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a b s t r a c t 

Aging is associated with increased white matter hyperintensities (WMHs) and with alterations of alpha 

oscillations (7–13 Hz). However, a crucial question remains, whether changes in alpha oscillations relate 

to aging per se or whether this relationship is mediated by age-related neuropathology like WMHs. Us- 

ing a large cohort of cognitively healthy older adults (N = 907, 60–80 years), we assessed relative alpha 

power, alpha peak frequency, and long-range temporal correlations from resting-state EEG. We further 

associated these parameters with voxel-wise WMHs from 3T MRI. We found that a higher prevalence 

of WMHs in the superior and posterior corona radiata as well as in the thalamic radiation was related 

to elevated alpha power, with the strongest association in the bilateral occipital cortex. In contrast, we 

observed no significant relation of the WMHs probability with alpha peak frequency and long-range tem- 

poral correlations. Finally, higher age was associated with elevated alpha power via total WMH volume. 

We suggest that an elevated alpha power is a consequence of WMHs affecting a spatial organization of 

alpha sources. 

© 2021 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

 

 

 

 

 

 

 

 

1. Introduction 

White matter lesions, also known as white matter hyperinten-

sities (WMHs), are highly prevalent in older adults and are of

paramount clinical relevance since they are known to accompany
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cognitive decline and dementia ( Birdsill et al., 2014 ; Debette and

Markus, 2010 ; Habes et al., 2016 ). WMHs are considered to reflect

mainly small vessel disease ( Wardlaw et al., 2015 ), which typically

affects periventricular regions and deep white matter ( Habes et al.,

2016 ). Little is known, however, whether and how WMHs impact

functional measures of brain activity. Due to their location, WMHs

may cause disconnection of neuronal populations ( O’Sullivan et al.,

2001 ). Theoretically, such damage of cortico-cortical and cortico-

subcortical pathways is expected to alter the synchronized activity

of neurons measured with M/EEG ( Hindriks and van Putten, 2013 ).
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One of the most prominent EEG rhythms is alpha oscillations

(7–13 Hz), which have been shown to originate from thalamocor-

tical and cortico-cortical interactions ( Bazanova and Vernon, 2014 ;

Lopes Da Silva et al., 1997 ). Importantly, measures of alpha oscil-

lations have been related to many aspects of cognitive function

( Klimesch, 1999 ) and also to endophenotypes of brain aging

( Ishii et al., 2018 ; Knyazeva et al., 2018 ) either using alpha peak

frequency or power. While individual alpha peak frequency has

been consistently shown to decrease with age ( Ishii et al., 2018 ;

Knyazeva et al., 2018 ; Mierau et al., 2017 ), the findings on alpha

power remain rather inconsistent. Previous EEG studies showed

decreases of alpha power across the lifespan when using relatively

large sample sizes ( Babiloni et al., 2006a ; Lodder and van Put-

ten, 2011 ; Vysata et al., 2012 ), yet these age-related reductions in

alpha power were either not strongly present within the older age

groups ( > 60 years of age; Lodder and van Putten, 2011 ) or not

replicated ( Sahoo et al., 2020 ; Scally et al., 2018 ). 

Apart from these 2 measures of alpha oscillations, temporal dy-

namics of the signals can be quantified with autocorrelation show-

ing to what extent the past of the signal relates to its future. A very

slow attenuation of the autocorrelation, which can be described

with a power law, is also referred to as long-range temporal cor-

relations (LRTC). The presence of LRTC indicates scale-free proper-

ties of the signal fluctuation pattern that look similar at different

time scales. LRTC in the amplitude envelope of the neuronal os-

cillations were shown to extend to tens or even hundreds of sec-

onds ( Linkenkaer-Hansen et al., 2001 ; Nikulin and Brismar, 2005 ).

Importantly, the presence of LRTC is consistent with the idea

that neuronal networks may operate at a critical state, character-

ized by a balance between inhibition and excitation ( Linkenkaer-

Hansen et al., 2001 ; Nikulin and Brismar, 2005 ; Palva et al., 2013 ;

Shew and Plenz, 2013 ). LRTC exponent that represents the de-

cay of the autocorrelation has been linked to functional connectiv-

ity measures ( Zhigalov et al., 2017 ), brain maturation ( Smit et al.,

2011 ), and different aspects of cognition ( Mahjoory et al., 2019 ;

Samek et al., 2016 ; Smit et al., 2011 ). Given previous literature and

a recent work by Quandt et al., (2020) showing a link between

WMHs and altered functional connectivity, it is plausible that age-

related structural changes in the brain could manifest in alterations

of LRTC. 

As both static (i.e., power, individual alpha peak frequency)

and dynamic (i.e., LRTC) measures of alpha oscillations might

be affected by microstructural deteriorations, due to the dis-

connection among neural cells and damage to cortico-cortical

and cortico-subcortical pathways ( Madden et al., 2017 ), WMHs-

associated alterations of EEG rhythms are plausible. However,

there are only a few EEG studies that have directly investi-

gated the relationship between alpha oscillations and WMHs or

integrity ( Babiloni et al., 2011 , 2008a ; Valdés-Hernández et al.,

2010 ; van Straaten et al., 2012 ). Previously, local and global

disturbances of brain anatomy like white matter microstructure

( Hinault et al., 2020 ; Hindriks et al., 2015 ; Minami et al., 2020 ;

Valdés-Hernández et al., 2010 ) have been found to be related

to alpha rhythm affecting its peak frequency and power. For in-

stance, a previous study with 222 subjects using the Cuban Human

Brain Mapping Project ( Valdés-Hernández et al., 2010 ) provides ev-

idence that alpha peak frequency can be associated with both de-

crease and increase (depending on the region) in the microstruc-

ture of thalamocortical or corticothalamic fibers assessed by Frac-

tional Anisotropy using diffusion tensor imaging. Interestingly, so

far only a few studies have investigated the relationship between

alpha power and WMHs ( Babiloni et al., 2009 , 2008b , 2008a ). For

instance, it has been observed that higher alpha power was associ-

ated with higher scores of the prevalence of WMHs in individuals

with mild cognitive impairment ( Babiloni et al., 2008a ). Similarly,
a recent study ( Quandt et al., 2020 ) reported that higher WHM

lesion load was related to reduced EEG alpha connectivity mea-

sures in healthy older adults (N = 35). However, to our knowledge,

no link between voxel-wise whole-brain WMHs and different pa-

rameters of alpha oscillations has been investigated using a large

sample of healthy older adults. Moreover, a crucial question still

remains unresolved, for example, whether changes in alpha oscil-

lations relate to normal aging per se or rather they represent the

impact of age-related neuropathology, for instance, WMHs. In this

study, using a large population-based sample, we investigated neu-

rophysiological links between age, WMHs and alpha oscillations.

