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ABSTRACT

The gravitational wave event GW170817 with a macronova/kilonova shows that a merger of two

neutron stars ejects matter with radioactivity including r-process nucleosynthesis. A part of the ejecta

inevitably falls back to the central object, possibly powering long-lasting activities of a short gamma-

ray burst (sGRB), such as extended and plateau emissions. We investigate the fallback accretion
with the r-process heating by performing one-dimensional hydrodynamic simulations and developing

a semi-analytical model. We show that the usual fallback rate dM/dt ∝ t−5/3 is halted by the heating

because pressure gradients accelerate ejecta beyond an escape velocity. The suppression is steeper than

Chevalier’s power-law model through Bondi accretion within a turn-around radius. The characteristic

halting timescale is ∼ 104–108 sec for the GW170817-like r-process heating, which is longer than
the typical timescale of the long-lasting emission of sGRBs. The halting timescale is sensitive to

the uncertainty of the r-process. Future observation of fallback halting could constrain the r-process

heating on the year scale.

Keywords: hydrodynamics — accretion, accretion discs — nucleosynthesis — gamma-ray burst: gen-

eral

1. INTRODUCTION

The discovery of the short-duration gamma-ray

burst (sGRB), GRB 170817A, coincided with the

detection of GW170817 by the Laser Interferome-

ter Gravitational-Wave Observatory (LIGO) and the

Virgo Consortium (LVC), is a direct evidence that
binary neutron star (BNS) mergers are one of the

sources of sGRBs (Abbott et al. 2017a,b). The si-

multaneous detection of macronova/kilonova emis-

sion is a strong indication for the ejection of
neutron-rich matter and r-process element synthesis in

this BNS merger (Arcavi et al. 2017; Chornock et al.

2017; Coulter et al. 2017; Cowperthwaite et al. 2017;

Drout et al. 2017; Kasen et al. 2017; Kasliwal et al.

2017; Kilpatrick et al. 2017; McCully et al. 2017;
Nicholl et al. 2017; Shappee et al. 2017; Smartt et al.

2017; Soares-Santos et al. 2017; Tanaka et al. 2017;

Tanvir et al. 2017). The observed properties of the grav-
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itational waves and electromagnetic counterparts are

broadly consistent with the predictions from a series of

theoretical studies including numerical relativity calcu-

lations (Shibata et al. 2017; Cowperthwaite et al. 2017;

Kasen et al. 2017; Kasliwal et al. 2017; Villar et al.
2017; Ioka & Nakamura 2018, 2019) and these si-

multaneous detection has established the paradigm

that sGRBs originate from compact binary mergers

(Paczynski 1986; Goodman 1986; Eichler et al. 1989).
Although sGRBs are classified as GRBs with the

duration of prompt emission being less than 2 sec

(Kouveliotou et al. 1993), their central engines are

thought to remain active for longer time (Burrows et al.

2005; Ioka et al. 2005). This was suggested from the
observations of extended emission which lasts for about

100 sec with a luminosity of 1048–1049 erg s−1 and pos-

sibly from the observations of plateau emission which

lasts for about 104 sec with a luminosity of 1045–
1046 erg s−1 (Barthelmy et al. 2005; Rowlinson et al.

2013; Kisaka et al. 2017; Kagawa et al. 2019). These

long-lasting emissions are fainter than the prompt

emission in luminosity. However, because of the

long duration of these emissions, they are compara-
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ble with or greater than the prompt emission in flu-

ence (Kisaka et al. 2017). Some of the extended emis-

sions have been observed to darken abruptly, which are

not expected in the sGRB afterglow (Ioka et al. 2005).
Therefore, a central engine activity is very likely to ex-

plain these long-lasting emission1. There are two mod-

els for the energy source of the long-lasting emissions,

which have been extensively discussed in previous works.

One is the release of rotational or magnetic field en-
ergy from a strongly magnetized massive neutron star

that forms after a BNS merger (Zhang & Mészáros 2001;

Metzger et al. 2008; Bucciantini et al. 2012; Fan et al.

2013; Murase et al. 2018). Currently, this scenario is
not conclusive because the expected observational fea-

tures, e.g., late radio emission, have not been detected

(Metzger & Bower 2014; Horesh et al. 2016).

The other scenario for the energy source of

long-lasting activity is the fallback accretion
of ejecta (Rosswog 2007; Lee & Ramirez-Ruiz

2007; Rossi & Begelman 2009; Kisaka & Ioka 2015;

Kisaka et al. 2017). Numerical calculations of com-

pact binary mergers show that a part of the ejecta
is still gravitationally bound (e.g., Rosswog et al. 1999;

Bauswein et al. 2013; Kyutoku et al. 2015; Radice et al.

2016; Kiuchi et al. 2017). Kyutoku et al. (2015) calcu-

lated the coalescence of a black hole and a neutron star

(BH–NS) based on numerical relativity and showed that
a part of the ejecta falls back to the merger remnant.

While the gravitational energy released by fallback ac-

cretion is large enough to explain the extended emission

and the plateau emission, the simple theory of fallback
accretion, which assumes a zero-temperature fluid, pre-

dicts that the mass accretion rate is proportional to

the power of time as t−5/3 with no typical timescale

(Rees 1988; Michel 1988). However, the observed light

curve of the long-lasting emission of sGRB clearly has
a certain timescale, which is not compatible with the

simple theory (Kagawa et al. 2019).

The coincidence of the macronova/kilonova emission

with the gravitational wave source GW170817 indi-
cates that the ejecta of the BNS merger is heated by

the radioactive decay of r-process elements. There-

fore, the assumption of zero-temperature fluid is in-

appropriate (Smartt et al. 2017; Waxman et al. 2018;

Kawaguchi et al. 2018). Metzger et al. (2010) discussed
the effect of ejecta heating by the radioactive decay

of r-process elements on the mass accretion using a

test-particle model. Desai et al. (2019) performed a

1 Note that, although such a rapid fade-out has not been reported
for the plateau emission, it may also reflect the late-time activity
of the central engine (see also Matsumoto et al. 2020).

more sophisticated calculation based on the model in

Metzger et al. (2010), using the ejecta profiles obtained

from numerical relativity simulations and the radioac-

tive heating rates obtained from nucleosynthesis calcu-
lations. They showed that the mass accretion stops and

resumes after a finite time, the so-called “gap”, because

the marginally bound fluid elements become unbound

by the heating due to the radioactive decay of r-process

elements. Furthermore, they argued that the timescale
of this resumption is O(100) sec, which is in agreement

with the timescale of the extended emission.

In the test-particle model of Metzger et al. (2010) and

Desai et al. (2019), they assumed that all the radioac-
tive energy is converted to the kinetic energy. In reality,

the energy from the radioactive heating is converted to

the kinetic energy through the pressure gradient force

resulting from the increased internal energy. It is un-

clear whether the pressure gradient is large enough to
convert all the internal energy of the fluid element into

the kinetic energy, so that the validity of their assump-

tion is also unclear. Because their assumption cannot be

verified within the framework of the test-particle model,
it is necessary to solve the hydrodynamic equations in-

corporating the effects of radioactive heating.

In this paper, we reconsider the effect of the radioac-

tive heating due to decaying r-process elements on the

fallback accretion in BNS mergers by numerically solv-
ing one-dimensional fluid equations. We also construct

a semi-analytical model that reproduces the hydrody-

namical simulation results and explores it over a large

parameter space including the realistic r-process heat-
ing. This paper is organized as follows. In Section 2,

we describe the method of the numerical calculation of

the fluid equations and show the results. In Section 3

and Section 4, the semi-analytical models of the accre-

tion flow are developed for a constant heating rate and
a heating rate of a broken power-law form, respectively.

In Section 5, the semi-analytical model is applied to ex-

plore the parameters relevant to the radioactive heating.

In Section 6, we summarize this work, and discuss the
scope of application of the spherically symmetric mod-

eling used in this study and future prospects.

2. HYDRODYNAMICAL SIMULATION OF

FALLBACK ACCRETION

2.1. Numerical method

In order to investigate the effect of the radioactive

heating due to r-process nuclei on the fallback accre-
tion in the BNS merger, we have performed long-term

one-dimensional hydrodynamic simulations of the mat-

ter ejected during the merger. The ejecta profiles of the

velocity and the mass density are derived from the nu-



Fallback Halted by R-process Heating 3

merical relativity simulations performed by Kiuchi et al.

(2017). The hydrodynamical equations for spherically

symmetric and purely radial flow, including the heating

and the point source gravity, are written as follows:

∂ρ

∂t
+

1

r2
∂

∂r

(

r2ρv
)

= 0, (1)

∂v

∂t
+ v

∂v

∂r
= −1

ρ

∂P

∂r
− GM

r2
, (2)

∂

∂t

(

1

2
ρv2 + ǫint

)

+
1

r2
∂

∂r

[

r2v

(

1

2
ρv2 + ǫint + P

)]

= −ρv
GM

r2
+Qheat, (3)

where ρ is the mass density, v is the radial bulk velocity

of the fluid, P is the pressure, ǫint is the internal energy,

M is the mass of the central object, and Qheat is the
radioactive heating rate per unit volume per unit time.2

The equation of state is assumed to follow the Γ-law,

P = (Γ− 1) ǫint, (4)

where Γ is the adiabatic index. In Equation (4), we

adopt the radiation dominant case of Γ = 4/3. Here we

neglect the radiative loss. Furthermore, we also neglect
the self-gravity of the ejecta, because the ejecta mass is

much smaller than the central mass.

