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Abstract: The development of the field of digital humanities in recent years has led to the increased
use of knowledge graphs within the community. Many digital humanities projects tend to model their
data based on CIDOC-CRM ontology, which offers a wide array of classes appropriate for storing
humanities and cultural heritage data. The CIDOC-CRM ontology model leads to a knowledge graph
structure in which many entities are often linked to each other through chains of relations, which
means that relevant information often lies many hops away from their entities. In this paper, we
present a method based on graph walks and text processing to extract entity information and provide
semantically relevant embeddings. In the process, we were able to generate similarity recommenda-
tions as well as explore their underlying data structure. This approach was then demonstrated on the
Sphaera Dataset which was modeled according to the CIDOC-CRM data structure.

Keywords: data extraction; knowledge graph; CIDOC-CRM; digital humanities; Sphaera; recom-
mender system

1. Introduction

The term knowledge graph was first coined by Google in 2012, defining a large
database connecting things, not strings, through different types of relations. Since then,
this type of database has played an important role in recommender systems [1], natural
language processing and question answering [2], as well as other fields such as the digital
humanities [3–8]. Within the humanities, the term knowledge graph can be considered a
knowledge organization system [9]. Such a term is rooted in the centuries-old tradition of
classifying knowledge, or in the case of libraries, books, based on their meta-data in order to
facilitate data retrieval. With the recent developments in information technology, the field
of digital humanities has been keen on curating and developing humanities knowledge
graphs, taking advantage of openly available knowledge graphs such as DBpedia [10] and
Wikidata [11] to enhance their databases. Such knowledge graphs are also being constructed
and published according to linked data principles [12]. This increase in knowledge graph
use within the digital humanities community opens the door for standardization efforts
such as the one presented by the International Committee for Documentation—Conceptual
Reference Model (CIDOC-CRM) [13]. This CIDOC-CRM model proposes a theoretical and
practical tool for ontology creation in the fields of cultural heritage and humanities, with
the aim of creating coherent shareable datasets across multiple institutions. However, the
complexity of including all possible heritage and humanities data combinations under
one umbrella leads to complex knowledge graph structures. These structures rely on
deconstructing knowledge to its simplest generalized atoms (see Figure 1), which are
then stored in separate entities, often leading to the creation of long chains of relations
connecting the head and tail of relevant entities within a single knowledge graph (see
Figure 2).
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Figure 1. Sphaera CIDOC-CRM data model.

Figure 2. Path expressing the relation between a book and a book part in the Sphaera dataset.

In this paper, we present a method that allows researchers working with CIDOC-CRM
knowledge graphs to embed certain entities, which we call main entities, in order to better
understand the underlying phenomena that these entities encode (e.g., such as the reprint
families discussed in Section 6), to better represent these entities, and to better recommend
similar objects within the same database, leading to higher public engagement. In order to
achieve this, we propose a knowledge graph walk, which we call a relative sentence walk,
capable of generating sentence data based on biased random walks through the knowledge
graph. These sentences create a representative document of each unique entity, which are
subsequently embedded using natural language processing approaches. The importance of
this approach is then demonstrated on the Sphaera dataset. In the following, we discuss the
approaches used in knowledge graph embeddings and the specific needs and limitations
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of digital humanities data in Section 2; we then discuss the CIDOC-CRM model which
is often used in humanities and cultural heritage databases in Section 3; followed by the
Sphaera dataset in Section 4; and our method to embed graph entities in Section 5; finally,
we present the results in Section 6.

2. Related Work

Knowledge graph embedding is an active field of research, with numerous techniques
contributing to the ever-growing field. While we did not aim to present a comprehensive
review of knowledge graph embedding in this paper, a short discussion was conducted in
order to put into perspective what we aimed to accomplish.

The vast majority of the research conducted on knowledge graph embedding heavily
relies on triple sets or facts, which can be noted as (h, r, t) where h represents the head, r
represents the relation, and t represents the tail of a three-item fact. Such approaches started
with translation-based models such as TransE [14] which represents every entity and
relation in a low-dimensional vector space and each fact is represented by the connection
of h-r-t in low dimensional space. The correct entity relation embeddings are then learned
through minimizing a hinge ranking loss. While TransE might have been one of the
early adopters of translation invariant approaches in knowledge graph embeddings, many
subsequent papers built on the TransE model achieved better results by allowing each
entity to be represented to its own hyperplane, as in TransH [15], as well as separating the
embedding spaces of entities and relations as in TransR [16]. Numerous other translational
approaches followed such as TransD, which uses a dynamic mapping matrix and solves
the entity diversity by applying a transitional matrix determined by entity relations [17], as
well as TransM [18] and TransA [19].