More precisely, we investigated the association between age and

parameters of alpha oscillations, and whether this relationship was

mediated by WMHs. We further explored the association of WMHs

with parameters of alpha oscillations in a topographically specific

manner taking into account the location of the lesioned white mat-

ter tracts. 

2. Methods 

2.1. Participants 

Participants were drawn from the population-based Leipzig

Research Center for Civilization Diseases LIFE-Adult study

( Loeffler et al., 2015 ). All participants provided written informed

consent, and the study was approved by the ethics committee

of the medical faculty at the University of Leipzig, Germany.

The study was performed in agreement with the Declaration of

Helsinki. A subset of participants underwent a 3-Tesla MRI head

scan and resting-state (rs)EEG recordings on 2 separate assess-

ment days. We selected participants above 60 years of age and

without additional brain pathology or history of stroke, multiple

sclerosis, epilepsy, Parkinson’s disease, intracranial hemorrhage,

or brain tumors. We further excluded individuals whose rsEEG

recordings were not temporally close to the MRI acquisition time

and participants for whom alpha peak could not be identified. The

details about the time differences between EEG and MRI measure-

ment days can be found in Supplementary Figure 1 ( M = 23.4 in

absolute days). This resulted in a final sample of 907 participants

( M = 69.49 ± 4.63 years of age, 380 female) for the rsEEG sensor

space analysis. After excluding individuals with failed T1-weighted

segmentation and head-modeling, the final sample for the rsEEG

source analysis was 855 ( M = 68.89 ± 4.66 years of age, 360

female). For a detailed overview of the selection process, see

Fig. 1 . 

2.2. MRI acquisition and processing 

All MRI scans were performed at 3 Tesla on a MAGNETOM Ve-

rio scanner (Siemens, Erlangen, Germany). The body coil was used

for radiofrequency (RF) transmission and a 32- channel head coil

was used for signal reception. T1-weighted MPRAGE and FLAIR im-

ages were acquired as part of a standardized protocol: MPRAGE

(flip angle [FA] = 9 °, relaxation time [TR] = 2300 ms, inversion

time [TI] = 900 ms, echo time [TE] = 2.98 ms, 1-mm isotropic res-

olution, acquisition time [AT] = 5.10 minutes); FLAIR (TR = 50 0 0

ms, TI = 1800 ms, TE = 395 ms, 1 × 0.49 × 0.49-mm resolution,

AT = 7.02 minutes). 

Location of WMH. The automated assessment of WMHs was

computed in a previous study ( Lampe et al., 2019 ). All images were

checked by a study physician for incidental findings. A computer-

based WMHs segmentation algorithm was then used to automati-

cally determine WMH volume on T1-weighted MPRAGE and FLAIR
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Fig. 1. Flow chart visualizing the selection process of the MRI and EEG sample. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

images ( Shiee et al., 2010 ) and inspected visually for segmenta-

tion errors. Binary WMH maps of all participants were nonlin-

early co-registered to a standardized MNI template (1-mm iso-

metric) with ANTS ( Avants et al., 2011 ). In standard space, binary

subject-wise WMH maps were grand-averaged to create a popu-

lation WMH frequency map ( Jenkinson et al., 2012 ) and to fur-

ther compute the voxel-wise statistics. As previously implemented

( Lampe et al., 2019 ), to segregate the periventricular (pv)WMH and

deep (d)WMH, a default distance of 10 mm to the ventricular sur-

face was used ( DeCarli et al., 2005 ). Every voxel of WMH located

within this border was classified as pvWMH; voxels outside the

border were classified as dWMH. 

WMH Volume. Regional WMH volume was calculated sepa-

rately for the deep and periventricular white matter. Following

Lampe et al. (2019) , we added a constant value 1 to every par-

ticipant’s regional dWMH volume because there were participants

without lesions in the deep WM. We then calculated the ratio of

dWMH and pvWMH (dWMH/pvWMH) as localized WMH volume.

Total, deep and periventricular WMH volumes were further nor-

malized to head size by total intracranial volume. Total and local-

ized WMH (dWMH/pvWMH) volume were log-transformed for fur-

ther statistical analyses. 

2.3. EEG acquisition and preprocessing 

RsEEG activity was recorded in an electrically and acoustically

shielded room using an EEG cap with 34 passive Ag/AgCl elec-

trodes (EasyCap, Brain Products GmbH, Germany). Thirty-one scalp

electrodes were placed according to the extended international

10–20 system. The signal was amplified using a QuickAmp am-

plifier, frequency range: DC-280 Hz (Brain Products GmbH, Ger-

many). Two electrodes recorded vertical and horizontal eye move-

ments while 1 bipolar electrode was used for electrocardiography.

The rsEEG activity was referenced against common average and

sampled at 10 0 0 Hz. Impedances were kept below 10 k �. RsEEG

data were preprocessed using EEGLAB toolbox (version 14.1.1b) and

scripts were custom written in Matlab 9.3 (Mathworks, Natick, MA,
USA). We filtered data between 1 and 45 Hz and applied a notch

filter at 50 Hz. We then down-sampled the data to 500 Hz and

ran a semiautomatic pipeline for artifact rejection: different noise

threshold levels to mark bad time segments were used for the sig-

nal filtered in higher frequency (15–45 Hz) and lower frequency

(1–15 Hz) ranges. The noise threshold for higher frequencies was

set to 40 μV since noise at this range (i.e., induced by muscle

activity) is typically lower in amplitude. The noise threshold for

the lower frequency range was set to + 3SD over the mean am-

plitude of a filtered signal between 1 and 15 Hz. To control for

the accuracy of automatically marked bad segments, we compared

them to the noisy segments marked by another research group

( Jawinski et al., 2017 ). Whenever these segments did not overlap

by more than 10 s or they exceeded 60 s of total bad-segment

duration, we inspected those datasets visually ( ∼10% of cases) to

confirm whether they indeed were contaminated by noise. We

further visually assessed power spectral densities (PSD) for data

quality and used it to identify broken channels. Next, using inde-

pendent component analysis (Infomax; Bell and Sejnowski, 1995 ),

activity associated with the confounding sources — namely eye-

movements, eye-blinks, muscle activity, and residual heart-related

artifacts — was removed. 