We solve Equations (1)–(4) by using a one-

dimensional hydrodynamics code with the Newto-

nian gravity. The advection term of the hydrody-
namic equations is solved by using the HLL method

(e.g., Del Zanna & Bucciantini 2002) and the 3rd-order

MUSCL reconstruction (see Balsara 2017, for a review).

In the range of the parameters used in this paper, the
system can be well described in a non-relativistic regime.

The calculation is performed by dividing the radius from

40 km to 80, 000 km into a uniform grid of 16,384 cells

(about ∼ 4.9 km per grid). The boundary conditions

imposed on the inner and outer boundaries are such

2 The radioactive heating due to the nuclear decay is the conver-
sion of the mass deficit of the nucleus into the internal energy.
Therefore, the sum of the rest mass energy and the internal en-
ergy should be conserved, and it is not strictly correct to simply
add the external heating term to the right-hand side of Equa-
tion (3). Here, we ignore the term −Qheat/c

2, which should be
in the right-hand side of Equation (1). In the decay of a nu-
cleus, the ratio of the mass deficit to the nucleon mass is about
O(MeV)/O(GeV). Since the heating due to this mass deficit is
comparable to the internal energy, the magnitude of the term
−Qheat/c

2 relative to the left hand side of Equation (1) is of the
magnitude O(v2/c2). In this paper, we ignore the O(v2/c2) term
because we discuss the motion of ejecta in the Newtonian limit.
For a more formal formulation, see Uchida et al. (2017).
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Figure 1. Radial profiles of the radial velocity (left axis)
and the mass density (right axis). The thick lines repre-
sent the model curves at t = 0 used in the calculations (see
text). The thin lines with different styles show the result
of Kiuchi et al. (2017) at ≈ 10 ms after the merger for the
zenith angles given in the legend. Note that only a pro-
file of the dynamical ejecta is shown without a subsequent
component (such as viscosity-driven wind). The bold yellow
dashed line indicates the escape velocity. The region inside
∼ 490 km is gravitationally bound.

that the radial differential coefficient is set to zero for
all physical quantities. Note that, because the inner

boundary is far inside from the sonic radius, the inner

boundary condition corresponds to a free-flow condition

to the central object. In order to check the convergence,
we perform the calculation with a spatial resolution that

is twice as fine; as a result, the maximum relative error

in the mass accretion rate is found to be about 0.2%

(the result is shown in Figure 3).

2.2. Initial profile of merger ejecta

We model the initial profile of dynamical ejecta based

on the results of the numerical relativity simulation of

the BNS merger performed in Kiuchi et al. (2017). The

mass for each NS is 1.35M⊙. The EOS of the NS matter
is described by the two segments piece-wise polytropic

EOS, which is referred to as the H model in Kiuchi et al.

(2017). In this particular model, the radius of the NS

with 1.35M⊙ is 12.3 km.

Figure 1 shows the radial profiles of the radial 3-
velocity and the mass density. The thin lines in Figure

1 show the result of Kiuchi et al. (2017) at ≈ 10 ms af-

ter the merger for each zenith angle given in the legend.

The dashed yellow line in the figure shows the escape ve-
locity from the gravitational field of the central object

with mass M = 2.7M⊙. It can be confirmed that the

fluid elements located at r . 490 km are gravitationally

bound. Around the radius r ∼ 490 km, which is im-
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portant for the calculation of mass accretion rates, the

radial dependence of velocity and density is found to be

weekly dependent on latitude. This is one justification

of our treatment of spherically symmetric modelling.
In this paper, the initial velocity and density pro-

files shown in Figure 1 are modeled as described below.

Given that the expansion of the dynamical ejecta can be

regarded as a homologous expansion, we adopt a model

in which the radial 3-velocity is proportional to the ra-
dius (out to 3000 km):

v(t = 0, r) =

{

0.26 c
( r

1000 km

)

(r < 3000 km)

0 (r > 3000 km)
, (5)

where t = 0 is set at the beginning of the fluid calcula-

tions in this study and corresponds to the time slice

of the numerical relativity simulation in Kiuchi et al.

(2017) (≈ 10 ms after the merger). The radius of
r ∼ 3000 km corresponds to that the outermost ejecta

with nearly the speed of light reach during about 10 ms.

For the mass density, we adopt a broken power-law

model, which has a break at 600 km, namely

ρ(t = 0, r) =











ρ0

( r

600 km

)−2.4

(r < 600 km)

ρ0

( r

600 km

)−7.5

(r > 600 km)
, (6)

where ρ0 = 2.0×106 g cm−3 is the value at r = 600 km.

We assume P = 10−5ρc2 as the initial pressure distri-

bution in the ejecta, because the initial internal energy

is sufficiently low and does not affect the motion of the
ejecta.

Fujibayashi et al. (2020) have pointed out that

the viscosity-driven wind can be launched with

the timescale of O(1) sec, which dominates the

total mass of the ejecta from a BNS merger
(see also Fernández & Metzger 2013; Just et al. 2015;

Fernández et al. 2019). Kawaguchi et al. (2020) have

studied further the long term temporal evolution of

the viscosity-driven wind based on the results of
Fujibayashi et al. (2020). According to these studies,

after a time ∼ 10 sec, the velocity profile of the wind

approximately matches that of a homologous expansion

in Equation (5). The density distribution is also ex-

pected to be close to ρ ∝ r−2 as that of a steady-state
supersonic flow, which is qualitatively similar to the ra-

dial dependence of the density distribution expressed in

Equation (6) for r < 600 km. However, for the viscously

driven wind, to take into account the difference in total
ejecta mass, it will be necessary to increase the value

of mass density ρ0 by one order of magnitude compared

with the value of the dynamical ejecta. Here we pre-

sume that the disk wind is modeled by Equations (5)
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Figure 2. Temporal evolution of the radioactive heating
rates (excluding the energies in neutrinos) adopted from
Wanajo et al. (2014). The thick line represents the mass-
averaged heating rate. For the fluid elements of various elec-
tron fractions Ye, the respective heating rate is plotted as a
thin line with the color indicated by the color bar.

and (6) with a larger value of density ρ0 than that for

the dynamical ejecta case. Note that, at the time of

interest for considering the effect of radioactive heat-

ing, the mass accretion rate is determined by the profile
of the marginally bound ejecta rather than that of the

overall ejecta. Therefore, the detailed modeling of the

mass density profile is probably not very important.

2.3. Radioactive heating

Figure 2 plots the radioactive heating rates adopted
from the results of nucleosynthesis calculations based on

the numerical model of a BNS merger (Wanajo et al.

2014). The heating is due to β-decay, α-decay, and

fission of r-process nuclei produced in the dynamical

ejecta. Each thin curve shows the heating rate in units of
MeV nuc−1 s−1 as a function of time (since the merger)

for the Lagrangian tracer-particle of the ejecta with a

given initial Ye. The color indicates the value of Ye

from 0.09 (purple) to 0.44 (yellow) with an interval of
∆Ye = 0.01. The heating rate averaged over the ejecta

mass is also shown by the red thick curve.

As can be seen in Figure 2, the radioactive heating

rates exhibit two phases: one in which the value is ap-

proximately constant over time (constant phase) and the
other in which the value decays with time (decay phase).

It can be seen that the duration of the constant phase

has a diversity and tends to be longer for larger val-

ues of Ye. The decay phase can be well described by
a power law. Since the power-law indices are generally

smaller than −1, the most amount of radioactive energy

is added during the constant phase. As a first step, we

ignore the decay phase (see Section 4 for the case with
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the decay phase) and take the duration and heating rate

of the constant phase as parameters and model the heat-

ing rate per unit volume (see Equation (3)) as follows:

Qheat =

{

ρq̇0 (t < theat)

0 (t > theat)
, (7)

where q̇0 is the radioactive energy (except for that in

neutrinos) released per unit mass per unit time during
the constant phase3 and theat is the duration of the con-

stant phase. The value of Ye can take a variety of values

depending on the outflow mechanism of ejecta as well as

the time of ejection. The values of Ye in the dynamical

ejecta of BNS mergers are about Ye ∼ 0.1–0.4. As men-
tioned in Section 2.2, the dominant component of ejecta

can be the late-time viscously driven wind. This com-

ponent is expected to have a large Ye compared to that

of the dynamical ejecta, with Ye ∼ 0.3–0.4, as shown
in previous work, e.g., Fujibayashi et al. (2020). Con-

sidering the uncertainties in Ye over the different com-

ponents of ejecta, we adopt the simple model described

by Equation (7) and treat q̇0 and theat as parameters.

Furthermore, in Section 3, we model the accretion flows
semi-analytically. For this purpose, a simplified treat-

ment in Equation (7) is convenient. The modeling of the

case with the heating rates including the decay phase is

given in Section 4.
Here, we neglect a possible effect of heating due to the

jet which interacts with the preceding ejecta by making

a hot cocoon. A part of the energy of the jet is converted

into the internal energy of the cocoon, so that we can

regard the jet as an additional heating source for the
ejecta. However, since this occurs only for a narrow

solid angle about the jet axis, the mass of the heated

ejecta (i.e., cocoon) is expected to be small relative to

the total ejecta mass (e.g., Hamidani & Ioka 2021).

