as in Fig. 5.7, we thus restrict the top cladding
layer thickness to 3 nm and consider the OS surfaces accessible under this constraint
in Fig. 5.8. As was already noticed for the two-dimensional version of the plots, see
Fig. 5.6, the restriction of the top cladding layer thickness leads to different OSs
upon exchanging the roles of the excited states. Analogously to Fig. 5.7, we only
plot surface points and their projections to the axes planes.
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Fig. 5.8: Accessible OSs analogous to Fig. 5.7 but for the top cladding layer bounded by d1 ≤ 3 nm.
In panel (a) and (b), the cavities used for Fig. 5.10(a) and (b) are indicated by red dots, respectively.
We only plot surface points analogously to Fig. 5.7.

OSs as considered in Fig. 5.8 provide the basis of the design of nuclear quantum
optical effects that rely on the coherent and incoherent coupling between the excited
states of the three-level scheme. This section showed, that we can determine such
OSs for ratios of three-level scheme parameters. With the example of an EIT scheme,
the following section will illustrate how we can use the OSs of Fig. 5.8 to design
nuclear quantum optical schemes.

5.4 Electromagnetically induced transparency

In this section, we illustrate the inverse design of quantum optical effects using the
example of EIT. An EIT-like effect has been observed in [51] in the context of nuclear
quantum optics. However, we will focus on the design of EIT dynamics in the level
scheme in Fig. 5.1(b) and only at the end of this section comment on the relation
to [51].
In the following, we first briefly revisit the basic concept of EIT, as would be

realized, e.g., with atomic systems, to provide a guideline for the design of EIT. We
subsequently engineer nuclear EIT schemes using the artificial three-level system
described at the beginning of this chapter. Finally, we comment on open questions
concerning the interpretation of the EIT effect as well as the role of the incoherent
coupling between the excited states.
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Fig. 5.9: Schematic representation of a setup suitable
to the observation of EIT [51]. The two upper levels are
coupled by a strong laser control field Ωc. While the state
|2〉 is metastable and decays with comparatively small rate
γ̃2, excited state |3〉 exhibits a larger decay rate γ̃3 to
the ground state |1〉. Upon weakly probing the |1〉 ↔ |3〉
transition with laser field Ωprobe, the EIT effect can be
expected subject to the condition Eq. (5.11).

|2〉 |3〉

|1〉

Ωprobeγ̃2
γ̃3

Ωc

5.4.1 EIT in atomic systems
As an archetypal quantum optical scheme, EIT was first realized with transitions
in Sr atoms [63]. For the implementation of EIT, a three-level system of the type
considered in Fig. 5.9 can be used [51]. Following general arguments in [51], we
briefly revisit requirements for such a scheme as operated with standard lasers, e.g.,
at visible frequencies. To observe the EIT-effect in this level scheme, it is necessary
that one of the excited states, say |2〉, is (meta)stable, i.e. γ̃2 is small. At the same
time, a strong control laser field Ωc couples the two excited states |2〉 and |3〉. Upon
weakly probing the transition from |1〉 to |3〉 with a probe laser Ωprobe of detuning ∆
from the transition frequency, the systems shows transparency around ∆ ≈ 0, that
is Ωprobe is barely absorbed. However, for the effect to be prominent in the presence
of non-zero decay γ̃2, the inequality

γ̃2
3 > |Ωc|2 > γ̃3γ̃2 (5.11)

has to be fulfilled [51]. While we described the operation of EIT in terms of lasers,
the level scheme in Fig. 5.9 can in fact be realized by the artificial nuclear three-level
scheme in Fig. 5.1(b) if one of the driving fields, Ω1 or Ω2, as well as the incoherent
coupling γ12 are small. For that case, the coherent coupling ∆12 between the excited
states takes the role of the laser, Ωc = ∆12. In the following section, we want to tune
the artificial level scheme to fulfill these conditions. To that end, we rewrite the EIT
condition, Eq. (5.11), as

γ̃2
3
γ̃2

2
>
|Ωc|2

γ̃2
2

>
γ̃3

γ̃2
. (5.12)

Using this form, the observables we considered in Fig. 5.8 directly correspond to the
quantities in the inequality. At the same time, Fig. 5.8 provides the means to ensure
small incoherent coupling. Note that we will additionally consider the magnitude of
the driving fields when selecting suitable cavities from Fig. 5.8. Thus, on the basis of
the level scheme parameter ratios of Sec. 5.3, we will in the following choose cavities
in accordance with the above conditions to design EIT dynamics in the nuclear setup.
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ΓSR,1

2 (γ0) ΓSR,2

2 (γ0) ∆12 + i
γ12

2 (γ0)
∣∣∣∣∣Ω2(ωnuc)
Ω1(ωnuc)

∣∣∣∣∣
2

γ̃2
3
γ̃2

2

|Ωc|2

γ̃2
2

γ̃3

γ̃2

0.38 6.2 6.4 + 0.52i 279 58 13 7.6

Tab. 5.1: Level scheme properties corresponding to the Pd(1.5 nm)/B4C(49.8 nm)/57Fe
(0.57 nm)/B4C(97.1 nm)/57Fe (0.57 nm)/B4C(35.4 nm)/Pd(43.7 nm)/Si cavity illuminated at
2.28 mrad. The corresponding cavity is indicated in red in Fig. 5.8(a) and the reflection spectrum
plotted in Fig. 5.10(a). The left part of the table shows the quantities determining the effective
three-level scheme. |Ω2(ωnuc)/Ω1(ωnuc)|2 is the ratio of frequency-space Rabi-frequencies probing
the second and first excited state, i.e., here, only the second excited state is probed. The right
part of the table contains the relevant ratios according to Eq. (5.13) that allow one to verify that
Eq. (5.12) is indeed fulfilled. We further set Ωc = ∆12, however, noting that also the inclusion of
the incoherent coupling does not lead to a violation of the EIT inequality due to its comparatively
small size.

5.4.2 Designing EIT in a nuclear three-level scheme
In order to design EIT dynamics, we have to tune the artificial three-level system to
comply with the EIT condition, Eq. (5.12). Since in principle both excited states in
the artificial scheme Fig. 5.1(b) can take equivalent roles, we have to decide which of
the excited states |E1,2〉 should take the role of the metastable state |2〉 in Fig. 5.9.
In the following, we first consider the first excited state, |E1〉, and, subsequently, the
second excited state, |E2〉, as the metastable state |2〉.
Deciding to design |E1〉 metastable, we adopt the convention

γ̃2 ≡ ΓSR,1 + γ0 , and γ̃3 ≡ ΓSR,2 + γ0 , (5.13)

according to the general treatment of the previous Sec. 5.4.1. To fulfill the EIT
requirement of Eq. (5.12), it is sensible to consider the surface points of Fig. 5.8(a). On
the basis of this OS, we can firstly restrict to the part of the surface where the scaled
incoherent coupling γ12/(ΓSR,1 + γ0) is small. Secondly, within the range of small
incoherent coupling, we can select a cavity with a decay rate ratio, γ̃3/γ̃2 = (ΓSR,2 +
γ0)/(ΓSR,1 + γ0), and a coherent scaled coupling strength, Ωc/γ̃2 = ∆12/(ΓSR,1 + γ0),
such that it complies with the EIT condition, Eq. (5.12). This is possible because we
can essentially change the ratio of these two quantities continuously when moving
on the surface of the OS in Fig. 5.8(a).
In Fig. 5.8(a), the cavity that is selected this way is indicated by a red dot.

Tab. 5.1 gives the properties of the corresponding level scheme (left part). Further,
relevant ratios (right part) of the properties in the convention for γ̃2 and γ̃3 adopted
in Eq. (5.13) are given. Using these ratios, it is apparent that the EIT condition,
Eq. (5.12), is fulfilled. Furthermore, the field probing the first excited state is
suppressed by a factor of more than 200. Thus, the generic level scheme of Fig. 5.9
is indeed realized within the nuclear platform in good approximation.
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Fig. 5.10: Reflection spectrum for two cavities with nuclear EIT dynamics. In (a) the reflection
spectrum |r|2 = |rnuc + rel|2 and its nuclear contribution |rnuc|2 are shown as a function of
the detuning from the bare nuclear transition frequency ωnuc for the cavity of Tab. 5.1. The
corresponding cavity is indicated in red in Fig. 5.8(a). Panel (b) shows the spectrum for the role of
the excited state decay rates exchanged. The corresponding cavity structure is given in Tab. 5.2
and marked in Fig. 5.8(b). Although an EIT dynamics was designed in (a) and (b), only panel (a)
shows the characteristic dip. This discrepancy will be explained in Sec. 5.5.1.

