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We study the Kitaev-Heisenberg-Γ model with antiferromagnetic Kitaev exchanges in the strong
anisotropic (toric code) limit to understand the phases and the intervening phase transitions between
the gapped Z2 quantum spin liquid and the spin-ordered (in the Heisenberg limit) as well as para-
magnetic phases (in the pseudo-dipolar, Γ, limit). We find that the paramagnetic phase obtained in
the large Γ limit has no topological entanglement entropy and is proximate to a gapless critical point
of a system described by equal superposition of differently oriented stacked one-dimensional Z2×Z2

symmetry protected topological phases. Using a combination of exact diagonalization calculations
and field theoretic analysis we map out the phases and phase transitions to reveal the complete
phase diagram as a function of the Heisenberg, the Kitaev and the pseudo-dipolar interactions. Our
work shows a rich plethora of unconventional phases and phase transitions and provides a com-
prehensive understanding of the physics of anisotropic Kitaev-Heisenberg-Γ systems along with our
recent paper [Phys. Rev. B 102, 235124 (2020) [1]] where the ferromagnetic Kitaev exchange was
studied.

I. INTRODUCTION

Systems of interacting spins on a lattice serve as a rich
playground for exploring novel quantum phases as well
as associated phase transitions that are brought about
by the interplay of symmetries and competing interac-
tions [2]. In addition to the broken symmetry phases, we
now know of a plethora of quantum spin-liquids (QSLs)
[3–10] and symmetry protected topological (SPT) [4, 11–
13] phases that can be realised in lattice spin-systems–
often of direct relevance to candidate materials. In this
regard, magnetic systems with strong spin-orbit coupling
are leading to spin Hamiltonians without full SU(2) spin-
rotation symmetry have been particularly interesting on
both theoretical [14, 15] and experimental front [16, 17]
by providing, respectively, explicit solutions of novel
magnetic phases [18–23] and their possible materials re-
alisations [16, 24–41].

In parallel with the novel phases, these lattice systems
allows us to pose concrete questions about the nature
of the quantum phase transitions associated with QSL
and SPT phase. These transitions generically are not
captured by the conventional order parameter based the-
ories of phase transitions [42] as they fail to capture the
non-trivial structure of the entanglement pattern in the
QSLs and the SPTs [4, 13, 43]. Intense research over
the last two decades have fleshed out several paradig-
matic features of the theory of such unconventional quan-
tum phase transitions– in particular continuous transi-
tions or quantum critical points [43–45]. Central to these
ideas is the construction of the critical theory of such
critical points– dubbed as deconfined quantum critical
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points (DQCP) [43–45]– in terms of the fractionalised
fields (instead of the order parameter), transforming un-
der the projective representation of the microscopic sym-
metries [6], which interact with each other with emer-
gent fluctuating gauge fields. The construction and con-
trolled understanding of such critical theories of possible
DQCPs, particularly in context of experimentally rele-
vant situation is therefore crucial for novel quantum or-
dered phases of matter.

In order to obtain a controlled understanding of tran-
sitions out of an exactly solvable Z2 QSL, in a recent pa-
per [1] we presented our results for the phases and phase
transitions for the anisotropic or Toric code limit [24]
of Kitaev-Heisenberg-Γ (pseudo-dipolar) magnet where
the Kitaev interactions are ferromagnetic. By systematic
analysis of the symmetries of the low energy excitations of
the Z2 QSL– the Ising magnetic and the electric charges–
we obtained the critical theory for transitions out of the
QSL to both a magnetically ordered phase (driven by the
Heisenberg interactions) and a trivial paramagnet phase
(driven by the pseudo-dipolar interactions). Central to
our analysis were the non-trivial implementation of the
time-reversal symmetry and the transition symmetries on
the gauge charges. In particular, the magnetic and elec-
tric charges transformed into each other under primitive
lattice translations enforcing an electromagnetic self-dual
structure on the description of the resultant anyon per-
mutation protected deconfined critical point‘[1].

In this paper we present our results of the same class
of systems, but with the Kitaev interactions being an-
tiferromagnetic to reveal a richer physics (compared to
the ferromagnetic case of Ref. [1]). Exploiting the en-
ergy hierarchy in the anisotropic Kitaev interactions, we
distill low energy degrees of freedom to show that the
difference in the physics arises due to an inherent fea-
ture of the interplay of symmetries and correlations al-
luded above– the microscopic antiferromagnetic interac-
tions lead to low energy degrees of freedom that have
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FIG. 1. (a) Kitaev’s honeycomb model is described on a bi-
partite hexagonal lattice with two sublattices A (red) and
B (black). The spin exchanges are defined on three bonds
labelled by x, y, z (shown in blue, red and black lines respec-
tively). (b) The anisotropic limit in the z direction leads to
an square lattice where new degrees of freedom τ (shown in
grayish blue) sits on the bonds. Lattice vectors d1 and d2

are
(

1
2
, 1

2

)
and

(
− 1

2
, 1

2

)
defined in the units of square lattice

bond length which is assumed to be same in horizontal and
vertical direction.

very different symmetry properties from the ferromag-
netic case. Our starting point remains the Heisenberg-
Kitaev-Pseudo-dipolar (KJΓ) Hamiltonians on the hon-
eycomb lattice of the form [18, 25, 28, 46]

H =J
∑
〈p,q〉

σp · σq +
∑
〈p,q〉α

[
Γ
(
σβpσ

γ
q + σβq σ

γ
p

)
−Kασ

α
p σ

α
q

]
(1)

where α = x, y, z are the three bonds of the honeycomb
lattice (Fig. I) and σαp denotes the Pauli matrices denot-
ing the spin-1/2s at the sites of the honeycomb lattice
for e.g., at p, q. We are now interested in the antifer-
romagnetic Kitaev limit, i.e. Kα < 0 such that the
anisotropic limit is obtained by taking, as in Ref. [1],
|Kz| � {|J |, |Kx| = |Ky| ≡ |K|, |Γ|}.

The low energy non-Kramers doublet stabilised in the
anisotropic limit of the antiferromagnetic Kitaev ex-
change is different from the Ferromagnetic case and leads
to a different realisation of the microscopic symmetries
resulting in a different low energy Hamiltonian for these
doublets. While this reflects in a distinct symmetry
enrichment for the QSL or distinct spin-orders in the
Heisenberg limit, the most startling effect occurs in the
large pseudo-dipolar (Γ) limit whence the Hamiltonian,
to the lading order in perturbation theory, leads to a su-
perposition of stacked Z2 × Z2 spin SPT phases. The
resultant phase is, according to our numerical calcula-
tions, a gapless critical point which is trivially gapped out
by higher order (hence weaker) perturbations. Remark-
ably this gapless critical point supports edge modes that
do not hybridise with the bulk modes due to subsystem
symmetries. Interestingly in recent studies investigating
the role of pseudo-dipolar interactions in both isotropic

and anisotropic Kitaev Hamiltonians [47–50] have found
gapless phases [51, 52] (often for ferromagnetic Kitaev
exchanges). The relevance of these other gapless phases
to our work is not immediately clear and needs to be
further explored.

Our numerical studies on small spin clusters reveal the
general structure of the phase diagram indicating that
the Z2 QSL is destroyed via proliferation and conden-
sation of its gauge charges– both electric and magnetic.
While the transition to the paramagnetic phase in the
large Γ limit turns out to be discontinuous, a the contin-
uous transition to the spin-ordered state (from the QSL)
is driven Heisenberg coupling via a deconfined critical
point. We construct a critical continuum field theory
in terms of the soft modes of the electric and magnetic
charges via a mutual Z2 Chern-Simons (CS) theory and
show that the direct transition between the QSL and the
spin-ordered phase is described by a self-dual modified
Abelian Higgs field theory– in agreement with the criti-
cal theory obtained by us in the ferromagnetic case using
a mutual U(1) CS theory in Ref. [1]. The overall sum-
mary of our phase diagram is then illustrated in Fig. 17.

The rest of this paper work is organised follows. We
start with a discussion of the anisotropic limit of Eq. 1,
its low energy degrees of freedom and effective interac-
tions in section II and derive the action of symmetries
on them as well as the low energy effective Hamiltonian
that captures the low energy physics. We show that the
nature of the low energy degree of freedom– an effective
non-Kramers spin-1/2– is different from the ferromag-
netic case leading to a different symmetry transformation
and low energy Hamiltonian. We start our analysis of the
effective low energy Hamiltonian in Section III. In partic-
ular we examine the three different limits dominated by
the Kitaev, the Heisenberg and the pseudo-dipolar inter-
actions. While in the first two case a Z2 QSL and various
spin-ordered phases are stabilised respectively, similar to
the FM case [1]– albeit with important difference in the
symmetry implementation, the limit where the pseudo-
dipolar interactions dominate turns out to be startlingly
different. In this limit, the leading order interactions
lead to a superposition of stacked Z2 × Z2 SPTs with
edge modes and special sub-system symmetries which are
weakly lifted by higher order interactions. The equal su-
perposition of SPT lead to a gapless critical point accord-
ing to our finite size exact diagonalisation calculations.
The gapless point, accordingly to our analysis, is fragile
and immediately opens up a small gap due to higher or-
der perturbations. In Section IV we present the results
of our exact diagonalisation calculations on the leading
order low energy Hamiltonian to obtain an estimate of
the phases and phase boundaries. This analysis shows
that the transition out of the QSL is brought about by
the proliferation and condensation of the its excitations–
the Ising electric and magnetic charges. With these in-
gredients we consider the physics of the phase transitions
in Section V. We find that contrary to the FM case [1],
the transition between the QSL and the paramagnetic
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phase in the large Γ limit is a first order transition. For
the continuous transition between the QSL and the spin-
ordered phase in the large Heisenberg limit, we develop
the critical theory in terms of the soft Ising electric and
magnetic charge modes of the QSL. Using a mutual Z2

CS theory to implement the mutual semionic statistics
between the electric and magnetic charges of the QSL,
we construct the continuum critical theory in addition
to the mutual U(1) CS theory implemented in Ref. [1].
Both these approaches consistently lead to a self-dual
modified Abelian Higgs’s theory that describes the de-
confined critical point for the direct continuous transition
between the QSL and the spin-ordered phases. Finally
we summarise our results regarding the phase diagram
obtained for the anisotropic limit of JKΓ model with
antiferromagnetic Kitaev exchange in Section. VI. Vari-
ous details of the calculations are summarised in different
appendices. Throughout this paper, we shall continue to
use several notations elaborately introduced in Ref. [1]
and here we briefly summarised the relevant portions.

II. THE LOW ENERGY SPIN MODEL IN THE
ANISOTROPIC LIMIT

Similar to Ref. [1], the effective low energy Hamilto-
nian is obtained by re-writing Eq. 1 as H = H0 +V where
H0 is given by

H0 = (|Kz|+ J)
∑
〈p,q〉,z

σzpσ
z
q (2)

where the sum is over only the z-bonds (Fig. I(a)). V
stands for the rest of the terms in Eq. 1 which can be
treated as perturbation in the anisotropic limit.

Similar to the FM case, for V = 0 the system breaks
up into isolated bonds and each bond has two ground
states. However, contrary to the FM [1], in the present
AFM case of H0, the two spins on each z-bond are anti-
aligned with respect to each other in the ground state
manifold. So the ground states and the excited states
are:

Ground States: | ↑↓〉, | ↓↑〉 (3)

Excited States: | ↑↑〉, | ↓↓〉 (4)

which is exactly opposite to the FM case [1]. We define
a new degree of freedom for the two fold ground state
manifold of H0 in Eq. 2 as

|+〉 ≡ |↑↓〉 ; |−〉 ≡ |↓↑〉 (5)

The τz operator defined on each z-bond acts on this
ground state space as: τz |±〉 = ± |±〉 which in terms of
the underlying σ spins is,

τz = (σzA − σzB)/2 (6)

Td1
Td2

C2z

σv
Rπ

FIG. 2. The symmetries in the toric code limit of Kitaev’s
honeycomb model, e.g. Td1 , Td2 , Rπ, σv and C2z are shown.
See the corresponding text in section II A.

where the subscripts A and B labels the two spins be-
longing to the two different sublattices participating in
a particular z-bond. The τ -spins therefore reside on the
links of a square lattice with lattice vectors d1 & d2 as
shown in Fig. I(b). To this end we define the lattice
points where the τ -spins reside:

i ≡ (i1, i2) = i1d1 + i2d2, (7)

A. Symmetry transformation of τ spins

Starting with the symmetries of the honeycomb lattice
and focusing on the anisotropic limit we derive the sym-
metry transformation of the τ -spins under the generators
of symmetry group given by (also see Fig. 2):

• Time reversal, T .