Tensor factorization methods were also used to learn knowledge graph embedding,
where the triplet facts are represented as the 3D binary tensor, and each tensor is rep-
resented by X ∈ Rn×n×m, and n and m represent the number of entities and relations,
respectively, [20]. The tensor is populated with binary numbers, where Xijk = 1 when
the i-th entity is related to the j-th entity through relation k. This approach was used by
RESCAL [21], which proposed a rank-d factorization to obtain knowledge graph semantics.
Similar tensor factorization approaches were used in methods such as DistMult [22]. How-
ever, with the gain in popularity of neural networks, many knowledge graph embedding
approaches began to rely on neural networks to learn entity relation embeddings. Semantic
Matching Energy (SME) [23] proposes an energy function to judge the authenticity of a
triple fact using a shallow neural network. In this method, the embedded triple fact is
passed to the network in three separate vectors associated with each component of the
triple. The head and tail of the triple fact are combined, separately, with the relation using
linear and bilinear functions in two different versions of SME. The parameters of the vector
combination functions are then learned during training. Finally, the energy function is
computed by matching the left (i.e., head–relation) and the right (i.e., relation–tail) vectors
through a simple dot product. Other approaches, such as ConvKB [24], represent each
triplet fact as a three-column matrix where each column represents a part of the fact. This
matrix is then fed to a convolutional neural network, where the output vectors are then
concatenated and evaluated using a dot product with a weight vector to obtain a score. This
scoring is then used to evaluate the authenticity of the triple fact. Neural tensor networks
(NTN) [25] are used to calculate the energy score between the head and tail, f (h, t). NTN
replaces the linear layer of a traditional neural network architecture with a bilinear tensor
layer. While the above is not a comprehensive review of knowledge graph embedding,
it provides an overview of the three main algorithm categories: translation, tensor, and
neural network-based approaches.

However, the majority of knowledge graph embedding approaches rely on capturing
the relation between triple facts, and often ignore, or do not take into account, the neigh-
borhood information, which can hold very rich information on the nature of the relation
between the different entities. Additionally, the totality of knowledge graph embeddings



Information 2021, 12, 503 4 of 18

are suited for traditional knowledge graph architecture, where each entity represents an
distinct object, and each relation represents a type of interaction between the said entities.
Such approaches are not ideal for peculiar knowledge graph cases, such as the ones often
constructed using CIDOC-CRM principles [13], as discussed in the following section.

3. CIDOC-CRM

The International Committee for Documentation—Conceptual Reference Model
(CIDOC-CRM) was first introduced in 2006 in order to enable the integration and re-
construction of information from humanities and cultural sources, and to allow for better
interpretations of these data [13]. The model itself presents an ontology with the aim of
formally defining and structuring the underlying semantics that exist while recording,
documenting, and storing heterogeneous data. In doing so, it mainly relies on a predefined
set of classes, properties, as well as constraints to ensure consistent modeling between
projects and institutions [26]. The main aim is then to ensure the consistent recording of
cultural heritage and humanities data, stored in the form of different entities belonging to
different pre-set classes, related to each other by structured relations.

Databases constructed based on the CIDOC-CRM approach present a special form
of knowledge graph architecture, where class hierarchy defines many of the relations
between entities and many of what can be described as attributes are stored in their own
entity classes connected to the main entity through descriptive relations. This means
that each main entity, while comprehensive in itself, can be completed by a large set of
relations that enrich it with descriptive information. For example, an entity describing a
book can only be fully understood by following the relevant relations to other descriptive
entities, which lead to title entities, page entities, publication entities, as well as other
relevant pieces of information. In this case, the CIDOC-CRM allows for the expansion of
regular knowledge graph structures to include numerous entity properties, themselves
stored in their own entities. Based on this knowledge graph architecture, it follows that
a consistent embedding of the main entities should not only look at triple facts, but also
take into consideration the main entity’s attributes. To better understand the CIDOC-CRM
knowledge graph architecture, we present the Sphaera knowledge graph [3], modeled
according to the CIDOC-CRM principles.

4. The Sphaera Knowledge Graph

The project Sphere: Knowledge System Evolution and the Shared Scientific Indentity of
Europe (sphaera.mpiwg-berlin.mpg.de, accessed on 1 December 2021) aimed to study
the mechanisms behind the evolution of knowledge during the early modern period by
looking at 359 different editions of European university cosmology textbooks published
between 1472 and 1650, centered on the Tractatus de Sphaera by Johannes de Sacrobosco
(1195–1256) [27]. These editions can be separated into five different categories:

• Original treatises, which are editions that represent the Tractatus de Sphaera as a stand-
alone work;

• Annotated original treatises, which are editions that include the Tractatus de Sphaera
with annotations and commentary by other authors;

• Compilations of texts, which are editions that exclusively include the Tractatus de
Sphaera among other treatises by different authors;

• Compilations of texts and annotated originals, which include editions that feature the
Tractatus de Sphaera as the basis for a commentary or annotation, and also includes
work by other authors;

• Adaptions, which are editions that contain texts that are heavily influenced by the
Tractatus de Sphaera in terms of content and structure, but do not include the origi-
nal text.