2.4. Results

The thick red line in Figure 3 presents the time evo-

lution of the mass accretion rate calculated with q̇0 =

3 MeV nuc−1 s−1 and theat = 5 sec in Equation (7).
Here, in order to clearly illustrate the effect of radioac-

tive heating on the mass accretion rate, we have adopted

the value of theat longer than those shown in Figure 2

for the relevant q̇0. We assume that all the radioactive

energies (except for those in neutrinos) are converted to
the internal energies of the fluid elements. The thin gray

line shows the fallback rate in the absence of radioactive

3 For the convenience of comparisons with the results by
Metzger et al. (2010) and Desai et al. (2019), we use the unit
MeV nuc−1 s−1 (∼ 1018 erg g−1 s−1) for the heating rate q̇0.
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Figure 3. Temporal evolution of the mass accretion rate
evaluated at r = 650 km, where t = 0 corresponds to the
beginning of the calculation. The thick red curve presents
the result for the heating model with q̇0 = 3 MeV nuc−1 s−1

and theat = 5 sec. The orange curve is the result for the
same model but with the twice finer spatial resolution. The
relative error between the two different resolutions of calcu-
lations is at most 0.2%. The gray curve represents the result
for the model without radioactive heating. The green dashed
curve represents the mass accretion rate calculated based on
the test-particle model (see Appendix A for details).

heating, which can be well described by dM/dt ∝ t−5/3

(where the initial ∼ 0.05 sec is affected by the initial

conditions). Here, the mass accretion rate is evaluated
using the mass flux at r = 650 km. It can be seen that

the mass accretion rate is substantially suppressed by

the effect of radioactive heating. The break in the red

curve at t = 5 sec corresponds to the termination of the
heating t = theat. After t = theat, the mass accretion

rate continues roughly in proportion to t−5/3.

The dashed green line shows the mass accretion rate

calculated using the same method as the test-particle

model of Metzger et al. (2010). The detail of the method
is described in Appendix A. Although the heating rate

is the same as that in the fluid model (red line), the

time-dependence of the mass accretion rate for the test-

particle model differs from that for the fluid model. In
the fluid model, the mass accretion rate does not show

a sharp cutoff as observed in the test-particle model at

t ∼ 5 sec but slowly decreases taking a few times longer

duration. This is due to the difference in conversion of

the internal energy to the kinetic energy between the
test-particle model and the fluid model. In the test-

particle model of Metzger et al. (2010), all radioactive

energy injected to a fluid element is assumed to be con-

verted into the kinetic energy. On the other hand, in
the fluid model, the radioactive heating first increases

the internal energy (or pressure) of a fluid element, and
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Figure 4. Dependence of the mass accretion rate on the
heating parameters. The gray and red thick curves are the
same as those in Figure 3. The blue curves represent the case
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dashed curves indicate the results for the different lengths
of theat as shown in the legend. The black curves show the
mass accretion rates calculated by the semi-analytical model
(see Section 3 for detail). The semi-analytical model is not
valid during the times indicated by the black dotted curves.

then is converted to the kinetic energy through the pres-

sure gradient. Actually, in the fluid model, a part of the

internal energy from radioactive heating is not converted

to the kinetic energy and hence falls to the central ob-
ject with the fluid element. As the rate of conversion

to kinetic energy is higher, the more amount of ejecta

tends to be unbound. As a result, the mass accretion

rate decreases more slowly in the fluid model than that
in the test-particle model.

The dependence of the mass accretion rate on the

heating parameters is shown in Figure 4. The solid

red curve is the same as the red curve in Figure 3.

The dot-dashed and thin-dashed curves show the re-
sults for theat = 1 sec and theat = 10 sec, respectively.

As can be seen from the figure, the longer the radioac-

tive energy injects, the longer the suppression of the

mass accretion rate continues. The blue curves are
those for q̇0 = 30 MeV nuc−1 s−1, where the solid and

dashed curves represent the cases for theat = 1 sec and

theat = 4 sec, respectively. This value of q̇0 is a fac-

tor of a few greater than that reached by radioactive

heating (see Figure 2); we take this value for a possible
case with additional energy sources such as shock heat-

ing (e.g., due to the subsequent viscosity-driven wind)

or strong magnetic field. It can be seen that the mass

accretion rate is suppressed on a shorter timescale than
that for q̇0 = 3 MeV nuc−1 s−1 because q̇0 is larger. The

semi-analytical modeling described in Section 3 explains

these behaviors.
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Figure 5. Mass accretion rate using the mass-
averaged heating rate of the dynamical ejecta calculated
by Wanajo et al. (2014) (red bold curve). The gray curve
shows the mass accretion rate without radioactive heating.
At 10 sec, the mass accretion rate with heating is suppressed
by about 70% compared to that without heating.

Finally, we present the mass accretion rate calculated

using a more realistic heating rate rather than using a

constant approximation in Equation (7). Figure 5 shows

the temporal evolution of the mass accretion rate calcu-
lated using the mass-averaged heating rate of the dy-

namical ejecta in Wanajo et al. (2014) (see Figure 2).

At t = 10 sec, the mass accretion rate with radioactive

heating becomes about 30% of that without heating.
Although Figure 5 only shows the results of numerical

calculations until about 10 sec, as will be discussed in

Section 5, the mass accretion rate is expected to be sup-

pressed to less than ∼ 10% of that without heating after

O(104)–O(108) sec due to the continuous heating in the
decay phase.

3. SEMI-ANALYTICAL MODELING OF
FALLBACK ACCRETION

3.1. Characteristic scales of the accretion flow

For better understanding of the numerical results ob-

tained in Section 2, we develop a semi-analytical model-

ing. We first introduce the characteristic scales for the

basic Equations (1)–(4). For this purpose, it is conve-
nient to rewrite Equation (3) into that in terms of P/ρ.

By using Equations (1), (2), and (4), the energy conser-

vation law (3) can be written as follows:

∂

∂t

(

P

ρ

)

+ v
∂

∂r

(

P

ρ

)

= (Γ− 1)

[

q̇0 −
P

ρ

1

r2
∂

∂r

(

r2v
)

]

.

(8)

The characteristic parameters of the fluid equations (1),

(2), and (8) are GM and q̇0. Hence, the system has the

characteristic scales of length and time. From a dimen-
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sional analysis, these can be expressed in the following

forms:

rc =

[

(GM)3

q̇20

]1/5

∼ 3540 km

(

M

2.7 M⊙

)3/5(
q̇0

3 MeV nuc−1 s−1

)−2/5

,

(9)

tc =

[

(GM)2

q̇30

]1/5

∼ 0.35 s

(

M

2.7 M⊙

)2/5(
q̇0

3 MeV nuc−1 s−1

)−3/5

.

(10)

Combining these quantities, a characteristic scale of ve-

locity is also obtained as

vc = (GMq̇0)
1/5

∼ 0.033c

(

M

2.7 M⊙

)1/5(
q̇0

3 MeV nuc−1 s−1

)1/5

.

(11)

Then, we introduce the dimensionless length ξ ≡ r/rc,

time χ ≡ t/tc, density φ ≡ ρ/ρc, velocity u ≡ v/vc, and

pressure θ ≡ P/ρv2c = P/φρcv
2
c , where ρc is an arbi-

trary constant with the dimension of density. Rewriting
Equations (1), (2) and (8) by using these dimensionless

variables, we obtain the following dimensionless equa-

tions:
∂φ

∂χ
+

1

ξ2
∂

∂ξ

(

ξ2φu
)

= 0, (12)

∂u

∂χ
+ u

∂u

∂ξ
= − 1

φ

∂ (φθ)

∂ξ
− 1

ξ2
, (13)

∂θ

∂χ
+ v

∂θ

∂ξ
= (Γ− 1)

[

1− θ
1

ξ2
∂

∂ξ

(

ξ2u
)

]

. (14)

Because these non-dimensional equations have the same

form for any ρc, there is no characteristic scale of ejecta

mass (equivalently mass density) in this system (i.e.,

Equations (1), (2), and (8)). As mentioned in Section

2.2, we presume that the profile of the viscosity-driven
wind can be modeled by enhancing the density ρ (see

Equation (6)). The invariance to the density scale en-

sures that the subsequent semi-analytical model can be

used for both the viscosity-driven wind and the dynam-
ical ejecta.