• Translations in the honeycomb plane, Td1 and Td2 .
These acts on the (i1, i2) as Td1 : (i1, i2) → (i1 +
1, i2) and Td2 : (i1, i2)→ (i1, i2 + 1).

• Reflection about the z-bond, σv. On the lattice this
acts as: σv : (i1, i2)→ (−i2,−i1).

• π-rotation about the z-bond, C2z, which gives C2z :
(i1, i2)→ (i2, i1).

Additionally, we will consider the square lattice trans-
lation symmetries Tx ≡ Td1−Td2 and Ty ≡ Td1 +Td2 and
the rotational symmetry about the center of the hexago-
nal plaquette Rπ ≡ C2zσv. A detailed discussion of these
symmetries and the way they act in both real and spin
space was given in [1]. The symmetry transformations for
the τ spins are summarised in Table I where interestingly

time-reversal takes τ
x(y)
i → τ

x(y)
i .

Notably, while the symmetries are same as that of the
ferromagnetic case [1], the symmetry table, particularly
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Symmetry τxi τyi τzi

T τxi τyi −τzi
σv τx(̄i2 ,̄i1) τy

(̄i2 ,̄i1)
τz(̄i2 ,̄i1)

C2z τx(i2,i1) −τ
y
(i2,i1) −τ

z
(i2,i1)

Rπ τx(̄i1 ,̄i2) −τ
y

(̄i1 ,̄i2)
−τz(̄i1 ,̄i2)

TABLE I. Symmetry transformations of the τ spins under
various microscopic symmetries, where i = (i1, i2) and ī1(2) ≡
−i1(2). See the corresponding text in section. II A for details.

the action of the point group symmetries are rather dif-
ferent in the present case due to the difference in the
make-up of the ground state doublet. This, as we shall
see, has profound influence on the nature of the effective
Hamiltonian and ultimately in the phases obtained. In
particular this directly affects the physics in the large Γ
limit.

The effective low energy Hamiltonian below the ∼ |Kz|
scale is captured by the τ spins can now be gotten using a
degenerate perturbation theory with the strong coupling
expansion in 1/|Kz|.

B. The effective Hamiltonian

The low energy effective Hamiltonian (up to fourth or-
der in perturbation theory) is given by

HAFeff = HAF[1] +HAF[2] +HAF[3] +HAF[4] (8)

where 1− 4 represents the number of spins operators in-
volved. While the detailed form of all these terms are
relegated to Appendix A, it is most transparent to sep-
arate various terms in these three different limits: (i)
Γ = K = 0 (ii) J = K = 0 and (iii) J = Γ = 0.

The leading contributions to the effective Hamiltonian
for just the Heisenberg perturbation is given by

HAFΓ=K=0 = 2J
∑
i

τxi − J
∑
〈i,j〉

τzi τ
z
j . (9)

Higher order terms can renormalize these coefficients and
also generate further neighbour interactions as has been
shown in Appendix A. Except for the transverse field the
above leading order in nearest neighbour Ising term is
exactly similar to that of the FM case of Ref. [1] and has
similar ordering effects although the details of the mag-
netic patterns here are different (see below) as denoted in
Fig. 3. The effect of the transverse field, for the present
case, we think, does not play a major role as we discuss
below, but opens up a very interesting possibility in the
isotropic limit that is related to a two step transition
from the QSL to the magnetic phase via an intermediate
nematic [53].

The leading pseudo-dipolar contributions, on the other
hand, are of the form

HAFJ=K=0 =
Γ2

|Kz|
∑
i

(
τzi+d1

τxi τ
z
i−d1

+ τzi+d2
τxi τ

z
i−d2

)
+

Γ2

|Kz|
∑
i

(
τzi+d1

τyi τ
z
i−d2
− τzi+d2

τyi τ
z
i−d1

)
(10)

whose form is drastically different from the leading trans-
verse field term for the FM case [1] and is one of the
central difference as we shall discuss in detail.

The pure-Γ Hamiltonian (see Eq. 10) is a linear sum
of three spin terms, separately which stabilizes stacked
cluster Z2 × Z2 SPTs [54–59] oriented in different direc-
tions. Our analysis, both numerical and based on sym-
metry analysis of this and unitarily related Hamiltonians
(see Section III C), shows that the pure-Γ Hamiltonian
either is a critical point or part of a gapless phase which
resides proximate to gapped weak-SPT phases and this
constitutes one of the central results of this work. In
presence of symmetry allowed perturbations we find that
this gapless phase (or the critical point) is smoothly con-
nected to a paramagnetic phase. Interestingly, we find
that this pure-Γ limit Hamiltonian can host novel bound-
ary physics in terms of exact zero energy modes which, as
expected is unstable to symmetry allowed perturbations.

Finally, in the limit J = Γ = 0 the pure Kitaev inter-
actions take the toric code form, albeit in Wen’s repre-
sentation [6] and is given by:

HAFJ=Γ=0 =− JTC
∑
i

Wi (11)

With JTC = K4

16|Kz|3 , and Wi ≡ τzi+d1
τzi−d2

τyi τ
y
i+d1−d2

is

the plaquette operator shown on the lattice (see Fig. I).
which stabilises the gapped Z2 QSL with bosonic Ising
electric, e, and magnetic, m, charges [25]. The higher
order terms provide further interactions and for most
part of the paper we shall neglect such interactions for
analysing the leading order instability of the QSL unless
stated.

III. PHASES AND PHASE DIAGRAM

Having isolated the different terms in the effective
Hamiltonian, we now discuss their effects in stabilising
different phases in order to develop the theory for the
associated phase transitions.

A. Toric code limit J = Γ = 0

The Hamiltonian given in Eq. 11 after a bond depen-
dent unitary rotations as defined in Appendix B 1 (see
also [1, 24, 25]) becomes

H̃AFJ=Γ=0 =− JTC

[∑
s

As +
∑
p

Bp

]
(12)
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Where As =
∏
i∈s τ̃

x
i , Bp =

∏
i∈p τ̃

z
i . τ̃α denotes the

rotated operators and Eq. 12 represents Kitaev’s toric
code model [24]. The symmetry transformations for τ̃
spins are given in the Appendix B.

The Toric-code Hamiltonian [24] is exactly solvable
and stabilises a Z2 QSL ground state with topological
order and a four fold ground-state degeneracy on the
torus with two bosonic and a fermionic– all gapped– ex-
citations. The bosonic excitations are respectively the
electric, e, and magnetic, m, charges of an underly-
ing Z2 gauge theory description and they have mutual
semionic statistics. The fermion, on the other hand, can
be thought of as a e−m bound state.

Since these gauge charges would be of central impor-
tance to the description of the phase transition out of
the QSL, we briefly flesh out the well known details of
the the standard mapping from the spins while all the
details can be found for e.g. ,in Ref. [1] which uses the
same notations as other places [60, 61].

The electric (magnetic) charges, created by the Ising
variable µxa (µ̃xā), resides on the sites of the direct (dual)
lattice and are each coupled to its own Ising gauge field
ρzab (ρ̃z

āb̄
) that lives on the links of the direct (dual) lattice

(see [1]). Here a ≡ (ax, ay) and ā ≡ (āx, āy) denote the
sites of the direct and dual lattice respectively. Therefore
the Ising electric charge density is measured by µza = Aa
with the Gauss’ law constraint being given by

µza =
∏
āb̄∈a

ρ̃zāb̄ =
∏
b∈a

ρxab (13)

where ρxab is conjugate to ρzab. Similarly for the magnetic
charge density, µ̃zā = Bā, the Gauss’s law is

µ̃zā =
∏
ab∈ā

ρzab =
∏
b̄∈ā

ρ̃xāb̄ (14)

The two equations also encode the mutual semionic
statistics between the electric and the magnetic charges.

Finally, to complete the mapping we denote the electric
and magnetic charge hopping operators on the direct and
dual lattices respectively and they are given by

τ̃zi = µxaρ
z
abµ

x
b (15)

and

τ̃xi = µ̃xāρ̃
z
āb̄µ̃

x
b̄ (16)

respectively.
In the presence of the existing microscopic symmetries,

the low energy anyon excitations are further enriched and
this symmetry enrichment is different from that of the
FM case. The (projective) symmetry transformation of
the gauge charges as well as the direct and the dual Ising
gauge fields are presented in Appendix B 3. Again, the
complete set of transformations are different from the
FM case such that in presence of these symmetries the
FM and the AFM QSLs represent different symmetry
enriched topologically ordered Z2 QSLs.

(a) (b)

FIG. 3. Configuration of σ and τ spins. (a) For J < 0,Γ =
0,K = 0 a AFM state is realized for τ spins on z links of
the honeycomb lattice, which is denoted by the blue arrows.
While the σ spins are denoted by red (green) arrow for the
A (B) sublattice, this corresponds to a zig-zag order for the
σ spins. Where left (right) blue arrow means τz = +1(−1)
state, and left (right) red/green arrow means σz = +1(−1)
state. (b) For J > 0 a FM state is realized for the τ spins,
which corresponds to a Neel order for σ spins.

B. Heisenberg Limit Γ = K = 0

Deep inside the anisotropic limit, i.e. |Kz| → ∞, the
leading order contribution arising from the Heisenberg
perturbations to the disconnected dimers is given by

HAFΓ=K=0 = −J
∑
〈i,j〉

τzi τ
z
j + 2J

∑
i

τxi (17)

where the first term is the Ising interactions that favour
ferromagnetic (Neel) ordering of the τz-spins for J >
0(J < 0). Qualitatively, this is similar to the FM-Kitaev
case [1], with an important difference in terms of the
underlying σ spins of the honeycomb magnet– the ferro-
magnetic (Neel) ordering for the τz spins correspond to
the Neel (Zig-Zag) ordering for the underlying σz spins
as shown in Fig. 3.

The second term, representing the transverse field in
the leading order of Heisenberg coupling, however sug-
gests a curious possibility of the Heisenberg perturba-
tions stabilising a paramagnetic state of τ -spins polarised
in the τx direction. Very interestingly, in terms of the
underlying σ-spins of the honeycomb lattice this is given
by

|ψ+〉 = ⊗pp′
(
|↑p↓p′〉 − |↓p↑p′〉√

2

)
; forJ > 0 (18)

|ψ−〉 = ⊗pp′
(
|↑p↓p′〉+ |↓p↑p′〉√

2

)
; forJ < 0

which are singlet and triplet states respectively for pp′

that denotes the z-bond (see Eq. 4). Therefore, following
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[1] the bond-nematic order parameter:

Q̂αβpp′ =

(
σαp σ

β
p′ + σβpσ

α
p′

2
− δαβ

3
σp.σp′

)
(19)

is non-zero. In particular, for the |ψ−〉, we have

〈ψ−| Q̂αβpp′ |ψ−〉 =

 2
3 0 0
0 2

3 0
0 0 − 4

3

 (20)

On the other hand for |ψ+〉, singlet dimers are present
on the z-bonds of the honeycomb lattice. In absence of
spin-rotation symmetry, for non-Kramers doublets both
these orders represent lattice nematic.

While in Eq. 9 the couplings of the transverse field and
the Ising term both are proportional to J , on consider-
ing higher order contributions of the perturbation theory
(see Eq. 8 and Eq. A1-A4) they are differently renor-
malised and it is therefore useful to consider them at
independent parameters and study the generalised phase
diagram where the strength of the Ising term (≡ JIsing)
and the magnetic field term (≡ h) is independently var-
ied (see Fig. 4). In this generalised model for h → ∞
limit we obtain the two above polarised phases for the
τ spins that correspond to a direct product state of of
singlets and triplets on the z bonds for the σ-spins.

Detailed discussion regarding this model is relegated
to Appendix C, where it is shown that under unitary
transformations this system is equivalent to a problem
of perturbing a toric code Hamiltonian with a transverse
field and a x-z Ising term (see Eq. C3). For this model,
our numerical studies show three prominent phases (qual-
itatively shown in Fig. 4) – (i) ferromagnet (FM), (ii)
paramagnet (PM) and (iii) Z2 QSL. While the FM and
PM are separated by an 3D-Ising transition; the Z2 QSL
and the paramagnet are separated by a first order line
[62, 63]. The nature of transition between Z2 QSL and
the FM is self-dual modified Abelian Higgs transition as
is discussed below.