Fig. 5.10(a) shows the resulting spectrum for this cavity as a function of the
detuning from the bare nuclear transition frequency ωnuc. Since the cavity is not
critically coupled to the impinging x-rays, the spectrum additionally comprises a
contribution by the electronic background. Subtracting this contribution, a typical
double-peak structure reminiscent of the EIT spectrum is visible. This shows that
we can indeed design three-level schemes to exhibit relevant quantum optical effects.

Likewise, we can exchange the roles of the states |E1〉 and |E2〉, that is we consider
|E2〉 the metastable state in the level scheme in Fig. 5.9. Consequently, we adopt
the convention

γ̃2 ≡ ΓSR,2 + γ0 , and γ̃3 ≡ ΓSR,1 + γ0 . (5.14)

With the role of the excited states exchanged, we must now consider the OS in
Fig. 5.8(b). On that basis, we proceed analogously to the previous part and eventually
select the cavity marked by a red dot in Fig. 5.8(b). The corresponding level scheme
properties are given in Tab. 5.2, and again represented according to the convention of
Eq. (5.14) on the right hand side of the table. Even though less pronounced than for
the previous cavity, this setting also satisfies the EIT condition, Eq. (5.12). Together
with the suppression of the electric field probing the second excited state by a factor
of about four, the resulting artificial level scheme can be considered an acceptable
approximation of the level scheme in Fig. 5.9.
The reflection spectrum for this setup is shown in Fig. 5.10(b). For the present

cavity, however, the reflection spectrum is found to be only a Fano-lineshape with a
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3.2 0.63 6.2 + 1.1i 4.4 10 7.6 3.2

Tab. 5.2: The table is analogous to Tab. 5.1, but for the Pd(3.0 nm)/B4C(42.5 nm)/57Fe
(0.57 nm)/B4C(143.4 nm)/57Fe (0.57 nm)/B4C(72.9 nm)/Pd(43.4 nm)/Si cavity illuminated at an
angle of 2.23 mrad, that is indicated in red in Fig. 5.8(b). The resulting reflection spectrum is
shown in Fig. 5.10(b). For this setup, mainly the first excited state is probed. The conventions for
the right part of the table are according to Eq. (5.14). We see that Eq. (5.12) is indeed fulfilled,
even though not as pronounced as for Tab. 5.1.

small variation. In particular, the nuclear contribution (orange dashed line) essentially
shows no EIT signature even though we designed the level scheme according to the
criterion Eq. (5.12). Considering that an EIT feature was visible in Fig. 5.10(a), this
seems surprising.

However, comparing our implementation of the EIT dynamics to generic setups, e.g.
using clouds of atoms, different observables are accessible experimentally. While the
latter can be characterized by a transmission measurement, the standard observable
for the artificial level schemes is the reflection spectrum. Since both observables are
fundamentally different, the observability of the EIT signature can in general not be
expected.

This feature thus shows some analogy to the design of artificial two-level schemes in
Chapter 4, where the additional visibility criterion was needed to ensure observability.
In Sec. 5.5.1, we will give a clear explanation for the vanishing EIT-dip in Fig. 5.10(b)
on the basis of out-coupling effects.

Finally, we note that similar observations regarding the observability of an EIT-like
spectrum were made in the experiment [51]. However, different conclusions were
drawn based on a different interpretation of the nuclear quantum optical effects. In
the following, we therefore briefly comment on these differences and also shortly
touch on a related question regarding the incoherent coupling term in the level
scheme in Fig. 5.1(b).

5.4.3 Some open questions in nuclear EIT
Interpretation of nuclear EIT

The fact that additional constraints are present for the observability of EIT-signatures
was already noticed by Röhlsberger et al. when performing the experiment in [51].
Here, the EIT effect was designed on the basis of the field distribution in the cavity
resulting from the incident x-rays. It was seen that only when the upper resonant layer
is placed in a field node and the lower one in an anti-node, an EIT-like dip becomes
visible in the reflection spectrum. Upon exchanging the role of the resonant layers,
the EIT-like dip vanishes which is consistent with our observations in Fig. 5.10 (see
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5 Inverse design of three-level systems

also the driving field ratios in Tabs. 5.1 and 5.2). Röhlsberger et al. interpreted the
EIT effect phenomenologically on the basis of the semiclassical layer formalism [46].
They showed that the amplitude reflected from the thin-film cavity essentially has
the same form as the linear EIT susceptibility. The parameters of the level scheme
can then be read off by equating coefficients. In this interpretation, the reason for
the vanishing EIT-dip is that the coupling between the excited states vanishes.

Opposed to this, in the present framework of the ab initio theory [48], the descrip-
tion of the internal dynamics of the nuclei as an artificial three-level scheme is the
focus. From this perspective, the two setups of Fig. 5.10(a) and (b) are analogous in
the interpretation of their internal dynamics, i.e. the coupling between the excited
states is non-zero also for the case of Fig. 5.10(b). The lack of the EIT-dip must then
be associated to the out-coupling step as will be explained in detail in Sec. 5.5.1.
The difference in the interpretations further becomes apparent when considering

that for the case of Fig. 5.10(a), the EIT-like feature was only apparent in the
nuclear contribution to the spectrum. For the full reflection spectrum, the nuclear
response additionally interferes with the electronic background and eventually does
not directly show the archetypal EIT structure as a result. For the internal nuclear
dynamics, however, the electronic background is of little relevance. Conversely, the
EIT-like spectra in [51] show small electronic background and thus indeed exhibit
the archetypal EIT-dip.
In view of the different interpretations, we note that both approaches essentially

provide interpretations of the linear reflection spectrum of nuclei in the cavity, and it is
not immediately clear under which conditions the interpretation as EIT is applicable,
as was already discussed in different contexts [95]. While the interpretation based
on the layer formalism is, however, purely phenomenological, the description as
quantum few-level scheme, used in the present thesis, is on an ab initio basis [48]
and therefore on a more fundamental level. To translate EIT-based applications
(see [62] and references therein) to the x-ray regime, a fundamental understanding of
the effect will be necessary in the future.

Incoherent coupling in the ab initio theory

Related to the interpretation of nuclear EIT, also the role of the incoherent coupling
on EIT-like signatures remains to be understood in the framework of the ab initio
theory [48]. Designing the EIT scheme, we explicitly kept this contribution small
to comply with the level scheme of Fig. 5.9. Nevertheless, it enters the description
as an additional tunable parameter. In that respect, Fig. 5.11 shows an example
of a reflection spectrum for another cavity on the surface of the OS in Fig. 5.8(a).
As indicated in Tab. 5.3, this cavity comes with incoherent and coherent coupling
strength on the same scale and does not obey the EIT criterion Eq. (5.12). At
the same time, however, it shows a pronounced EIT-like dip, both in the nuclear
contribution to the reflection spectrum as well as in the overall reflection spectrum.
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Fig. 5.11: Reflection spectrum as a function of the detuning from the bare nuclear transi-
tion frequency ωnuc for a Pd(3.0 nm)/B4C(72.9 nm)/57Fe (0.57 nm)/B4C(46.9 nm)/57Fe (0.57 nm)/
B4C(47.9 nm)/Pd(87.7 nm)/Si cavity illuminated at 2.24 mrad. The level scheme parameters are
given in Tab. 5.3. Both, the full spectrum (blue) as well as the nuclear contribution (orange) show
a pronounced EIT-like dip. At the same time, the ab initio theory [48] associates a comparatively
large incoherent coupling to the underlying three-level scheme. The role of this incoherent coupling
and its effect on EIT signatures remains to be understood in detail in future works.