2.4. EEG sensor space analysis 

2.4.1. Parameters of alpha oscillations 

For rsEEG analysis, we used the first 10 minutes of a record-

ing to avoid the potential effect of participants’ drowsiness. We in-

dividually adjusted the alpha band frequency range by locating a

major peak between 7 and 13 Hz on Welch’s PSD with 4 s Hanning

windows. Thus, we determined individual alpha peak frequency in

every channel and defined a bandwidth not exceeding 3 Hz around

the peak. We then calculated relative alpha power for the individ-

ually adjusted alpha frequency range dividing it by the broadband

power calculated in the 3–45 Hz frequency range. LRTC were calcu-

lated using detrended fluctuation analysis on the amplitude enve-

lope (calculated with Hilbert transform) of alpha band oscillations

in time windows ranging from 3 to 50 seconds (while respecting

the boundaries where the bad segments had been cut) based on

the previously published procedure ( Hardstone et al., 2012 ). Here,

we briefly repeat the main steps: (1) a cumulative sum of the am-

plitude envelope is calculated, (2) the signal is then divided into

predefined window sizes ( τ ), (3) the linear trend is removed in a

given window. Fluctuation function F( τ ) for all time windows of

a given size τ is calculated as the root-mean-square of the de-

trended signal. In the case of a power-law relationship, we have

F( τ ) ∝ τ v , where v is a scaling exponent (measuring LRTC) which

can be obtained as a slope of a linear fit in log-log plot between

F( τ ) and τ . An exponent of 0.5 reflects uncorrelated signals (i.e.,

resembling white noise), v < 0.5 indicates anticorrelations, while

an exponent between 0.5 < v < 1 shows persistent autocorrelation

where large fluctuations are likely to be followed by large fluctua-

tions ( Hardstone et al., 2012 ). This range of 0.5 < v < 1 is a typical

range for many EEG and MEG studies. 

The illustration of parameters of alpha oscillations are shown in

Fig. 2 . 

To reduce data dimensionality of rsEEG sensor space data

used for the whole-brain voxel-wise inference analyses, we further

grouped EEG channels into 6 coarser brain regions (frontal, central,

temporal, parietal, and occipital) ( Fig. 3 A). 

2.5. EEG source space analysis 

To reconstruct sources of the rsEEG signal, we calculated lead-

field matrices based on individual brain anatomies and standard
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Fig. 2. Illustration of parameters of alpha oscillations. (A) Raw resting-state EEG 

time series data (blue) consists of various frequency bands that can be defined by 

their power and peak frequency. (B) The temporal dynamics of a signal filtered in 

the alpha frequency range (8–12 Hz) is assessed by the properties of its amplitude 

envelope (red) using long-range temporal correlations (LRTC). The scaling exponent 

( ν) quantifies the presence of LRTC (For interpretation of the references to color in 

this figure legend, the reader is referred to the Web version of this article). 

Fig. 3. Illustration of the regions of interest (ROIs) identified for EEG. Schematic to- 

pography for resting-state EEG in (A) sensor space and (B) source space. ROIs which 

form the frontal region are in purple, central region, and cingulate region (source) 

in orange, temporal region in yellow, parietal region in green, and occipital region 

in blue (For interpretation of the references to color in this figure legend, the reader 

is referred to the Web version of this article). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

electrode positions. The T1-weighted MPRAGE images were seg-

mented using the Freesurfer v.5.3.0 software ( Fischl, 2012 ). We

constructed a 3-shell boundary element model which was sub-

sequently used to compute the leadfield matrix using Open-

MEEG ( Gramfort et al., 2010 ). Approximately 2,0 0 0 cortical

dipolar sources were modeled for each individual. Source recon-

struction was performed using exact low resolution brain electro-

magnetic tomography (eLORETA; Pascual-Marqui, 2007 ) with a reg-

ularization parameter of 0.05. We filtered the signal within the

individually adjusted alpha frequency band range as well as in

broadband range (3–45 Hz), squared it, and summed up across all

3 dipole directions. Relative alpha power (%) was then calculated in

each voxel through the division of alpha power by the broadband

power. We constrained the orientation of the dipolar sources to be

perpendicular to the cortical surface to estimate individual alpha

peak frequency and LRTC. A peak search was performed between 7

and 13 Hz for every voxel: the highest peak in this frequency range

was taken as an alpha peak. LRTC were calculated using detrended

fluctuation analysis (described in Section 2.4.1 .) on the amplitude
envelope of alpha oscillations in each voxel. The cortex surface

mantle was divided into 68 regions of interest (ROIs) based on

the Desikan-Killiany atlas ( Desikan et al., 2006 ). These were further

combined into 5 coarser ROIs (frontal, parietal, temporal, occipital,

and cingulate) for the right and left hemispheres following a stan-

dard parcellation atlas ( Fig. 3 B). Alpha band measures (power, peak

frequency, and LRTC) values were then averaged across each ROI. 

2.6. Statistical analyses 

2.6.1. Correlation of age with total WMH volume and alpha 

oscillations 

Pearson correlations were calculated to examine the rela-

tionship between age and (i) total or localized WMH volume

(dWMH/pvWMH) and (ii) the parameters of alpha oscillations in

6 regions at sensor space. Differences between correlations were

assessed with Fisher’s r-to-z transformation implemented in R ver-

sion 3.5.2 ( http://www.R-project.org/ ). To correct for multiple com-

parisons, p values were then adjusted using the False Discovery

Rate (FDR; (FDR; Benjamini and Hochberg, 1995 ). 

2.6.2. Topographical relevance analyses of WMHs for alpha 

oscillations at sensor space 

To identify regions in which WMHs robustly correlated with al-

pha oscillations, we performed whole-brain voxel-wise regressions.

More precisely, we applied general linear models (GLMs) in which

individual values of relative alpha power, alpha peak frequency,

and LRTC were used as predictors for the topographical occur-

rence of WMHs, adjusting for effects of age, sex, and intracranial

volume as covariates of no interest. 3D voxel-wise binary lesion

maps were analyzed using randomise function, implemented in FSL

( Winkler et al., 2014 ). For each statistical analysis, positive and

negative contrasts were computed. The significance of results was

based on threshold-free cluster enhancement (TFCE, N = 10,0 0 0

permutations) with family-wise error (FWE) corrected p values of

0.05. We further reported statistical results for the more conserva-

tive FWE threshold of p < 0.005. 

