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Abstract
In motor learning, sequence specificity, i.e. the learning of specific sequential associations, has predominantly been studied 
using task-based fMRI paradigms. However, offline changes in resting state functional connectivity after sequence-specific 
motor learning are less well understood. Previous research has established that plastic changes following motor learning can 
be divided into stages including fast learning, slow learning and retention. A description of how resting state functional con-
nectivity after sequence-specific motor sequence learning (MSL) develops across these stages is missing. This study aimed 
to identify plastic alterations in whole-brain functional connectivity after learning a complex motor sequence by contrasting 
an active group who learned a complex sequence with a control group who performed a control task matched for motor 
execution. Resting state fMRI and behavioural performance were collected in both groups over the course of 5 consecu-
tive training days and at follow-up after 12 days to encompass fast learning, slow learning, overall learning and retention. 
Between-group interaction analyses showed sequence-specific decreases in functional connectivity during overall learning 
in the right supplementary motor area (SMA). We found that connectivity changes in a key region of the motor network, the 
superior parietal cortex (SPC) were not a result of sequence-specific learning but were instead linked to motor execution. Our 
study confirms the sequence-specific role of SMA that has previously been identified in online task-based learning studies, 
and extends it to resting state network changes after sequence-specific MSL.
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Introduction

Motor learning-induced brain plasticity has been typi-
cally studied using magnetic resonance imaging (MRI) 
(for review, see Dayan and Cohen 2011; Krakauer et al. 
2019; Taubert et al. 2012), from immediate online func-
tional changes (Coynel et al. 2010; Karim et al. 2017; 
Steele and Penhune 2010; Yokoi and Diedrichsen 2019) 
to long-term structural effects (Gryga et al. 2012; Taubert 
et al. 2012; Bengtsson et al. 2005; Scholz et al. 2009). 
While task-based studies investigate immediate training-
related processes during task performance and structural 
studies usually identify longer term changes in brain mor-
phometry, they cannot comment on how the learned skill 
is represented and maintained within functional networks 
of the brain outside of the training/learning context. Rest-
ing state fMRI (rsfMRI) can be used to investigate func-
tional plasticity that occurs between online functional and 
slower structural changes. Measured in the absence of a 
task, resting-state network dynamics are thought to reflect 
the previous co-activation of functionally connected brain 
regions (Biswal et al. 1995; Guerra-Carrillo et al. 2014). 
Alterations in these functional networks are thought to 
reflect the strengthening of the memory trace generated 
during practice (Albert et al. 2009; Lewis et al. 2009; Vah-
dat et al. 2011). Therefore, assessing resting state networks 
and how they change in response to training can provide 
unique insight into training-related functional plasticity 
beyond the immediate time point of learning.

Previous research in motor learning has established that 
sequence learning per se can be distinguished from motor 
execution (Rosenbaum et al. 1983; Penhune and Steele 
2012; Wiestler and Diedrichsen 2013). However, while 
this concept has been assessed, tested and discussed in 
task-based studies (Seidler et al. 2002; Yokoi and Die-
drichsen 2019; Wymbs and Grafton 2015), learning that is 
specific to sequential associations (i.e., sequence-specific 
learning) is rarely if ever differentiated from motor execu-
tion in rsfMRI studies of motor learning. In part, this is 
due to the added challenge of including additional control 
groups matched for motor execution. Conclusions about 
functional changes being the result of sequence-specific 
learning, and not simply an effect of repeated performance, 
cannot be made without the inclusion of a control group 
(Thomas and Baker 2013; Steel et al. 2019). As a result, 
it is currently unclear which regions of the sensorimotor 
network are involved in offline sequence-specific learning 
versus those more generally involved in motor execution.

RsfMRI connectivity changes after motor sequence 
learning (MSL) have been investigated with “pre/post” 
frameworks where resting state functional connectiv-
ity (rsFC) is typically measured only before and/or after 

performing the task to identify immediate and overnight 
effects (Sami and Miall 2013; Gregory et al. 2014; Sami 
et al. 2014; Mary et al. 2017; Albert et al. 2009). Also, 
while motor learning is thought to progress through sev-
eral stages involving rapid changes in performance (fast 
learning), slower improvements over a longer time period 
(slow learning), and maintenance of robust performance 
(retention) (Doyon and Benali 2005; Dayan and Cohen 
2011; Lohse et al. 2014), there are few studies that have 
followed changes in rsfMRI networks after MSL across 
multiple sessions of training to investigate larger time-
scales (Ma et al. 2011; Xiong et al. 2009). To our knowl-
edge, there has been no investigation of sequence-specific 
resting state network plasticity across all three stages of 
learning. The present study is the first to address this gap.