Equations (1), (2), and (8) can be normalized by

Equations (9)–(11) to eliminate the parameters GM

and q̇0. Therefore, the accretion flow follows the same
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Figure 6. Temporal evolution of turn-around radii (where
v = 0). The vertical and horizontal axes are normalized
by the characteristic scales in Equations (9) and (10), re-
spectively. The red and blue curves show the results for
q̇0 = 3 MeV nuc−1 s−1 and q̇0 = 30 MeV nuc−1 s−1, respec-
tively. The thick and dashed curves differ in the length of
theat/tc. The calculation indicated by the red dashed curve
is terminated at t = 32 tc. Note that the small difference
between the red and the blue curves is due to the fact that
the initial conditions are not scaled.

equations under the characteristic scales (9)–(11) up to

t = theat. Figure 6 shows the time evolution of the

turn-around radius rturn, at which the velocity becomes
v = 0. The vertical axis is normalized by rc and the

horizontal axis by tc. As can be seen from Figure 6, the

difference between these curves is due solely to the dif-

ference in theat/tc. This clearly shows the effectiveness
of the scaling. It is also seen that from t = 6 tc to theat,

the turn-around radius rturn is approximately constant

rturn ∼ rc over time. Using the chain rule with the dif-

ferential coefficients of velocity, we can obtain the time

evolution of rturn as follows:

drturn(t)

dt
= −

(∂v/∂t)r=rturn

(∂v/∂r)r=rturn

. (15)

At the turn-around radius r = rturn, the velocity is v = 0
by definition, so that the Lagrangian time derivative

becomes Dv/Dt = ∂v/∂t. The fact that rturn is ap-

proximately constant over time, drturn(t)/dt ∼ 0 means

Dv/Dt ∼ 0; i.e., at the turn-around radius, the gravity
and pressure gradient forces are almost balanced (see

Equation (2)). This indicates that the ejecta outside

rturn does not fall back.

3.2. The hydrodynamical structure inside rturn

In the following, we discuss the phase after rturn be-

comes constant, i.e., t > 6 tc. When the position of

r = rturn is constant, the forces are balanced (see Equa-

tion (15)) and the velocity is 0; thus the mass does not
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Figure 7. The top panel shows the time evolution of
the ejecta mass inside the turn-around radius rturn (ex-
cluding that within a sufficiently small radius taken to be
rcount = 650 km). The horizontal axis is normalized by the
characteristic timescale in Equation (10). The solid red curve
shows the result obtained from the numerical fluid calcula-
tion for q̇0 = 3 MeV nuc−1 s−1 and theat = 5 sec. The blue
dashed curve indicates the enclosed mass inside rturn evalu-
ated with f0 = 1 in Equation (16), where the values of rturn
and ρturn are adopted from the numerical fluid calculations.
The bottom panel shows the value of f0 required to repro-
duce the results of the fluid calculations.

fall back from the radius beyond rturn. Therefore, the
decreasing rate of the ejecta mass between a sufficiently

small radius (taken to be rcount = 650 km in the numer-

ical calculation) and rturn, which has not been accreted

yet to the central object, is equal to the mass accretion

rate to the central object. The ejecta mass contained
within r = rturn can be written as

Mturn =
4π

3
f0r

3
turn ρturn , (16)

where the subscript “turn” means the value at r = rturn
and f0 is an O(1) constant that corrects the difference

originating from the mass density distribution. In Fig-

ure 7, the enclosed mass within r = rturn evaluated
with Equation (16) is compared to that of the numer-

ical fluid calculation (excluding that within rcount) for

q̇0 = 3 MeV nuc−1 s−1 and theat = 5 sec. The bot-

tom panel of Figure 7 shows the value of f0 in order for

Mturn to match the numerical value. Generally, there
are three terms contributing to the time derivative of

Mturn as follows:

Ṁturn

Mturn
=

ḟ0
f0

+ 3
ṙturn
rturn

+
ρ̇turn
ρturn

. (17)

Evaluating the value of each term from the fluid calcula-

tions, we find that, between t ∼ 6 tc and t = theat, rturn
and f0 vary on longer timescales than the mass density
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Figure 8. The infall velocity |v| (blue line) and the
sound speed (red line) of the accretion flow for q̇0 =
3 MeV nuc−1 s−1 and theat = 5 sec at t = 3 sec ∼ 8.5 tc >
6 tc. The vertical and horizontal axes are normalized by the
characteristic scales in Equation (11) and Equation (10), re-
spectively. The black dotted and dashed curves represent the
inflow velocity and the sound velocity calculated from the
Bondi accretion flow, respectively. The green long-dashed
curve represents the escape velocity at each radius. The ver-
tical and horizontal thin lines mark the sonic radius rsonic
and the sonic velocity vsonic, respectively.

ρturn. We therefore at first take rturn and f0 to be con-

stants and assume that the time variation of Mturn is
due only to ρturn.

The hydrodynamical structure at the time t = 8.5 tc >

6 tc, where the turn-around radius rturn has become

constant, is shown in Figure 8. In the region where
|v| & |vc|, the flow and sound velocities can be approxi-

mated well by the Bondi accretion flows. The accretion

rate of the Bondi solution can be written as follows us-

ing the physical quantities at r = rturn (Bondi 1952):

ṀBondi = 2
√
2πf1(GM)2ρturn /a3turn , (18)

where a =
√

ΓP/ρ is the sound speed, aturn = a(rturn)

and f1 is an O(1) constant that corrects the difference
owing to the fact that rturn is not infinite. Originally,

Equation (18) is a relation between the gas that is suffi-

ciently distant and stationary, but here we evaluate this

value at rturn. The fluid element at the turn-around ra-

dius rturn is almost at rest (see Figure 6 and Section
3.1). Although the pressure gradient is comparable to

the gravity, the gravitational potential is rather smaller

than the internal energy of the fluid, so that it can be

approximated in this way. In order to check the validity
of this assumption, in Figure 9, the mass accretion rate

obtained by the numerical fluid calculation is compared

to that evaluated using Equation (18). After t = 4 tc, it

can be seen that the mass accretion rate is well approx-
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fluid calculation.

imated by Equation (18). Equating the mass accretion

rate in Equation (18) to that in Equation (17) (in the

absolute values), we obtain the equation for the time

evolution of the mass density ρ at r = rturn as follows:

ρ̇turn
ρturn

= −3
√
2

2

f1
f0

1

tc

(

aturn
vc

)−3

. (19)

Here, f0, f1 and rturn ∼ rc are assumed to be constant
and Equations (9)–(11) are used. In order to solve Equa-

tion (19), a model of the time evolution of the sound

speed aturn at r = rturn is needed.

3.3. Sound speed at rturn

In this section, we model the temporal evolution of

the sound speed at the turn-around radius rturn. Figure
10 shows the time evolution of the square of aturn. As

can be seen from the figure, the values of a2turn in the nu-

merical fluid calculations are proportional to time after

t & 6 tc up to t = theat. This time dependence is ex-
pected from the characteristic scale q̇0t, which has the

dimension of the square of the velocity. We assume the

following equation as a model for the temporal evolution

of the sound speed at r = rturn:

aturn =

√

ΓPturn

ρturn
= β0vc

(

t

tc

)1/2

, (20)

where the value of β0 includes the effect of adiabatic

cooling in the accretion flow (that will be
√

Γ (Γ− 1) ∼
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Figure 10. Time evolution of the square of the sound speed
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by the characteristic scales in Equation (11) and Equation
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the numerical fluid calculations with q̇0 = 3 MeV nuc−1 s−1

for theat = 5 sec and theat = 10 sec, respectively. The black
dotted line, which is a linear function of time, is a model
curve of the sound speed given by Equation (20). It can
be seen that the model approximates the results of the fluid
calculations well at t & 6 tc.

0.67 in the absence of adiabatic cooling). Note that, in

this paper, we consider the case where the total heat-

ing per nucleon is O(MeV), so that this value will never

reach the speed of light. By solving Equation (20) for

Pturn and by using Equations (4), (10), and (11), we
obtain the value of the internal energy, ǫint ∼ 0.42 ρq̇0t,

which indicates that about half of the added radioactive

energy is converted to internal energy and the rest to ki-

netic energy. The test-particle model of Metzger et al.
(2010) and Desai et al. (2019) assumes that all of the ra-

dioactive energy is converted into kinetic energy; how-

ever as we have shown here, such a 100% conversion

efficiency from internal energy to kinetic energy is not

the case.

3.4. Halting of the fall-back accretion by r-process

The mass accretion rate Ṁturn at r = rturn, can be
calculated if the time evolution of ρturn is obtained with

Equations (19) and (20). Using Equations (16), (19),

and (20), we obtain the following relation:

d ln Ṁturn

d ln t
= −3

2

[

1 +
√
2
f1
f0

1

β3
0

(

t

tc

)−1/2
]

. (21)

By integrating this over time, we obtain

Ṁturn

Ṁ0

=

(

t

t0

)−3/2

exp

[

−3
√
2

β3
0

f1
f0

√

tc
t0

(

1−
√

t0
t

)]

,

(22)
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where Ṁ0 is the initial condition for Ṁturn at a given

time t0. For the evaluation of f0, f1, and β0, we adopt

the values at t0 = 6 tc, at which the turn-around radius

becomes approximately constant (see Figure 6), and use
f1/f0 = 0.5 and β0 = 0.43. The resultant mass accretion

rates using Equation (22) are shown in Figure 4 by black

curves. The dotted curves indicate those for t < 6 tc, i.e.,

the range of time when the assumptions necessary to de-

rive equation (22) are not valid. It is clear from Figure
4 that the mass accretion rate can be well approximated

by Equation (22) after t = 6 tc, which decreases rapidly

along the theoretical curve. Although the model is cali-

brated based on the result for q̇0 = 3 MeV nuc−1 s−1, it
can be seen that the theoretical curve also explains well

those for q̇0 = 30 MeV nuc−1 s−1.