Each of the 359 editions within the Sphaera corpus is atomized into 450 different text-
parts, which represent passages of texts covering well-defined subjects within the studied

sphaera.mpiwg-berlin.mpg.de
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treatises, as well as paratexts, which are short texts often added to the original content [27].
These text-parts are grouped into five different classes as shown below:

• Content parts, which are the core scientific texts that rarely changed and were consid-
ered as the reference text in each edition;

• Paratext—poetry, which represents short poem dedications, often added at the begin-
ning of certain editions;

• Paratext—dedications letters are short passages of dedication, and can often be an
indication of the level of prestige of certain editions;

• Paratext—letters to reader or preface, are short passages addressing the reader;
• Paratext—other, which represents a small group of texts that do not fit in the previous

three paratext categories.

The entirety of the Sphaera corpus is then stored in a knowledge graph originally built
by Florian Kraütli [3] using CIDOC-CRM logic [13], as well as its extension, FRBRoo [28].
The central element of this database is the book edition, represented by a single copy
of each of each which is considered to be a representative sample for the entire edition
print-run. These editions are considered as main entities, which can be described by large
networks of property–entity relations, where properties such as content, pages, and other
descriptive attributes are stored in their own entity classes, numerous hops away from
the book edition entities (see Figure 1). Here, an example is best suited to clarify the
logic of such a diagram. Each of the 359 editions within the Sphaera knowledge graph
is represented by a CIDOC-CRM “F5:Item” Entity Class, as well as the “Sphaera:Book”
subclass. This represents the physical copy of the book, and thus any entities related to
the “F5:Item” contain information that can describe the physical copy represented by the
“F5:Item” in question. For example, the “P43:hasDimension” relation, which connects the
“F5:Item” to an “E43:Dimension” entity, aims to express the physical format of the physical
book in question. While the “F5:Item” represents the physical copy, its content, i.e., the
text contained in the physical book, is expressed by different entities according to the
CIDOC-CRM standards, which are connected to the “F5:Item” physical book through a
“P128:Carries” relation that connects the “F5:Item” to an “F24:publicationExpression”, and
this in turn refers to the text intended to be published by the “F5:Item”. The text represented
by the “F24:publicationExpression” represents the entirety of the book’s content, including
the page numbers, indices, table of contents and any other additions that might have been
added by the publishers to make the book easier to navigate. The content of the treatise in
question, without from any addition, is expressed by the “F22:self-containedExpression”,
related to the “F24:publicationExpression” by a “P165:incorporates” relation. This is to
signify that the treatise’s text in question is contained within the totality of the book’s
content, which in itself is related to a “Sphaera:Part” through a “P148:hasComponent”
relation, indicating that each treatise is divided into smaller components, or parts, which
are often shared across multiple editions within the Sphaera corpus (see Figure 2). Other
relations along the CIDOC-CRM standards can be seen in Figure 1, while a more detailed
look at the logic of CIDOC-CRM and Sphaera can be found here [3].

The diagram in Figure 1 forms the base of the Sphaera knowledge graph, with each
of the 359 editions connected to multiple entities that encode its description. The books
themselves are not explicitly connected to each other by any relation. However, books could
contain shared parts, be published by the same publisher, or printed by the same printer, or
written (or contains written parts) by the same authors; they could also be published in the
same city, the same year, as well as a host of implicit connections that one can use to embed
the entities close to each other. While historical research added several direct connections
between books based on their semantic similarity [27,29], these links were omitted from
the analysis for this paper in the aim of only using CIDOC-CRM relations.

It is then based on the desire to extract the underlying similarity from such a complex
knowledge graph, and to propose semantically similar books based on the stored data that
we propose a general CIDOC2VEC approach applicable to CIDOC-CRM based knowledge
graphs and described in the following section.
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5. Method: CIDOC2VEC

Due to the complexity of CIDOC-CRM knowledge graphs, the lack of formalized
relations between the main entities and the lack of direct triple facts that can express the
simple set of properties of a book such as (Book-X, wasAuthoredBy, Person-Y, or Book-X,
contains, Part-Y), most of the current approaches presented in Section 2 are inefficient as
they are optimized to handle data structures with direct connections between entities. The
aim of CIDOC2VEC here is not to predict any missing relation, especially since this is rarely
the objective within humanities, but to generate recommendations, or similarity clusters
based on the knowledge graph information and intrinsic relations between well-connected
main entities with at least a single outgoing relation. Such recommendations could be
useful for suggesting similar items within large collections stored on the basis of this data
structure, as well as for revealing new information regarding the collection to obtain new
insights into the corpus in question. To achieve this goal, we propose CIDOC2VEC, which
is composed of two main modules: a relative sentence walk module and natural language
processing module.

5.1. Relative Sentence Walk (RSW)

The nature of the syntactical similarity between reading knowledge graphs and natural
language is leading to a growing field focused on exploring the symbiosis between natural
language processing (NLP) models and knowledge graphs [30–32]; it is this similarity that
inspired relative sentence walks (RSWs), and its CIDOC-CRM adapted characteristics. The
RSW has two main objectives. The first was to collect the attributes of any main entity
within the CIDOC-CRM model by reading biased walks through the knowledge graph,
starting with the main entities to be investigated. The second is to explicitly manifest the
implicit relations between main objects within the CIDOC-CRM knowledge graph.