2.6.3. Topographical relevance analyses of WMHs and alpha 

oscillations at source space 

To assess the association between alpha oscillations at the EEG

source level and whole-brain regional WMHs, we implemented

GLMs separately for 10 ROIs with parameters of alpha oscillations

covariate of interest, and age, sex, and total intracranial volume as

covariates of no interest. All statistical analyses were further re-

ported with multiple comparisons using TFCE based permutation

testing (N = 10,0 0 0) at FWE level of p < 0.05, as well as with a

conservative threshold of p < 0.005. 

2.7. Sensitivity analyses 

2.7.1. Confounding factors 

Given that different cardiovascular risk factors including body

mass index (BMI), systolic blood pressure (SBP), smoking, and dia-

betes are associated with WMHs ( Habes et al., 2016 ; Lampe et al.,

2019 ; Ryu et al., 2014 ), we further considered these factors as po-

tential confounders (as covariates of no interest) for the voxel-wise

associations between parameters of alpha oscillations and proba-

bility of WMH occurrence in the overall sample (N = 907). To as-

sess a degree of collinearity between the regressors used in GLMs,

we additionally computed variance inflation factor in R. All pre-

dictors had a variance inflation factor below 2, therefore, we con-

cluded that models showed acceptably low multicollinearity . 

http://www.R-project.org/
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2.7.2. Medication 

We implemented the voxel-wise inference analyses between

parameters of alpha oscillations and WMHs excluding participants

taking medications affecting the central nervous system (opioids,

hypnotics, and sedatives, antiparkinsonian drugs, anxiolytics, an-

tipsychotics, antiepileptic drugs). The resulting sample included

801 individuals ( M = 68.96 ± 4.58, 323 female). 

2.8. Control analyses 

2.8.1. Absolute alpha power 

To assess the robustness of our results, we further applied

voxel-wise inference analyses between the probability of WMH oc-

currence and absolute alpha power in the left and right occipital

region at EEG source space, using age, sex, and total intracranial

volume as covariates of no interest. Absolute power in both regions

was log-transformed to normalize the distribution of the data for

statistical analyses. 

2.8.2. Median split 

A median split was performed based on the log-transformed to-

tal WMH volume using dicho function in R (N: higher WMH = 454,

N: lower WMH = 453). We further computed Spearman correla-

tions between total WMH volume (log-transformed, see: Supple-

mentary Figure 2E) and relative alpha power separately for each

group and each ROIs. 

2.9. Mediation analyses 

We performed mediation analyses using mediation package

( Tingley et al., 2014 ) in R to test the association between a pre-

dictor (X), and an outcome (Y) which can be transmitted through

a mediator (M) ( Hayes and Rockwood, 2017 ). Here, we examine

whether a total or localized WMH volume (M) mediates the re-

lationship between age as a predictor (X) and parameters of alpha

oscillations at sensor space as an outcome variable (Y). Bootstrap-

ping (n = 50 0 0) with 99% confidence intervals (CI) was used for

testing the indirect effect because it does not assume normality in

sampling distribution ( Hayes and Rockwood, 2017 ). While the indi-

rect effect shows whether age was associated with the parameters

of alpha oscillations through a mediator, a total effect is the sum of

indirect and direct effect. The indirect effect was considered signif-

icant if the corresponding 99% bootstrap CIs did not include zero. 

2.10. Cognition 

The Trail Making Test (TMT) is a cognitive test measuring ex-

ecutive function, including processing speed and mental flexibil-

ity ( Reitan, 1955 ; Reitan and Wolfson, 1995 ). In the first part of

the test (TMT-A) participants are asked to connect numbers in an

ascending order, while in the second part (TMT-B), participants

need to alternate between numbers and letters. In both TMT-A and

B, the time to complete the task quantifies the performance, and

lower scores indicate better performance. 

We ran mediation analyses with 99% bootstrap CIs using rel-

ative alpha power in different regions as a predictor, total WMH

volume as a mediator, and the task completion time in TMT-A or

TMT-B as an outcome variable. The TMT data was available for

899 participants at the EEG sensor and 848 individuals at the EEG

source space. 

The regression coefficients ( β) and their 95% CIs were estimate,

Mediation analysis tests whether the association between a predic-

tor (X), and an outcome (Y) is transmitted through a mediator (M).

Mediation analysis tests whether the association between a predic-

tor (X), and an outcome (Y) is transmitted through a mediator (M).
3. Results 

3.1. Sample characteristics 

Details about the demographic, anthropometric, cardiovascular

measures, as well as WMH volume, and alpha oscillations can be

found in Table 1 . Histograms of total WMH volume, averaged rel-

ative alpha power, its peak frequency, and LRTC can be found in

Supplementary Figure 2A-E. 

3.2. Topography and characteristics of alpha oscillations 

The relative alpha power at sensor space showed a maximum

over the occipital channels, with a mean value of 0.66 ± 0.17 (%)

(Supplementary Figure 3A). Similarly, the relative alpha power at

source space showed a maximum over the bilateral occipital cor-

tex, including cuneus and lateral occipital regions with a mean

value of 0.59 ± 0.18 (%) (Supplementary Figure 3D). The grand-

average peak frequency was 9.40 ± 0.49 Hz, showing larger values

at occipital regions (Supplementary Figure 3B and 3E). The aver-

age scaling exponent ( v ) was 0.72 ± 0.017. Similarly, topographies

of the scaling exponent had higher values at occipital and parietal

areas as well as frontal regions (Supplementary Figure 3C and 3F). 

3.3. Association of age with WMH volume and alpha oscillations 

We found a correlation between age and total WMH volume

(r = 0.374, p < 0.001, Supplementary Figure 4), but not with the

dWMH/pvWMH (r = 0.03, p > 0.05, Supplementary Figure 5). Re-

garding parameters of alpha oscillations, we found that higher age

was associated with decreased alpha peak frequency all EEG ROIs

(r from -0.13 to -0.17, p FDR < 0.05), while no correlations between

age and relative alpha power or LRTC were found (all p FDR > 0.05).

A full report of these correlations for the entire sample and by sex

are provided in Supplementary Figures 6–8. 