Here, participants learned a continuous motor task 
with their right (dominant) hand over 5 days of training, 
followed by a retention probe 12 days later. RsfMRI was 
collected five times over the course of the training, provid-
ing a rich sampling of the different stages of learning in 
the absence of performance. Crucially, participants were 
randomly assigned to either a training (sequence-specific 
training) or control group (matched for motor execution). 
This rich dataset allowed us to identify the brain regions 
involved in sequence-specific learning and explore their 
functional dynamics.

Methods

Participants

Forty right-handed healthy participants with no history 
of neurological disorder (22 females, ranging from 20 to 
32 years of age, M ± SD: 24.5 ± 2.44) were included in 
this study. Participants were recruited from the database of 
the Max Planck Institute for Human Cognitive and Brain 
Sciences in Leipzig, Germany, and randomly assigned to 
an experimental (N = 20, 11 females) and control group 
(N = 20, 10 females). The experimental group learned a 
previously published complex visuomotor sequence pinch-
force task (Gryga et al. 2012) while the control group per-
formed a much simpler sinusoidal sequence that required 
almost no learning to perform. The training period con-
sisted of 5 days, with an additional familiarization ses-
sion prior to training and a retention session following 
12 days without practice. Participants did not meet any 
MRI exclusion criteria, gave written informed consent in 
accordance with the Declaration of Helsinki, and were 
monetarily compensated for their time. The study design 
was approved by the ethics review board of the Medical 
Faculty of the University of Leipzig.
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Task and stimuli: sequential pinch force task

The sequential pinch force task (SPFT) is a motor sequence 
task that requires the participant to use the index finger and 
thumb of the dominant (right) hand to exert force on the end 
of a pinch force device (Fig. 1a) which measures force at a 
sample rate of 80 Hz. This pinching force controls the height 
of a rectangular yellow force bar (FOR) that is displayed on 
the screen (Fig. 1b).

In the SPFT, the participant is instructed to adjust the 
height of FOR to match that of an adjacent blue reference 
(REF) bar. The up and down movement of REF follows a 
pre-set sequence (Fig. 1b, c). There are 3 conditions: a learn-
ing condition (LRN), a simple control condition (SMP) and 
a resting condition (RST). In LRN, the movement of the bar 
follows a previously published sequence of varying heights 
that is difficult to predict (Fig. 1c) and learned over time 
(Gryga 2012), while the SMP sequence is a simple sinu-
soid. The SMP sequence was designed to match the LRN 
sequence for its frequency of maximum power, duration, 
range, and the total magnitude of force. While in the SMP 
condition participants merely performed this predictable and 
unvarying sinusoidal sequence of motor movements; in the 
LRN condition, participants execute the same type of move-
ments (i.e., varying pinch force over time) but performed a 
more complex sequence (Fig. 1c). As a result, SMP serves 
as a matched control for motor execution which, in com-
parison with LRN, can be used to identify sequence-specific 
differences that are over and above any changes associated 
with motor execution. During RST, both bars are displayed 

statically at 50% of their maximum height and participants 
were instructed to focus their gaze between the upper edges 
of the two bars.

On each training day, 3 blocks consisting of 3 SMP, LRN 
and RST trials each were performed by the experimental 
group; for a total of 9 trials per condition on each day. In 
order to ensure that the training was the same on all days, 
the order was fixed across participants such that they started 
with the SMP trials followed by RST and then LRN trials. 
The control group performed the same number of blocks 
and trials but never performed LRN: the LRN blocks were 
replaced by SMP blocks such that the total effort for each 
group remained the same. Each trial was 18 s in length. 
The sequential force trace was the same across participants 
to ensure that all participants faced the same sequence dif-
ficulty. After the SMP and LRN trials, participants received 
feedback reflecting their average temporal accuracy in 
matching the heights of REF and FOR. The average tem-
poral accuracy consisted of the mean time lag per block (in 
ms).

For simplicity, we will refer to the groups based on which 
sequence they were assigned throughout the rest of this 
paper: SMP (SMP only) vs. LRN (SMP and LRN).

Training and experimental procedure

The experimental procedure (Fig.  1d) consisted of 
one familiarization session (d0), five training sessions 
(d1–d5) and one retention session (d17, which took place 
12 days after d5). The first training session (d1) always 