ΓSR,1

2 (γ0) ΓSR,2

2 (γ0) ∆12 + i
γ12

2 (γ0)
∣∣∣∣∣Ω2(ωnuc)
Ω1(ωnuc)

∣∣∣∣∣
2

γ̃2
3
γ̃2

2

|∆12|2

γ̃2
2

|γ12|2

γ̃2
2

γ̃3

γ̃2

0.67 60 −4.2− 4.8i 92 2641 3.3 4.3 51

Tab. 5.3: Level scheme parameters for the cavity used in Fig. 5.11. Quantities shown are analogous
to Tab. 5.1 but both, the coherent as well as the incoherent coupling are given as scaled by the decay
rate γ̃2. Note, that the convention relating to the three-level scheme of Fig. 5.9 is γ̃2 = ΓSR,1 + γ0
and γ̃3 = ΓSR,2 + γ0.

It particularly resembles the EIT-like setups shown in [51] for the nuclear setting, but
also generic EIT-signatures [62]. This emphasizes that it is not clear which spectral
signatures can be considered as witnesses for EIT in the nuclear platform.
In the following, we put aside the open questions regarding EIT and consider

a different approach to, first, understand the suppression of the nuclear response
in certain cases, and, second, overcome the accompanying restrictions by granting
direct access to the nuclear imprint on the reflection spectrum. The approach is
based on the reflection spectrum calculated from the ab initio theory [48] and can
be used to directly design this observable. Hence, to some extent it also overcomes
the uncertainties regarding the interpretation of the spectrum.
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5 Inverse design of three-level systems

5.5 Nuclear excitonic normal modes
Due to the off-diagonal elements occurring in Eq. (5.8), and, hence, in Eq. (5.9),
the excitons in the two resonant layers are coupled to each other. From the linear
reflection spectrum according to Eq. (5.9), the influence of the quantum optical
properties is unintuitive, since the different terms in the matrix contractions feature
a complex interplay to produce the final dependence on frequency. To get a better
handle, we can diagonalize the matrixM−1(ω), i.e. we can determine the normal
frequencies and modes of the two coupled nuclear excitons. In order to bringM−1(ω)
to diagonal form, we first diagonalize the coupling matrix C, i.e. we find the matrix
S such that S−1CS is of diagonal form. Then it directly follows that

S−1M−1(ω)S = −iS−1
[
(ω − ωnuc + i

γ0

2 )1 +C
]−1

S =

= −i
[
(ω − ωnuc + i

γ0

2 )1 + S−1CS
]−1

, (5.15)

that is also the matrix S−1M−1(ω)S is diagonal. Note that since C does not depend
on the frequency, the transformation matrix S is independent of frequency as well.
Hence, we can rewrite Eq. (5.9) with the in- and out-coupling vectors transformed
to the diagonal basis,

r(ω) = rel − µ0ω
2
nuc

(
G̃S

) (
S−1M−1(ω)S

) (
S−1Ω̃

)
=

= rel +
∑
n=1,2

ign
ω − ωnuc + iγ0

2 + λn
, (5.16)

where gn = µ0ω
2
nuc(G̃S)n(S−1Ω̃)n denotes the product of the nth entries of the

transformed in- and out-coupling vectors. In this expression, λ1,2 are the two
eigenvalues of the coupling matrix C. The frequency dependency is fully encoded in
the denominator which is why the nuclear contribution is given by two Lorentzians
of modified linewidth and position. The frequency shift and decay enhancement of
the excitonic normal modes is then directly accessible by the (negative) real and
(positive) imaginary part of the eigenvalues, respectively. The eigenvalues of the
coupling matrix are in turn calculated to be

λ1,2 =−(∆CLS,1 + ∆CLS,2)
2 + i

ΓSR,1 + ΓSR,2

4

∓ 1
2

√√√√(∆CLS,2 −∆CLS,1 + i
ΓSR,1 − ΓSR,2

2

)2

+ 4
(

∆12 + i
Γ12

2

)2

. (5.17)

Note, that the naming of λ1,2 corresponding to the respective ∓ term in the above
equation is meaningful for each single cavity, but arbitrary when relating similar
cavities to each other. In the coupling matrix C, the various decay enhancements,
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Fig. 5.12: Trajectories of the eigenvalues corresponding to the two excitonic normal modes upon
tuning the angle of incidence for the cavity of Fig. 5.3. Panel (a) shows the eigenvalues in the
complex plane where the arrow indicates the direction of increasing angle. Panel (b) and (c) show
the explicit dependency of the eigenvalues on the angle of incidence. Note that starting from
Eq. (5.17), we have to exchange λ1 and λ2 at each of the angles indicated by dashed lines to ensure
continuity of the eigenvalues. The discontinuity is introduced by the branch cut of the square root.

frequency shifts and coupling constants are continuous functions of the cavity pa-
rameters. Whenever the argument of the square root in the above expression crosses
the branch cut of the square root, however, it introduces an artificial discontinuity.
We illustrate this, and the general behavior of the normal modes, in Fig. 5.12.

Here, we consider the eigenvalues λ1,2 as a function of the angle of incidence for the
cavity of Fig. 5.3. Note that we do not directly plot λ1 and λ2, but enforce continuity
on the eigenvalues, that is we define new quantities λ̃1(θ), λ̃2(θ) ∈ {λ1(θ), λ2(θ)} such
that λ̃1 and λ̃2 are continuous functions of the angle of incidence. In practice, this
means that we have to exchange the definition, λ̃1,2 = λ1,2 ↔ λ̃1,2 = λ2,1, whenever
the argument of the square root in Eq. (5.17) crosses the square root’s branch cut
in the complex plane. For the cavity in Fig. 5.12, this happens upon reaching any
of the dotted lines in Fig. 5.12(b) and (c). Hence, we have to keep in mind that
in general λ1,2 cannot be associated to the properties of a unique first and second
normal mode.

Note, however, that this is merely a technical detail that leaves a straightforward
interpretation of the resulting eigenvalue trajectories in Fig. 5.12 intact. Here, we
see that the trajectories of the normal frequencies behave analogous to the CLS and
SR of a single resonant layer, see. Fig. 4.1. Interestingly, one of the normal modes
is only coupled to the odd modes of the cavity while the second normal mode is
solely coupled to even cavity modes. Additionally to the thick cladding, this renders
the single mode approximation of Eq. (4.2) highly applicable, thus explaining the
circular appearance of the trajectories in Fig. 5.12(a).

73



5 Inverse design of three-level systems

λ1 (γ0) λ2 (γ0) g1 (γ0) g2 (γ0)
Fig. 5.10(a) −3.1 + 1.2i 11 + 5.4i 0.92− 1.9i 7.8− 1.4i
Fig. 5.10(b) −3.3 + 0.23i 15 + 3.6i (−3.7− 12i)× 10−3 0.61− 1.9i

Tab. 5.4: Eigenvalues and spectral weights for the excitonic normal modes determining the spectral
response according to Eq. (5.16). The parameters shown are for the two cavities considered in
Fig. 5.10.

In the context of the diagonalization, it should be noted that the matrix C is
not hermitian such that we cannot generally expect it to be diagonalizable. If we
find C to be non-diagonalizable, this would correspond to the occurrence of an
exceptional point [96, 97]. For most parameter choices, however, C will have two
different eigenvectors, and therefore a diagonal form can be calculated.

5.5.1 Suppressed spectral response in EIT systems

With the tool of nuclear excitonic normal modes, we can now take a second look
at the cavities considered in Fig. 5.10 and calculate the parameters governing the
normal modes’ imprint on the spectrum. We show the eigenvalue together with the
corresponding weight in Tab. 5.4. Both configurations show moderate values for the
eigenvalues. However, while for Fig. 5.10(a), both normal modes have weights on
the same order of magnitude, it is obvious that for Fig. 5.10(b) the narrow normal
mode is highly suppressed.

Although the properties of the three-level scheme in-principle comply with the EIT
condition Eq. (5.12) for the case of Fig. 5.10(b) (cf. Tab. 5.2), the final composition
of the spectrum, involving the in- and out-coupling, counteracts the visibility of the
nuclear dynamics. We can thus attribute the missing EIT signature as a feature of
extracting information about the nuclear dynamics via the reflection spectrum.
Finally, it should be noted that, compared to Fig. 5.10(b), the level scheme

properties associated with the cavity of Fig. 5.10(a) seem more suitable to the
observation of EIT as, firstly, the field probing the metastable state is smaller and,
secondly, also the EIT condition Eq. (5.12) is fulfilled more clearly. However, this
must not be mistaken for the reason for the vanishing EIT signature. Indeed, idealized
cavities can be constructed such that the resulting level scheme properties are almost
identical for the conventions Eqs. (5.13) and (5.14). Nevertheless, also for such
settings an EIT-dip is visible only for the case of Eq. (5.13), which shows that this is
a generic feature of the platform [98].