To accomplish the first objective of the RSW, we proceeded to initiate n walks from
each of the main entities within the CIDOC-CRM knowledge graph. Given the nature of
the CIDOC-CRM syntax, and the fact that a lot of relevant information is stored in the leaf
nodes of relatively deep branches of the graph, we added a bias to these walks, inspired
by node2vec [33], to favor deeper walks within the knowledge graph in search of richer
information-carrying branches. In doing so, we constructed sentences in the following
fashion: head, relation, tail, relation, tail, relation, tail.

The second objective of the RSW is accomplished by creating relative sentences, which
make explicit the intrinsic connections between main entities. A schematic representation of
such a relative walk is shown in Figure 3. Following this logic, we evaluate the importance
of each entity at every step of the walk by calculating an adjustable importance metric
based on an entity node centrality (see Equation (3)). If the node importance is higher than
a calculated threshold θ, RSW considers the incoming relation to the current entity when
evaluating its next hop destination, and can possibly make a jump, signified by the dashed
red line in Figure 3, to retrace the hops within the properties of a second main entity. In
this logic, the sentence generated from Figure 3 can be read as follows: Entity A is related to
entity B, which is related to entity C; entity C is a part of entity Y, which is connected to entity Z.
This approach allows us to explicitly express the implicit relations between the different
main entities within the generated sentences.

RSW Algorithm

Here, we formalize the RSW approach, and present a short pseudo-code to better
explain its logic. As explained above, each RSW starts from a main entity. These main
entities can be chosen by the user depending on their objective, so long as the entity
in question possesses at least one outgoing relation. However, given the nature of the
data stored in the CIDOC-CRM knowledge graphs, such main entities tend to be objects,
documents, or works of historic and cultural significance. Within the Sphaera dataset, the
main entities can be considered to be the 359 book editions.
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We considered the CIDOC-CRM knowledge graph as G = (V, E), where G is the
entire knowledge graph, V represents the set of nodes in this graph, which in this case is
represented by all entities, and E represents the set of directed edges—in this case, relations
connecting the entities within G.

Figure 3. Schematic representation of relative sentence walks. Entities A and Z are two different main
entities, along with their connecting entities in gray. Both main entities share an intrinsic connection
to entity C, which is not expressed in the CIDOC-CRM logic (represented here by a red dashed line).
The relative sentence walk can then reverse walk to connect entities A and Z, through C, shown here
in green lines.

For each of the n random walks Wn, we start from one of the main entities, denoted
here as e0, with ei denoting the i-th node of the walk. At each node, the transition probability
can be described by Equation (1) below:

P(ei|ei−1) =

{
Π i f (ei, ei−1) ∈ E
0

(1)

where Π is the normalized transfer probability between ei and ei−1.
We can control this walk by introducing a bias term β, which helps direct the tran-

sitions between entities. This bias term is constructed to follow the path of abundant
information within the CIDOC-CRM knowledge graph. This is based on the premise that,
within CIDOC-CRM, entities with a large number of outgoing relations are those that
contain a larger number of relevant pieces of information, as they can lead to numer-
ous different types of property attributes, and thus numerous types of different sentence
structures. In this way, we construct β as follows in Equation (2):

β(i,j) =
dout(j)

∑n
j dout

(2)

where βi, j represents the bias term applied to the transition probability between nodes i
and j, dout(j) represents the out-degree of node j, and the sum of dout represents the local
total of out-degrees from all the entities connected to node i. In this fashion, β can be
thought of as a bias weight based on a local normalized out-degree which attracts the RSW
towards entities with more information.

The final step of the RSW algorithm is the relative sentence generation. Thus, in
addition to what is described above, at each step of the walk, the current node entity is
investigated by examining its importance within the knowledge graph (Figure 4). The
importance here is gauged again based on the entity’s in and out degree. However, it is
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worth mentioning that there exists several graph neural network approaches that estimate a
node’s importance within knowledge graphs such as GENI [34]; here, we only rely on node
relation information from its direct neighbors to generate un-learned importance estimates.

Figure 4. Node walk evaluation at node j.

To estimate node importance, we use node centrality, estimated by each node’s in-
degree, din, as shown in Equation (3) below:

θj = β j × log (din,j + η) (3)

where η is a small positive constant and β is the weight used in the previous hop towards
node j calculated in Equation (2). The use of the out-degree value based on β in Equation (3)
is based on the premise that, within the CIDOC-CRM syntax, entities connected to numer-
ous attributes are able to portray a richer semantic meaning than those that are connected
to a low number of attributes (i.e., leaf nodes). It is thus beneficial to reduce the importance
of leaf nodes, while highlighting the importance of node entities with the ability to carry
more information. This is best demonstrated within the Sphaera data structure, where leaf
nodes such as E56:Language can be shared by a large number of books, while entities with
a high number of attributes, such a Sphaera:Part, can portray more semantically relevant
information, and thus two books sharing the same part tend to have more in common than
two books only sharing the same language (as seen in Figure 1).