Fig. 1  Task and procedure—a sequential pinch force task (SPFT) 
device, b visual screen representations: FOR bar (yellow) REF bar 
(blue), c pinch-force task, green: simple control condition (SMP) 

sequence, blue: learning condition (LRN) sequence d experimental 
design. Brain images indicate sessions where 7 T scanning was per-
formed
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took place on Monday and the d0 familiarization session 
took place on the previous Friday so that the training 
period for each participant always took place on five 
consecutive days (Monday–Friday). The familiarization 
session included a maximum force calibration step fol-
lowed by 9 trials of the SMP sequence. When measuring 
the maximum pinch force, the subject was asked to pinch 
the device with as much force as possible for ten seconds 
and the maximum value obtained during this period was 
considered maximum force. This measurement was used 
to calibrate the level of force required to move the visu-
ally presented force bar and was set to between 5% (mini-
mum bar level) and 30% (maximum bar level) of each 
individual’s maximum force to ensure that participants 
were also matched by relative effort. Five sessions (d0, 
d1, d2, d5, d17) were performed while lying supine inside 
of the MRI scanner and two (d3, d4) outside of the scan-
ner in a separate testing room while seated at a computer. 
During these sessions, the SPFT was performed with the 
dominant hand, over a total duration of 20 min (3 blocks, 
9 trials [LRN group: 3x(LRN), 3x(SMP), 3x(RST); SMP 
group: 3x(SMP), 3x(SMP), 3x (RST)]. The d17 reten-
tion session followed the same protocol as the training 
days and was measured 12 days after the last day of the 
training period. All sessions took place at the same time 
during the day to account for potential time of day fluc-
tuations in resting state connectivity (Steel et al. 2019).

MRI protocol

MRI data were acquired on a 7 Tesla MRI scanner (MAG-
NETOM, Siemens Healthcare, Erlangen, Germany) 
equipped with a 32-channel head coil (Nova). For the 
purposes of the current study, blood-oxygenation-level 
dependent (BOLD) rsfMRI, MP2RAGE T1 (Marques 
et  al. 2010), and a fieldmap were acquired. RsfMRI 
scans [BOLD, voxel dimensions = 1.2 × 1.2 × 1.2 mm, 
512 whole brain volumes, FOV = 192 × 192  mm2, slice 
acceleration factor: 2, slice thickness = 1 mm, 102 slices, 
GRAPPA factor 2, partial Fourier 6/8, TR = 1130 ms, 
TE = 22  ms, f lip angle = 40°, bandwidth = 1562  Hz/
Px] were acquired under an eyes open condition with 
a fixation cross for 10 min and took place before the 
task. Additionally, MP2RAGE images [voxel dimen-
sions = 0.7 × 0.7 × 0.7 mm, FOV = 224 × 224 × 240  mm3, 
TR = 5000 ms, TE = 2.45 ms, flip angle 1 = 5°, flip angle 
2 = 3°, bandwidth = 250 Hz/Px] and a fieldmap [voxel 
dimensions = 2 × 2  × 2 mm, FOV = 256 ×  256  mm2, slice 
thickness = 2 mm, 80 slices, TR = 18 ms, TE1 = 4.08 ms, 
TE2 = 9.18 ms, flip angle = 10°, bandwidth = 300 Hz/Px] 
were also collected.

Image processing

A custom preprocessing pipeline was implemented using 
Nipype (Gorgolewski et al. 2016) and Nilearn (v0.2.3, Abra-
ham et al. 2014). The first five volumes of the rsfMRI EPI 
sequences were removed for signal stabilization. Motion 
correction was performed using the SpaceTimeRealign 
algorithm (Roche 2011) implemented in Nipy. Given the 
short TR, no slice timing correction was applied. Magnetic 
field inhomogeneity and subsequent image distortions are 
more pronounced at higher field strengths (Cusack et al. 
2003), therefore EPI data were undistorted using the field-
maps and FSL FUGUE (Jenkinson 2004). Outliers in com-
posite motion and average brain signal were detected using 
Nipype’s ArtifactDetect function for removal in a subsequent 
step. Nilearn’s high_variance_confounds function was used 
to extract time courses representative of physiological noise 
from the white matter and cerebrospinal fluid, following 
the aCompCor approach (Behzadi et al. 2007). Nuisance 
regression was performed using Nilearn’s NiftiMasker and 
included the previously calculated 12 motion regressors 
(3 translations and 3 rotations plus their first derivatives), 
outlier regressors and physiological regressors. Timeseries 
were detrended, variance-normalized and bandpass filtered 
between 0.01 and 0.1 Hz. A 2.4 mm FWHM Gaussian spa-
tial smoothing filter was applied to the preprocessed data 
(Poldrack et al. 2011). Eigenvector centrality (EC) maps 
were calculated with the fast Eigenvector centrality map-
ping (fastECM) algorithm by Wink et al. (2012) in native 
space to protect data properties. Finally, a linear (12 degree 
of freedom (dof)) and nonlinear (Syn) registration to MNI 
space were performed with ANTS (Avants et al. 2009) as 
implemented in the CBS Tools (Bazin et al. 2014). Fur-
ther preprocessing steps such as generating transformation 
maps between native, group and MNI spaces, as well as 
tissue segmentation of the anatomical MP2RAGE images 
were performed using the CBS Tools. All scripts are openly 
available at https:// github. com/ AthSc hmidt/ MMPI/ tree/ mas-
ter/ prepr ocess ing.