3.4. Topographical association between WMHs and alpha oscillations 

3.4.1. Sensor space 

The voxel-wise inference analyses revealed that higher relative

alpha power (%) in the frontal region was associated with higher

WMH probabilities in the right body of corpus callosum ([16, -26,

32], T = 3.76, k = 653). Higher relative alpha power in the cen-

tral region was associated with higher WMH probabilities in the

right anterior thalamic radiation extending to the posterior corona

radiata ([22, -49, 37], T = 4.44, k = 2744), while higher relative

AP in the right temporal region was linked to higher WMHs in

the right superior longitudinal fasciculus ([22, -49, 37], T = 4.52,

k = 6893) extending to the left inferior fronto-occipital fascicu-

lus ([-21, -53, 32], T = 4.00, k = 4210). Furthermore, higher rela-

tive alpha power in the parietal region was associated with higher

WMHs in the right superior corona radiata ([18, -19, 37], T = 4.05,

k = 4474). Similarly, for relative alpha power in the occipital re-

gion, we observed a higher prevalence of WMHs in the bilateral

superior corona radiata through the body of the corpus callosum

to the anterior corona radiata, including the right anterior thalamic

radiation ([18, -19, 37], T = 4.39, k = 9450). Accordingly, higher

voxel-wise WMH probabilities were associated with higher rela-

tive alpha power independent of age, sex, and brain size, as shown

in Fig. 4 (TFCE, p < 0.05, FWE-corrected). Note that using a more

stringent TFCE, FWE rate of p < 0.005, the correlation between the

probability of WMH occurrence and relative alpha power was only

evident for the occipital region ([18, -19, 37], T = 4.39, k = 904).

Finally, no voxel-wise associations between regional WMHs and al-
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Table 1 

Sample characteristics 

Mean or n Min. Max. SD 

Age 69.49 60.15 80.03 4.63 

Female / Male 380 / 527 

BMI (kg/m 

2 ) 27.59 18.68 42.26 3.97 

SBP (mm Hg) 133.71 92.00 200.5 16.31 

DBP (in mm Hg) 74.54 43.5 120 9.06 

Never / former / active smokers 517 / 319 / 71 

Diabetes (yes / no / unknown) 143/ 748 / 16 

WMH volume (mm3) 3935 127 78509 6676.76 

Normalized total WMH Volume 0.0093 0.0003 0.170 0.015 

dWMH/pvWMH (%) 0.439 0.011 3.635 0.402 

Intracranial volume (mm 

3 ) 1729811 1297219 2466529 147492.5 

Mean relative alpha power (%) 0.55 0.21 0.88 0.15 

Mean alpha peak frequency (Hz) 9.4 7.34 12.01 0.86 

Mean Scaling Exponent ( v ) 0.73 0.53 1.14 0.093 

TMT A (s) 41.33 17.00 126 13.32 

TMT B (s) 89.29 25.00 300 43.49 

Abbreviations: BMI, body mass index; DBP, diastolic blood pressure; dWMH/pvWMH, the ratio 

of deep/periventricular white matter hyperintensities; SBP, systolic blood pressure; SD, standard 

deviation; TMT, Trail Making Test; WMH, white matter hyperintensity. 

Fig. 4. Association between white matter hyperintensities (WMHs) and relative alpha power at EEG sensor space (N = 907). (A) Schematic depiction of the significant 

association between regional WMHs and relative alpha power: thicker lines indicate higher t-values. (B) We implemented nonparametric permutation testing based on 

whole-brain voxel-wise analysis to investigate the association between WMHs and relative alpha power (%). The brain WMH clusters show significant relation with the 

EEG frontal region (purple), central region (orange), right temporal region (yellow), parietal region (green), and occipital region (blue), respectively (TFCE, FWE-corrected, 

p < 0.05 corrected for age, sex and total intracranial volume). (C) Scatter plots show the association between WMH probability (x-axis) extracted from clusters based on 

significant whole-brain voxel-wise inference analyses and elevated relative alpha power (y-axis) in different EEG regions. The resulting statistical images (P-map) were further 

thresholded at 0.05 and binarized (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article). Abbreviations: 

A, anterior; L, left; P, posterior; R, right. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pha peak frequency or LRTC were observed (TFCE, p < 0.05, FWE-

corrected). 

3.4.2. Source. space 

We found that a higher probability of WMH occurrence was as-

sociated with higher relative alpha power (%) in all EEG regions

except for the left frontal region ( Supplementary Table 2, TFCE, p <

0.05, FWE-corrected, Fig. 5 ). With the stricter FWE-level of p <

0.005, the association between the occurrence of WMHs and rel-

ative alpha power was evident for left ([18, -19, 37], T = 4.29,

k = 192) and right occipital regions ([18, -19, 37], T = 4.45,

k = 845). We further observed a negative correlation of regional

WMHs with individual alpha peak frequency in right temporal ([-

26, 29, 35], T = 4.25, k = 2086), left frontal ([-26, 28, 35], T = 3.87,

k = 1143), left cingulate ([-26, 28, 35], T = 3.99, k = 821), right
([31, 49, 29], T = 4.89, k = 222) and left occipital regions ([31, 49,

29], T = 4.77, k = 119) (TFCE, p < 0.05, FWE-corrected). However,

these associations were no longer significant after correcting with

the conservative FWE-level of p < 0.005. Finally, confirming sensor

space analyses, no voxel-wise associations of regional WMHs with

LRTC were observed (TFCE, p < 0.05, FWE-corrected). 

3.5. Sensitivity analyses 

3.5.1. Confounding factors 

Voxel-wise inference analyses after controlling for age, sex, in-

tracranial volume, BMI, SBP, diabetes, and smoking status yielded

a similar relationship between higher WMH probability and ele-

vated relative alpha power in the following regions: central ([22, -

49, 37], T = 4.46, k = 5417), right temporal ([22, -49, 37], T = 4.52,
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Fig. 5. Schematic depiction of the significant association between regional WMHs 

and relative alpha power in EEG source space (N = 855). The circular plot indicates 

EEG ROIs for both hemispheres at source space and their relationship to WMHs 

where thicker lines indicate higher t-values (See: Supplementary Table 1. ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k = 5417), left temporal ([22, -49, 37], T = 4.59, k = 4772), pari-

etal ([18, -19, 37], T = 3.68, k = 231), and occipital ([18, -19, 37],

T = 4.08, k = 4018) EEG regions across the overall sample. Note

that with TFCE, FWE-corrected, p < 0.005, we did not find any clus-

ters. Lastly, no WMH clusters were related to alpha peak frequency

or LRTC (TFCE, p > 0.05, FWE-corrected). 