Ṁ0 is a free parameter that cannot be determined due

to the lack of a typical scale of ejecta mass in this sys-

tem. For the cases in which only q̇0 is different but the
ejecta profile is the same, we can derive a scaling law

of Ṁ0 for various q̇0. For t ≪ 6 tc, the mass accretion

rate exhibits almost the same temporal evolution as in

q̇0 = 0 case (see the gray line in Figure 4), so that we
can approximate the mass accretion rate as that with-

out radioactive heating. Because the ejecta mass follows

the same dimensionless equation under the normalized

scales given by Equations (9)–(11), the ratio of mass ac-

cretion rates between with and without heating, which
is a dimensionless quantity, has the same time evolution

as a function of the normalized time t/tc for various q̇0.

If we choose the reference point t0 in time units of tc
(as we chose the reference point of Ṁ0 as t0 = 6 tc),
this ratio at t = t0 is uniquely determined. Without

heating, the mass accretion rate has the time evolution

proportional to t−5/3 so that the scaling law for Ṁ0 with

respect to q̇0 is given as follows:

Ṁ0 ∝ t−5/3
c ∝ (GM)

−2/3
q̇0. (23)

In the setting of this paper, at t = 6 tc, the value of Ṁ0

is about 13% of that without heating, which is derived
from the numerical result with q̇0 = 3 MeV nuc−1 s−1.

In the case of q̇0 = 30 MeV nuc−1 s−1 in Figure 4, we

adopt Ṁ0 calculated using Equation (23).

As represented by Equation (22) and Figure 4, the

mass accretion rate is suppressed compared to the case
without radioactive heating. This can be understood

from the following two effects by considering the mass

accretion rate Ṁ ∝ aBr
2
BρB evaluated at the sonic point

r = rB. The first effect is that rturn is nearly constant
over a certain period of time. As mentioned in Sec-

tion 3.1, this corresponds to the fact that no mass can

flow into the inside of the sphere of rturn from the out-

side. Thus the mass density ρturn at the turn-around

radius will necessarily decrease with accretion. Fur-

thermore, the flow outside the sonic radius rB is al-

most incompressible because it is a subsonic flow, so

that the mass density ρB at the sonic point is compa-
rable to ρturn. Therefore, ρB is also a decreasing func-

tion of time. The other effect is the increase in the

speed of sound with time. As can be seen in Figure 8,

the speed of sound at the sonic point of the accretion

flow is about the same order of magnitude as that at
the turn-around radius. Since the speed of sound in-

creases in proportion to t1/2 (see Equation (20)), the

radius of the sonic point rB = GM/2a2B (Bondi 1952)

shrinks as rB ∝ t−1. Because the mass accretion rate
is Ṁ ∝ aBr

2
BρB ∝ ρBt

−3/2, the above two effects both

work to reduce the accretion rate.

Chevalier (1989) calculated the accretion rate with ra-

dioactive heating, mainly due to 56Ni, in the context of

fallback accretion to the proto-neutron star in a super-
nova explosion. He showed analytically that the fallback

accretion rate declines sharply as Ṁ ∝ t−9/2 well within

the half-life of 56Ni, i.e., for a period of time when the

heating rate per unit mass is approximately constant.
Although the solution we obtained is exponential rather

than the power-law of time (see Equation (22)), the re-

sult in Chevalier (1989) is qualitatively similar to ours

in terms of the suppression of the mass accretion rate

in the presence of heating. The difference is that the
model in Chevalier (1989) considered only a self-similar

expansion of ejecta and assumed the mass density de-

creasing as t−3. In fact, provided that ρB ∝ t−3, we

obtain Ṁ ∝ ρBt
−3/2 ∝ t−9/2 by using the same argu-

ment as described earlier. The difference arises because

we also consider the reduction of mass density ρB due

to accretion.

If theat is shorter than 6 tc, the stagnation of rturn and

the increase of the sound speed will not occur for the
constant heating model. Thus, t & 6 tc is the necessary

condition for these two processes to work, namely,

theat > Ktc

∼ 2.1 sec K6

(

M

2.7 M⊙

)2/5(
q̇0

3 MeV nuc−1 s−1

)−3/5

,

(24)

where K is the time (with respect to tc) that takes for

rturn to become constant and K = 6K6 (see Figure 6).

After t ∼ 6 tc, the analytic solution (22) becomes valid,

and the mass accretion rate rapidly decreases. There-
fore, we call this time, thalt ∼ 6 tc, “halting time” and

this suppression of mass accretion “halting”. The halt-

ing time corresponds to the timescale in which the mass

accretion rate decreases to ∼ 13% of its original value
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for the model in which the total radioactive energy per nucleon is 1 MeV nuc−1, the constant phase lasts for 1 sec, and the
heating rate decreases proportionally to t−1.4 in the decay phase.

(see the description below Equation (23)). For given
q̇0, theat, and M , the halting condition is determined

by Equation (24). Figure 11 shows whether or not the

halting occurs in the q̇0theat–theat space. Here, because

we are considering only the constant heating phase (see

Equation (7), and see also Equation (25) for the case
with a power-law decay phase), the vertical axis in Fig-

ure 11 indicates the total radioactive energy injected into

the fluid. As can be seen from Figure 11, even if the to-

tal radioactive energy is the same, the halting is more
likely to occur as theat increases. This is because the

ejecta which is accreted at the later phase has less bind-

ing energy, and therefore, the accretion is more easily
disturbed by the later injection of radioactive energy.

Desai et al. (2019) also argued that the mass accre-

tion stops at a finite time if there is sufficient heating.

We compare our model with that of Desai et al. (2019)

as shown by the thin dashed lines in Figure 11. The
method for calculating their theoretical curve is sum-

marized in Appendix A. We consider that the “halting

time” we obtained corresponds to the “cutoff” of the

mass accretion claimed by Desai et al. (2019). As can
be seen from the figure, their results and ours have the

same dependence on the variables, but the total heating

energy per nucleon q̇theat to halt the fallback accretion
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differ by about an order of magnitude for the constant

heating case. In other words, compared to their test-

particle model, our fluid model requires about 10 times

larger heating rate to halt the mass accretion for given
theat. This difference is likely due to the fact that in

the test-particle model, all of the radioactive energy is

converted into the kinetic energy, whereas in the fluid

model, this energy conversion is incomplete remaining

internal energy.

4. SEMI-ANALYTICAL MODEL WITH

POWER-LAW DECAYING HEATING RATE

As we find in Figure 2, there is actually not only a con-
stant phase in the heating profile but also a decay phase.

The heating profile can be reasonably approximated by

q̇(t) =







q̇0 (t ≤ theat,0)

q̇0

(

t
theat,0

)−p

(t > theat,0)
, (25)

where theat,0 is the duration of the constant phase and

p > 1. The total radioactive energy Qtot can be written
as

Qtot =
p

p− 1
q̇0theat,0. (26)

If the halting occurs within the constant phase of ra-

dioactive heating in Equations (25), that is thalt ≤
theat,0, the halting time thalt = Ktc (cf. Equation (24))

can be written as follows:

thalt =

[

K5(GM)2
(

p

p− 1

)3

Q−3
tott

3
heat,0

]
1

5

∼ 265 secK6

(

M

2.7M⊙

)2/5(
Qtot

1 MeV nuc−1

)−3/5

×
(

theat,0
300 sec

)3/5

(p = 1.4). (27)

Even if the mass accretion does not halt during the

constant phase, the halting will eventually occur. Here,

we construct a semi-analytical model of the accretion

flow with the heating that decays with the power-law

of time. In the decay phase, the typical scales given by
Equations (9) and (10) become time-varying as follows:

rc(t) =

[

(GM)3

q̇(t)2

]1/5

=

[

(GM)3

q̇20

]1/5(
t

theat,0

)2p/5

,

(28)

tc(t) =

[

(GM)2

q̇(t)3

]1/5

=

[

(GM)2

q̇30

]1/5(
t

theat,0

)3p/5

.

(29)

Introducing the dimension-less variables ξ = r/rc(t) and

χ = t/tc(t), the fluid equations (1)–(3) can be normal-

ized as follows:

(

1− 3p

5

)

∂ lnφ

∂ lnχ
+

(

V − 2p

5

)

∂ lnφ

∂ ln ξ

+
∂V

∂ ln ξ
+ 3V = 0, (30)

(

1− 3p

5

)

∂V

∂ lnχ
+

(

V − 2p

5

)

∂V

∂ ln ξ

+
∂Z

∂ ln ξ
+ Z

∂ lnφ

∂ ln ξ
+ 2Z + V (V − 1) = −χ2

ξ3
, (31)

(

V − 2p

5

)

∂Z

∂ ln ξ
+

(

1− 3p

5

)

∂Z

∂ lnχ

+ (Γ− 1)Z
∂V

∂ ln ξ
+ [(3Γ− 1)V − 2]Z = (Γ− 1)

χ3

ξ2
,

(32)

where φ = ρ/ρc is the normalized mass density, ρc
is arbitrary constant with dimension of mass density,

V = vt/r is the normalized radial velocity, and Z =

(P/ρ)(t/r)2 is the normalized pressure. Note that the
normalized equations (30)–(32) do not explicitly include

theat,0. As we will see below, theat,0 is relevant to the evo-

lution of ejecta only as an initial condition in Equations

(30)–(32).
The temporal evolution of the accretion flow under

the heating rate (25) is as follows. Up to time theat,0,

as seen in Section 3, the accretion flow evolves accord-

ing to Equations (12)–(14) with the normalization of

Equations (9) and (10). If theat,0 is longer than ∼ 6 tc
(see Section 3.4), the halting occurs during the constant

phase, and the halting time is expressed by Equation

(27). On the other hand, if theat,0 . 6 tc, the ejecta

evolves according to Equations (12)–(14) and (30)–(32),
respectively, before and after

χheat = theat,0/tc(theat,0), (33)

at which the heating rate switches from the constant

phase to the power-law decaying phase. As seen in Sec-

tion 3, during the constant phase, since the temporal
evolution of the ejecta with various parameters are iden-

tical under normalized variables, almost independently

of the initial conditions. Therefore, even if model param-

eters are different but χheat and p are the same, these
accretion flows follows the same temporal evolution ac-

cording to Equations (30)–(32) from the same initial

conditions (i.e., the states at the end of the constant

phase) with normalized variables.
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In the case of the halting in the decay phase, unlike

the case in the constant phase, the normalized halting

time K takes a different value from 6 (see Section 3),

where K can be written as

K = thalt/tc(thalt). (34)

As seen in Section 3.4, the halting time thalt is the time

it takes for the mass accretion rate with the heating to

be suppressed to about 13% of that without heating.