Therefore, in the present case, in principle there can
be two possible ways of destroying the Z2 QSL leading to
a spin-ordered phase (in the Heisenberg limit) via tuning
the Heisenberg interactions– (1) a direct second order
quantum phase transition into the spin ordered phase,
and (2) a two step transition where the the QSL first goes
into a polarised trivial paramagnet through a first order
transition and finally into the spin-ordered state via a
3D-Ising transition. For the purely transverse field Ising
model on a square lattice (Eq. 9), existing variational
and cluster Monte-Carlo calculations [64–67] shows the
strength of the transverse field ≈ 3J is the critical point
for the phase transition between the symmetry broken
τz magnetically ordered state, i.e. 〈τzi 〉 6= 0 and the
paramagnet state, i.e. 〈τzi 〉 = 0. So for Eq. 9, we expect
a single step transition which is supported by our exact
diagonalisation results on finite spin clusters presented in
Appendix C.

FIG. 4. A single or a two step transition from the Z2 QSL as
a function of Heisenberg coupling into a magnetically ordered
state (Eq. 9). In the leading order of perturbation h ∼ 2J
and JIsing = J where J is the strength of the Heisenberg
perturbation as defined in Eq. 1. The transition from the
Z2 QSL to a paramagnet in the parallel field is a first order
transition[63] where the transition at JIsing = 0 is a self dual
point. We expect this first order transition to be stable to
Ising perturbation since our numerical results do not show
any significant change of behavior (see Appendix C).

C. The pseudo-dipolar limit J = K = 0

A novel and the most interesting limit of the
anisotropic antiferromagnetic model is obtained when the
pseudo-dipolar interactions dominate. The leading order
effect of such perturbation in the |Kz| → ∞ limit is given
by the second order perturbation theory leading to the
effective Hamiltonian (the full Hamiltonian up to fourth
order perturbation is given in Eq. A5) given by Eq. 10

Unlike the Heisenberg perturbations (Eq. 9) or the Γ
perturbations in the ferromagnetic Kitaev case [1], the
above term does not get contributions at the first or-
der level. This allows for a non-trivial spin-interactions
through the three spin terms. Notably, due to the un-
usual implementation of time reversal symmetry (see ta-
ble I) the above three spin terms are symmetry allowed.

1. Stacked cluster chains

We now discuss the rich structure of the Hamiltonian
in Eq. 10. To this end we re-write it as

HAFJ=K=0 =
Γ2

|Kz|
(H1 +H2 +H3 +H4) (21)
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FIG. 5. Four stacked cluster spin chains : The panels (a),
(b), (c), (d) represent the four Hamiltonians in Eq. 22 in
PBC.

with

H1 =
∑
i

τzi+d1
τxi τ

z
i−d1

H2 =
∑
i

τzi+d2
τxi τ

z
i−d2

H3 =
∑
i∈V

(
τzi+d1

τyi τ
z
i−d2

)
−
∑
i∈H

(
τzi+d2

τyi τ
z
i−d1

)
H4 =

∑
i∈H

(
τzi+d1

τyi τ
z
i−d2

)
−
∑
i∈V

(
τzi+d2

τyi τ
z
i−d1

)
(22)

where H,V denote the set of sites belonging to the hori-
zontal and vertical bonds respectively.

We immediately note that each of these Hamiltonians
represent a set of stacked one-dimensional cluster spin-
1/2 chains arranged in a particular direction. This is
shown in Fig. 5. While H1 and H2 are stacked cluster
chains oriented at π

4 and −π4 in the lattice plane, H3 and
H4 are oriented vertically with the chains being displaced
by a lattice constant with respect to each other.

If the Hamiltonians are considered independently, as
discussed in Appendix D, at this leading order each de-
coupled chain has an enhanced Z2×Z2 symmetry and sta-
bilises a gapped symmetry protected topological (SPT)
phase protected by this symmetry [55–59]. As a result
each chain supports a zero energy localised spin-1/2 at
the edge of each chain. Each stacking pattern of these
cluster Hamiltonians in Eq. 22, Hα (α = 1, 2, 3, 4) there-
fore result in a weak-SPT phase [55] whose edge mode
structure depends on the shape of the cluster chosen, as
expected (see Table. II and Appendix E).

The full Hamiltonian in the pseudo-dipolar limit

Hamiltonian PBC x-CBC y-CBC OBC

H1 1 22Lx 22Ly 22(Lx+Ly)−2

H2 1 22Lx 22Ly 22(Lx+Ly)−2

H3 1 22Lx 1 22Lx

H4 1 22Lx 1 22(Lx+Ly)−2

TABLE II. Ground state degeneracies for various stacked clus-
ter Hamiltonians H1, H2, H3, H4 (see Eq. 22) when placed un-
der various boundary conditions. PBC (OBC) is the usual
periodic (open) boundary condition on a torus, while x-CBC
(y-CBC) is cylindrical boundary condition with x(y) direction
being periodic. The details are discussed in Appendix. E.

FIG. 6. Anticipated phase diagram for the Hamiltonian in
Eq. 23. The four corners are exact limit of the stacked clus-
ter SPTs (given in Eq. 22) which are oriented in different
directions and shown in Fig. 5. C2z symmetry transforms
H1 ↔ H2 and H3 ↔ H4. The phase transitions at λ2 = 0
(λ1 = 0) as a function of λ1 (λ2) is a first(second) order tran-
sition which is expected to be stable when λ2 6= 0 (λ1 6= 0)
(see text).

(Eq. 21), however, is a equal weight superposition of the
the four stackings. In order to understand this, it is use-
ful to consider the interpolating Hamiltonian

H(λ1, λ2) = λ2 ((2− λ1)H1 + λ1H2) (23)

+ (2− λ2) ((2− λ1)H3 + λ1H4)

parameterized by λ1 and λ2 – such that in the (λ1, λ2)
plane, the points (0, 2), (2, 2), (0, 0) and (2, 0) are iden-
tified with H1, H2, H3 and H4 respectively while, up to
multiplicative factors, HAF(J=K=0) is given by (1, 1). This

is illustrated in Fig. 6 and explained below. However,
we note that on this plane the symmetry of π-rotation
about the z-bond, C2z results in H1 ↔ H2 and H3 ↔ H4

and thus constraining λ1 = 1 on the plane while λ2 being
free to be renormalised by higher order terms. We shall
specially focus on this line while discussing the phase di-
agram.

The interpolating Hamiltonian of Eq. 23 in the entire
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(λ1, λ2) has some special symmetry and energetic fea-
tures. While these properties are not stable to higher or-
der perturbations (see Eq. A5 in Appendix A), not only
such structures are interesting in their own rights as we
shall see below, but also, these weakly broken symmetries
provide important insights into the nature of the phase
in this pure Γ limit. Hence, we now discuss these special
symmetries.

The generic non-Kramers time-reversal symmetry is
generated by (see table I) the operator T =

∏
i∈H,V τ

x
i K

(where K is the complex conjugation operator). How-
ever Eq. 23 enjoys an enhanced sub-lattice time-reversal
symmetry generated by the operators

TH =
∏
i∈H

τxi Ki, TV =
∏
i∈V

τxi Ki (24)

where the products in the first and second expressions
run over the horizontal and vertical bonds respectively.
Thus this plane enjoys a global Z2 × Z2 symmetry.

The Hamiltonian in Eq. 23, however has an even larger
set of sub-system symmetries which is most apparent af-
ter a unitary rotation defined on a set of bonds, followed
by a global unitary rotation. The following transforma-
tion [55, 68–71]

W ≡
∏
i

Ui,i+d1 (25)

where we define a bond-dependent (direction indepen-
dent) unitary operator

Uij =
1

2

(
1 + τzi + τzj − τzi τzj

)
(26)

renders

W : τxi → τzi−d1
τxi τ

z
i+d1

; τzi → τzi . (27)

This when followed by a global rotation

V : {τxi , τ
y
i , τ

z
i } → {η

y
i , η

z
i , η

x
i } (28)

leads to

Hα → H̃α = (VW)Hα (VW)
−1

(29)

where ηαi are the new spin degrees of freedom. Note that
while the transformation V is not essential, as we shall
see below, it simplifies parts of our analysis.

The resultant transformed Hamiltonians are given by

H1 → H̃1 =
∑
i

ηyi (30)

H2 → H̃2 =
∑
i

ηyi η
x
i+d1

ηxi−d1
ηxi+d2

ηxi−d2
(31)

H3 → H̃3 =
∑
i∈V

ηxi−d1
ηzi η

x
i−d2
−
∑
i∈H

ηxi+d2
ηzi η

x
i+d1

(32)

H4 → H̃4 =
∑
i∈H

ηxi−d1
ηzi η

x
i−d2
−
∑
i∈V

ηxi+d2
ηzi η

x
i+d1

(33)
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FIG. 7. The anti-unitary symmetry operator in Eq. 34 is
shown as a single green continuous line (hn), for example
h3 passes through the horizontal bonds (spins 6, 7, 8) and
h2 passes through the vertical bonds (spins 3, 4, 5). The
symmetry operator in the Eq. 36 is shown using the three
magenta lines. Dashed (continuous) line shows the unitary
(anti-unitary) operation.

Therefore under this particular transformation, the four
differently stacked weak cluster SPTs respectively get
mapped to a y-paramagnet (PM) (H̃1), strong sub-
system symmetry protected topological phase (SSPT)

(H̃2) of the topological plaquette Ising model [55, 72],

and two horizontally stacked weak cluster SPTs (H̃3 and

H̃4). We have explicitly checked that the transforma-
tion when defined for an open system restores the correct
number of zero modes in both Hα and H̃α. A discus-
sion about the transformation W (Eq. 25) and the way
it acts on the boundary Hamiltonians in an open system
see Appendix E. The cluster SPT is briefly discussed in
Appendix D.

In the transformed basis, the Hamiltonian (Eq. 23) is
invariant under the following set of anti-unitary subsys-
tem symmetries that are generated by

P̃ Thn =
∏

i∈nth Hor. line

ηziKi (34)

P̃ T vn =
∏

i∈nthVert. line

ηxi−d1
Ki−d1

ηziKiηxi+d1
Ki+d1

(35)

where in Eq. 34 (35), hn(vn) denotes the nth horizontal
(vertical) line which either can pass through the horizon-
tal (vertical) bonds or cut through the vertical (horizon-
tal) bonds of the square lattice (see Fig. 7) and Ki is the
local complex conjugation operation which acts on site i.

In terms of the untransformed basis (by Eq. 29), Eq. 34
and 35 can be obtained from Eqs. 27 and 28 and are given
respectively by

PThn =
∏

i∈nthHor. line

τzi+d1
τxi τ

z
i−d1
Ki (36)

PTvn =
∏

i∈nthVert. line

τzi+d1
Ki+d1τ

x
i Kiτzi−d1

Ki−d1 (37)
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Note that both Eq. 36 and 37 involves the same transfor-
mation on horizontal/vertical stacks of three consecutive
spins separated by, Td1

, i.e. translation along d1. How-
ever, while for the horizontal stacking in Eq. 36, the con-
jugation operator acts only on the spin in the middle, for
the vertical stacking in Eq. 37 they act on all the spins
involved.

In addition, along the λ2 = 2 line the system has an-
other set of subsystem symmetries generated by :

P̃ T
′
vn =

∏
i∈nthVert. line

ηziKi (38)

Similar to the Eq. 36, we can write this symmetry in the
original spin basis of Eq. 22 as a combination of unitary
and anti-unitary symmetry, now in the vertical direction
which is

PT ′vn =
∏

i∈nthVer. line

τzi+d1
τxi τ

z
i−d1
Ki (39)

We shall later return to the constraints imposed by
these sub-system symmetries. However, as briefly dis-
cussed in Appendix F, due to the particular non-Kramers
nature of the time reversal symmetry the above subsys-
tem symmetries do not constrain the dispersion of exci-
tations unlike fractons [73, 74].

The above transformation (Eq. 29) allows for new in-
sights into the phase diagram of the pure Γ Hamiltonian
given by Eq. 21. In particular the transitions along the
four boundaries, as shown in Fig. 10, can be immedi-
ately read off from from existing literature. These are as
follows :

• The transition between H̃1 and H̃2 along the λ2 = 2
line is between a trivial paramagnet and a two di-
mensional SSPT respectively. This transition is
known to be first order [69, 75] and occurs at
λ1 = 1. In the un-transformed basis, we note that
this represents a transition between two stacked
cluster models, H1 and H2. Remarkably, the ef-
fective dimensional reduction at the critical point
is far from apparent in this un-transformed basis.

There exists a transformation similar to Eq. 29
which transforms, on the λ2 = 0 line, H3 to a triv-
ial transverse field paramagnet and H4 to an SSPT.
The discussion of the above paragraph then can be
immediately applied to the λ2 = 0 line. (Notably,
such a transformation mapH1 andH2 to weak clus-
ter SPTs.)