3.5.2. Medication 

Voxel-wise inference analyses excluding individuals taking cen-

tral nervous system medication (N = 801) still indicated the as-

sociation between higher prevalence of WMHs and increased rela-

tive alpha power at sensor space in the following regions: frontal

([17, 9, 31], T = 4.42, k = 6880), central ([20, -30, 35], T = 4.46,

k = 9063), right temporal ([20, -48, 35], T = 4.57, k = 12098),

left temporal ([22, -49, 37], T = 4.61, k = 9408), parietal ([14, -

8, 31], T = 4.61, k = 9054), and occipital ([18, -19, 37], T = 4.44,

k = 12,885) EEG regions. Importantly, with TFCE, FWE-corrected,

p < 0.005, we identified WMHs clusters (k > 2000) for occipital,

left temporal, right temporal, and a small cluster (k > 200) for

parietal and central EEG regions. Additional voxel-wise inference

analyses revealed that higher WMHs resulted in decreased alpha

peak frequency in right temporal ([17, -27, 33], T = 4.00, k = 138)

and left temporal regions ([17, -27, 33], T = 4.12, k = 503). Lastly,

no WMHs clusters in the brain were related to LRTC (TFCE, p >

0.05, FWE-corrected). 

3.6. Control analyses 

3.6.1. Absolute alpha power 

Voxel-wise inference analyses with absolute alpha power simi-

larly indicated that higher probability of WMH occurrence was as-

sociated with elevated absolute alpha power in right ([-23, 0, 36],

T = 3.98, k = 5633) and left occipital regions ([-23, 0, 36], T = 4.05,

k = 5358) (TFCE, p < 0.05, FWE-corrected). 
3.6.2. Median split 

The correlation analyses based on the median split similarly re-

vealed a positive association between relative alpha power and to-

tal WMH, the correlation values were between 0.07 and 0.14. The

scatter plots of each EEG ROIs for higher and lower WMH groups

can be found in Supplementary Figure 8 . 

3.7. Mediation analyses 

We examined whether total or localized (dWMH/pvWMH)

WMH volume could mediate the relationship between age and rel-

ative alpha power in all cortical ROIs. Investigating the relationship

between age and relative alpha power, we observed a significant

indirect effect of total WMH volume in most of the cortical regions

defined at sensor space ( Table 2 ). The direct effect was not signifi-

cant in any of the ROIs (99% |CI| > 0), and only in the right tempo-

ral region at sensor space did the total effect of age on relative al-

pha power appear to be significant ( Table 2 ). Further, we confirmed

the indirect effects of total WMH volume for relative alpha power

at EEG source space for left parietal ( β = 0.0012, CI = [0.00006–

0.002]), left ( β = 0.0014, CI = [0.00013–0.002]) and right occipital

( β = 0.0014, CI = [0.00015–0.0028]) regions, but not for the left

and right temporal regions. Finally, our results revealed that nei-

ther total nor localized WMH volume mediated the association of

age with alpha peak frequency and LRTC at sensor space (all p >

0.05). 

3.8. Cognition 

Compared to population-based norms ( Hobert et al., 2011 ;

Tombaugh, 2004 ), our sample shows similar TMT scores ( Table 1 ),

indicating good to intermediate cognitive performance. We then

investigated the question of whether the relationship between rel-

ative alpha power and cognition measured by task completion time

in TMT-A and B is mediated by total WMH volume. After con-

trolling for age and sex, we found a significant indirect effect of

total WMH volume on the association between TMT-A and rela-

tive alpha power only in the right temporal region ( β = 1.071,

CI = [0.123–2.539]). In TMT-B, we observed a significant indirect

effect of total WMH volume for the frontal region ( β = 3.399,

CI = [0.252–7.896]), as shown in the Supplementary Table 2. At

EEG source space, however, we did not confirm these findings.

More precisely, we did not observe any indirect effects of alpha

power in the right temporal region on TMT-A and in the left and

right frontal region on TMT-B. Further, in all analyses with EEG-

source space, the direct and total effects were not significant. 

4. Discussion 

The main goal of this study was to investigate whether re-

gional WMHs affect parameters of alpha oscillations independently

from age. We pursued this aim using a large sample of cogni-

tively healthy older individuals (e.g., also based on TMT scores;

Hobert et al., 2011 ; Tombaugh, 2004 ) from a population-based

study ( Loeffler et al., 2015 ). We showed distinct regional relation-

ships between relative alpha power and WMHs: our topographi-

cal analysis suggested that higher occurrence of WMHs in supe-

rior, posterior, and anterior corona radiata, as well as thalamic ra-

diation, was related to higher relative alpha power, with strongest

correlations in the bilateral occipital cortex. Adjusting for poten-

tial confounding factors including age, cardiovascular risk factors,

or controlling for the effect of medication did not change these re-

sults. While the direct link between age and alpha power assessed

by correlation analyses was absent, mediation analyses supported

an indirect link for the existence of the relation between age and



8 D. Kumral, E. Cesnaite, F. Beyer et al. / Neurobiology of Aging 112 (2022) 1–11 

T
a

b
le
 
2
 

M
e

d
ia

ti
o

n
 
e

ff
e

ct
 
o

f 
to

ta
l 

W
M

H
 
v

o
lu

m
e
 
o

n
 
th

e
 
a

ss
o

ci
a

ti
o

n
 
b

e
tw

e
e

n
 
a

g
e
 
a

n
d
 
re

la
ti

v
e
 
a

lp
h

a
 
p

o
w

e
r 

a
t 

E
E

G
 
se

n
so

r 
sp

a
ce
 
(N

 
= 

8
5

5
) 

E
E

G
 
R

e
g

io
n
 

Fr
o

n
ta

l 
C

e
n

tr
a

l 
R

ig
h

t 
te

m
p

o
ra

l 
Le

ft
 
te

m
p

o
ra

l 
P

a
ri

e
ta

l 
O

cc
ip

it
a

l 

β
p
 
o

r 
9

9
.5

%
 
C

I 
β

p
 
o

r 
9

9
.5

%
 
C

I 
β

p
 
o

r 
9

9
.5

%
 
C

I 
β

p
 
o

r 
9

9
.5

%
 
C

I 
β

p
 
o

r 
9

9
.5

%
 
C

I 
β

p
 
o

r 
9

9
.5

%
 
C

I 

T
o

ta
l 

e
ff

e
ct
 
c 

0
.0

0
0

4
 

0
.7

4
2
 

0
.0

0
0

6
 

0
.5

8
0
 

0
.0

0
2
 ∗

0
.0

3
3
 ∗

0
.0

0
2
 

0
.0

6
2

0
 

0
.0

0
1

7
 

0
.1

6
6
 

0
.0

0
0

6
 

0
.5

8
4
 

M
e

d
ia

ti
o

n
 
e

ff
e

ct
 
a
 ∗ b
 

0
.0

0
0

9
 

[-
0

.0
0

0
3

, 
0

.0
0

2
1

] 
0

.0
0

1
 

[-
0

.0
0

0
0

8
, 

0
.0

0
2

2
] 