In turn, a design approach to directly incorporate the spectral weight gn for each
eigenvalue elegantly avoids this problem. Using a specific example, we illustrate the
inverse design of the reflection spectrum in the following.
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Fig. 5.13: Accessible OS for the eigenval-
ues within the normal mode approach for
a Pd/B4C/57Fe/B4C/57Fe/B4C/Pd/Si cavity
setup. For the determination of the overall OS,
we selected the eigenvalue of largest imaginary
part, thus taking into account the resonances
of both normal modes at the same time, see
Eq. (5.18). The surface of the respective OS is
indicated in blue. The green and orange shaded
areas show the accessible spaces for the eigenval-
ues λ1,2 according to Eq. (5.17). Note that the
separation into λ1 and λ2 is not unique. The red
dashed line corresponds to the extremal ∆CLS
and ΓSR/2 that are accessible by a single reso-
nant layer within an archetype Pd/B4C/57Fe/
B4C/Pd/Si cavity setup. We see that values
outside this single layer circle can be realized,
showing that multiple layers can unlock new pa-
rameter regimes of effective single resonances.

5.5.2 Design of spectral response – operation as two-level system
Having introduced the tool of nuclear excitonic normal modes, we illustrate in the
following that we can use this approach to design the spectral response of the cavity.
As a first step, we consider the eigenvalues λ1,2 accessible with the cavity of

Fig. 5.1(a). At the beginning of this section, we already saw that λ1 or λ2 are not
associated uniquely to the first and second normal mode, but the assignment switches
for different cavity parameters (e.g., with the angle of incidence, see Fig. 5.12). From
the trajectories in Fig. 5.12(b) and (c) however, we see that, when being close to
one resonance, the major tuning capabilities come from one normal mode only while
the second one stays approximately constant. Here, the normal mode dominating
the tuning capabilities around the resonance mostly has the larger imaginary part.
To capture the full tuning capability of the eigenvalues, we therefore consider the
eigenvalue with the largest imaginary part,

λ :=

λ1 , if Im(λ1) ≥ Im(λ2) ,
λ2 , else ,

(5.18)

and determine the accessible OS surface for this quantity. The blue curve in Fig. 5.13
shows this surface, that is it represents the extremal values accessible for the real and
imaginary part of λ. To make sure that the approach found all accessible eigenvalues,
we further consider the OSs for each eigenvalue λ1,2 according to Eq. (5.17). These
are represented by the green and orange shaded areas for λ1 and λ2, respectively.
Since the union of both areas coincides with the set found for λ, we can be sure
to have sampled all accessible eigenvalues. Note, however, that the division of the
set into λ1 and λ2, and also their overlap in the center, has no physical relevance.
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5 Inverse design of three-level systems

Considering the trajectories in Fig. 5.12, is is not surprising that the OS in Fig. 5.13
is found to be circular.

Interestingly, the eigenvalues can have imaginary part up to about 135 γ0. This is
beyond the linewidths accessible with an archetype system with single resonant layer
of the type of Fig. 1.1(left). Using the same material combination, the accessible
linewidth for such systems is found to be < 118 γ0, see the Pd-B4C combination in
Fig. 4.9. To illustrate this, we plot the boundary of accessible ∆CLS and ΓSR/2 for
the single resonant layer system as red dashed line in Fig. 5.13.

From the analysis of the supposed EIT spectrum, we learned that under suitable
conditions, the spectral imprint of one of the normal modes can be highly suppressed.
As an intriguing application, this allows to envision the realization of a two-level
system with enhanced tuning capabilities when one normal mode is completely
suppressed while the other one shows properties beyond the single resonant layer
capabilities. Indeed, in the following, we show that an artificial two-level system
with decay beyond the archetype systems considered in Chapter 4 is possible.

To that end, we consider the weights gn of both modes. In fact, the absolute value
of gn is not decisive for the spectral imprint of a normal mode, but we additionally
have to scale the weight by the normal mode’s linewidth, gn/Im(λn). In order to
suppress one mode while having maximum weight for the other one, we consider
the difference of both modes’ weight, |g1|/ Im(λ1)− |g2|/ Im(λ2), as an observable.
When this quantity is positive and large, mainly λ1 contributes to the spectrum.
Likewise, the influence of λ1 is suppressed in comparison to λ2 for large and negative
values. We complement this observable with the imaginary parts of both eigenvalues.
This allows us to estimate the imprint of the eigenmodes simultaneously with the
corresponding linewidths.

Note that even though the assignment of normal modes to eigenvalues λ1,2 is not
unique, our sampling is complete as long as we consider both eigenvalues in a single
OS.

The surface of the accessible OS for the above observables is shown in Fig. 5.14(a).
As for some plots before, we directly show the calculated surface points in the figure.
From the projection of the set onto the plane of the imaginary parts, it is clear that
when the linewidth of one normal mode is large, the other one necessarily tends to
be small. The surface shows a bimodal structure where either λ1 or λ2 takes the
role as the eigenvalue of larger imaginary part. Due to the apparent symmetry we
can choose λ2 to take the role of the dominant eigenvalue and try to suppress the
influence of the remaining normal mode. As the imaginary part of the suppressed
eigenvalue is of no significance in the following, we project the OS onto the plane
normal to Im(λ1), see Fig. 5.14(b). When approaching very large linewidths, the
tuning capabilities for the weight difference rapidly drop.

We mark two selected cavities in Fig. 5.14(b) and consider their reflection spectrum
in the following. Fig. 5.14(c) shows a spectrum with a linewidth of about 131 γ0.
The influence of the other normal mode is still visible as a small dip, but largely
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Fig. 5.14: (a) Accessible OS for the linewidth enhancements for both normal modes together
with the difference of their scaled spectral weights. The blue dots indicate the computed surface
points of the set of accessible combinations. Orange dots indicate the projection of the points onto
the plane spanned by the imaginary parts of the eigenvalues. (b) Projection of the surface of (a)
onto the plane normal to the Im(λ1) direction. The red and green dots indicate the cavities used
for panel (c) and (d), respectively. (c) Reflected intensity as a function of the detuning from the
bare nuclear transition frequency for a Pd(9.9 nm)/B4C(29.0 nm)/57Fe (0.57 nm)/B4C(16.9 nm)/
57Fe (0.57 nm)/B4C(19.6 nm)/Pd(10.8 nm)/Si cavity setup probed at an angle of 2.30 mrad. The
dominant eigenvalue λ2 = (2.5 + 131.4i)γ0 shows a linewidth enhancement larger than what is
achievable with only one resonant layer in an analogous setting. (d) Analogous to panel (c),
but for an Pd(7.9 nm)/B4C(27.7 nm)/57Fe (0.57 nm)/B4C(50.6 nm)/57Fe (0.57 nm)/B4C(27.0 nm)/
Pd(16.6 nm)/Si cavity probed at an angle of 2.34 mrad, where the relevant eigenvalue is λ2 =
(1.6 + 117.6i)γ0. The linewidth enhancement is very close to the ones achievable with a single
resonant layer in an analogous setting, but the visibility is greatly enhanced.
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Fig. 5.15: Schematic setup of a thin-film double-
cavity with two resonant layers and a separating
cladding layer in between. Both resonant layers
are embedded in a single guiding layer for this sys-
tem. The layer thicknesses as well as exemplary
materials are indicated.

suppressed as compared to the spectral imprint of the broad normal mode. Therefore,
this indeed admits the interpretation as a two-level system with SR beyond what is
possible within the archetype setups of Chapter 4. We note that the higher SR is
only possible due to the coupling between the two bare excitons.

Likewise, Fig. 5.14(d) shows a cavity that is chosen to have linewidth enhancement
of 118 γ0 which is very close to the maximally achievable value for archetype systems
with a single resonant layer. Due to the enhanced tuning capabilities in the weight
difference for this smaller linewidth, the remaining normal mode can be suppressed
by orders of magnitude. In principle, a similar SR would be accessible with the
archetypal systems of Chapter 4. However, for single resonant layer systems with
a SR close to the maximally achievable one, the visibility would be close to zero.
Opposed to that, the system in Fig. 5.14(d) shows a much higher visibility. This
highlights a way to realize two-level systems with high SR and high visibility at the
same time.
The systematic analysis of the accessible normal mode properties and the subse-

quent inverse design allowed for the determination of cavity structures exhibiting
these desirable properties. This shows that the inverse design of systems beyond a
single resonant layer is meaningful and promises the exploration of new effects in the
realm of x-ray quantum optics.