Therefore at λ1 = 1, both λ2 = 0, 2 are first order
transition points. This implies that the phase di-
agram in (λ1, λ2) phase has a reflection symmetry
about λ2 = 1 line.

• The transition from H̃1 to H̃3 along the λ1 = 0
line is between a trivial paramagnet and decoupled
one dimensional cluster chains. This is a self dual
transition at λ2 = 1 that is described by a SO(2)1

conformal field theory (CFT) with central charge,
c = 1 [54, 76]. Given the the existence of sub-
system symmetry operators it may seem that dy-
namics of the excitations from the H̃3 state is con-
strained. As is discussed in Appendix F we show
that the antiunitary character of these subsystem
symmetries effectively renders the dynamics to be
free especially on the λ1 = 0 line. Again, as above,
in the un-transformed basis, the above transition
is between two stacked cluster models, H1 and H3,
again, with non-obvious effective dimensional re-
duction at the critical point.

A yet third set of transformations similar to Eq. 29
transforms H2 to a transverse paramagnet and H4

to a stacked cluster SPT. This immediately allows
us to import the above physics of λ1 = 0 and apply
it to the case of λ1 = 2 line. Further the rota-
tion about the z-bond (C2z symmetry, see table I)
leads to (λ1, λ2) → (2 − λ1, λ2) which also leads
to the same conclusion regarding the phases and
phase transitions.

The entire (λ1, λ2) plane respects the sub-system sym-
metries protecting the above SPTs and the associated
phase transitions. Hence we expect that the continuous
(discontinuous) transitions at λ1 = 0, 2 (λ2 = 0, 2) are
perturbatively stable away from these lines. To inves-
tigate this we perform numerical Exact Diagonalisation
(ED) on small spin clusters for various system sizes of up
to 32 spins using QuSpin [77, 78]. In addition to the bulk
excitation gap, we calculate the ground state fidelity sus-
ceptibility whose peaks locate the bulk gap closing phase
transitions in the (λ1, λ2) plane.

In the Fig. 8(a) we show the ground state (GS) suscep-
tibility [79] discontinuous peak along the λ1 for various
constant λ2 values between 0 and 0.8. We can clearly see
for λ2 = 0 line the sudden jump in the susceptibility at
λ1 = 1 is indicating a first order phase transition [69, 75]
expected between the SSPT and the trivial paramagnet.
On departing from the λ2 = 0 line, the weight of the
discontinuous peak monotonically comes down as we ap-
proach λ2 = 1 indicating that the discontinuous nature
of the transition weakens as we approach λ2 = 1 and dis-
appears at this point. However our present calculations
cannot discern if the discontinuity persists all the way to
λ2 = 1. Similar physics is observed coming down from
the λ2 = 2 line (not shown). It is pertinent to point
out that given the limited system sizes accessible in ED,
there are significant even-odd (commensurability) effects
in all regions of the phase diagram. This therefore makes
the role of symmetries and various transformations, even
more crucial to understand the nature of the phases.

The above first order transition is in stark contrast
with the transition obtained by tuning λ2 as shown in
Fig. 8(b). Here the susceptibility shows a peak without
a shoulder (i.e., a sudden jump) indicative of a continu-
ous transition at λ2 = 1. Indeed for λ1 = 0, this transi-
tion originates from a stack of cluster chains and is de-
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FIG. 8. (a) Ground state (GS) susceptibility as the absolute
value of second derivative of the GS energy (Egs) with respect
to λ1 for constant λ2 values for the Hamiltonian given in
Eq. 23 (b) Ground state susceptibility along λ2 for constant
λ1 values. Both results are for a 18 spin cluster with Lx = 3
and Ly = 3 and PBC geometry.

scribed by decoupled (1+1) dimensional critical point of
SO1(2) CFT [54, 76] with a description in terms of Majo-
rana fermions (see Appendix D). The continuous nature
of the transition persists for larger values of λ1 until close
to the λ1 = 1 whence the peak bifurcates indicating the
possibility of opening up of an intermediate phase in the
vicinity of λ1 = 1. However our present numerical cal-
culations are limited by system size to probe this aspect.
However, as we discuss below, we expect that this inter-
mediate phase, even if it exists, to be very fragile due to
the large number of special symmetries (see the discus-
sion above) in the (λ1, λ2) plane. Again we find a similar
picture on the λ1 > 1 region due to the π-rotation about
the z-bond symmetry C2z, (see table I).

Right at the point λ1 = λ2 = 1, our present ED calcu-
lations reveal a bulk gapless phase. This is shown in Fig.
Fig. 9(a) where we plot the bulk gap to the four low-
est excitations as a function of the few system sizes to
indicate that the gap to these excitations vanish almost
linearly in inverse system size. The contour plot of the
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FIG. 9. (a) Scaling of energy gaps (∆m) to mth excited state
as a function of inverse system size (N = 2(Lx×Ly)) at pure
Γ limit, i.e. (λ1, λ2) = (1, 1) (see Eq. 23) for systems sizes
involving N = 12 to N = 32 spins. The dashed lines are
guide to eye. (b) The gap to the first excited state in the
complete (λ1, λ2) plane for a 4 × 2 cluster. Both results are
for a PBC geometry.

bulk gap to the first excited state in the entire (λ1, λ2)
plane is shown in Fig. 9(b). This shows that gap indeed
closes along the λ1 = 1 and λ2 = 1 lines with the former
leading to a first order transition and the later leading
to second order transition. This separates the plane into
four phases as shown in Fig. 6 and 10.

As indicated above, the first order transitions weaken
near the λ1 = λ2 = 1 and possibly leading to a bulk gap-
less phase right at that point. Remarkably, our ED calcu-
lations on systems with open boundary conditions show
that at this point, in addition to the gapless bulk modes
the system has an additional 22Lx exact zero energy Ising
boundary modes on the top and bottom boundary which
do not hybridize with the bulk gapless modes due to spe-
cial subsystem symmetries (Eq. 37). A detailed discus-
sion on the anomalous character of these symmetry op-
erations in the (λ1, λ2) plane is discussed in Appendix G.
Such gapless phases with boundary modes have recently
being discussed in context of symmetry enriched critical-
ity in one dimension [80, 81] and more recently for re-
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FIG. 10. Phase diagram corresponding to the Hamiltonian
given in Eq. 23 after the transformation defined in Eq. 29,
also see Fig. 6.

lated two dimensional phases[82], however to best of our
knowledge none of the these phases lie in the interjection
of such weak SPTs as here.

We now turn to the important question regarding the
nature of the possible gapless phase at λ1 = λ2 = 1
with extra sub-system symmetry-protected zero energy
boundary modes. At the outset such a gapless phase is
rather remarkable in a system with no continuous sym-
metries and hence would be rather novel if found to be
stable. As noted above, whether such a gapless phase is
limited to the only the single point or extends over a fi-
nite region is not clear from our present ED calculations
due to severe finite size effects, however as we shall dis-
cuss now, we think it is the former and this gapless point
is rather fragile.

The first clue to the fragility of this gapless point
comes from the rather fine tuned nature of the Hamil-
tonian in Eq. 23 which allows for a whole class of sub-
system symmetries not present in the microscopic Hamil-
tonian and are an artifact of keeping just the second or-
der terms in Γ. For example, on considering the higher
order (O(Γ3/|Kz|3) in perturbation theory) term for the
Γ-Hamiltonian (see Eq. A5), such sub-system symmetries
are explicitly broken. However they serve as important
approximate symmetries in discerning the general struc-
ture of the phase diagram in the (λ1, λ2) plane– partic-
ularly the gapped part of the phase diagram. However
for the gapless part of the phase diagram the absence of
these sub-system symmetries are rather subtle. Indeed
the boundary modes are susceptible to symmetry break-
ing perturbations or to boundary interactions which can
lead to spontaneous symmetry breaking at the bound-
ary. A discussion of such symmetry breaking terms on
the boundary Hamiltonian of the large Γ phase is shown
in section G.

To check the stability of the gapless point at λ1 =
λ2 = 1, we added simple perturbations that explicitly
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FIG. 11. Behavior of GS susceptibility as the large Γ phase
is tuned to a x paramagnet in presence of varying strengths
of Ising perturbation(∼ δ2), see Eq. 40. The results are for a
system size N = 16, Lx = 2, Ly = 4 with PBC geometry.

break the sub-system symmetries, but are still allowed
by the microscopic symmetries and studied the fate of
such a Hamiltonian. In particular, we performed ED on

H(δ1, δ2) =(1− δ1)(1− δ1)H(1, 1)

− δ1(1− δ2)
∑
i

τxi − δ2(1− δ1)
∑
〈ij〉

τzi τ
z
j

(40)
where H(1, 1) is the Hamiltonian which belongs to

the general Hamiltonian given in Eq. 23 with (λ1, λ2) =
(1, 1), the second term represents a x-field and the third
term is a nearest neighbour Ising exchange in the z di-
rection, both of which are allowed within the microscopic
symmetries (see table I).

Fig. 11 shows the ground state fidelity as a func-
tion of the two interpolating parameters, where we find
that while a finite size system shows a GS susceptibility

(|∂
2Egs
∂δ12 |) peak suggesting a phase transition – the peak

falls significantly with inclusion of an Ising coupling sug-
gesting that the large Γ phase is indeed smoothly con-
nected to a x-paramagnet without any intervening phase
transition within the symmetry allowed parameter space.
A further insight into the nature of the phase is– as more
systematically discussed in the next section we also find
that the phase has no topological entropy content and is
short range entangled (see Fig. 14). Interestingly as the
system is tuned to a paramagnet this topological entropy
content continues to remain zero showing that the phase
is smoothly connected to a trivial state. The behavior
of the energy gaps (∆m) as well as the topological en-
tanglement entropy (see Eq. 43) are shown in Fig. 26 in
Appendix H.

Together the above signatures of the Γ phase, we con-
clude that the λ1 = λ2 = 1 is a fine tuned point which
even while it is itself gapless, gets gapped out immedi-
ately by generic microscopic symmetry allowed pertur-
bations and the resultant gapped phase is continuously
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connected to a trivial paramagnet. This insight as will
discuss later will guide both the nature of the phase and
their nature of transitions in the complete KJΓ parame-
ter space. Before going into the field theoretic discussion,
we numerically study the complete KJΓ parameter space
within exact diagonalization studies.

IV. PHASE DIAGRAM : EXACT
DIAGONALISATIONS

Having discussed the phases in the different limits, we
now study the phase boundaries via ED on finite spin
cluster. For this we use the interpolating Hamiltonian :

H(t1, t2) = (1− t1)(1− t2)H′(J=Γ=0) (41)

+ t2(1− t1)H′(Γ=K=0) + t1(1− t2)H′(J=K=0)

Where H′X is defined as HX with a unit energy scale.
The explicit forms of the Hamiltonians(HX) are given in
Eqs. 9-11. The rescaled parameters are:

t1 =
Γ2/|Kz|

JTC + Γ2/|Kz|
; t2 =

J

JTC + |J |
(42)

In this parameter space, at the points (t1, t2) =
(0, 0), (0, 1), (1, 0) the H(t1, t2) are Toric code, the
Heisenberg and the pseudo-dipolar limit respectively. We
perform ED for system sizes of up to 32 spins with pe-
riodic boundary conditions (PBC). We calculate the fol-
lowing quantities to estimate the phase boundaries as
well as the nature of the phases– (1) Ground state fidelity
susceptibility, (2) Spectral gaps, (3) Topological entangle-
ment entropy, (4) Plaquette expectation, (5) Magnetiza-
tion, and, (6) Spin-spin correlation.

1. Ground state fidelity susceptibility (χ1, χ2) : As
introduced above, this is the double derivative of the
ground state energy EGS as a function of any of the pa-

rameters t1 and t2 : χ1 = |∂
2EGS
∂t21
| and χ2 = |∂

2EGS
∂t22
|.

The behavior of the fidelity susceptibility for fixed values
of t1 as a function of t2 and vice-versa shows pronounced
peaks (see Fig. 12) showing transitions between the Z2

QSL (stabilized by H̃(J=Γ=0)), the ferromagnet (stabi-

lized by H̃AF(Γ=K=0) ) and the large Γ phase stabilized

by H̃AF(J=K=0). The position of these peaks is plotted in

Fig. 16 to demarcate the phase boundaries.
2. Spectral gap (∆m): Further insights into the na-

ture of phases and phase boundaries are obtained from
the bulk spectral gap of the low lying energy eigenstates,
∆m,– the gap between the mth excited state and the
ground state. For instance in the FM state ∆1 ∼ zero
given the expected two fold degenerate ground states
(pertaining to two symmetry broken states in the ther-
modynamic limit), while in the Z2 QSL one expects
∆1 −∆3 ∼ zero, since the latter has a 4 fold topological
degeneracy on a torus. One expects no such degeneracy
for the large Γ phase since it is a gapless point where the
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FIG. 12. Behavior of ground state susceptibility for Eq. 41.
(a) χ1 along the t1 direction for constant values of t2. (b) χ2

along the t2 direction for various values of t1. (N = 2LxLy
for Lx × Ly = 4× 3)

bulk states would show gaps due to finite size effects. All
these expectations are correctly borne out in our numeri-
cal results shown in Fig. 13, where the behavior ∆1−∆5

helps to demarcate the various phases.