0
.0

0
1

3
 ∗

[0
.0

0
0

3
, 

0
.0

2
4

] ∗
0

.0
0

1
1
 ∗

[0
.0

0
0

0
2

, 
0

.0
0

2
] ∗

0
.0

0
1

5
 ∗

[0
.0

0
0

2
, 

0
.0

0
2

8
] ∗

0
.0

0
1

4
 ∗

[0
.0

0
0

1
2

, 
0

.0
0

2
9

] ∗

D
ir

e
ct
 
e

ff
e

ct
 
c’
 

-0
.0

0
0

5
 

0
.7

2
1
 

-0
.0

0
0

4
 

0
.7

3
0
 

0
.0

0
0

8
 

0
.4

4
 

0
.0

0
0

9
 

0
.3

9
4

4
 

0
.0

0
0

2
 

0
.8

9
4
 

-0
.0

0
0

8
 

0
.5

5
7
 

W
h

il
e
 
th

e
 
in

d
ir

e
ct
 
o

r 
m

e
d

ia
ti

o
n
 
e

ff
e

ct
 
sh

o
w

s 
w

h
e

th
e

r 
a

g
e
 
w

a
s 

a
ss

o
ci

a
te

d
 
w

it
h
 
a

lp
h

a
 
p

o
w

e
r 

th
ro

u
g

h
 
a
 
m

e
d

ia
to

r 
(t

o
ta

l 
W

M
H

, 
lo

g
 
tr

a
n

sf
o

rm
e

d
),
 
to

ta
l 

e
ff

e
ct
 
is
 
th

e
 
su

m
 
o

f 
in

d
ir

e
ct
 
a

n
d
 
d

ir
e

ct
 
e

ff
e

ct
 
(a

g
e
 
o

n
 
re

la
ti

v
e
 
a

lp
h

a
 

p
o

w
e

r)
. 

T
h

e
 
in

d
ir

e
ct
 
e

ff
e

ct
 
w

a
s 

co
n

si
d

e
re

d
 
si

g
n

ifi
ca

n
t 

if
 
th

e
 
co

rr
e

sp
o

n
d

in
g
 
9

9
%
 
b

o
o

ts
tr

a
p
 
C

Is
 
d

id
 
n

o
t 

in
cl

u
d

e
 
ze

ro
 
(m

a
rk

e
d
 
in
 
b

o
ld
 
a

n
d
 
a

n
 
a

st
e

ri
sk
 
si

g
n

).
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

alpha power through the total WMH volume. This finding indicates

why we should consider the age-related structural changes in the

brain (e.g., WMHs) when we investigate the aging effects on EEG

neural oscillations. 

Alpha rhythm is the most salient rsEEG oscillatory phenomenon

that originates from thalamocortical and cortico-cortical interac-

tions ( Bazanova and Vernon, 2014 ; Lopes Da Silva et al., 1997 ).

Alterations in alpha oscillations have previously been linked to

changes in different anatomical features including properties of

WM (e.g., Valdés-Hernández et al., 2010 ). Regarding WMHs, for in-

stance, a previous EEG-MRI study showed that higher relative al-

pha power in parietal regions was associated with higher scores

of the prevalence of WMHs in 79 individuals with mild cognitive

impairment ( Babiloni et al., 2008a ), consistent with our findings in

this population-based sample. Previous studies with computational

models have given further support for the notion that resonance

properties of feedforward, cortico-thalamocortical, and intracortical

circuits substantially influence alpha oscillations ( Hindriks and van

Putten, 2013 ). In the present study using a larger sample, we sim-

ilarly observed that regional WMHs, detected mostly in superior

corona radiata, containing thalamocortical fibers, affect interindi-

vidual differences in relative alpha power. This finding was fur-

ther reproduced when using alpha power values extracted from

EEG source-based analysis. Although we did not observe significant

association between these 2 measures after controlling for other

confounding factors at stricter threshold (TFCE, FWE < 0.005), the

consistent results with regular FWE threshold at voxel-wise level

suggest a possible neurophysiological link between WMHs and rel-

ative alpha power. 

But, how could lesions in the WM possibly affect EEG sig-

nal which mainly reflects neural synchrony within gray matter?

While in principle a hyperintensity in T2-weighted MR sequences

is a quite unspecific marker of various pathologies, postmortem

histopathological studies of older adults with WMHs have mostly

reported demyelination, axonal loss, and other consequences of is-

chemic small vessel disease ( Smith et al., 20 0 0 ; Wardlaw et al.,

2015 ). Myelin contributes to the speed of impulse conduction

through axons, and the synchrony of impulses between distant

cortical regions ( Fields, 2015 , 2008 ). Reductions of conduction ve-

locity due to demyelination and loss of (communicating) axons

are assumed to be responsible for cognitive dysfunctions which

are known to be based on delicately orchestrated propagations

of neuronal signals. Electrophysiologically, interactions, and syn-

chrony between neuronal populations are reflected in rhythmic

M/EEG signals, of which alpha oscillations are the most prominent

ones ( Bazanova and Vernon, 2014 ; Lopes Da Silva et al., 1997 ). Al-

pha power is a quantitative marker of the degree of synchrony in

the neuronal activity of the corresponding neuronal populations

( Pfurtscheller and Lopes Da Silva, 1999 ). While for a long-time al-

pha oscillations were regarded as idle rhythms of non-active brain

areas, a plenitude of studies has convincingly demonstrated that

alpha oscillations play an important role in many cognitive func-

tions ( Fox et al., 2016 ; Klimesch, 1999 ; Palva and Palva, 2007 ). For

instance, in motor and sensory domains it has been shown that

amplitude decreases of alpha oscillations in focal areas (i.e., reflect-

ing cortical activation) is in turn associated with the inhibition of

neighboring cortical areas ( Pfurtscheller and Lopes Da Silva, 1999 ).