5.5.3 Double cavity geometry
Finally, a thin-film cavity layout beyond the one of Fig. 5.1(a) is the setup shown
in Fig. 5.15. This setup has already been applied in nuclear quantum optics [54].
The system comprises an additional cladding layer inserted in the guiding layer, thus
rendering the system a double-cavity-like setup. For its higher complexity, enhanced
tuning capabilities can be expected also for the inverse design, particularly also for
the design on the basis of excitonic normal modes.
Fig. 5.16 gives some glimpses into what can be expected in this setting. For the

achievable eigenvalues according to Eq. (5.18), one finds that the tuning capabilities
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Fig. 5.16: Accessible OS for the eigenvalues for the excitonic normal modes in the Pd/B4C/57Fe
B4C/Pd/B4C/57Fe/B4C/Pd/Si cavity of Fig. 5.15. (a) The blue shaded area shows the accessible
eigenvalues for the normal modes according to Eq. (5.18). The red dashed line indicates the surface
of the accessible eigenvalues for the cavity of Fig. 5.1(a), see Fig. 5.13. Obviously, the range of
accessible eigenvalues is the same for both setups. Panel (b) shows the accessible combinations of
linewidth enhancements as calculated from Eq. (5.17). Here, the black dashed lines indicate the
maximum SR achievable in an archetype Pd/B4C/57Fe/B4C/Pd/Si setup. For a very big central
cladding layer, essentially one of these setups is realized for each normal mode.

in Fig. 5.16(a) are identical to the ones in Fig. 5.13, which result for the simpler
system in Fig. 5.1(a). Opposed to that, comparing Fig. 5.16(b) to the orange dots
in Fig. 5.14(b), the cavity of Fig. 5.15 allows for a considerably larger OS of the
linewidth enhancements.
In principle, this is easily understood when considering that for a very thick

central cladding layer, the excitons in the resonant layers are uncoupled and the
above diagonalization is hence trivial. For that case, the two nuclear excitons can
essentially be tuned independently from one another. For each of the resonant
layers, this yields tuning capabilities on the linewidth enhancement as large as for an
archetypal setup with single resonant layer and the same material combination. The
range, up to which this is possible is indicated by black dashed lines in Fig. 5.16(b).
However, the OS also shows regions were Im(λ2) is beyond these limits while Im(λ1) is
quite large. Here, the coupling between the excitons plays a crucial role. Furthermore,
the calculated OS is asymmetric in the accessible ranges of λ1 and λ2.
Whether these observations for the more complex setup in Fig. 5.15 provide the

basis for the design of novel intriguing nuclear dynamics and reflection spectra
remains to be explored but is beyond the scope of the present thesis. The methods
described in the subsequent chapter, however, can be applied in very much the same
way.

79



5 Inverse design of three-level systems

Summarizing, the description of the spectral response in terms of excitonic normal
modes provides a clear interpretation of this observable. Further, using the inverse
design approach in combination with excitonic normal modes is a powerful method
to design the reflection spectrum and promises to unlock new phenomena and
applications in x-ray quantum optics.

80



6 Numerical methods

In this chapter, we introduce and explain the numerical methods used throughout this
thesis. The chapter shall serve as a guide to understand, and potentially reproduce,
the various analyses of accessible level scheme property combinations in the thesis.
We remind the reader that we often refer to such level scheme properties as

observables and call the set of accessible combinations of some observables the
observables space (OS). In contrast, the observables are functions of the cavity
parameters which usually comprise the layer thicknesses and the angle of incidence
in the thesis. This distinction is to be kept in mind as we will also introduce cost
functions as functions of the observables in the following.
Throughout the thesis, we identify how far the properties of the artificial level

schemes can be jointly tuned as functions of the cavity parameters. That is, we
determine the surfaces of the respective multidimensional OSs. In principle, this
can be achieved by enforcing a fixed value for all but one of the observables and
maximizing the remaining one. However, this turns out to be numerically expensive.
Here, we employ a different approach that works without setting such constraints,
but relies on constructing suitable scalar cost functions f from the observables which
can then be passed to the maximization algorithm. Maximizing the functions f over
the cavity parameters will then be equivalent to determining surface points of the
desired OS. In the following, we explain the conceptual basis and challenges of our
approach, using the example shown in Fig. 6.1. A comprehensive overview of an
exemplary workflow of the approach is given in Fig. 6.2.

6.1 Linear cost functions
We illustrate the approach by the determination of the surface of the exemplary
two-dimensional OS in Fig. 6.1(a). The OS comprises all possible combinations of
two observables x and y of a model system, e.g., a cavity structure. Its surface
therefore allows one to asses the maximum tunability of the two observables. The
most straightforward way of constructing a joint cost function of several observables
is taking linear combinations. Maximizing a single observable, e.g, f = x or f = −y,
as a function of the cavity parameters would correspond to determining a boundary
point of the OS in a specific direction. Likewise, using a cost function

fϕ(x, y) = x sinϕ+ y cosϕ (6.1)
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Fig. 6.1: Numerical methods for the determination of the surface of an OS, applied to a two-
dimensional, non-convex example. Panel (a) shows the 2D set whose boundary shall be determined
numerically. The set is the image of the observables x, y over all cavity parameters. Panels (a-e)
illustrate different trials to determine the boundary of the set in (a). In (b), linear combinations
of the observables x and y according to Eq. (6.1) are taken as cost functions. The cost function
is parametrized by an angle which is sampled equidistantly in the [0, 2π) interval. The blue dots
indicate the outcomes of the optimization for each angle. For two of these samples (red and cyan)
the line of constant cost function as converged to a boundary point is shown. Clearly, this sampling
mode can only determine the convex hull of the set in (a). Panel (c) is analogous to panel (b) but
for nonlinear combinations of x and y corresponding to comparatively broad parabolae as curves
of constant cost functions, see Eqs. (6.4, 6.5). The boundary of the set in (a) is sampled beyond
the convex hull, however, the parabola is not narrow enough to successfully determine the whole
surface. This is improved in panel (d) where a more narrow parabola is used to construct the cost
functions. This allows for the determination of the entire surface. For panels (b-d), the curves of
constant cost function were rotated around the origin. In panel (e), the effect of choosing a different
center of rotation, indicated as a black dot, is shown. Three different parabolae of constant cost
function are shown and their orientation to the point of rotation is illustrated by colored dashed
lines. The homogeneity of the boundary points found by this class of cost functions is significantly
reduced as compared to the case in (d). Finally, panel (f) shows a typical result where the cost
function was chosen suitably [identically to (d)], but the optimizations are only partly converged.
Expecting a smooth surface, one can, however, identify potentially non-converged points (indicated
in red) and refine the optimization towards convergence.
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6.2 Nonlinear cost functions

allows us to change this direction of maximization by a rotation angle ϕ. We
equidistantly sample the angle ϕ in this function between 0 and 2π and maximize the
respective cost functions. Each value ϕ yields a blue dot in Fig. 6.1(b) by evaluating
x and y at the cavity parameters that maximize fϕ. It can be seen, however, that
we only determined points on the convex hull of the surface. This is understood
when considering that the curves where the cost functions fϕ are constant in the
x-y-plane are simply straight lines. The red line in Fig. 6.1(b) exemplifies this for
one specific angle. The red dot corresponds to the resulting surface point which is
the outermost point to which the red line can be shifted such that it still touches
the surface – it thus maximizes fϕ. Obviously, this is not sufficient as we are not
capable of determining the whole OS surface by this approach.
The geometrical picture developed above suggests that by constructing a cost

function which is constant on a suitable curve, the entire surface can be sampled.
To that end, we first consider the curve where the linear cost function Eq. (6.1) is
constant,{

(x, y) ∈ R2|x sinϕ+ y cosϕ = C
}

=
{

(x, y) ∈ R2|y′ = C, r′ = R−1(ϕ)r
}

=

= R(ϕ)
{

(x, y) ∈ R2|y = C,
}
. (6.2)

Here, r = (x, y)T, r′ = (x′, y′)T, C is a constant, and

R(ϕ) =
(

cosϕ sinϕ
− sinϕ cosϕ

)
(6.3)

is a standard two-dimensional rotation matrix. Eq. (6.2) manifests the relation
between the cost function on one hand and the curve where it is constant on the
other one. For the present cost function this curve is a horizontal line rotated by an
angle ϕ around the origin.