As mentioned earlier, the normalized halting time K is
basically a function of χheat and p only. Also, if theat,0
(or χheat) is long enough (i.e., χheat > 6), this will match

the constant model, and K = 6. We investigate the

dependence of K on χheat and p based on the numerical
calculation. As a heating rate profile, we take various

values of theat,0 and p in Equation (25). We choose q̇0
and theat,0 for p = 1.2, 1.3, and 1.4, respectively, with the

condition q̇0 = 2.0 (theat,0/1.0 sec)
−p

MeV nuc−1 s−1

for various theat,0. The ejecta profiles (see Figure 1) and
the calculation method are the same as in Section 2.

Figure 12 shows the dependence of the normalized

halting time K on the normalized duration χheat of the

constant phase. The red, blue, and green dots repre-
sent the results of the numerical calculation for p = 1.2,

1.3, and 1.4, respectively. We fit these results with the

following monotonically increasing functional form:

Kα = Kα
0 +

[

1−
(

K0

6

)α]

χα
heat, (35)

where

K0 = AKp+BK , α = CKp+DK . (36)

Here we fix the value of K = 6 for χheat = 6 to re-
cover the result of the model with the constant heating

exactly. The resultant parameters are AK = −1.68,

BK = 4.75, CK = −3.14, and DK = −1.80. The re-

sultant fitting functions are shown as solid curves in

Figure 12. Using the radioactive heating rate in the
BNS merger as shown in Figure 2, we find that for that

heating rate, K = 2.6 (with χheat = 0 and p = 1.3)

is appropriate for almost all Ye cases. Once we obtain

the value of K, we can calculate the halting time in the
decay phase by solving the equation,

thalt = K

[

(GM)
2

q̇(thalt)3

]1/5

, (37)
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Figure 12. Dependence of the normalized halting time
K on the normalized duration χheat of the constant phase
and the decay index p of the heating profile. Here we
adopt the mass of the central object M = 2.7 M⊙, and
the parameters of the heating rate with the condition q̇0 =
2.0 (theat,0/1.0 sec)−p MeV nuc−1 s−1 for various theat,0.
The red, blue, and green points show the results of numeri-
cal calculations with p = 1.2, 1.3, and 1.4, respectively. The
solid curves show the fitting functions in Equations (35) and
(36) for various p. The black dash line represents the line
of K = χheat. For χheat = 6, the condition K = 6 shown
in Section 3 is recovered because the mass accretion halts
within the constant phase.

and the halting time is obtained as follows,

thalt =

[

K5(GM)2
(

p

p− 1

)3

Q−3
tott

3(1−p)
heat,0

]
1

5−3p

∼ 3.9×103 secK6.25
2.6

(

M

2.7M⊙

)2.5(
Qtot

1 MeV nuc−1

)−3.75

×
(

theat,0
1 sec

)−1.5

(p = 1.4). (38)

Here we adopt K = 2.6 corresponding to χheat ∼ 0,

which is a good approximation for the case of realistic

heating rates shown in Figure 2. This formula holds if
the halting does not occur during the constant phase,

and thus the above expression is only valid if thalt is

longer than theat,0. Note that, as can be seen from Fig-

ure 11, the power-law index of time in the decay phase

of the heating rate q̇(t) must be shallower than t−5/3 for
halting to occur.

Let us evaluate the mass accretion rate in the decay

phase of the heating q̇(t) ∝ t−p at t > thalt. Here, we

assume that p < 5/3 so that the halting occurs dur-
ing the decay phase. From Equation (28), the turn-

around radius rturn is expected to evolve in time as

rturn ∝ q̇(t)−2/5 ∝ t2p/5. Furthermore, from Equation

(20), the sound speed at turn-around radius is expected
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to be aturn ∝ (q̇(t)t)1/2 ∝ t(1−p)/2. We have checked

that these time dependencies are approximately consis-

tent with those obtained by numerical calculations, ex-

cept for the constant factor (e.g., rturn/rc(t) ∼ 0.8 rather
than unity). By solving Equation (16) for ρturn and sub-

stituting it into Equation (18), we obtain the differential

equation for the mass Mturn within the turn-around ra-

dius,

d lnMturn

dt
=

3
√
2

2
fPL

f1
f0

(GM)
2

a3turnr
3
turn

, (39)

where rturn depends on time. We find that f0, f1, β0,

and rturn/rc in the power-law heating model slightly de-

viate from those in the constant heating model shown in

Section 3, and depend on the normalized duration of the
constant phase χheat and the decay index of the heat-

ing rate p. Here, we introduce the time-constant factor

fPL = fPL(χheat, p) to adjust these differences. By in-

tegrating this equation over time and differentiating the
obtained solution with t, we get

Ṁturn

Ṁ0

=

(

t

thalt

)(3p−15)/10

×exp

[

− 5

5− 3p
fPL

3
√
2

β3
0

f1
f0

1√
K

(

1−
(

thalt
t

)

5−3p
10

)]

.

(40)

It can be easily checked that Equation (22) is recovered
when p = 0 and fPL = 1. From the calculation results

used for determining the χheat dependence of K, we can

also obtain the fitting function of fPL. We fit the calcu-

lation results of fPL with the following functional form:

fPL = (SPLp+ TPL)χ
2
heat + (UPLp+ VPL) . (41)

The resultant parameters are SPL = −1.22 × 10−2,

TPL = 2.65× 10−2, UPL = −0.324, and VPL = 0.661.

In Figure 13, the numerical calculation result with the

parameters q0 = 3 MeV nuc−1 s−1, theat,0 = 1.0 sec,
and p = 1.4 (shown in the red curve) is compared with

the mass accretion rate calculated from Equation (40)

(shown in the black curve). Note that the numerical

results shown in Figure 13 are for parameters indepen-

dent of the calculations used to calibrate Equations (36)
and (41). As can be seen from the figure, the semi-

analytical model reproduces the numerical results well.

Furthermore, generally, with the parameters used in our

calculations (i.e., fPL ∼ 0.3, f1/f0 ∼ 0.5 and β0 ∼ 0.43),
the mass accretion rate in Equation (40) decreases more

sharply than t−5/3 at t = thalt, so that the mass ac-

cretion is expected to be strongly suppressed after the

halting time even in the decay phase.
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Figure 13. Mass accretion rate calculated using the heat-
ing rate profile of broken power-law (Equation (25)) with
q0 = 3 MeV nuc−1 s−1, theat = 1.0 sec, and p = 1.4 (red
curve). The gray curve shows the mass accretion rate with-
out heating. The black curve is the mass accretion rate cal-
culated by the semi-analytical model of Equation (40). The
dotted line is before the halting time, and the Equation (40)
is not valid.

5. APPLICATION TO BNS MERGERS

In this section, we consider the halting process with

the realistic heating rate in BNS mergers as shown in

Figure 2. We can estimate the halting time from the

intersection of the heating rate curve and the line above
which halting occurs (red solid line in Figure 11 for M =

2.7M⊙ and K ∼ 2.6). As shown by the thick red curve

in Figure 11, when using the mass-averaged heating rate

of the nucleosynthesis calculations in Figure 2, we can

see that the halting occurs by the heating only after a
time ∼ 3.7× 105 sec.

Figure 14 shows the dependence of the halting time

on the parameters of the heating, i.e., theat and Qtot. In

addition, in order to investigate the dependence on Ye,
we also show the halting times calculated using the heat-

ing rates in Figure 2. Reflecting the tendency of larger

Qtot for smaller Ye, the halting time becomes shorter

for smaller Ye . 0.3. For larger Ye, the dependence of

the halting time on Ye is not monotonic. This is be-
cause as Ye increases, the length of theat increases. The

longer theat leads to the greater heating rate in the de-

cay phase, so that the halting time becomes shorter. We

find that the halting by r-process does not occur within
a timescale of ∼ 104 sec, although the radioactive heat-

ing may decelerate the accretion flow to some extent.