Network analysis

In recent years, graph-based analyses have become increas-
ingly used for studying functional connectivity (Sami and 
Miall 2013; Wang et al. 2010 review, Zuo et al. 2012). In 
such analyses, brain regions are treated as nodes—and sev-
eral approaches have been used to describe the dynamics 
of connections between such nodes (Bullmore and Bassett 
2011). Graph based analyses also offer the possibility to 
undertake data-driven investigations of brain dynamics glob-
ally and quantifiably on a voxel level without prior assump-
tions. EC mapping is a method to analyze network structures 
which identifies nodes that are of central importance to the 

https://github.com/AthSchmidt/MMPI/tree/master/preprocessing
https://github.com/AthSchmidt/MMPI/tree/master/preprocessing
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entire network (Lohmann et al. 2010). The importance of 
nodes is determined by the connectedness to other nodes, 
increasing as the connection to nodes with many important 
connections also increases. In other words, nodes become 
more important to the network when they are connected 
to other important nodes, and are assigned higher EC val-
ues. The weighting of the nodes is achieved by calculating 
their eigenvector from a similarity matrix. (Lohmann et al. 
2010). The dominant eigenvector is the one with the largest 
eigenvalue of this matrix. The coefficient in this dominant 
eigenvector is computed iteratively as the weighted sum 
of centralities of the neighbors of a given node. A detailed 
description of the calculation can be found in the original 
article by Wink et al. (2012). Applying fastECM, we ana-
lysed node centrality on the whole brain level by treating 
each voxel as a node. Major advantages of EC compared to 
other rsfMRI analysis methods are its faster computation 
times, and the fact that it is data driven and does not require 
additional assumptions (Wink et al. 2012).

Applying the fastECM Algorithm by Wink et al. (2012), 
we analysed EC on the whole brain level by treating each 
voxel as a node. For the analyses, voxel-wise EC maps at 
each time point were compared between groups to infer 
connectivity changes as a result of sequence-specific motor 
learning. For example, the changes between d1 and d2 of 
the LRN group were compared to the changes between 
d1 and d2 of the SMP group in order to identify potential 
interaction effects. The comparisons between time points 
were interpreted as being reflective of the different learning 
stages. Based on the motor learning literature, we defined 
fast learning as changes between the first and second days 
of training (d1/d2), slow learning as improvements between 
the second and fifth days (d2/d5), overall learning from no 
knowledge of the task up until plateau (d1/d5) and retention 
as skill recall after the passage of time without training (d5/
d17) (Dayan and Cohen 2011).

Behavioural analysis

We analysed the behavioural data to characterize perfor-
mance and contextualize our fMRI results within the dif-
ferent stages of sequence learning introduced by task-based 
fMRI studies. Performance was assessed by measuring 
temporal synchronization (SYN) and lag-aligned root mean 
squared error (RMSE). SYN describes the deviation of the 
FOR bar from the REF bar, in milliseconds (LRN sequence 
or SMP sequence). A cross-correlation between REF and 
FOR patterns was computed for each trial, and the time lag 
with the maximum correlation value was used to determine 
the degree of temporal synchronization (SYN), (where a 
score of 0 denotes perfectly synchronized performance). The 
lag-aligned values were computed by setting the lag val-
ues to 0. The resulting deviation values were square rooted 

and averaged. The square root was then used to calculate 
the lag-aligned RMSE. RMSE represents the spatial devia-
tion between the position of REF and the position of FOR 
adjusted by the participant. To ensure that they did not differ 
behaviourally at the beginning of training, we conducted t 
tests and compared the averages of the first block (three tri-
als) of the SMP sequence in both groups for both SYN and 
RMSE. Behavioural performance metrics were computed 
using custom-built MATLAB scripts (available at https:// 
github. com/ neura labc/ SPFT).

Statistical analyses

In order to understand changes in performance as a result of 
training, we computed the mean SYN per day for each par-
ticipant and performed a repeated measures ANOVA with 
factors day (1–17) and group (LRN vs. SMP). Mauchly’s 
tests were conducted to correct sphericity when necessary 
(Greenhouse–Geisser if ε < 0.75 or Huynh–Feldt if ε > 0.75). 
Post hoc Tukey’s tests were used to assess timing-specific 
significant effects between consecutive days. Statistical test-
ing on the behavioural data was performed with the Jamovi 
software (https:// www. jamovi. org; Singmann et al. 2018; 
Lenth et al. 2018) based on R (https:// cran.r- proje ct. org/).