6.2 Nonlinear cost functions
Bearing the geometrical picture in mind, a simple generalization of the rotated line
is a rotated parabola, given by

R(ϕ)
{

(x, y) ∈ R2|y − αx2 = C
}

=
{

(x, y) ∈ R2|y′ − αx′2 = C, r′ = R−1(ϕ)r
}
,

(6.4)

where α characterizes the parabola’s width. With the curvature of the parabola,
we can hope to be able to resolve the surface also in the parts that could not be
obtained previously.
By analogy to Eq. (6.2), we deduce the corresponding cost functions fϕ to be

fϕ(x, y) = y′ − αx′2 , where r′ = R−1(ϕ)r . (6.5)
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6 Numerical methods

Fig. 6.1(c) shows sampling points as obtained by using a comparatively broad
parabola. Clearly, the surface is sampled better than with the linear cost functions,
but not yet fully covered by the sampling points. Similar to the linear cost function,
shown in red in Fig. 6.1(b), the parabola is too broad to resolve the full boundary.
However, upon reducing the width of the parabola we finally retrieve the full surface
of the two-dimensional OS, see Fig. 6.1(c).

It is clear that only the surfaces of certain sets can be fully sampled using parabolae,
and in principle, more complex cost functions could be considered. However, it is
important to note that the surface points obtained using a particular class of cost
functions are valid solutions to the problem, even if the cost functions are not capable
of sampling the entire surface. Hence, it is possible to certify the applicability of a
particular class of cost functions by assessing whether it samples the whole surface
of the given set. This is not the case in Fig. 6.1(b) and (c), but a sampling of the
entire surface is achieved in (d).
It may be computationally demanding to sample the entire surface with a class

of complex cost functions. It is therefore favorable to start any determination of
a surface by a simple linear combination of observables. Only in the next steps,
increasingly more sophisticated cost functions are used to refine the procedure in
undetermined surface regions until full coverage of the surface is reached. The surface
points obtained with all considered classes of cost functions are then combined for a
comprehensive determination of the surface. This approach was used, e.g., in the
determination of Fig. 4.2.

The entire iterative procedure of our numerical approach is summarized in Fig. 6.2.
For the optimizations considered in the present work, parabolae proved sufficient.
For the Figs. 6.1(b-d) we only considered parabolae rotated around the origin,

which conveniently coincided with the center of the two-dimensional OS. However,
more general transformations of the considered class of cost functions are possible,
e.g., rotations around different centers of rotation or translations along some path.
For the example in Fig. 6.1(a), we find that the homogeneity of the obtained surface
points is largely reduced by changing the center of rotation, see Fig. 6.1(e). This
suggests that more general transformations of a given class of cost functions may be
useful to cover larger surface parts in other systems. Starting out with a linear cost
function once again is highly advisable as for this kind of cost function the sampling
is irrespective of the rotation center and thus no sensible guess is needed – changing
the rotation center essentially only alters the value f reaches at its maximum but
not for which cavity parameters the maximum is reached.

The results given for the exemplary two-dimensional setting readily generalize to
three dimensions, e.g., when considering SR, CLS, and the visibility as the OS. The
respective cost function can then be given as

f(x, y, z) = z′ − α(x′2 + y′2) , where r′ = R−1(θ, ϕ)r , (6.6)
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6.2 Nonlinear cost functions
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Fig. 6.2: Schematic workflow for the numerical determination of OS surfaces, using the example
of Fig. 6.1. Initially, the observables x and y for which the OS surface shall be determined are
chosen. Next, a suitable cost function fϕ(x, y) is defined as a function of these observables. The
cost function is parametrized by ϕ to probe the surface in different directions. An adequate number
of samples ϕj has to be selected from the domain of the parametrization. As a start, choosing a
linear cost function according to Eq. (6.1) and a number of homogeneously spaced samples ϕj is
reasonable. In the next step, the cost function is maximized over the cavity parameters c (i.e. the
angle of incidence and the layer thicknesses in the main text). The maximization is carried out
independently for each value of the parametrization ϕj which yields the respective maximal cavity
parameters cϕj ,max. The observables x and y are evaluated at these cavity parameters to yield the
samples of the OS in the x-y-plane. Subsequently it has to be verified that for each ϕj the numerical
maximization is converged. An indication for bad convergence can be discontinuities in the surface
samples, as illustrated in Fig. 6.1(f). If not all points are fully converged, the maximization should
be refined, e.g., by carrying out the maximization for more, or better, initial guesses for the cavity
parameters c. If convergence is achieved, the subsequent step is to verify that the whole surface of
the OS is sampled sufficiently. If this is not the case, refining the cost function and/or increasing
the number of samples of the parametrization is necessary. This could include the use of nonlinear
cost functions, such as in Eq. (6.4), or of a different set of transformations applied to the cost
function. When the cost functions and the sampling of the parametrization are chosen suitably, the
surface of the OS is finally obtained.
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6 Numerical methods

with r = (x, y, z)T, r′ = (x′, y′, z′)T, and a three-dimensional rotation matrix R(θ, ϕ),
parametrized by polar and azimuthal angle. The linear sampling is achieved for α = 0.
Note that while we considered two- and three-dimensional OSs only, no in-principle
restrictions apply as to finding the surfaces of higher dimensional spaces, e.g. using
four-dimensional rotation matrices. Due to the limits of human imagination and
two-dimensional paper, however, the presentation and interpretation of such higher
dimensional sets is difficult.

6.3 Convergence
Finally, the previous discussion focused only on the construction of suitable cost
functions. However, for each optimization of a cost function, we further have to
ensure that the maximization as a function of the cavity parameters converges to its
global optimum and not a local one. To this end, we use the scipy.optimize [99]
package for the maximization. To support the convergence, we repeat the same
maximization for many different initial conditions which we Monte-Carlo sample from
a meaningful range in the cavity parameters. Furthermore, non-converged points are
typically visible as discontinuities in otherwise smooth surfaces, see Fig. 6.1(f). In
case of non-converged points, the number of maximizations starting from different
initial conditions can be increased until all cost functions converge to the boundary of
the OS. It sometimes also proves necessary to enlarge the – large, but of course finite
– range of cavity parameters which the initial guesses are Monte-Carlo sampled from.
This is in particular necessary when the potentially non-converged points are found
to come with cavity parameters very different from the neighboring points. Lastly, it
should be noted that less complicated, and in particular linear cost functions, are
heuristically found to show the best convergence properties.
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7 Conclusions & Outlook

The main result of the present thesis is the successful introduction of an inverse
approach to the design of artificial x-ray few-level schemes on the basis of Mössbauer
nuclei in thin-film cavities. We developed the inverse design at the example of
artificial two-level schemes and subsequently demonstrated its applicability to more
complex systems by engineering x-ray quantum optical effects involving three-level
systems. Using the approach, striking new insights were revealed in terms of both,
x-ray quantum optical setups and the cavities they are realized in.

For artificial two-level schemes based on a single resonant layer in an archetype
cavity, we provided a systematic determination of the frequency shifts, decay en-
hancements and driving field strengths, also taking into account the experimental
observability. The resulting properties of the quantum systems could be understood
when considering the underlying mode structure of the cavity.