The radioactive heating of ejecta is the thermaliza-

tion process of non-thermal particles due to ioniza-

tion losses of charged particles and repeated scatter-
ing and absorption of gamma-rays. It has been pointed

out that, after about some of ten days, the timescale
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Figure 14. Dependence of the halting time on the radioactive heating for the fallback accretion with the central object mass
M = 2.7M⊙. The circles indicate the halting times calculated by using the nucleosynthesis results for individual initial Ye values
in Wanajo et al. (2014). The star represents the results for the mass-averaged heating rate (see Figure 2). The red and green
lines represent the results of the calculations with p = 1.3 and p = 1.4 power-law index in the decay phase of radioactive heating
(see Equation (25)), respectively, for theat = 0.1 sec (solid) and theat = 1.0 sec (dotted). Note that, in all cases, the halting
occurs in the decay phase. Shaded areas are the ranges of typical observed timescales for the extended emission and the plateau
emission of sGRBs. We can see that the accretion ceases, long after these emissions decay.

of thermalization becomes longer than the expansion

timescale of ejecta and thus the thermalization be-

comes inefficient (Hotokezaka et al. 2016; Barnes et al.
2016; Waxman et al. 2018; Kasen & Barnes 2019;

Hotokezaka & Nakar 2020). Because the halting time

we obtained is 10 days or even longer, we expect that

the thermalization is actually insufficient. However, all

the charged particles associated with radioactive decay,
which are efficiently trapped inside the ejecta by the

magnetic field, contribute to pressure being independent

of their thermalization. Since the halting is essentially

due to an increase in pressure rather than an increase in
temperature, the thermalization efficiency is less impor-

tant for charged particles. On the other hand, gamma-

rays (about a half of β-decay energy is emitted in the

form of gamma-rays) can escape from the ejecta. Thus,

gamma-rays make little contribution to pressure after a

sufficient time and the heating rate becomes effectively

small. As can be seen from Equation (38), when the
heating rate becomes about twice as small, the halt-

ing time becomes about an order of magnitude longer.

Therefore, the halting time shown in Figure 14 should be

considered as the lower limit. Note that, if the thermal-

ization is insufficient, the radiation efficiency is small, so
that the radiative cooling is negligible.

The uncertainty in nuclear physics may also affect

the estimated value of the halting time. According

to Barnes et al. (2020), there is a systematic varia-
tion of about one order of magnitude in the radioac-

tive heating rate at O(1)–O(10) days depending on the

adopted nuclear ingredients. Considering this uncer-

tainty in the heating rate and the inefficient thermal-
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ization, the halting time for a mass-averaged heating

rate is around O(104)–O(108) sec. Note that, according

to Zhu et al. (2021), the uncertainty in the heating rate

after O(10) days become larger, and they suggested the
uncertainty range is about three orders of magnitude at

O(108) sec, allowing for a possibility of the halting time

larger than O(108) sec.

Typical observed timescales for the extended emis-

sion and the plateau emission are about O(103) sec
and O(104) sec, respectively (Rowlinson et al. 2013;

Kagawa et al. 2019). As can be seen in Figure

14, the estimated halting time is much longer than

these timescales, when using the nucleosynthesis results
(Wanajo et al. (2014); see Figure 2). If the energy

source for these emissions were purely the fallback accre-

tion in BNS mergers (Rosswog 2007; Rossi & Begelman

2009; Kisaka et al. 2017), the radioactive heating from

decaying r-process nuclei appears insufficient to disturb
the energy supply from the accretion flow. Some addi-

tional heating sources which inhibit accretion or other

mechanisms, for example, the time-varying radiation ef-

ficiency of the accreting matter (e.g., Kawanaka et al.
2013), may be required to explain the characteristic

timescales of the extended and plateau emissions.

6. CONCLUSIONS

The discovery of GRB 170817A associated with

GW170817 established that a BNS merger is a source

of sGRBs. However, the origin of the late-time emis-

sion in sGRBs, namely, extended emission and plateau
emission, is still unknown. We have investigated the

fallback accretion model of these long-lasting emis-

sion of sGRBs (e.g., Rosswog 2007; Lee & Ramirez-Ruiz

2007; Rossi & Begelman 2009; Kisaka & Ioka 2015;

Kisaka et al. 2017). While the canonical fallback
accretion rate of t−5/3 has no typical timescales,

Metzger et al. (2010) and Desai et al. (2019) discussed

that the effect of radioactive heating results in a

timescale of O(10)–O(100) sec for mass accretion by us-
ing a test-particle model. We have revisited the effect

of the radioactive heating due to decaying r-process nu-

clei on the fallback accretion by using a hydrodynamic

model rather than a test-particle model. We have shown

that the timescale for the suppression of mass accre-
tion becomes an order of magnitude longer than that in

the test-particle model. Furthermore, we have found no

temporal gap (i.e., halt and revival) of mass accretion,

being opposed to the results by Metzger et al. (2010)
and Desai et al. (2019). Their model assumes that all of

the radioactive energy is promptly converted to the ki-

netic energy. In addition, they also assume that a fluid

element does not fall back once it becomes unbound.

However, our fluid calculations have revealed that these

assumptions are inappropriate.

We have developed a semi-analytical model for the

temporal evolution of mass accretion (see Equation (22)
and (40)), which reproduces the numerical results. The

fallback accretion has characteristic length and time

scales that depend on the mass of the central object

and the radioactive heating rate (see Equations (9) and

(10)). Normalizing the hydrodynamical equations with
these scales, we have obtained the scale-free equations

(see Equations (12)–(14)). Semi-analytical modeling of

these normalized equations has allowed us to investi-

gate a wide parameter range of accretion flow. While
the radioactive heating with a constant rate contin-

ues, the radius at which the accretion flow stagnates

(turn-around radius) becomes nearly a constant value,

being approximately equal to the characteristic length

scale. We have found that the accretion flow inside the
turn-around radius can be well approximated by the

Bondi accretion flow, and that the mass accretion rate is

well reproduced by the Bondi accretion rate evaluated

at the turn-around radius. Furthermore, we have de-
rived the conditions on the heating rate for the substan-

tial suppression of mass accretion (see Equation (24)).

We have extended this condition to more general heat-

ing profiles that decay with time (see Figure 11). For

the case where the heating rate can be written as a
combination of constant and decay phases (see Equa-

tion (25)), we have found that as long as the heat-

ing rate decays more slowly than t−5/3 in the decay

phase, the halting will occur after a sufficient amount
of time (see Equation (38)). For typical BNS mergers

(GRB 170817-like events), the halting timescale for the

suppression of mass accretion is found to be O(104)–

O(108) sec, which is, however, much longer than the

timescales in the late-time activity of sGRBs O(102)–
O(104) sec (Rowlinson et al. 2013; Kisaka et al. 2017;

Kagawa et al. 2019). The observations of macrono-

vae/kilonovae associated with sGRBs suggest that the

amount and distribution of r-process product differ from
event to event (Gompertz et al. 2018; Ascenzi et al.

2019). For events such as GW170817, where the

macronova/kilonova light curve can be observed in de-

tail, the halting time will be determined by modeling the

heating rate in the same way. Even if the detailed light
curves can not be obtained, by estimating the abun-

dance distribution (such as the lanthanide fraction) from

color evolution, we may be able to obtain the halting

time from Ye as seen in Figure 14. Besides, our model
will be applicable not only to BNS mergers but also

to the fallback accretion of proto-neutron stars in su-
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pernova explosions with r-process nucleosynthesis (e.g.,

Nishimura et al. 2006, 2015; Mösta et al. 2015).

Our results imply the existence of different mecha-

nisms or different sources of heating, which can stop the
late-time activity of sGRBs. For example, the shock

heating by the interaction between the viscously driven

wind and the accretion flow may occur. In order to ex-

amine such a mechanism, multi-dimensional hydrody-

namical simulations with the effects of radioactive heat-
ing will be necessary, in which both outflow (such as

late-time viscously driven wind) and inflow (such as the

fallback accretion of early dynamical ejecta) exist (see

Kawaguchi et al. 2020, for a recent development). Note
that, for a system with only inflow, as in our calcu-

lation, the multidimensionality has a minor effect. In

the time evolution of the mass accretion rate, the ejecta

profile near the boundary between the gravitationally

bound and unbound states is essential. As seen in Fig-
ure 1, the radial dependence of velocity and density

around the radius r ∼ 490 km (the boundary of the

bound ejecta) is independent of latitude, which justifies

the calculation with the spherically symmetric model.
Alternatively, magnetic reconnection or other magnetic

field dissipation processes may play a role in heating in

the ejecta. Instead of invoking other heating sources,

the time scales of extended and plateau emission may

be explained by considering a mechanism in which the
conversion rate from gravitational energy to radiation

decreases rapidly. For instance, there may be a rapid

change in radiation efficiency due to the state transition

of the accretion disk as the accretion rate decreases over
time (e.g., Kawanaka et al. 2013). We leave these issues

for our future work.