Further the minimum of bulk gap (min(∆m)) coincides
with the susceptibility peaks (see Fig.16) which serves as
a self consistent check for the phase boundaries for our
finite spin clusters.

3. Topological entanglement entropy (γ): The non-
trivial entanglement of the gapped Z2 QSL can be cap-
tured via the topological entanglement entropy (≡ γ).
In order to distill this it is useful to employ the Kitaev-
Preskil prescription[1, 83, 84] where the area law contri-
butions cancel perfectly. The behavior of γ as a func-
tion of t1 for t2 = 0 is shown in Fig. 14(a). One finds
that while γ ∼ log(2) in the Z2 QSL, γ ∼ 0 in the Γ
phase reflecting that the latter has no topological order
of a gapped spin liquid state. To investigate the area
law contributions in the various phases it useful to calcu-
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FIG. 13. Low energy spectra to excited states from the ground
state where ∆m defines the gap between the mth excited state
and the ground state is shown as a function of t2 for constant
values of t1 (see Eq. 41). In (a) t1 = 0.2 and (b) t1 = 0.6.
The system size is (Lx, Ly) = (4, 3) with N = 2LxLy spins.

late, for a given a spin cluster, the bipartite entanglement
entropy(SA(L)) of any sub part of volume A with a linear
boundary of size L and fit it to this functional form

SA(L) = αL− γ +O(1/L) (43)

where α, γ are the coefficients of the area law entan-
glement, and the topological entanglement entropy re-
spectively [83–85]. The behavior of α is also shown in
Fig. 14(a) reflecting that both Z2 QSL and large Γ phase
has finite area law contributions. It is worthwhile to point
out that γ obtained by fitting Eq. 43 (≡ γFit) seems to
show a finite value in the large Γ phase, this however
is a spurious artifact of the fitting scheme as has been
pointed out in [86] for stacked/cluster SPT like states. It
is pertinent to point out that in the large Γ phase we of-
ten find a curvature in the behavior of S as a function of
L which may suggest a logarithmic correction [51]. How-
ever, in our limited ED calculations it is hard to separate
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FIG. 14. (a)The bipartite entanglement entropy in the ΓK
direction (t2 = 0 line in Eq. 41) follows an area law, i.e.
SA(L) = αL, however, in the Z2-QSL phase this is supple-
mented by a topological correction (γ). Calculations done on
a ((Lx, Ly) = (5, 3) cluster). (b) Average of the plaquette (Wi

in Eq. 11) expectation value for the ground state of Eq. 41 in
the (t1, t2) plane (for a ((Lx, Ly) = (3, 3)) spin cluster).

out if this due to the gapless nature of the (λ1, λ2) point
or due to a finite correlation length in the large Γ phase.
Some additional results in other parameter regimes are
discussed in Appendix I.

4. Plaquette expectation (w): The non-trivial topo-
logical entanglement entropy of the QSL is closely related
to the type of topological order realised. As discussed
above in the section III A the low energy excitations of
the QSL are gapped bosonic Ising electric and magnetic
charges [24, 25] whose density are encoded by the pla-
quette spin operators Wi ≡ τzi+d1

τzi−d2
τyi τ

y
i+d1−d2

(see

Eq.11). We plot the expectation value of such average
charge density w =

∑
i

1
N 〈Wi〉 in Fig. 14(b) for the en-

tire t1, t2 plane (where the expectation value is taken over
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FIG. 15. (a) Behavior of Mz = 1
N

∑
i〈τ

z
i 〉 in the t1, t2 pa-

rameter regime of Eq. 41. To characterize the ferromag-
net state we apply a weak symmetry breaking perturba-

tion (∼ t2(1−t1)
100

∑
i τ
z
i ). (b) Behavior of connected correla-

tor C(r) = 〈τzi τzi+r〉 − 〈τzi 〉〈τzi+r〉 over the ground state of
Eq. 41 for different values of t2 for t1 = 0. (System size,
Lx = 3, Ly = 3)

the ground state). Clearly in the QSL the ground state
does not contain any charges resulting in w ≈ 1 which
gives away to w ≈ 0 in both the spin ordered as well as
the large Γ phase showing that in the ground states of
these phases the charges proliferate.

This provides an important clue into the mechanism of
the phase transitions out of the QSL via the proliferation
and condensation of the gauge charges. We use these
soft modes to construct our critical theory for the phase
transition in the next section.

5. Magnetization (Mz): While the QSL does not
break any symmetry spontaneously, the spin-ordered
phase on the other hand, is characterised by symme-
try breaking captured by a finite magnetisation Mz =
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FIG. 16. Phase diagram of Eq. 41 for t1, t2 ∈ [0, 1] for the
complete KJΓ Hamiltonian. The phase boundaries are ob-
tained by analysing ground state fidelity susceptibility and
values where the gaps to the bulk excited states ( ≡ ∆m)
(see text) takes the minimum value (min(∆1)) of a 24 spin
(Lx = 4, Ly = 3) cluster.

1
N

∑
i〈τz〉 which is calculated in presence of a small sym-

metry breaking field (∼ t2(1−t1)
100

∑
i τ
z
i ). The resultant

plot is shown in Fig. 15(a). Clearly the complete FM
region shows a finite Mz while both the Z2 liquid and
the large Γ phase shows no such feature. Thus we ex-
pect that this region spontaneously break symmetry in
the thermodynamic limit as the symmetry breaking field
is taken to zero as our calculation of the spin-spin corre-
lations (below) indicate.

6. Spin-spin correlation: To further characterize the
ferromagnet, connected correlator C(r) = 〈τzi τzi+r〉 −
〈τzi 〉〈τzi+r〉 is evaluated over the ground state in absence
of any perturbing field. An exponentially falling correla-
tion signals no magnetic order while a long range ordered
state will show that C(r) takes a finite value. The be-
havior of C(r) as a function of r is shown in Fig. 15(b)
for different values of t2 with t1 being zero showing the
systems realizes a long-range magnetic order in the FM
state.

The above numerical results, when taken together, lead
to the phase diagram as shown in Fig. 16 which illustrates
the three phases and the intervening transitions. In the
rest of the paper we investigate the nature of the inter-
vening phase transitions and develop its field theory.

V. THEORY OF PHASE TRANSITIONS

Our numerical studies leading to the phase diagram of
Fig. 16 shows that the phase transitions out of the QSL
are brought about by the condensation of the Ising elec-
tric and magnetic charges. We now build on the above
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observation to develop the field theories for the phase
transitions.

A. Phase transition between QSL and the spin
ordered phase

Along the Γ = 0 line (t1 = 0 line in Fig. 16), there are
two competing phases– the Z2 QSL for J ∼ 0 and the
spin ordered phase in the Heisenberg limit, J/|K| � 1.
To understand the phase transition between them, it is
convenient to start with the QSL and obtain the descrip-
tion of the transition in terms of the soft electric and
magnetic modes similar to Ref. 1, as a function of J , of
its excitations– the e and m charges. To the leading order
in J the Hamiltonian is given by Eq. 9, where, we neglect
the higher order terms in J . Since at large J (depend-
ing on the sign) the system goes into an ferromagnet or
anti-ferromagnet state for τ -spins we for now ignore the
transverse field term and look at the effect of the Ising
exchange term on the Toric code Hamiltonian.

In terms of the gauge charges of Eq. 15, the Hamilto-
nian in Eq. 8 in the limit Γ = 0 becomes:

H̃AFΓ=0 = −J
∑

〈ab〉∈H;〈bc〉∈V

[µxaρ
z
abµ

x
b ] [ρxbc]

− JTC
∑
a

µza − JTC
∑
p

∏
〈ab〉∈p

ρzab
(44)

Where a, b, c are the square lattice vertices (see Fig
I). Similar to Ref. [1] we identify the soft modes within
a gauge mean field analysis (also see Appendix J 1) ap-
propriately modified to the present symmetry considera-
tions. As in the ferromagnetic case [1] (see Appendix J 2),
we get two soft modes for each of electric and magnetic
sectors [87–89]:

Ψe(r, τ) = φ(1)
e (r, τ) ν̂(1)

e + φ(2)
e (r, τ) ν̂(2)

e (45)

Ψm(r, τ) = φ(1)
m (r, τ) ν̂(1)

m + φ(2)
m (r, τ) ν̂(2)

m (46)

where (φ
(1)
e (r, τ), φ

(2)
e (r, τ)) (and (φ

(1)
m (r, τ), φ

(2)
m (r, τ)))

are real fields that represents amplitudes of the electric
(magnetic) soft modes. Defining complex variables

Φe = φ(1)
e + iφ(2)

e = |Φe|eiθ
e

(47)

and

Φm = φ(1)
m + iφ(2)

m = |Φm|eiθ
m

(48)

provides us the fields using which the critical field theory
is formulated. The symmetry transformation of these
fields are given in Eq. J9, we notice that the transfor-
mation rules for the symmetries σv and Rπ are different
from the FM case [1] given the different implementation
of microscopic symmetries.

Given the electric and magnetic charges see each other
as source of mutual π-flux due to their statistics such long

range statistical interactions need to be accounted for
through an appropriate Chern-Simons term. In Ref. [1],
we presented a mutual U(1) gauge theory to account for
this long range statistical interactions. The same tech-
niques can be applied to the present case as shown below.
However, here we employ a somewhat more microscopic
formulation using a mutual Z2 gauge theory formalism
to obtain the same critical field theory. We discuss them
in turn.

1. Mutual U(1) Chern Simons theory

The semionic statistics between the Ising electric and
magnetic charges can be captured [25] using a mutual
U(1) Chern-Simons term [88, 90, 91]

SU(1)
CS =

i

π

∫
d2rdτ εµνλAµ∂νBλ (49)

where µ, ν, λ = x, y, τ and Aµ and Bµ are U(1) gauge
fields that couple to the electric and magnetic soft modes
respectively. The symmetry transformations for the
gauge fields Aµ (Bµ) are given in Eq. J11.

The critical theory is identical to the FM case and is
given by

Sc =

∫
d2rdτ L+ SU(1)

CS (50)

where SCS is given by Eq. 49 and

L = Le + Lm + Lem (51)

with

Le = |(∂µ − iAµ)Φe|2+u|Φe|2 + v|Φe|4

− λ
[
(Φe)

4 + (Φ∗e)
4
]

(52)

Lm = |(∂µ − iBµ)Φm|2+u|Φm|2 + v|Φm|4

− λ
[
(Φm)4 + (Φ∗m)4

]
(53)

Lem = w
[
(ΦeΦm)2 + (ΦeΦ

∗
m)2 + c.c.

]
(54)

Similar to FM case [1] (see details in Appendix J 4) we
find that while u > 0 signifies the Z2 spin liquid state,
(u < 0, λ < 0, w 6= 0 ∝ sgn(J)) specifies the spin symme-
try broken ordered state, where the ordered states corre-
spond to FM (AFM) for J > 0 (J < 0) in Eq. 9 for the
τ spins state, which translates into Neel (zig-zag) order
for underlying σ spins (see Fig. 3).

2. The Mutual Z2 gauge theory

The soft modes of the Ising electric and magnetic
charges in Eq. 47 and 48 respectively are charges under
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a Z2 gauge field and hence their mutual semionic statis-
tics are naturally captured by a mutual Z2 CS theory as
we describe below [89, 92]. This provides for connect-
ing the more prevalent mutual U(1) approach described
above [93] with a systematic Z2 approach. Indeed, the
latter approach is generically more suited to faithfully
capture the nature of phase transitions [94]. However, in
the present case we obtain the same continuum theory
for the transition.