This phenomenon is thought to include mutually inhibitory inter-

actions between the chain of modules including thalamocortical

and reticular nucleus neurons which are involved in the genera-

tion of alpha oscillations ( Suffczynski et al., 2001 ). Importantly, the

authors hypothesized that this surround inhibition should under-

lie other cognitive operations such as focused attention and stimu-

lus selection. Such topographically specific relationships are likely

to be disturbed by the alterations in conduction velocity and ax-
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onal loss in the thalamocortical circuitry ( Pajevic et al., 2014 ). As a

result of such WM disturbances, a modular organization of thala-

mocortical inputs and a corresponding demarcation between cor-

tical patches of enhanced and attenuated alpha oscillations could

be abolished, thus leading to a larger spread of alpha oscillations

across the cortex and consequently to stronger and spatially less

specific alpha oscillations. This in turn might explain a positive as-

sociation between alpha power and WMHs. The hyperactivation of

alpha with WMHs could also be ineffective in preserving cognitive

performance or even reflect the progression of neurodegenerative

alterations ( Corriveau-Lecavalier et al., 2019; Pons et al., 2010 ). 

Despite a number of reports of age-related alpha power al-

terations ( Babiloni et al., 2006b ; Lodder and van Putten, 2011 ;

Vysata et al., 2012 ), in our study, we replicated other recent stud-

ies ( Sahoo et al., 2020 ; Scally et al., 2018 ) which did not find strong

evidence for age-related attenuations of relative alpha power. The

discrepancy in findings with earlier reports could be due to the

narrow age range of our participants, as well as the individually

adjusted alpha frequency range based on the peak frequency. In

fact, preserved peak power at peak frequency has recently been re-

ported in an older sample ( Scally et al., 2018 ), suggesting that any

observed age-dependent power changes might be due to shifts in

the frequency range at which alpha peak occurs. While our cross-

sectional dataset cannot provide unequivocal evidence for a causal

relationship, mediation analyses demonstrated a presence of an

indirect relationship between age and alpha power through total

WMHs. Currently, in the literature, there is an ongoing discussion

on the interpretation and meaning of an indirect (mediation) ef-

fect when a total effect is not statistically significant ( Hayes and

Rockwood, 2017 ; Zhao et al., 2010 ) . In our paper, following the

suggestions by Hayes and Rockwood (2017) , we also reported and

interpreted the mediation effects even when a total effect was

not significant. More precisely, the mediation via total WMH vol-

ume showed that higher age was associated with the elevated

relative alpha power in the right temporal, parietal, and occipi-

tal regions. As mentioned before, age-related reductions of alpha

power in occipital regions were previously reported in different

sample populations (see detailed review: Ishii et al., 2018 ). As we

show in this study, in healthy older adults the association between

these 2 measures can potentially be mediated by WMH volume

thus demonstrating a positive relationship between alpha power

and age. Therefore, our result shows why one should potentially

consider structural correlates when investigating age-related alter-

ations in neural oscillations. 

In the literature, other commonly reported age-dependent

changes in spectral parameters of EEG include slowing of the al-

pha peak ( Knyazeva et al., 2018 ). We replicated the slowing of

the alpha peak frequency with increasing age despite the narrow

age range. Alpha peak slowing has previously been suggested to

be linked to a less efficient coordination of neuronal activity in

this frequency range ( Mierau et al., 2017 ). We further observed

that slowing of alpha peak with age was independently associ-

ated with higher WMHs. As EEG oscillations reflect a complex cir-

cuitry of cortical inhibitory and excitatory neurons, it may be pos-

sible that the age-related reduced activation of these neurons due

to acetylcholine or synaptic damage may lead to a lowering of

alpha peak ( Gouw et al., 2017 ). However, our results should be

interpreted with caution since we only observed significant as-

sociation between these 2 measures in EEG-source but not sen-

sor space. Finally, we explored the relationship between age and

LRTC in the amplitude envelope of alpha oscillations that capture

scale-free dynamics of resting-state oscillations . LRTC has previ-

ously been linked to the presence of a critical state in neural net-

works, which is characterized by the balance of excitation and

inhibition ( Poil et al., 2012 ) that has been suggested to be opti-
mal for the processing of information in the human brain. Regard-

ing the association between age and LRTC, previous studies have

shown that the observed age-related changes might be dependent

on age range — it increases from childhood to early adulthood,

after which it stabilizes ( Nikulin and Brismar, 2005 ; Smit et al.,

2011 ). In accordance with these previous findings, in our sam-

ple of older adults, we observed no pronounced age-related LRTC

attenuations. 

5. Limitations 

While a strength of this study is the large population-based

sample, the study design is cross-sectional and does not allow

making inferences about the directionality of the association be-

tween WMHs and alpha oscillations. Longitudinal studies are re-

quired to further clarify these associations. Research using other

advanced techniques such as quantitative MRI or specific assess-

ment of tissue properties with ultra-high field MRI combined with

intracranial EEG recording could further provide valuable insights

into the nature of the relationship between WM properties and

alpha oscillations. We performed a relatively coarse parcellation

of the brain at EEG source space analysis due to the relatively

small number of electrodes (n = 31). A denser spatial sampling

of the EEG (not available in the present cohort) would allow in-

vestigation of this relationship with better spatial precision. Our

approach of investigating the relationship between EEG- and MRI-

based measures (parameters of alpha oscillations and WMHs) and

age can readily be extended to power changes in other frequency

bands (e.g., delta or theta), EEG features (e.g., connectivity or phase

synchrony; Hinault et al., 2020 ; Quandt et al., 2020 ), and other

brain anatomical features (e.g., diffusion tensor imaging), both un-

der task or resting-state conditions. It therefore opens new ques-

tions for investigating the brain structure and function relationship

at potentially more detailed temporal and spatial scales. Finally, we

had no specific hypothesis targeting regionally specific WMHs and,

even though, our whole-brain search revealed statistically signifi-

cant and interpretable results, our findings should be regarded as

exploratory. 

6. Conclusion 

Using sensitive high-resolution neuroimaging techniques in

cognitively healthy older adults (N = 907), we showed that higher

probability of WMHs is related to relative alpha power. Impor-

tantly, our study provides evidence that the changes in alpha os-

cillations do not relate to aging per se but rather depend on the

impact of age-related neuropathology, such as WMHs. Our findings

thus suggest that longitudinal EEG recordings might be sensitive

for the detection of alterations in neuronal activities due to pro-

gressive structural changes in WM. 
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