Nodes with importance scores above a predefined threshold are thus eligible to be
transition nodes, and a gateway towards the construction of a relative sentence. In such
cases where importance scores are above the threshold, the algorithm considers outgoing
edges, as well as incoming edges from other main entities, when evaluating its next move
within the knowledge graph. If an incoming edge is selected, then the walk retraces its
steps within the graph of the second main entity, thus connecting the two main entities by
constructing meaningful sentences through the knowledge graph (see Figure 3).

The generated sentences can then take two main forms following the diagram shown
in Figure 1:

• Regular sentence: Book:A—Carries—a Publication Expression—incorporates a Self
Contained Expression—has Language—Latin.

• Relative Sentence: Book:A—Carries a—Publication Expression—incorporates—a Self
Contained Expression—has component—Part:C—which is component—of a self-
contained expression—incorporated in—a Public Expression—carried by—Book:B.

5.2. Document Representation Using DOC2VEC

Using the RSW algorithm, we generated n walks starting from each main entity,
which created an n sentence representative document for each main entity. Inspired by
word2vec [35] and doc2vec [36], we generated document embeddings using doc2vec. This
approach was based on the word2vec model which predicts target words based on its
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context, i.e., a window of words before and after the word in question. The model’s input
is represented by the vector representation of context words, which are then weighed,
averaged, and projected in a projection layer. Using the weights from the output layer, a
score was calculated for each word, which represents the probability that the chosen word
is the next one in the sequence of words [36]. This is formalized as follows: w1, w2, . . . , wn
represents a sequence of training words, with a context window c, which then aims to
maximize the average log probability shown in Equation (4):

1
T

T

∑
t=1

logp(wt|wt−c...wt+c) (4)

The prediction task is often performed using Softmax, as shown in Equation (5):

p(wt|wt−c, ..., wt+c) =
eywt

∑i eyi
(5)

where yi is the un-normalized log probability for each output word i computed in Equation (6).

y = b + Uh(wt−c, ..., wt+c; W) (6)

where U and b are the softmax parameters, and h is constructed by the concatenation of
word vectors.

The above describes the word2vec [35] approach, where each word in a sentence,
within the predefined context window, c, contributes to the prediction of the next word
of that sentence. Throughout this learning process, and as an indirect result, the model
learns semantic relations between words. Based on the same premise, doc2vec introduced a
document or paragraph vector which also contributes to the learning process of documents
in the same fashion as words contribute to the learning process in word2vec [36]. This can
be thought of as another word in the vocabulary with slight differences. For example,
the document vector is not shared among different documents, but is unique to each
document, while word vectors are shared among different documents, such as the vector
representing E56:Language Latin, which is the same in all the different documents where it
appears. The model framework is shown in Figure 5. The model is trained using stochastic
gradient descent where the gradient is obtained through back-propagation. Once trained,
the document vector can be considered as a document feature vector [36], which in our
case is a feature vector representative of a main CIDOC-CRM entity. The CIDOC2VEC
algorithm is shown in Algorithms 1 and 2.

Algorithm 1 CIDOC2VEC.

Require: KG(V, E)← CIDOC-CRM knowledge graph, L← Unique Main Entities, N ←
Number of Walks per Entity, φ← Importance Threshold, δ←Maximum Walk Depth.
Initialize empty Doc
Initialize empty DocList
for l in L do

while n ≤ N do
Sentence = RSW(KG, l, φ, δ)
Append Sentence to Doc

end while
Append Doc to DocList

end for
for Doc in DocList do

Embedding = doc2vec(Doc)
end for
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Figure 5. doc2vec algorithm, modified after [36].

Algorithm 2 Relative Sentence Walk, RSW.

Require: KG(V, E)← CIDOC-CRM knowledge graph, φ← Importance Threshold, δ←
Maximum Walk Depth.
Initialize empty Sentence
Initialize hop counter h = 0
while h ≤ δ do

if h 6= 0 then
Calculate θ
if θ ≤ δ then

Calculate β considering only out-edges
else

Calculate β considering reverse walk, in-edges.
end if

end if
Evaluate hop probability and execute hop.
Append current Entity to Sentence
h = h + 1

end while
return Sentence

6. Results

The CIDOC2VEC algorithm proposed in the above section was applied to the Sphaera
dataset both to generate an edition similarity recommendation for the Sphaera database
(db.sphaera.mpiwg-berlin.mpg.de, accessed on 1 December 2021), and investigating the
underlying patterns within the stored data. As discussed in Section 4, the database hosts
a total of 359 book editions, which were decomposed and stored in a knowledge graph
modeled according to the CIDOC-CRM principles (as seen in Figure 1).