The starting point of the mutual Z2 formalism is ob-
taining a lattice version of the soft mode theory since
the Z2 gauge fields are naturally formulated on the lat-
tice. Hence using Eq. 47 and 48, we write the lattice low
energy action as [95]

S = Se + Sm + SCS (55)

where

Se = −t
∑
ab

ρab cos(θea − θeb) + · · · (56)

is the electric action defined on the direct square lattice
with ρab being the Z2 link field with which it is minimally
coupled,

Sm = −t
∑
āb̄

ρ̃āb̄ cos(θmā − θmb̄ ) + · · · (57)

is the magnetic action defined on the dual square lattice
with ρ̃āb̄ being the dual Z2 gauge field and

SCS = i
π

4

∑
ab∈�

(1− ρab)

1−
∏
āb̄∈�

ρ̃āb̄

 (58)

is the Ising Chern-Simons action that implements the
mutual semionic statistics between the electric and the
magnetic charges[25].

Note that the hopping amplitude for both the electric
and magnetic charges are fixed to be the same (denoted
by t above) by the self-dual structure of the action since
the electric and magnetic soft modes transform into each
other under unit lattice translation (see [1] and the dis-
cussion near eqns. J9). Similarly (· · · ) represents higher
order interaction terms that are highly constrained by
the self dual structure of the theory. We shall consider
such interaction terms soon.

To proceed further we seek to dualise either the electric
or the magnetic sectors both of which are XY fields and
hence can be dualised using the particle-vortex duality
[96, 97]. We choose to dualise the electric sector.

To this end, we re-write the electric action

Se = −t
∑
ab

cos
(
θea − θeb +

π

2
(1− ρab)

)
(59)

using Villain approximation [98] to obtain (the details
are given in Appendix J 5)

S ′e =
1

2t

∑
ab

L2
ab + iLab

(
θea − θeb +

π

2
(1− ρab)

)
(60)

where Lab is an integer value link field. Further integra-
tion over θea gives rise to the zero divergence (on a lattice)
constraint on them, i.e.,

∇jLab = 0 (61)

which is solved by defining an integer field Cāb̄ on the
dual lattice through a lattice curl

Lab = ∇× Cāb̄ (62)

Putting this together with SCS (Eq. 58), we have

Se + SCS =
∑
āb̄

(∇× Cāb̄)
2

2t

+ i
π

2

∑
ab

[1− ρab]
[
∇× Cāb̄ +

1−
∏

� ρ̃āb̄
2

]
(63)

such that on integrating over ρab we get the constraint
which gives rise to∏

āb̄∈�

ρ̃āb̄ = (−1)(∇×Cāb̄) (64)

which can be solved by dividing Cāb̄ into an even and an
odd part as

Cāb̄ = 2Aāb̄ + ηāb̄ (65)

where ηāb̄ = 0, 1 and Aāb̄ ∈ Z, such that

τāb̄ = 1− 2ηāb̄ (66)

In continuation with our soft mode treatment, we now
implement the integer constraint on Aāb̄ softly through
the potential

−w cos(2πA) (w > 0) (67)

such that the whole action (Eq. 55) becomes

S =
∑
āb̄

(∇× Cāb̄)
2

2tπ2

−
∑
āb̄

ρ̃āb̄
[
w cos(Cāb̄ + ϑā − ϑb̄) + t cos(θmā − θmb̄ )

]
(68)

where we have re-scaled C → πC and have separated
out a vortex field ϑā through a gauge choice [99–101]:
∇·C = 0. Integrating out ρ̃, we get, to the leading order

S =
1

2tπ2

∑
āb̄

(∇× Cāb̄)
2

+
t2

4

∑
āb̄

cos[2(ξā − ξb̄)− 2(ϑā − ϑb̄)]

+
w2

4

∑
āb̄

cos[2(ϑā − ϑb̄ − Cāb̄)]

+
tw

2

∑
āb̄

cos[ξā − ξb̄ − Cāb̄] (69)
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where we have defined

ξ = θm + ϑ (70)

The continuum limit can be obtained by introducing
bosonic fields

ϕ = ei2ϑ, χ = e−iξ (71)

to get

S =
1

2tπ2

∑
āb̄

(∇× Cāb̄)
2

+ tw
∑
āb̄

χ∗āe
−iCāb̄χb̄

+
w2

2

∑
IJ

ϕ∗ā e
i2Cāb̄ ϕb̄ +

t2

2

∑
āb̄

(χ∗āχb̄)
2(ϕ∗āϕb̄)

(72)

such that the continuum action is given by

Scont =

∫
d2xdτ Lcont (73)

where

Lcont =|(∂µ − iCµ)χ|2 + |(∂µ + i2Cµ)ϕ|2 + V [χ, ϕ]

+ g(εµνλ∂νCλ)2 (74)

where V [χ, ϕ] denotes the interactions between the
modes that are allowed by symmetry. The above crit-
ical theory is exactly dual to Eq. 50. Indeed starting
with Eq. 50, we can dualise the electric charges to get
the above field theory as was shown in Ref. [1]. Simi-
larly, based on the symmetry transformations of the soft
modes and in particular the permutation of the electric
and the magnetic soft modes under translation, we have:

V [χ, ϕ] = u
(
|χ|2 − |ϕ|2

)
+ v

(
|χ|4 + |ϕ|2

)
+ w̃|χ|4|ϕ|2 + · · ·

(75)

where the relative negative sign for the quadratic term
is obtained by noting that ϕ is dual to the electric soft
mode. Thus the transition belongs to a self-dual mod-
ified Abelian Higg’s theory. This concludes our discus-
sion of the deconfined critical point describing the quan-
tum phase transition between the Z2 QSL and the spin-
ordered phase. For a detailed discussion on this critical
theory we refer to [1].

3. A two-step or a single step transition

In the above discussion we have presently ignored the
transverse field term (see Eq. 9) which occurs with a
strength of 2J may potentially open up an intermedi-
ate phase as J is increased (see Fig. 4). We now focus
the viability of such a scenario.

The inclusion of Heisenberg term leads to a perturba-
tion of both an Ising term and a transverse field to the
parent Toric code Hamiltonian in the strong anisotropic

limit. In the complete parameter space, therefore we
clearly have three phases (i) The Z2 QSL for the Toric
code. (ii) The Ising ordered phase which breaks a Z2

symmetry stabilizing a Neel order for the original σ spins.
(iii) A x paramagnet (in τs)(see Fig. 4 and Fig. 18).

Even while for τ spins the the paramagnet is may seem
featureless and trivially x polarized, in terms of underly-
ing σ spins its an intriguing state given the eigenstates
correspond to τx are the essentially a singlet or a triplet
bond

|±〉x =
1√
2

(
| ↑↓〉 ± | ↓↑〉

)
(76)

ordered state on every z bond of the underlying honey-
comb lattice. A polarized state in the τ spins therefore
corresponds to a direct product state of singlets on all
z bonds which in turn corresponds to a lattice nematic
state for the σ spins (see discussion in section III B). The
analysis already provides some interesting insights. This
present study in the anisotropic limit already leads to
the fact that the transition from the Neel state to the
lattice nematic phase is essentially an Ising transition.
The transition from the Z2 liquid to the Neel phase is
the self-dual modified Abelian Higgs transition. Now at
infinite J we know the system enters a Neel phase – this
can either occur directly through a single step transi-
tion or the route may entail an intermediate paramagnet
phase which could then imply a two step transition (see
Fig. 4). A detailed numerical study of the Toric code
Hamiltonian with a generalized Ising perturbation and a
transverse field is given in section C. We find that in gen-
eral a Heisenberg perturbation in this strong anisotropic
limit is in fact a single-step transition where the Z2 QSL
undergoes a self dual modified Abelian Higgs transition
to a ferromagnet state.

B. Transition between large Γ phase and Z2 QSL

While the nature of the transition from a Toric code to
the Neel state is captured in the above discussed frame-
work - the transition from the Z2-QSL to the paramagnet
is quite interesting and we now discuss this transition.
The Z2 QSL for the τ spins is in Wen’s representation [6]
while the paramagnet it transits to is x-polarized which
is adiabatically connected to the large-Γ phase (see dis-
cussion above). Under a unitary rotation (see Eq. B1)
while the QSL can be exactly mapped to the Kitaev’s
Toric code ground state (see Eq. 12), the paramagnet gets
converted to y-polarized state. The nature of transition
from a Toric code QSL to a transverse field in y direction
is known to be a first order transition [62, 63]. Given
the first order nature of this transition we do not expect
any universal physics, except noting that this transition
has a fundamentally different character from our related
FM study [1] where the transition between the QSL and
large Γ phase was a second order transition.
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C. Transition between spin-ordered phase and
large Γ phase

This leaves us with the transition between the FM and
the large Γ phase. Given the large Γ phase contains
all the microscopic symmetries, we expect the transition
from the large Γ to the FM transition to be of the Ising
kind where a symmetry breaking order gets develop at
a critical value of Ising coupling. Our numerical estima-
tion of the phase boundary shows that the transition from
the large Γ phase to the FM occurs along the t2 = t1

3−2t1
curve. This corresponds to a critical value of Jc which
quadratically increases with the strength of the Γ cou-
pling strength (Γ2/Jc|Kz| ∼ 3).

This completes our discussion of the phase transitions.

VI. SUMMARY AND OUTLOOK

We now summarise our results. In this follow up (to
Ref. [1]) work, we have investigated the Heisenberg-
Kitaev-Γ model in the anisotropic limit with Kitaev in-
teractions being antiferromagnetic. This leads to impor-
tant difference in the symmetry transformation of the
low energy degrees of freedom– the non-Kramers dou-
blets which is manifested in the nature of the phases sta-
bilised. In particular the large Γ limit appears to be prox-
imate to equal superposition of stacked Z2×Z2 spin SPT
phases where the symmetries protecting the SPTs are
only weakly broken leading by small higher order terms.
Our numerical studies on small spin clusters reveal the
general structure of the phase diagram indicating that
the Z2 QSL is destroyed via proliferation and conden-
sation of its gauge charges– both electric and magnetic.
While the transition to the paramagnetic phase in the
large Γ limit turns out to be discontinuous, for the contin-
uous transition to the spin-ordered state (from the QSL)
we construct a critical continuum field theory in terms of
the soft modes of the electric and magnetic charges via
a mutual Z2 CS theory and show that the results are ex-
actly with the mutual U(1) CS theory used by us in Ref.
[1]. This leads us to conclude that the direct transition
between the QSL and the spin-ordered phase is described
by a self-dual modified Abelian Higgs field theory.

The overall summary of our phase diagram is then il-
lustrated in Fig. 17 where the following scenario emerges
for the τ spins. There are three phases (i) Z2 QSL, (ii)
the Ising FM and (iii) Γ phase. The leading order Hamil-
tonian for the phase in large Γ limit is described by a
fine tuned point in the (λ1, λ2) plane which interpolate
between differently stacked weak SPTs where a gapless
phase with boundary modes appear and possibly belongs
to a critical point which is trivially gapped out immedi-
ately by local transverse field perturbations. The Heisen-
berg coupling, on the other hand, drives the Z2 QSL to
the spin ordered phase via a deconfined critical point.

The present work, along with Ref. [1], therefore com-
pletes the understanding of the physics of the anisotropic

FIG. 17. Schematic depiction of the phases and phase tran-
sitions which are accessible within the parameter space of
the complete KJΓ Hamiltonian (see Eq. 8) in the anisotropic
limit of anti-ferromagnetic Kitaev model.

Heisenberg-Kitaev-Γ system. While not directly relevant
to the present set of experimentally relevant materials,
we think our results some shed light on the nature of the
soft modes and the phases proximate to the Kitaev QSL
on the isotropic honeycomb lattice.

We would like to end with a few comments about the
critical point describing the gapless phase obtained in the
large Γ limit at the leading order of the Hamiltonian. In
this limit, our detailed symmetry and numerical analy-
sis (see Appendix. G 1) shows that the boundary modes
are fragile to microscopic symmetry allowed perturba-
tions. Within our exact diagonalisation results this crit-
ical point has zero topological entropy consistent with a
gapless or a short range entangled gapped phase. Indeed
our numerical calculations seem to indicate that the large
Γ phase is continuously connected to a trivial gapped
paramagnet. All these indicate that the gapless point in
the large Γ limit is indeed critical and unstable. However
further detailed understanding of the Hamiltonian in the
large Γ limit (Eq. 23) is needed to understand the na-
ture of the phase realised by superposing stacked SPTs.
In this regard a naive Majorana mean field theory of the
Hamiltonian given by Eq. 11 and the stacked cluster SPT
H1, given by Eq. 22 reveals a generic intermediate gapless
phase between the two limits (see Appendix K).
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clusters boson and boson1.

Appendix A: The perturbation theory for the
anisotropic limit

In the strong anisostropic limit (Kz � J,Γ,K) a per-
turbation series for the Hamiltonian in τ spins can be
obtained. Various terms can be arranged in terms of the
number of spins they entail. We perform an analysis upto
four spin terms and present the results below.