Group X time interaction analyses

Prior to the interaction analysis and to verify that the groups 
baseline EC maps did not differ on the days before train-
ing, we applied independent t tests in SPM to compare both 
groups at d0 as well as d1.

For the rsFC whole brain interaction analyses we used 
a flexible factorial design for longitudinal data from the 
CAT12 Toolbox in SPM with two groups and 5 time points 
(d0, d1, d2, d5, d17). The flexible factorial design included 
two factors: group and time point. Within the interaction 
analyses, changes between time points within-group were 
compared across groups and learning stages. For example, 
when investigating the fast learning stage, the interaction 
analysis consisted of comparing both the d1–d2 contrast 
(decreases from d1 to d2, relative to LRN) and the d2–d1 
contrast (increases from d1 to d2, relative to LRN). Interac-
tion analyses were performed for the following time point 
contrasts: d1–d2, d2–d1, d2–d5, d5–d2, d1–d5, d5–d1, 
d5–d17, and d17–d5. Following the identification of inter-
action effects, we then computed the magnitude of change 
within the significant ROI in each group to determine 
which group was driving the effect. Based on our design, 
the identification of a change in centrality that was greater 
in the LRN group than the SMP group was considered as a 
sequence-specific effect. RsfMRI results are reported using 
cluster inference with the SPM default primary threshold of 

https://github.com/neuralabc/SPFT
https://github.com/neuralabc/SPFT
https://www.jamovi.org
https://cran.r-project.org/
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p < 0.001 and FDR correction at the cluster level at p < 0.05 
(Woo et al. 2014).

Results

Behavioural results

Two outliers were excluded from the behavioural data 
because their values were more than 2 standard deviations 
away from the mean on 2 days.

There were no differences between the groups on the 
averages of the first 3 trials of the SMP task in either SYN 
(t = − 1.84, p = 0.07) or RMSE (t = − 0.99, p = 0.33).

For the analysis of SYN, we found a significant main 
effect of group [F(2,57) = 60.2, p < 0.001, η2 = 0.68] (Fig. 2). 
Post hoc Tukey t tests revealed significant differences in the 

LRN group between d1 and d2 (t = 7.89, p < 0.001) and d2 
and d3 (t = 4.23, p = 0.004). There were no significant dif-
ferences in the LRN group between days 3, 4, 5 and 17. 
There were no significant differences between days in the 
SMP group, supporting the hypothesis that the SMP group 
was not improving in temporal accuracy. Therefore, we were 
able to see the progress of learning the LRN sequence over 
time (Fig. 2) by assessing SYN. For the analysis of RMSE, 
we found a significant main effect of group [F(2,56) = 4.90, 
p = 0.011, η2 = 0.149] (Fig. 3). Post hoc Tukey t tests revealed 
significant differences in the LRN group between d1 and d2 
(t = 4.89, p < 0.001) and d2 and d3 (t = 4.53, p = 0.001). We 
also found significant differences in the SMP group between 
d1 and d2 (t = 5.89, p < 0.001) but no significant differences 
between d3, d4, d5 and d17 providing evidence for perfor-
mance improvements during the fast learning phase in the 
SMP group in spatial accuracy.

Fig. 2  Behavioural results. 
Temporal synchronization 
(SYN) for for both groups (LRN 
and SMP) and sequences across 
all days (d1–d17). Error bars 
indicate the standard error of 
the mean. LRN and LRN_SMP 
values were calculated by 
averaging 3 × 3 trials per block. 
SMP values were calculated by 
averaging 6 × 3 trials per block

Fig. 3  Behavioural results. 
Root-mean-squared error 
(RMSE) for both groups (LRN 
and SMP) and sequences across 
all days (d1–d17). Error bars 
indicate the standard error of 
the mean. LRN and LRN_SMP 
values were calculated by 
averaging 3 × 3 trials per block. 
SMP values were calculated by 
averaging 6 × 3 trials per block
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There were no significant differences between the two 
groups in musical and physical exercise experience (all p 
values > 0.05). There were no significant differences in the 
LRN group between days 3, 4, 5 and 17.

rsFC results

There were no significant between-group differences in 
whole brain EC on either d0 or d1.

Interaction effects—fast learning

When investigating changes in EC we found significant 
group by day interaction during fast learning in the right 
anterior insular cortex (AIC) and the right SPC (Fig. 4). Tra-
jectories of change in EC were plotted over all training days 
in significant clusters of the interaction analyses to provide 

additional context about the progression of changes within 
those regions across the time points (Fig. 4).

Interaction effects—slow learning

Interaction effects between d2 and d5 were found in EC 
between groups in the right AIC (Fig. 5). However, this 
cluster was not sequence specific, as the SMP group was 
driving the changes.