The halting time is sensitive to the uncertainty of the

radioactive heating rate in the r-process elements, which

ranges from 104–108 sec for one order of magnitude am-

biguity in the heating rate (Barnes et al. 2020). Fur-
thermore, it has been suggested that the uncertainty

becomes larger in the later stages (O(1)–O(10) yr)

(Zhu et al. 2021). This indicates that, if we can ob-

tain the halting time for a macronova/kilonova event,

we may be able to constrain the physical conditions
for the r-process as well as the relevant nuclear in-

gredients. One possible observational sign is the X-

ray excess in the yearly-scale light curve of GW170817

(e.g., Hajela et al. 2019; Balasubramanian et al. 2021;
Hajela et al. 2021), which we are currently investigating

(Ishizaki et al. 2021).
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APPENDIX

A. TEST-PARTICLE MODEL

A.1. Cold case

First, we describe the fallback accretion in a system with negligible pressure. The velocity of a fluid particle evolves
over time according to the equation of motion:

dv

dt
= −GM

r2
, (A1)

where M is the mass of the central object. The first integral of Equation (A1) gives the dynamical energy per mass

of the fluid element, which is written as

E0 =
1

2
v2 − GM

r
. (A2)

Let us introduce dimensionless variables x = r/rs and β = v/c, where rs = 2GM/c2. The dimensionless time is also

defined as τ = t/ts, where ts = rs/c. The dimensionless energy per mass λ is determined by

λ ≡ 1

x0
− β2

0 =
1

x
− β2 = −2E0/c

2, (A3)



18 Ishizaki et al.

where the subscript 0 indicates the values in the initial state.

The turn-around time, i.e., the time it takes for the fluid particle to change the direction of motion, can be written

as:

τf =
β0

λ (β2
0 + λ)

+ tan−1

(

β0√
λ

)

λ−3/2. (A4)

Note that τf is a function of the initial velocity and energy. When λ ≪ β2
0 < 1, τf can be written as:

τf ∼ π

2
λ−3/2. (A5)

As can be seen from Equation (A5), the turn-around time of a marginally bound fluid particle (λ ∼ 0) hardly depends

on the initial velocity.
Let us find the mass per unit time, which falls back through the sphere of r = rfin. Since the dynamical energy E0 is

conserved, the time it takes to return to rfin from the point at which v = 0 coincides with τf (rfin, E0(r0)). Therefore,

the time tfb required for the fluid particle launched at a velocity v0 from a radius r0 to fall back to rfin can be written

as follows:
tfb(r0, E0(r0)) = ts [τf (r0, E0(r0)) + τf (rfin, E0(r0))] . (A6)

Once the fallback time is determined as a function of r0, the mass accretion rate Ṁ is calculated as follows:

Ṁ (tfb (r0, E0 (r0))) ≡
dM

dtfb
= 4πr20ρ0 (r0)

(

dtfb
dr0

)−1

r=r0

, (A7)

where ρ(r0) is the mass density in the initial state.

A.2. Test-particle model for the r-process halting

According to Metzger et al. (2010) and Desai et al. (2019), we calculate the fallback time with radioactive heating

per unit time, q̇. Assuming that all the radioactive energy is converted to the kinetic energy, the total energy of the
particle at the turn-around time can be estimated as follows:

Ef (r0) = E0(r0) +

∫ tsτf (r0,Ef )

tstart

q̇(t) dt, (A8)

where the subscript f represents the values in the final state, i.e., the values at the turn-around radius. Here, in order

to introduce the effect that the turn-around time becomes longer as the energy of the particle increases, the value of τf
at the upper end of the integration is evaluated by using Ef . In fact, the internal energy injected to the fluid element

is converted into the kinetic energy via the pressure gradient forces. Since it is difficult to deal with this process in the

test-particle model, we adopt Equation (A8), which is the same prescription in Metzger et al. (2010) and Desai et al.

(2019). Furthermore, according to Desai et al. (2019), after the turn-around time (or, equivalently, fluid particles with
v < 0), we neglect the effect of radioactive heating. Therefore, the fallback time is written as:

tfb (r0) = ts [τf (r0, Ef (r0)) + τf (rfin, Ef (r0))] . (A9)

Using Equations (A7) and (A9), the mass accretion rate Ṁ when radioactive heating is effective can be obtained.

A.3. Halting condition for the test-particle model

Let us analytically evaluate the test-particle model for the case in which q̇ is constant with time. Considering only

marginally bound ejecta, we evaluate Equation (A9) by using Equation (A5). In this case, Equation (A8) can be

written as an algebraic equation for Ef as follows:

Ef (r0) =











E0(r0) + q̇0ts
π

2

(

−2Ef

c2

)−3/2

(tsτf < theat)

E0(r0) + q̇0theat (tsτf ≥ theat)

, (A10)

where we assume tstart ≪ tsτf . This can be calculated by finding the intersection of the two curves represented by

the right-hand side (red) and the left-hand side (blue) as shown in Figure 15. If there are multiple intersections, the

solution with the smallest Ef (i.e., the solution with the shortest turn-around time) is the physical solution.
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Figure 15. Left (blue line) and right (red curves) hand sides (with negative signs) of the algebraic Equation (A10) as a
function of −Ef in the test-particle model. The parameters q̇0 = 3 MeV nuc−1 s−1 and theat = 0.6 sec are adopted, which
correspond to a case such that mass accretion stops and resumes, i.e., making a “gap” (for details see text below Equation
(A17) or Metzger et al. 2010). The vertical dotted line indicates the value of Ef such that the turn-around time becomes equal
to theat. The different types of red curves represent differences in the initial positions of the fluid particles, with the upper lines
corresponding to the inner initial positions, i.e., closer to the central object. The thick red line indicates the case of the initial
radius r0,c being the boundary at which the solution series vary discontinuously.

The series of solutions discontinuously change at which Equation (A10) has a double root. Since Ef,c, which

corresponds to the point such that the blue line comes into contact with the red thick curve in Figure 15, is the root

of the derivative of Equation (A10), it can be written as follows:

Ef,c = −1

2
(3πq̇0GM)

2/5
. (A11)

The corresponding fallback time can be written as

tfb,c ∼ 2tsτf (r0,c, Ef,c) ∼
(

32

27
π2

)1/5

tc, (A12)

or numerically,

tfb,c ∼ 1.64tc ∼ 0.58 sec

(

Qtot

3 MeV nuc−1

)−3/5(
M

2.7 M⊙

)2/5(
theat
1 sec

)3/5

. (A13)
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Here we used Qtot ∼ q̇0theat, assuming that the offset tstart of the calculation start time is sufficiently shorter than

theat. The corresponding radius r0,c is determined from

E0(r0,c) = −5

6
(3πq̇0GM)

2/5
. (A14)

The right-hand side of this equation corresponding to the solution (r0,c, Ef,c) is shown as the thick red curve in Figure

15. As can be seen from the figure, the velocities of fluid particles released from the radius smaller than r0,c become

v = 0 before reaching t = theat and then the particles start infalling. On the other hand, the fluid particles released

from the radius greater than r0,c, which corresponds to those represented by the red curves below the thick red curve,

continue to be heated until t = theat. In order for a fluid particle released from the radius greater than r0,c to have a
bound solution (i.e., Ef < 0), the following condition is required:

E0(r0,c) + q̇0theat < 0. (A15)

Rewriting this condition in terms of theat and Qtot, we obtain

theat <

√

3125

3456
πts

(

Qtot

c2

)−3/2

. (A16)

If this condition is satisfied, even a particle released from the outside of the sphere of r0,c by an infinitesimal distance
(see the red curve for r0 = 449.74 km) has a finite fallback time tfb,r longer than tfb,c, namely,

tfb,r =
3

4

(

π4

3

)1/10(
5

4
− theat

tfb,c

)−3/2

tc. (A17)

Evaluating the value of tfb,r for Ṁ = 2.7M⊙, q̇0 = 3 MeV nuc−1 s−1, and theat = 0.6 sec gives tfb,r ∼ 3.95 sec. Further,

outwardly released fluid particles (see the red curve of Figure 15 for r0 = 456.03 km) have a longer fallback time
than tfb,r and thus the mass accretion continues. This is exactly the “gap”, the suspension of mass accretion between

t = tfb,c and tfb,r, which has been shown in Metzger et al. (2010). On the other hand, if theat is sufficiently long such

that Equation (A16) is not satisfied, the mass accretion halts and never resumes. This is what has been demonstrated

as a “cutoff” case in Metzger et al. (2010). In fact, we find a cutoff at the time calculated from Equation (A13) for
the test-particle model shown in Figure 3.

Equation (A16) is only a necessary condition for which a gap of mass accretion appears. For this case, there must

be a double root r0,c, in other words, theat must be sufficiently long enough for mass accretion to stop once. This can

be given by tsτf (r0,c, Ef,c) > theat. This can be also written as a condition for theat and Qtot:

1

6
√
3
πts

(

Qtot

c2

)−3/2

< theat . (A18)

A gap of mass accretion appears in the test-particle model if both Equations (A16) and (A18) are satisfied.

Metzger et al. (2010) classified the qualitative behavior of mass accretion by introducing a parameter η ≡ theat/tfb,c.
Using this parameter, we have

1

2
< η <

5

4
. (A19)

The lower and upper limits of the inequality represent the conditions under which mass accretion stops and resumes,

respectively. The upper bound of 1.25 was also obtained in Desai et al. (2019), which confirms our theoretical frame-

work being equivalent to theirs. The cutoff condition represented by the dashed lines for the test-particle model in
Figure 11 is determined such that the lower bound of η becomes 1/2.
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