The single spin terms are given by

HAF[1] = 2J

(
1− Γ2

∆2

)∑
i

τxi (A1)

where δ = J + |K|,∆ = |Kz|+ J .

Two-spin contributions are:

HAF[2] = −
[
J +

Jδ

2∆
+
δ3J + δJ3

8∆3

]∑
〈i,j〉

τzi τ
z
j +

J2δ2

2∆3

∑
i

τzi τ
z
i+d1−d2

−
[

2Γ3

∆2
+
J2δ2

4∆3

]∑
i

τzi+d1
τzi−d2

− J2δ2

8∆3

∑
i

(τzi+d1
τzi−d1

+ τzi+d2
τzi−d2

) +
δJΓ2

∆3

∑
i

(
τxi τ

y
i+d1−d2

− τyi τ
x
i+d1−d2

)
− 5J2δ2

8∆3

∑
i

(
τxi τ

x
i+d1−d2

+ τyi τ
y
i+d1−d2

) (A2)

Three spin contributions are:

HAF[3] =
∑
i

([Γ2

∆
− (Γ)4

∆3
+

7Γ2δ2

4∆3

]
(τzi+d1

τxi τ
z
i−d1

+ τzi+d2
τxi τ

z
i−d2

) +

[
Γ2

∆
− 4Γ4 + J2Γ2

4∆3
+

3Γ2δ2

2∆3

]
(τzi+d1

τyi τ
z
i−d2

− τzi+d2
τyi τ

z
i−d1

)
)

−
[

Γ4

2∆3
+

3Γ2δ2

2∆3

]∑
i

(τzi τ
z
i−d2

τxi+d1−d2
+ τzi+d1−d2

τzi+d1
τxi − τzi τzi+d1

τxi+d1−d2
− τzi+d1−d2

τzi−d2
τxi )

+
JΓ2

∆2

∑
i

(
τzi τ

z
i+d1

τyi+d1−d2
− τzi+d1−d2

τzi−d2
τyi + τzi τ

z
i−d2

τyi+d1−d2
− τzi+d1−d2

τzi+d1
τyi
)

+
Γ3

∆2

∑
i

(τzi+d1
τxi τ

z
i+d2

+ τzi−d1
τxi τ

z
i−d2

)

(A3)
Four spins contributions are:

HAF[4] = −
[

δ4

16∆3
+

J4

16∆3

]∑
i

τzi+d1
τzi−d2

τyi τ
y
i+d1−d2

− J2δ2

8∆3

∑
i

τzi+d1
τzi−d2

τxi τ
x
i+d1−d2 (A4)

.
In the pseudo-dipolar limit, i.e. for J = K = 0, the effective Hamiltonian is:

HAFJ=K=0 =

[
Γ2

∆
− Γ4

∆3

]∑
i

(τzi+d1
τxi τ

z
i−d1

+ τzi+d2
τxi τ

z
i−d2

) +

[
Γ2

∆
− Γ4

∆3

]∑
i

(τzi+d1
τyi τ

z
i−d2

− τzi+d2
τyi τ

z
i−d1

)

−
[

2Γ3

∆2

]∑
i

τzi+d1
τzi−d2

−
[

Γ4

2∆3

]∑
i

(τzi τ
z
i−d2

τxi+d1−d2
+ τzi+d1−d2

τzi+d1
τxi − τzi τzi+d1

τxi+d1−d2
− τzi+d1−d2

τzi−d2
τxi )

+
Γ3

∆2

∑
i

(τzi+d1
τxi τ

z
i+d2

+ τzi−d1
τxi τ

z
i−d2

)

(A5)

Appendix B: The effective Hamiltonian in rotated
basis of the AFM limit

1. Rotation to the τ̃-basis

Form the Eq. 11, to bring the TC model in it’s usual
form in Eq. 12, we use the bond dependent unitary rota-

tion:

{τxi , τ
y
i , τ

z
i } → {−τ̃

y
i , τ̃

x
i , τ̃

z
i } ∀i ∈ horizontal. bonds

{τxi , τ
y
i , τ

z
i } → {τ̃

y
i , τ̃

z
i , τ̃

x
i } ∀i ∈ vertical bonds (B1)
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Symmetry τ̃xh τ̃yh τ̃zh τ̃xv τ̃yv τ̃zv

T τ̃xh τ̃yh −τ̃zh −τ̃xv τ̃yv τ̃zv
σv τ̃xh′ τ̃yh′ τ̃zh′ τ̃xv′ τ̃yv′ τ̃zv′
C2z −τ̃xh′ τ̃yh′ −τ̃zh′ −τ̃xv′ τ̃yv′ −τ̃

z
v′

Rπ −τ̃xh′ τ̃yh′ −τ̃zh′ −τ̃xv′ τ̃yv′ −τ̃
z
v′

Tdj τ̃zh′ −τ̃yh′ τ̃xh′ τ̃zv′ −τ̃
y
v′ τ̃xv′

TABLE III. Symmetry transformation of the τ̃ spins on the
horizontal (h) and vertical (v) links of the AFM anisotropic
limit (see Fig. I). Where v′ & h′ denotes the lattice
points transformation, h′ ≡ S(h) & v′ ≡ S(v) for S ≡
{T , σv, C2z, Rπ, Td1(2)

}.

2. Symmetry transformations

The symmetry transformations for the τ̃ -spins is ob-
tained from table I and is given in table III where H (V )
denotes the horizontal (vertical) links of the square lat-
tice (see Fig. I).

3. Action of the symmetries on the gauge charges
and the gauge fields

Following the symmetry transformation of the τ̃ -spins
in table III we will now discuss the transformation rules
for the gauge charges and gauge fields.

a. Lattice Translations : Under both the transla-
tions, along the directions d1 and d2 (see Fig. I), the
plaquettes and the vertices are interchanged. Hence the
e and m charges are interchanged.

Tdj
:

{µx, µz}a → {µ̃x, µ̃z}Tdj (a)

{µ̃x, µ̃z}ā → {µx, µz}Tdj (ā)

{ρx, ρz}ab → {ρ̃x, ρ̃z}Tdj (ab)

{ρ̃x, ρ̃z}āb̄ → {ρx, ρz}Tdj (āb̄)

(B2)

For translation along the cartesian axes, the lattice vec-
tors are given by x̂ = d1 − d2 and ŷ = d1 + d2. Under
this, the gauge charges and potentials transform as

Tx̂(ŷ) :

{µx, µz}a → {µx, µz}a+x̂(ŷ)

{µ̃x, µ̃z}ā → {µ̃x, µ̃z}ā+x̂(ŷ)

{ρx, ρz}āb̄ → {ρx, ρz}ā+x̂(ŷ),b̄+x̂(ŷ)

{ρ̃x, ρ̃z}āb̄ → {ρ̃x, ρ̃z}ā+x̂(ŷ),b̄+x̂(ŷ)

(B3)

b. Time Reversal : Due the bond dependent nature
of the τ̃ transformation the gauge degrees of freedoms
transform as:

T :

{µx, µz}a → {µx, µz}a
{µ̃x, µ̃z}ā → {µ̃x, µ̃z}ā
{ρx, ρz}ab → {(−1)ay+byρx, (−1)ax+bxρz}ab
{ρ̃x, ρ̃z}āb̄ → {(−1)āy+b̄y ρ̃x, (−1)āx+b̄x ρ̃z}āb̄

(B4)

c. Reflections about z bond, σv : This transforma-
tion is different compared the ferromagnetic case:

σv :

{µx, µz}a → {µx, µz}σv(a)

{µ̃x, µ̃z}a → {µ̃x, µ̃z}σv(a)

{ρx, ρz}ab → {ρx, ρz}σv(ab)

{ρ̃x, ρ̃z}āb̄ → {ρ̃x, ρ̃z}σv(āb̄)

(B5)

d. π-rotation about the z-bond, C2z : This transfor-
mation is also different compared the ferromagnetic
case:

C2z :

{µx, µz}a → {µx, µz}C2z(a)

{µ̃x, µ̃z}ā → {µ̃x, µ̃z}C2z(ā)

{ρx, ρz}ab → {−ρx,−ρz}C2z(ab)

{ρ̃x, ρ̃z}āb̄ → {−ρ̃x,−ρ̃z}C2z(āb̄)

(B6)

e. π-rotation about honeycomb lattice centre, Rπ :
We can obtain the transformation rules from the Eq. B5
and B6

Rπ :

{µx, µz}a → {µx, µz}Rπ(a)

{µ̃x, µ̃z}ā → {µ̃x, µ̃z}Rπ(ā)

{ρx, ρz}ab → {−ρx,−ρz}Rπ(ab)

{ρ̃x, ρ̃z}āb̄ → {−ρ̃x,−ρ̃z}Rπ(āb̄)

(B7)

Appendix C: J −K Hamiltonian

The generalisation of the Hamiltonian for the antifer-
romagnetic Kitaev model in the strong anisotropic limit
with the Heisenberg term (Eqs. 11 and 9) is given by

HAFΓ=0 = heff

∑
i

τxi − Jeff

∑
〈i,j〉

τzi τ
z
j

− JTC
eff

∑
i

τzi+d1
τzi−d2

τyi τ
y
i+d1−d2

(C1)

where Jeff, heff and JTC
eff are the strengths of the Ising

term, magnetic field and of the quartic term respectively.
On transforming the above Hamiltonian via a unitary ro-
tation in Eq. B1 followed by τ̃yi → −τ̃

y
i on the horizontal

bonds, we get

HAFΓ=0 = heff

∑
i

τ̃yi − Jeff

∑
〈i,j〉,i∈H,j∈V

τ̃zi τ̃
x
j

− JTC
eff

(∑
s

As +
∑
p

Bp

) (C2)

which now takes the form the toric code Hamiltonian
when perturbed by a transverse magnetic field and an
Ising perturbation, although of a τ̃z τ̃x kind. This Hamil-
tonian, in parts, has been a subject of recent numerical
studies [62, 63]; and we now investigate it further to de-
velop a field theoretic understanding of the phases and
intervening phase transitions. To understand this phase
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FIG. 18. The absolute value of ground state (GS) susceptibil-

ity ( ∂
2EGS
∂ε2

|ε2) (a) and the absolute value of τ̃y-magnetization
(b) as a function of t1 for constant values of t2 are shown for
the Hamiltonian given in Eq. C3.

diagram numerically we define two interpolating param-
eters: ε1 and ε2, and study the following Hamiltonian

H′ = ε1(1− ε2)
∑
i

τ̃yi − ε2(1− ε1)
∑

〈i,j〉,i∈H,j∈V

τ̃zi τ̃
x
j

− (1− ε1)(1− ε2)

(∑
s

As +
∑
p

Bp

)
(C3)

which interpolates between the exact toric code Hamil-
tonian (ε1 = ε2 = 0), a z−x ferromagnet (ε1 = 0, ε2 = 1)
and a y paramagnet (ε1 = 1, ε2 = 0). We perform exact
diagonalization (ED) studies on a 18 spin (3×3) peri-
odic cluster and track the ground state fidelity and other
observables to identify the phase boundaries. The nu-
merically obtained phase diagram is shown in Fig. 19.

In absence of the Ising term, i.e. the toric code Hamil-
tonian with a transverse field, is self dual under (heff ↔

0.0 0.2 0.4 0.6 0.8 1.0
ε1

0.0

0.2

0.4

0.6

0.8

1.0

ε 2

FM

PMZ2 QSL

Scan along ε2
Scan along ε1

ε2 = ε1/(2− ε1)

ε2 = ε1/(3− 2ε1)

FIG. 19. Phase diagram of Eq. C3 where we consider a gen-
eral paramagnetic field along with the toric code and Ising
contribution. The three phases are (i) ferromagnet (FM), (ii)
Paramagnet (PM) and (iii) toric code spin liquid (Z2 QSL).
The green dashed line indicates the expected phase boundary
between ferromagnetic and the paramagnetic phase in absence
of the toric code contribution (see text). The magenta dashed
shows the effect of Heisenberg coupling (J) on the anisotropic
anti-ferromagnetic Kitaev model (see Eq. 17).