Interaction effects—overall learning

We found interaction effects between groups in EC dur-
ing overall learning (d1 vs d5) in the right supplementary 
motor area (SMA) and right parietal operculum (PO) (sec-
ondary somatosensory cortex) (Fig. 6A) and bilateral SPC 
(Fig. 6B). Interaction effects in the right SMA were driven 
by the LRN group (see Table 1) and, therefore, identified 

Fig. 4  Group interaction: fast 
learning. a Glass brain EC. 
Interaction effect in the right 
AIC, decreases in LRN (d1–d2), 
b glass brain EC. Interac-
tion effect in the right SPC, 
increases in LRN (d2–d1). c 
The EC change value trajectory 
over the entire training period 
for the significant clusters 
including R AIC and R SPC 
displayed for LRN and SMP. 
The period which had the 
significant interaction (d1/d2) is 
highlighted in red
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as sequence-specific. A depiction of the precise anatomical 
location of this cluster in the right SMA can be found in 
Fig. 7.

Interaction effects—retention

To identify potential EC changes between the last time point 
of training and the retention probe, we compared d5 and d17 
between the two groups. We identified a significant interac-
tion effect in the right Putamen (Fig. 8). This effect was not 
predominantly driven by LRN.

Precise locations as well as MNI coordinates of peak vox-
els and significance thresholds of the significant clusters are 
listed in Table 2.

Discussion

We investigated between-group interaction effects in func-
tional connectivity changes over the course of one week of 
training on a continuous motor sequence task with rsfMRI. 
Our study encompasses fast learning, slow learning, overall 
learning, and retention. Crucially, we compared a group that 
learned a complex sequence with a control group that per-
formed a matched motor task to distinguish changes due to 
sequence-specific learning and provide additional context for 
changes in resting state functional connectivity after MSL 
throughout the learning stages.

Interaction analyses revealed a set of regions mostly 
within the motor network that exhibited differential change 
between the two groups, providing evidence that these 
regions play a role in functional plasticity after MSL. Our 
criterion for assigning sequence-specific function to a region 
was dependent on that region exhibiting greater centrality 
change in the LRN group. As a result, we found sequence-
specific functional changes in one brain region at one time 
point: the SMA during overall learning. Most of the other 
regions identified in the interactional analyses, including 
well-known motor learning related areas such as the SPC 
also showed opposing centrality changes in both groups 
but were not being driven by LRN, suggesting differential 
involvement of this region when learning a complex motor 
sequence versus a simpler motor execution.

Sequence specificity

Behaviourally, we were able to show sequence-specific 
increases in performance over the course of training. Both 
behavioural measures showed differential improvements 
in performance over the course of training, and the experi-
mental and control groups both improved in spatial accu-
racy (RMSE). Furthermore, both sequences showed simi-
lar patterns of improvement in the LRN group, while the 
control group’s performance was consistently better (lower 
RMSE on the SMP sequence than in the LRN group). This 
result is likely because we controlled for the amount of 
motor execution (i.e., the control group performed the same 

Fig. 5  Group interaction: slow 
learning. a Glass brain EC. 
Interaction effects in the R AIC, 
increases in LRN (d5–d2). b 
The EC change value trajectory 
over the entire training period 
for the significant cluster in R 
AIC displayed for LRN and 
SMP with the period which had 
the significant interaction (d2/
d5) highlighted in purple
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number of sequences as the LRN group, but performed only 
the SMP sequence. This means that the control group per-
formed twice the number of SMP sequences and was not 
alternating between sequences as in the LRN group. This 
design resulted in an overall improvement in spatial accu-
racy in the LRN group that was less than that of the control 
group. Regardless, it is apparent that both groups exhibited 

performance improvements in spatial accuracy that followed 
very similar trajectories—indicating that the improvement 
in spatial accuracy is relevant to both groups. However, 
when measuring temporal accuracy (SYN), we found that 
behavioural improvements were exclusively evident for the 
complex LRN sequence. Therefore, our findings indicate 
that SYN exhibits sequence-specificity and reflects complex 

Fig. 6  Group interaction: 
overall learning. a Glass brain 
EC. Interaction effects in the 
R PO and R SMA (seq-spec.), 
decreases in LRN (d1–d5). 
b Glass brain EC. Interac-
tion effects in bilateral SPC, 
increases in LRN (d5–d1). c 
The EC change value trajectory 
over the entire training period 
for the significant clusters in 
R PO, SMA, SPC and L SPC 
displayed for LRN and SMP 
with the period which had the 
significant interaction (d2/d5) 
highlighted in green
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sequence learning. In order to identify which brain regions 
were relevant for sequence-specific learning and temporal 
accuracy, we evaluated which of the results from our func-
tional connectivity interaction analyses were reflective of the 
sequence-specific behavioural results and therefore were 1. 
driven by the LRN group and 2. showed little to no change 
in the SMP group.