We must, however, address the issue of the absence of a clear similarity benchmark
when it comes to humanities data. This is of course not due to the lack of humanities
datasets, but to the impossibility of creating such a clear benchmark inherent to the het-
erogeneous nature of humanities data. We can of course measure the similarity between
edition embeddings within the embedding space. However, how do we judge whether

db.sphaera.mpiwg-berlin.mpg.de
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two editions are alike? How do we decide whether two editions are dissimilar? To what
degree are they similar or dissimilar? These measures remain abstract when dealing with a
humanities dataset, whether we are dealing with the Sphaera dataset or dealing with data
whose notion of similarity is not inherent, or not simply specified. In this paper, we assess
the usefulness of the CIDOC2VEC algorithm by providing a short historical overview of
several groups of book editions, as well as text-parts, that historically appear to convey
similar information.

6.1. Sphaera Editions

The output of the CIDOC2VEC algorithm for this test result is a 32-dimensional
vector generated from 500 sentence-long documents per main entity, whose T-distributed
stochastic neighbor embedding (t-SNE) [37] representation is shown in Figure 6a. Each
edition is represented by its Sphaera Book ID, which can be used to search the publicly
available database. The complete Sphaera corpus embedded representation, shown in
Figure 6a, is clearly divided into several large clusters and within each, one can see several
smaller clusters. This allows for a top–down analysis of the different components of
the dataset.

We first investigated the effect of the book types on the embeddings of each entity.
This is shown in Figure 6b, where each color represents a single Book type from the Sphaera
dataset. It is clearly visible that some, but not all, of the groups can be represented by
clear clusters in the t-SNE visualization. The most apparent of these form the cluster in
purple representing the adaption treatises that were strongly influenced by the Tractatus de
Sphaera, as well as the cluster of original text shown in blue. The most dispersed cluster is
represented by the red color, which represents the annotated original texts and compilations.
On this higher, meta-level, we can see that the embeddings clearly follow the structural
format of the books, but are still highly influenced by its content. For example, while
original texts contain very similar content, namely the original content of the Tractatus de
sphaera, the annotated original texts and compilations of texts vary highly in their textual
content as they include compilations of texts curated by numerous different publishers;
they also include a highly variable number of authors and contributors. This such high
variability results into a highly dispersed cluster of this type, which leads to the inherent
data variability within this type of book.

At a more specific level, we investigated the distribution of books which contained
parts written by two influential authors. The first was the German mathematician and
astronomer Christopher Clavius (1538–1612) (hdl.handle.net/21.11103/sphaera.100732,
accessed on 1 December 2021) who authored several influential text editions throughout
their lifetime. Namely, his commentary on Euclid’s Elements which became the standard
geometry textbook in the 17th century and earned him the title of “Euclid of their time” [38],
and his commentary on the Tractatus de Sphaera, known as In Sphaeram Ioannis de Sacro Bosco,
Commentarius (hdl.handle.net/21.11103/sphaera.100365, accessed on 1 December 2021)
which was reprinted numerous times between the second half of the 16th and the first half
of the 17th centuries [39]. The second is the German Lutheran reformer and theologian
Philipp Melanchthon (1479–1560) (hdl.handle.net/21.11103/sphaera.101002, accessed on
1 December 2021) who played an important role in reforming the content and structure
of German learning in the 16th century, and emphasized the role of mathematics and
astronomy within the university curriculum [40]. His works included numerous editions
on a wide range of topics such as physics, astronomy, history, ethics, and theology, and
his commentary (hdl.handle.net/21.11103/sphaera.100138, accessed on 1 December 2021)
on the Sphaera de Sacrobosco was reprinted throughout the 16th and first half of the 17th
centuries [41]. These two authors contributed to a substantial number of editions within
the Sphaera corpus. Editions with parts authored by these two individuals are shown in
green and red in Figure 6c, and their embeddings are clearly clustered according to the
coherent content, as well as the types of books in which they often feature. Editions by
Christopher Clavius, with the exception of three texts, appear in a single cluster, highlight-

hdl.handle.net/21.11103/sphaera.100732
hdl.handle.net/21.11103/sphaera.100365
hdl.handle.net/21.11103/sphaera.101002
hdl.handle.net/21.11103/sphaera.100138
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ing the homogeneity of the editions in which his work features. The three editions that
do not conform to the cluster in question appear to be a single book containing a Spanish
translation of the original Latin work (hdl.handle.net/21.11103/sphaera.100555, accessed
on 1 December 2021), while the other two editions contain only some passages of Clavius’
text, published together with further passages from a number of different commentaries
(hdl.handle.net/21.11103/sphaera.100327, accessed on 1 December 2021). The editions
containing texts by Philipp Melanchthon represent a more coherent cluster that stretches
across different book types, namely, books of annotated originals text and compilations
of texts, along with books solely containing compilations of texts. However, due to the
similarity of the content, as well as the closeness of the structure of the two types of books
in which Philipp Melanchthon’s texts feature, these are embedded in the close proximity,
and thus form a coherent, similar, body of work.