For all accessible properties of the two-level scheme, we were able to give explicit
cavity geometries. This certifies the successful implementation of the inverse design.
Using the inverse approach gives immediate and comprehensive access to all realizable
level schemes, and thus renders a trial-and-error approach to the design of quantum
optical effects unnecessary.
Determining the accessible properties of the two-level scheme, we found that

cavities without top cladding layer can outperform archetype ones regarding the in-
and out-coupling of x-rays. This unexpected result opens up a novel and potentially
preferable type of thin-film cavity that has not been recognized so far.
We further showed that geometries maximizing the field enhancement inside the

thin-film cavity are different from those that generate large decay enhancement. This
is counter-intuitive, as the comparison to a two-level system in an optical Fabry-Pérot
cavity revealed that both maxima coincide for the latter case. The insight advances
the intuitive understanding of thin-film environments which is crucial for envisioning
new ideas and applications.
Strikingly, our analysis of different material combinations raised doubts about

the commonly applied paradigm of high-Z cladding – low Z guiding materials, but
demonstrated that low absorption in the cladding layer is significant for large collective
effects. As a result, we found that establishing a low-Z cladding – lower-Z guiding
paradigm promises to enhance the performance and versatility of future cavities.
Further, our results may spark interest in materials which were disregarded so far
for the construction of x-ray photonic structures.
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Moreover, studying different resonant isotopes showed that upon choosing one
Mössbauer isotope, also its impact on the photonic environment has to be taken into
account. Using our comprehensive approach to analyze the performance of a specific
resonant isotope in the cavity can give guidance to match the appropriate isotope to
the right application.

At the example of systems with two resonant layers, we demonstrated that the
inverse design approach is readily extended to more complex systems. For the
resulting three-level schemes, we again gave a comprehensive determination of the
realizable properties. As before, considerations about the mode structure of the
cavities shed light on the scope of the accessible combinations of the level scheme
parameters.

Subsequently, we could not only successfully implement the inverse design of
three-level systems, but also relevant ratios of level scheme parameters were readily
engineered. In that context, we used the electromagnetically induced transparency
effect to illustrate the design of relevant quantum optical setups otherwise inaccessible
at x-ray energies. This proves that the inverse design constitutes a viable tool to the
implementation of further quantum optical schemes at x-ray energies.

While implementing electromagnetically induced transparency, we found that
the signatures resulting from the artificial level schemes are different from those
in standard quantum optics. This is because for the x-ray thin-film case, the
experimentally relevant observable is the reflection spectrum that comprises in- and
out-coupling effects. Representing the nuclear imprint on this reflection spectrum in a
diagonal form, we developed a method that gives immediate access to the observable
signatures and facilitates the interpretation of the spectrum. For the case of two
resonant layers, not the two coupled excitons in the layers are described within
this approach but their uncoupled excitonic normal modes. Since the magnitude
and properties of these eigenmodes are readily accessed, we can not only explain
signatures in the spectrum, but also apply the inverse approach to efficiently design
the spectral response. This provides a powerful method to shape the reflection
spectrum towards particular goals.

As an intriguing application, we showed that – owing to the interlayer coupling –
one of the eigenmodes can show superradiance beyond what is accessible by a single
resonant layer within an analogous setting. Notably, at the same time, the spectral
imprint of the second eigenmode can be almost completely suppressed, thus realizing
a more versatile x-ray two-level scheme within a setup of two resonant layers.

Summarizing, the inverse design introduced in the thesis provides a way to efficiently
engineer artificial x-ray quantum systems and their spectral response. It further
brings along general insights that are likely to impact future implementations not
only within the present platform, but also for x-ray photonic environments in general.
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Outlook
With the methods and insights provided in this thesis, the first steps in inverse
design of nuclear quantum optical systems are taken and a plethora of yet unexplored
directions has opened up for future research. We outline some of these in the
following.
Chapter 5 already hinted at the capabilities of multiple resonant layer systems.

However, their full potential remains to be exploited. The inclusion of more than
two resonant layers promises the design of intriguing quantum optical setups that
bring us closer to the merits of quantum optics at lower frequencies. Using many
resonant layers, a systematic tool for the design is indispensable to cover the full
design capabilities in the presence of increasingly complex interrelations between
various parameters of the level schemes.

Within the framework of nuclear excitonic normal modes in Sec. 5.5, the novel
two-level scheme in a platform of two resonant layers promises to not only enlarge
the accessible superradiance, but also enhance the collective Lamb shift beyond what
is possible with a single layer of nuclei. Further, it remains to be uncovered whether
the inclusion of more resonant layers still allows for the description in terms of a
two-level scheme. In that case, the resulting two-level system might show even larger
tunability of its properties.
Beyond two-level schemes, the description by excitonic normal modes provides

straightforward access to the reflection spectrum, also in the presence of complex
spectral signatures resulting from a high number of such modes. In combination
with the inverse design approach, the normal mode method allows to shape the
spectral imprints of advanced level schemes, ranging from electromagnetically induced
transparency-like dips [51] to signatures of strong coupling in stacks of resonant
layers [53] and beyond that. Eventually, the spectral tuning capabilities provided by
the approach could be applied, e.g., to the design of bandpass filters for synchrotron
radiation [94] or an enhancement of the non-linear nuclear susceptibility [62] as well
as the engineering of intriguing nuclear dynamics in general.

As a yet unexplored direction in the inverse design, one further finds the inclusion
of magnetic fields as additional degree of freedom. This thesis has been focused on
unmagnetized resonant layers where individual Mössbauer nuclei could be described
as two-level systems. In the presence of a magnetic field, however, the hyperfine
interactions in 57Fe give rise to six possible transitions with different polarization
dependencies. With the resulting enlarged Hilbert space, versatile level schemes have
been realized [52] or proposed [49, 56]. Applying the inverse design approach to
magnetized layers of Mössbauer isotopes can be expected to open up further design
capabilities for x-ray quantum optics towards polarization sensitive tunable x-ray
few-level schemes.
Leaving the number and type of resonant layers aside, also the use of more

cladding or guiding cavity layers can be thought of. In the optical regime, multi-

89



7 Conclusions & Outlook

layered dielectric mirrors have found numerous applications [100]. Preliminary results
suggest, that the inclusion of more non-resonant layers can also boost the performance
of thin-film cavities.

Regarding the use of thin-film cavities as photonic environments, different geome-
tries can be thought of. The use of thin-film cavities, as described in this thesis,
essentially sacrifices the design capabilities parallel to the layer surfaces for the merit
of having an enlarged effective wavelength in the orthogonal direction. In principle,
the same enhancement of the effective wavelength would be possible upon restricting
the waveguide-like behavior to one dimension only. For that case, two dimensions
would be left for photonic design. A corresponding geometry could be provided by
cylindrical, and possibly multi-layered, nanofibers with a fiber core of Mössbauer
nuclei or also further in-plane structuring of the resonant layers in thin-film cavities,
potentially using lithographic tools [101, 102]. For a number of such highly symmetric
geometries, the Green’s functions are available analytically [70, 103]. This promises
an efficient implementation of our design approach.
Beyond that, crystal environments or wave guides could be used to tailor the

nuclear dynamics. For unrestricted design approaches, e.g., see [60], however, it must
be noted that the practical design on the scale of the x-ray wavelength might be
hard. Further, the description of the systems as artificial few-level schemes might
be inadequate as different many-body quantum states could be relevant for the
dynamics.

A different application for thin-film cavities founds on the large field enhancement
they offer, as was illustrated in Chapter 4. This might help to reach the full
inversion of nuclear ensembles [28, 104], as was also proposed for other photonic
environments [41], and thus could provide access to the full quantum many-body
regime.
Finally, our results could be of interest beyond the framework of nuclear quan-

tum optics, e.g., in the development of novel x-ray source concepts [85] or for the
application to electronic resonances [18, 105].

Overall, the results of this thesis provide a solid foundation for such endeavors and
hopefully will spark research in the directions mentioned above and beyond that.
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A Appendix

A.1 Green’s functions and field configurations
Here, we summarize relevant formulae for the Green’s function and the field configu-
ration as used for the calculations in the main text. For the archetype system with
a single resonant layer, see Fig. 1.1, we give the explicit formulae for all relevant
quantities to simplify the reproduction of the results. For cavity structures beyond
that, e.g., for the cavities of Figs. 5.1(a) and 5.15, we summarize the general form of
the formulae as given by [58].

A.1.1 Single resonant layer archetype cavity
For the archetypal thin-film cavity with single resonant layer, see Fig. 1.1, the
formulae are given in the following. In accordance with the discussion in the main
text, we restrict to the case of s-polarization. The case of p-polarization is included
in the general treatment in the subsequent section.