Hence, functional connectivity changes reflecting 
sequence-specific learning effects were identified during 
the overall learning period in the SMA. We found no evi-
dence for sequence-specific effects during the fast-, slow-
learning or retention phases. A predominant role of the SMA 
in sequence-specificity during offline learning aligns well 
with the literature on sequence-specificity from task-based 
online assessments of MSL (Elsinger et al. 2006; Gaymard 
et al. 1990; Gerloff et al. 1997; Hikosaka et al. 1999; Jenkins 
et al. 1994; Lee and Quessy 2003; Mushiake et al. 1991; 
Shibasaki et al. 1993; Shima and Tanji 2000; Tanaka et al. 
2010; Vollmann et al. 2013).

Previous research has shown that the SMA is also rel-
evant for sequence-specific MSL during online learning in 

nonhuman primates where it has been established that SMA 
is activated during the planning period prior to sequence 
execution (Tanji and Shima 1994).

While it seems counter-intuitive to see such lateralized 
results on the right side when training on a motor task per-
formed with the right hand, it is important to consider that 
the interaction analysis shows results only in regions dif-
fering between the experimental and control groups. Con-
sidering that both groups are manipulating the device with 
their right hand, any activity related to simple motor exe-
cution will overlap in both groups and, in the case of sim-
ple motor movements of the right hand, be present in the 
left hemisphere. Therefore, sequence-specific differences 
between groups may be more difficult to detect in these 
regions as they may end up being masked by connectiv-
ity changes attributable to motor execution. Additionally, 
previous research has shown that the right SMA is bilater-
ally connected to other regions such as the basal ganglia, 
insula, thalamus and cerebellum, and thus represents a 
strong network-level affiliation with the entire motor net-
work (Narayana et al. 2012). The SMA has been found to 

Table 1  Summary statistics for 
regions exhibiting significant 
time-by-group interactions

Regions where LRN exhibited greater change than SMP are highlighted in grey

EC LRN SMP

Mean SEM 95% CI Mean SEM 95% CI

Fast learning
(d1 vs d2)

R AIC − 0.05 0.03 [− 0.10, 0.01] 0.10 0.03 [0.04, 0.16]

R SPC 0.06 0.03 [− 0.01, 0.12] − 0.12 0.03 [− 0.19, − 0.04]
Slow learning
(d2 vs d5)

R AIC 0.02 0.03 [− 0.04, 0.08] − 0.13 0.02 [− 0.17, − 0.10]

Retention
(d5 vs d17)

R Puta-
men

− 0.02 0.02 [− 0.06, 0.03] 0.12 0.03 [0.06, 0.19]

Overall learning
(d1 vs d5)

R SMA − 0.10 0.02 [− 0.14, − 0.06] 0.03 0.02 [− 0.02, 0.08]

R PO − 0.05 0.02 [− 0.10, − 0.00] 0.09 0.03 [0.03, 0.16]
L SPC 0.06 0.02 [0.02, 0.11] − 0.12 0.03 [− 0.19, − 0.06]
R SPC 0.05 0.03 [− 0.01, 0.12] − 0.13 0.04 [− 0.21, − 0.04]

Fig. 7  Anatomical location of the sequence-specific cluster in the R SMA overlaid on an anatomical group template normalized into MNI space
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be relevant for sequential learning (Lacourse et al. 2005; 
Lin et al. 2012; Mallol et al. 2007; Wymbs and Grafton 
2015), and specifically to the linking of action phases dur-
ing sequential movements (Säfström and Domellöf 2018), 
action execution (Narayana et al. 2012) as well as imagin-
ing rhythmic motor execution (Oullier et al. 2005). It is 
interesting that we identified the right SMA as sequence-
specific while previous work has suggested that effector-
independent movement sequences are represented in the 
left SMA (Grafton et al. 1998, 2002) and Vollmann et al. 
(2013) showed that tDCS over left SMA promotes learning 
on the same SPFT that we have used. However, previous 

research has also shown that ipsilateral motor regions 
play a supportive/cooperative role in learning (Waters 
et al. 2017), even though their specific involvement in 
motor plasticity is not fully understood (Hazeltine 2001). 
One important point made by van Mier et al (1998) was 
that conclusions on laterality in SMA clusters are often 
difficult to make with large smoothing kernels (Wymbs 
and Grafton 2015). Our tightly controlled high-resolution 
data and small smoothing kernel may provide evidence 
for a more specific interpretation regarding lateralization. 
Namely, our results point towards a specific involvement 
of the right SMA in complex sequence learning a right 
hand motor task. Whether this involvement is specific to 
the right hemisphere or rather an ipsilateral effect would 
need to be investigated in future studies. We found that EC 
in the SMA gradually decreased over the entire learning 
period, suggesting an ongoing relevance to the learning 
process. While it would be intuitive to interpret a decrease 
in connectivity as indicating decreased involvement of that 
area, it is important to keep in mind that EC is a network 
measure that reflects less connectedness to other highly 
connected nodes, rather than less activation of the region 
per se. A decrease in this case could also point towards a 
reduction of neural resources as a result of skill-specific 
efficiency (Wymbs and Grafton 2015).