Finally, we investigated the phenomenon of book reprinting in consecutive years
which was strictly related to the production and commercial praxis of early modern printers
and publishers. Due to the production-inherent necessity of producing oversized print-runs,
it was usual for book producers to sell similar exemplars in consecutive years, each time
branded as a new edition, by solely printing a new title page (for production procedures,
see [42]; for marketing practices, see [43]). While this book reprinting phenomenon is not
explicitly expressed in the Sphaera knowledge graph, its effects are clearly recognizable in
the embedding space through very dense clusters, resulting from the fact that these books
often contained the same content and are sometimes reproduced by the same individuals
over a relatively long period of time, with only minute changes. Two of these reprint
families are marked by dashed boxes in Figure 6a. The first set of re-print families is shown
in the red dashed box, and consists of a total of nine reprints of the Elementae doctorinae
de circulis coelestibus, et primo motu (hdl.handle.net/21.11103/sphaera.100251, accessed
on 1 December 2021) authored by Kaspar Peucer (1525–1602) (hdl.handle.net/21.11103
/sphaera.100966, accessed on 1 December 2021), which was reprinted between 1551 and
1601. The second re-print family is represented in the blue box and represents a total
of 11 reprints of Thomas Blebel’s (1539–1596) (hdl.handle.net/21.11103/sphaera.100342,
accessed on 1 December 2021) De Sphaera et primis astronomiae rudimentis. (hdl.handle.net/
21.11103/sphaera.101095, accessed on 1 December 2021) between 1576 and 1629. While it
is apparent that many more of such reprint families appear in the dataset, it was not the
aim of this paper to discuss the mechanism of early modern period book production.

6.2. Sphaera Text-Parts

The results above show the capabilities of CIDOC2VEC in both generating meaningful
embeddings from complete CIDOC-CRM knowledge graphs, as well as explicitly express-
ing implicit information such as those expressed by the reprinting families. However, to
better investigate CIDOC2VEC’s agility, we explore the same Sphaera dataset by using parts,
instead of books, as main entities so that every generated walk starts from a part rather
than a book entity. Additionally, we omit certain relations from our knowledge graph,
namely the part type and part identifier relations. This way, we explore an incomplete
knowledge graph, where the main entity data type is unknown on the one hand, while
on the other, we explore the performance of CIDOC2VEC on a peripheral main entity (see
Figure 1), as opposed to the central location occupied by the book entity. Passing the now
incomplete knowledge graph to the CIDOC2VEC algorithm, we obtained a 32-dimensional
vector, generated from 500 walks, for each of the 450 text-part main entities, whose t-SNE
plot is shown in Figure 7, where each entity is identified by its Sphaera Part ID and validated
using our hold-out type relations represented by different colors.

hdl.handle.net/21.11103/sphaera.100555
hdl.handle.net/21.11103/sphaera.100327
hdl.handle.net/21.11103/sphaera.100251
hdl.handle.net/21.11103/sphaera.100966
hdl.handle.net/21.11103/sphaera.100966
hdl.handle.net/21.11103/sphaera.100342
hdl.handle.net/21.11103/sphaera.101095
hdl.handle.net/21.11103/sphaera.101095
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Figure 6. (a): t-SNE representation of all 359 book edition entities in the Sphaera dataset; (b): ground truth data-based book types;
(c): ground truth data based on books containing texts by specific authors.

The t-SNE plot clearly shows several clusters, mostly coherent and formed from
distinct part types, with the exception of Paratext:Other entities which show a level of
dispersion as a result of its inherent incoherence. The largest, and most important, cluster
is one represented by content class which forms the bulk of the text within the Sphaera
corpus. We notice that several entities of different classes are located on the periphery of
the content cluster. Upon closer investigation, we see that these entities are in fact some
of the most frequently published paratexts in the corpus, and often written by influential
authors from the Sphaera corpus. Consequentially, these paratext parts are continuously
associated with content parts due to their higher publication frequency, as well as through
their author association. Such examples include a poem by Philipp Melanchton titled de
triplici ortu(hdl.handle.net/21.11103/sphaera.100849, accessed on 1 December 2021) , which
was printed a total of 39 times in the 16th and at the beginning of the 17th centuries, as well
as a letter to the reader, simply titled ad lectorem (hdl.handle.net/21.11103/sphaera.100359,

hdl.handle.net/21.11103/sphaera.100849
hdl.handle.net/21.11103/sphaera.100359
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accessed on 1 December 2021), by Christopher Clavius, published 20 times in the second
half of the 16th and the first half of the 17th century.

Figure 7. The t-SNE representation of the 450 part entities generated from an incomplete Sphaera knowledge graph.