Green’s function

The in-plane Fourier transformed Green’s function at equal z = z′ in the third
(resonant) layer is given by

G(z, z,k‖, ω) = i

2β3

eiβ3d3

1− r3/0r3/6e2iβ3d3

× (eiβ3(z−d3) + r3/6e
−iβ3(z−d3))(e−iβ3z + r3/0e

iβ3z) , (A.1)

where

r3/0 = −r23 + r2/0e
2iβ2d2

1− r23r2/0e2iβ2d2
,

r3/6 = r34 + r4/6e
2iβ4d4

1 + r34r4/6e2iβ4d4
,

r2/0 = − r12 + r01e
2iβ1d1

1 + r12r01e2iβ1d1
,

r4/6 = r45 + r56e
2iβ5d5

1 + r45r56e2iβ5d5
.

(A.2)

In this formula, rij denotes the Fresnel coefficient of light in layer i reflected at
adjacent layer j. Furthermore, βj =

√
k2
j − k2

‖, where kj = njk0 is the wave number
in layer j obtained from the refractive index nj of the layer. The parallel wave
vector, in turn, changes with the angle of incidence, |k‖| = k0 cos(θ), where k0 is the
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free-space wave number. The thicknesses dj are enumerated according to Fig. 1.1
and z denotes the distance to the third layer top surface which we will generally
set to the center of the ultrathin resonant layer z = d3/2. It is noted, that simpler
cavity structures, e.g., without top cladding layer, can be obtained by setting the
respective thicknesses to zero. Note that there is an additional δ-contribution in
the Green’s function, see Appendix A.1.2. It can be interpreted to renormalize the
transition frequency and decay constant in free-space. Therefore, we take it to be
already included in the respective parameters [48].
The Green’s function propagating the nuclear response to the surface is further

given by

G(0, z,k‖, ω) = i

2β0

t0/3e
iβ3d3

1− r3/0r3/6e2iβ3d3

(
e−iβ3(d3−z) + r3/6e

iβ3(d3−z)
)
. (A.3)

The additional coefficients are defined as

t0/3 = t0/2t23e
iβ2d2

1− r2/0r23e2iβ2d2
, t0/2 = t01t12e

iβ1d1

1 + r01r12e2iβ1d1
, (A.4)

for tij being the Fresnel coefficients of light in layer i being transmitted to adjacent
layer j.

Field configuration

The electric field strength at the third, resonant layer is given by [58]

Ein(z,k‖, ω) = t0/3e
iβ3d3

1− r3/0r3/6e2iβ3d3

(
eiβ3(z−d3) + r3/6e

−iβ3(z−d3)
)
, (A.5)

where as before we evaluate the field at the center of the ultrathin layer, z = d3/2.
Note that this quantity differs from Eq. (A.3) only by a prefactor.
For the calculation of the electronic cavity reflection the field strength at the

surface is used,

Ein(0,k‖, ω) = 1 + rel = 1 + 1
1− r3/0r3/6e2iβ3d3

×
[
r0/3 + (t0/3t3/0 − r0/3r3/0)r3/6e

2iβ3d3
]
, (A.6)

where the additional coefficients are

r0/3 = r01 + r1/3e
2iβ1d1

1 + r01r1/3e2iβ1d1
,

t3/0 = t3/1t10e
iβ1d1

1 + r1/3r01e2iβ1d1
,

r1/3 = r12 + r23e
2iβ2d2

1 + r12r23e2iβ2d2
,

t3/1 = t32t21e
iβ2d2

1 + r23r12e2iβ2d2
.

(A.7)
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Fig. A.1: Schematic illustration of the enumera-
tion of different layers and the coordinate conven-
tion. The coordinate zj lies in the jth layer at
a distance of z to the upper surface of the layer.
Note that the layers 0 and n are semi-infinitely
extended to the top and bottom, respectively.

A.1.2 Generic thin-film cavities

For the remaining cavity structures we summarize the general form of the in-plane
Fourier transformed Green’s function and the remaining formulae needed for the
calculation of the results in the main text. For completeness, we give the expressions
for s- and p-polarization in this section and maintain the tensorial character of the
Green’s function. The notation is kept similar to [58], however, some conventions
are changed to reduce ambiguity. The in-plane Fourier-transformed Green’s function
reads

G(zj, z′j′,k‖, ω) = − 1
k2
j

ẑẑδ(zj − z′j′) + i

2βn
∑
q=p,s

ξq
tq0/n
×

×
[
E0
q(zj,k‖, ω)Enq (z′j′,−k‖, ω)Θ(zj − z′j′)

+Enq (zj,k‖, ω)E0
q(z′j′,−k‖, ω)Θ(z′j′ − zj)

]
, (A.8)

where the vector products correspond to dyadic products and ξp(s) = (−)1 depends
on the polarization q ∈ {s, p}. Further, ẑ is the unit vector in z-direction, i.e., normal
to the layer surfaces. The notation zj for the spacial argument is meant to denote
the evaluation in the jth layer at a distance z from the jth layer upper surface, see
Fig. A.1. For the Heaviside step function this means that

Θ(zj − z′j′) =


1 , if j > j′ ,

1 , if j = j′ and z > z′ ,
1
2 if j = j′ and z = z′ ,

0 , else .

(A.9)
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Furthermore, we have

En(0)
p (zj,k‖, ω) =

tpn(0)/je
iβjdj

Dpj

[
±βj
kj

(
e−iβjz

∓ − rp
j/0(n)e

iβjz
∓)
k̂‖+

+ k‖
kj

(
e−iβjz

∓ + rp
j/0(n)e

iβjz
∓)
ẑ

]
, (A.10)

En(0)
s (zj,k‖, ω) =

tsn(0)/je
iβjdj

Dsj

[(
e−iβjz

∓ + rs
j/0(n)e

iβjz
∓)
k̂‖ × ẑ

]
, (A.11)

Dqj = 1− rqj/0r
q
j/ne

2iβjdj , (A.12)
z+ = dj − z, z− = z, (A.13)

where k̂‖ = k‖/k‖ is the unit vector corresponding to the direction of the in-plane
wave vector for k‖ = |k‖|. Upon inserting k‖ → −k‖ the unit vector acquires a minus
sign. We emphasize that z is the relative coordinate to the layer’s upper surface in
this notation.
The multilayer Fresnel coefficients read

rqi/k = rqi/j/k =
rqi/j + (tqi/jt

q
j/i − r

q
i/jr

q
j/i)r

q
j/ke

2iβjdj

D(ik)
qj

, (A.14)

tqi/k = tqi/j/k =
tqi/jt

q
j/ke

iβjdj

D(ik)
qj

, (A.15)

D(ik)
qj = 1− rqj/ir

q
j/ke

2iβjdj , (A.16)

where rqi/k = rqi/j/k denotes the reflection coefficient from medium i at the surface of
medium k where the contribution of intermediate (possibly several) layers is taken
care of. The layer j denotes an intermediate layer, i < j < k or k < j < i, such that
recursively the multilayer Fresnel coefficients are defined. Analogously, the multilayer
transmission coefficients tqi/k are obtained. For adjacent layers – that means there is
no such intermediate index j – the multilayer coefficients reduce to the usual Fresnel
coefficients for the respective polarization q.

The (off-resonant) field strength in the cavity resulting from an incident plane-wave
of unit amplitude (from the top) is further given by Ein(zj,k‖, ω) = E0

q(zj,k‖, ω), or
the respective superpositions of the different polarizations.
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A.2 Mittag-Leffler expansion theorem
Here, we will shortly revisit the Mittag-Leffler expansion theorem as stated in [68].

Let f be a meromorphic function with simple poles zk only and continuous,
or with removable singularity, at 0. Let Cn be circular contours of radius
Rn, centered at 0, such that Rn

n→∞−−−→ ∞ and f has no poles on Cn.
Further, let there be a real constant M > 0, such that for all n, f is
bounded byM on Cn. Then, on its domain, the function can be expressed
as

f(z) = f(0) +
∑
k

Res(f, zk)
( 1
z − zk

+ 1
zk

)
, (A.17)

where Res(f, zk) is the residue of f at zk and f(0) = lim
z→0

f(z).

In the main text, the theorem is applied on a heuristic basis and its convergence
characterized visually. Due to the constructive nature of the theorem, we can
explicitly calculate the expansion coefficients also by numerical means. For this we
note, that the residue of a meromorphic function at a pole zk can be written as a
line integral,

Res(f, zk) = 1
2πi

∫
C

dz f(z), (A.18)

where C is a suitable closed contour around zk. The integral is readily discretized and
evaluated numerically, thus allowing us to check the convergence of the expansion
for analytically not accessible cavity systems.
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