Fig. 8  Group interaction: reten-
tion. a Glass brain EC. Interac-
tion effects in the R Putamen, 
decreases in LRN (d5–d17), b 
the EC change value trajectory 
over the entire training period 
for the significant cluster in R 
Putamen displayed for LRN and 
SMP with the period which had 
the significant interaction (d5/
d17) highlighted in blue

Table 2  Flexible factorial analysis interaction effect results, EC

Contrast pval FDR K Peak
t value

MNI coordi-
nates

Anatomical 
location

d1–d2 0.001 144 4.21 35, 22, − 14 R AIC
d2–d1 0.003 431 3.88 24, − 76, 47 R SPC
d5–d2 0 391 4.5 30, 18, − 14 R AIC
d5–d17 0.025 27 4.25 24, 10, − 10 R Putamen
d1–d5 0 131 4.03 6, − 4, 52 R SMA
d1–d5 0.002 92 3.8 52, − 2, 7 R PO
d5–d1 0.008 244 4.47 − 26, − 66, 55 L SPC
d5–d1 0.008 88 3.81 17, − 65, 52 R SPC
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Motor execution

All clusters identified in the interaction analysis that were 
not in the right SMA showed differential connectivity 
changes across both groups. This means that one way or 
another (increases/decreases) these regions were recruited 
during training (SMP or LRN). Given that the goal of this 
study was to identify regions that were exclusively involved 
in complex sequence learning, we focused on regions that 
were not involved in simple motor execution and therefore 
not differentially recruited by the control group. However, 
it is still the case that other regions that we have identified, 
though not exhibiting exclusively sequence-specific change, 
are relevant to both groups and, therefore, likely implicated 
in motor execution. A comprehensive list of these regions 
can be found in Table 2.

Within our interaction analysis, we found significant 
effects, mostly within the motor network. These effects were 
driven by the SMP group in bilateral SPC, possibly reflect-
ing the behavioural improvements in spatial accuracy. The 
SPC, a key node in the motor learning network (Dayan and 
Cohen 2011; Doyon et al. 2018; Krakauer et al. 2019; Pen-
hune and Steele 2012), showed centrality decreases in SMP. 
The SPC is involved in learning the association of visual 
stimuli and motor actions/visuomotor control (Hardwick 
et al. 2013; Mutha et al. 2011; Müller et al. 2002), and has 
been found to be relevant for early and later learning stages 
(Ma et al. 2011). We observed a steady decrease in SMP in 
functional connectivity in both regions from d1 to d2 and d1 
through d5. Considering that the d1/d2 comparison reflects 
fast learning and the d1/d5 reflects the overall learning pro-
cess, we propose that the SPC exhibits a slow change in 
connectivity over the course of the entire learning period 
resulting in a centrality decrease for SMP. These centrality 
changes could reflect a continuous learning process that may 
serve to integrate the presented visual sequence with the 
required motor response. While it is reasonable to conclude 
that the SPC is relevant for both LRN and SMP, as the tasks 
performed by both groups require the coordination of visual 
and motor information, it is interesting to note that while 
there are functional changes evident in the LRN group that 
may be related to the behavioural improvements, they are 
not as distinct as those in the SMP group.

Interestingly, within our trajectory visualizations, we 
found that the changes in centrality in most regions showed 
opposite directionalities. It is possible that these different 
directionalities of change as well as the differences in mag-
nitude of change could be due to task complexity (Carey 
et al. 2005; Witt et al. 2008). We speculate that SMP, being 
a rather simple task, would cause centrality changes to occur 
faster, such that we are presented with change reflecting a 

well-learned or overlearned task (motor execution). In con-
trast, centrality changes in LRN would rather reflect changes 
during the actual learning process of the complex sequence 
within our experimental group.

Conclusion

The present experiment employed a mixed longitudinal 
training design with two groups (learning and control) to 
investigate learning on a continuous motor sequence task. 
We provide evidence for connectivity changes in the right 
SMA being specific to the learned sequence rather than 
motor execution. We also argue that changes in resting state 
centrality in other regions of the motor network, including 
the SPC, could be due to motor execution processes com-
mon to both tasks.
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