Additionally, we investigated the cluster representing the Paratext:Dedication letter
class, shown in red in Figure 7. While this cluster is relatively clean, the presence of out-of-
class entities at its center, namely those representing the class Paratext:Other, is apparent.
However, we notice that those Paratext:Other entities are also in fact letters, but differ
semantically from dedication letters. This semantic difference lies in the functionality of
the letter in question; while all the letters within the Paratext:Dedication letter class serve
to dedicate the content of the edition to a certain individual, the few letters within the
Paratext:Other class often show the correspondence between authors and the responsible
authorities, in which the former is asking for the permission to publish the work, known
as the imprimatur, from the latter. The low number of such types of letters in the Sphaera
dataset is due to the fact that, while it was imperative to obtain permission to publish
a certain work, it was not imperative to print the correspondence. Consequently, the
presence of these out-of-class letters within the Paratext:Dedication letter cluster clearly
indicates that these entities share a lot of their semantic and structural data, but are still
differentiated through the historical interpretation of their texts, which are themselves not
part of the Sphaera Corpus. In this regard, the results obtained from passing an incomplete
CIDOC-CRM knowledge graph to CIDOC2VEC shows the ability of our algorithm to
express and materialize inherent and un-instantiated relations through its embeddings,
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which can guide domain experts towards a better understanding of their CIDOC-CRM
modeled data.

6.3. Model Stability

Having demonstrated the ability of CIDOC2VEC to extract meaningful embeddings
from complete and incomplete CIDOC-CRM knowledge graphs, in this section, we address
the effects of the randomness present in the algorithm due to the biased random walks
of the RSW. We accomplish this by running the CIDOC2VEC algorithm 10 times on the
complete Sphaera knowledge graph and evaluating the stability of the local neighborhoods,
which was calculated as the ratio of the intersection between the top-10 neighborhood of
every main entity over multiple runs. We demonstrated this in Figure 8, which shows
the neighborhood stability measure of a subset of Sphaera editions, which includes those
discussed in Section 6.1, as well as their overall stability within the Sphaera corpus.

It is apparent that, while some of the entities present a consistently high stability score,
others show a relatively unstable neighborhood over the course of the 10 CIDOC2VEC
runs. This is, however, to be expected, and can be explained by the nature of the editions
in question. While, for example, the editions authored by Christoph Clavius and Philipp
Melanchthon, as well as the reprinting families by Kaspar Peucer and Thomas Blebel
show a consistently high stability score, mainly due to the fact that they are part of highly
homogenized clusters, as shown in Figure 6 and discussed in Section 6.1, other editions
cannot be attributed to any specific families or clusters within the Sphaera dataset. This is
especially the case for editions written in under-represented languages, such as Spanish
or Portuguese, which are represented by a total of 10 and 3 editions, respectively. This is
clearly visible in Figure 8, where the edition authored by Francisco Faleiro (1490 – 1550) (
hdl.handle.net/21.11103/sphaera.101184, accessed on 1 December 2021), written in Spanish
and titled Tratado del Esphera y del arte del marear (hdl.handle.net/21.11103/sphaera.101182,
accessed on 1 December 2021), as well the edition authored by an anonymous author (hdl.
handle.net/21.11103/sphaera.101356, accessed on 1 December 2021) writen in Portuguese
and titled Regimento do estrolabio e do quadrante (hdl.handle.net/21.11103/sphaera.100916,
accessed on 1 December 2021) show low stability, arising from the fact that they show
relatively little similarity to the rest of the corpus. However, it is clear from the stability of
the corpus average, shown by a dotted black line in Figure 8 and hovering around 0.78,
that such unstable cases are a minority and do not represent a general trend in the Sphaera
dataset. Instead, the general stability of the neighborhoods indicate that with every run of
CIDOC2VEC, we are able to extract the same semantic relations between the main entities,
despite the randomization injected by the RSW.

Figure 8. Main entity neighborhood stability over 10 CIDOC2VEC runs.

hdl.handle.net/21.11103/sphaera.101184
hdl.handle.net/21.11103/sphaera.101184
hdl.handle.net/21.11103/sphaera.101182
hdl.handle.net/21.11103/sphaera.101356
hdl.handle.net/21.11103/sphaera.101356
hdl.handle.net/21.11103/sphaera.100916
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7. Conclusions

Through the demonstration of the CIDOC2VEC using the Sphaera dataset, and the
historical confirmation of its results, we have showed that this approach is useful to generate
meaningful, persistent, and representative embeddings of humanities datasets stored in
CIDOC-CRM knowledge graph structures. These embeddings lead to accurate similarity
suggestions between CIDOC-CRM entities based on a representative set of information that
has been collected using the relative sentence walk through the CIDOC-CRM knowledge
graph. Thus, materializing the intrinsic connections between otherwise un-connected
entities helps one generate closer embeddings of related objects. Such similarity suggestions
can help guide users of humanities databases to discover similar items based on the
underlying data model. Additionally, we showed that such representative embeddings
help users discover hidden patterns within the dataset that would be difficult to conceive
by only looking at the individual entities. While we acknowledge that it is not possible
to provide an accurate metric of how two entities are similar within the humanities, this
remains one of the major challenges of applying data-centric approaches to humanistic
problems. Our aim here was to present a tool that can help researchers working with
humanities data to look deeper into their own datasets and extract more information from
them in order to reach more informed conclusions.
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