JTCeff ) which is known to be a first order transition at
ε1 = 0.5 [62, 63]. Here in our finite sized system this
transition shows up as a peak in the fidelity suscepti-
bility which does not change remarkably with increasing
ε2 (∼ J) suggesting that the transition is stable with
increasing ε2 (see Fig.18 (a)). However, strictly our fi-
nite size numerics cannot distinguish the order of tran-
sition when transiting to either the large Γ phase or the
FM. The transition is concomitant with a finite mag-
netization (along the transverse field) signaling a tran-
sition to a paramagnetic (polarized) phase (see Fig.18
(b)). In absence of the toric code term, the Ising magnet
to paramagnet transition is governed by the Ising transi-
tion and occurs at heff ∼ 3Jeff [64–67] where the ordered
phase spontaneously breaks a Z2 Ising symmetry oper-
ator given by

∏
i τ̃
y
i . This corresponds to ε2 = ε1

3−2ε1
(dashed green) line in the ε1 − ε2 phase diagram (see
Fig. 19). Clearly the numerically obtained phase bound-
ary follows this quite closely specially when the toric code
term is small (ε1, ε2 > 0.5). We find that this second or-
der line and the (expected) first order line (separating the
Z2 QSL and the paramagnet) meet at ε1 ∼ 0.5, ε2 ∼ 0.3,
potentially a multicritical point. The phase boundary be-
tween the Z2 QSL and the Ising ferromagnet (in absence
of any magnetic field) [1] (see section J) is argued to be
a 3D-Higgs transition with mutual Chern Simons term.
We find that this transition with increasing ε1 remains
stable and meets both the first order line and the second
order Ising transition line again at ε1 ∼ 0.5, ε2 ∼ 0.3.

Having discussed the phase diagram of the generalized
J − K Hamiltonian (see Eq. C2) we now specify which



22

intervening phases to expect as we increase the Heisen-
berg coupling in the anisotropic limit. Given the form
of the effective Hamiltonian (see Eq. 17) we find that
heff = 2Jeff which corresponds to ε2 = ε1

2−ε1 line (shown

in a magenta dashed line with an arrow) in Fig. 19 sug-
gesting a single step transition.

Appendix D: Summary of the 1D cluster phase
(Z2 × Z2 SPT)

Here we briefly summarise the essential results for one
dimensional cluster model for completion. The one di-
mensional (on an open chain) cluster model Hamiltonian
is given by [54–59]

H1d =

N−1∑
i=2

Ui (D1)

where Ui = τzi−1τ
x
i τ

z
i+1 and we consider N ∈ Even. The

Hamiltonian, in particular, is symmetric under a Z2×Z2

transformation generated by

P1 =

N/2∏
i=2

τx2i−1 = τx1 τ
z
2

N/2∏
i=2

U2i−1

 τzN (D2)

P2 =

N/2∏
i=1

τx2i = τz1

N/2−1∏
i=1

U2i

 τzN−1τ
x
N (D3)

The Hamiltonian in Eq. D1 is exactly solvable since
[Ui,Uj ] = 0 ∀ i, j. Since U2

i = 1, the ground state,
|ψg〉, satisfies

Ui|ψg〉 = −|ψg〉 ∀ i (D4)

and can be obtained explicitly as

|ψg〉 =
∏
i

[
1− U2i−1

2

]
|τx2i = −1〉 |τz2i±1 = 1〉 (D5)

Therefore for the ground state on the open chain

P1|Ψg〉 = (−1)N/2−1τx1 τ
z
2 τ

z
N |Ψg〉 (D6)

P2|Ψg〉 = (−1)N/2−1τz1 τ
z
N−1τ

x
N |Ψg〉 (D7)

Assuming that (N/2− 1) ∈ Even, We find that the two
conserved operators P1 and P2 have non-trivial structure
at the two edges of the open chain, i.e.,

P1L = τx1 τ
z
2 P2L = τz1 (D8)

for the left edge and

P1R = τzN P2R = τzN−1τ
x
N (D9)

for the right edge such that the edge operators anti-
commute on the same edge leading to a four dimensional
representation of ground state manifold generated by

|P1L = ±1, P1R = ±1〉, (D10)

with each edge supporting a zero energy spin-1/2 or
equivalently a complex fermion mode that transforms
under a projective representation of the above Z2 × Z2

symmetry. In fact due to exact solvability, each energy
eigenstate is four-fold degenerate on the open chain [102]
The edge modes are characteristic signature of the one
dimensional Z2 × Z2 SPT.

Since the Hamiltonian in Eq. D3 is invariant under
the global spin-flip generated by P1P2 =

∏
τxi , we can

map it to a fermionic Hamiltonian via the following one
dimensional Jordan-Wigner transformations [54] :

γi =

i−1∏
j=1

τxj

 τzi , γ̃i =

i−1∏
j=1

τxj

 τyi (D11)

into the Majorana fermions γi and γ̃i whence we get Ui =
iγ̃i−1γi+1 such that Eq. D3 becomes

H1d =
∑
j=2

(iγ̃j−1γj+1) (D12)

which is nothing but two stacked Kitaev superconduct-
ing chains [103] with a complex fermionic mode at each
boundary which are annihilated respectively on the left
and right edge by

cL = (γ1 + iγ2)/2 and cR = (γ̃N−1 + iγ̃N )/2 (D13)

The generator of the spin-flips is local under the
Jordan-Wigner Transformation, i.e

τxi = −iγ̃iγi (D14)

and is related to the fermion parity operator. Therefore
the generators of the Z2 × Z2 symmetry becomes

P1 =

N/2∏
j=2

(−iγ̃2j−1γ2j−1) , P2 =

N/2∏
j=1

(−iγ̃2jγ2j) (D15)

which shows that the parity of the even sites and the
odd sites are separately preserved. Now following argu-
ments similar to those given above we can find the edge
representations of the symmetry in terms of the complex
fermions given by Eq. D13.

Remarkably, the representation in terms of the majo-
rana fermions reveal further rich symmetry structures of
the cluster Hamiltonian through its fermionic form [54]
which usefully connects to the microscopic symmetries in
the our case. This is seen by noticing that the fermionic
representation of the cluster Hamiltonian in Eq. D12 is
invariant under the following anti-unitary transforma-
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tions :

V1 = P1

N/2∏
j=2

K2j−1 :

{
{γ̃2j , γ2j} → {γ̃2j , γ2j}
{γ̃2j−1, γ2j−1} → {γ̃2j−1,−γ2j−1}

(D16)

V2 = P2

N/2∏
j=1

K2j :

{
{γ̃2j , γ2j} → {γ̃2j ,−γ2j}
{γ̃2j−1, γ2j−1} → {γ̃2j−1, γ2j−1}

(D17)

V3 =

N/2∏
j=2

K2j−1 :

{
{γ̃2j , γ2j} → {γ̃2j , γ2j}
{γ̃2j−1, γ2j−1} → {−γ̃2j−1, γ2j−1}

(D18)

V4 =

N/2∏
j=1

K2j :

{
{γ̃2j , γ2j} → {−γ̃2j , γ2j}
{γ̃2j−1, γ2j−1} → {γ̃2j−1, γ2j−1}

(D19)

where Kj is the complex conjugation operator at site j.
Clearly the four transformations are related to the micro-
scopic symmetries and the Z2 × Z2 spin-flip symmetries
as follows :

P1 = V1V3; P2 = V2V4

T = V1V2; K = V3V4 (D20)

where T is the global non-Kramers time reversal defined
in Table. I and K is the global complex conjugation op-
erator. Depending on convenience, we can either use
(P1, P2) or (T ,K) to understand the properties of the
Z2 × Z2 SPT and the edge modes. However the flexibil-
ity allows us to study the fate of perturbations.

Clearly a transverse field term of the form h
∑
i τ
x
i is

invariant under the Z2 × Z2 symmetry and hence the
SPT is perturbatively stable to it and gives away to a
trivial paramagnet polarised in the τx direction through a
quantum phase transition at |h| = 1 [54]. This transition
is described by a SO(2)1 conformal field theory (CFT)
with central charge, c = 1 [76].

A transverse field perturbation along τy, i.e. h
∑
i τ
x
i ,

however it naively appears that the above Z2 × Z2 sym-
metry is broken. To be precise, we consider the (T ,K)
implementation of the symmetries. While the above term
is invariant under T , it changes sign under K. However
such change in sign can be rectified by applying unitary
global spin-flip P1P2 and thus rendering the above per-
turbation invariant under the Z2×Z2 symmetry. Indeed
the SPT is perturbatively stable under the above trans-
verse field and gives away to the trivial τy-polarised phase
through the similar critical point as for the τx case above.

Appendix E: W transformation

In order to build intuition for the phase diagram in
the (λ1, λ2) plane (Figs. 6 and 10) and the nature of
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FIG. 20. Uij are transformations on the bonds (see Eq. 26)
connected shown in the cluster for (a) PBC, and (b) OBC.

transitions we summarise the effect of the unitary trans-
formation, W (Eq. 25), applied on the Hamiltonian (see
Eq.23). The transformation, defined on a bond ij, follows

Uij = Uji = U†ij . The bonds involved in a periodic and
open system are shown in Fig. 20. While it is straightfor-
ward to see how periodic Hamiltonian then transforms
from to Hα to H̃α, we discuss the same physics in an
open system below to understand the intricacies of the
boundary modes.

Consider spins i where i ∈ B, i ∈ t , i ∈ b,
i ∈ l, i ∈ r and i ∈ c represents bulk, top, bottom,
left, right boundary and corner of the cluster respec-
tively. For e.g , in the cluster shown in Fig. 20(b), B =
{4, 5, 6, 7, 10, 11, 12, 13}, t = {16, 17},b = {0, 1}, r =
{14, 8}, l = {9, 3}, c = {15, 2}. When the transforma-
tion W is performed on a open problem one obtains (for

Hamiltonian H in Eq. 23 in OBC) H̃ as

H̃1 =
∑
i∈B

τxi (E1)

H̃2 =
∑
i∈B

τxi τ
z
i+d1

τzi−d1
τzi+d2

τzi−d2
(E2)

H̃3 =
∑
i∈V,B

τzi−d1
τyi τ

z
i−d2
−
∑
i∈H,B

τzi+d2
τyi τ

z
i+d1

+
∑
i∈l

τyi τ
z
i−d2

+
∑
i∈r

τyi τ
z
i+d2

(E3)

H̃4 =
∑
i∈H,B

τzi−d1
τyi τ

z
i−d2
−
∑
i∈V,B

τzi+d2
τyi τ

z
i+d1

(E4)

H1 has a set of 22(Lx+Ly−1) degeneracy which is reflected
in the fact that H̃1 has no terms which involve boundary
spins. H2 has a set of 22(Lx+Ly−1) degeneracy given it
is a SSPT on an open system. H̃3 has free spins on top
and bottom boundaries while symmetry breaking terms
on left and right boundary. This leads to a degeneracy
of 22Lx . Since H̃4 has free spins on boundaries it again
as 22(Lx+Ly−1) degeneracy. These are the exact ground
state degeneracies for H1, H2, H3, H4 when placed in an
open system. The analysis therefore shows that W is
suitably defined for both open and periodic systems.
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τ y

τ z
c

b

a

FIG. 21. Excitations of the cluster state and its dynamics
in presence of magnetic fields. Three chains labeled by a, b, c
are shown. The orange blob shows the initial position of the
〈τxi−d1

τzi τ
x
i−d2
〉 = 1 excitations (on chain a and c) which hops

under the action τy(τz) fields to third (first) neighbour at the
second (first) order of perturbation theory.

Appendix F: Excitations and their dynamics in the
pure Γ limit

Consider the Hamiltonian

H =
∑
i∈V

τxi−d1
τzi τ

x
i−d2

+
∑
i∈H

τxi+d2
τzi τ

x
i+d1

+ hy
∑
i∈H,V

τyi + hz
∑
i∈H,V

τzi (F1)

which perturbs the cluster Hamiltonian (similar to
Eq. D1) with a magnetic field in y direction (≡ hy) and
z direction (≡ hz). Both these are symmetry allowed
and in either field there exists a second order transition
with c = 1. Note that in Eq. 33 for λ1 = λ2 = 0 the
cluster Hamiltonian in H̃3 is of the above form where
perturbations along H̃1 direction is essentially that of a
y-field.

Here we explore the properties of the low energy exci-
tations of the cluster state as the magnetic field is tuned
to understand their role in the eventual transition to the
trivial paramagnet. The ground state in absence of any
fields is characterized by 〈τxi−d1

τzi τ
x
i−d2
〉 = −1 for every

i, where an excitation with energy gap = 2 localized at
particular site is given by 〈τxi−d1

τzi τ
x
i−d2
〉 = 1. A y field

can effectively hop a charge by three lattice constants
at quadratic order, but a z field hops it by two lattice
constants at linear order (see Fig. 21).

Therefore the charge gap behaves, for small fields, as
∆ ∼ 2 − 2hz or ∆ ∼ 2 − 2h2

y depending on the field di-
rection both going to zero at hz (or hy) = 1 signaling
that the Ising transition (with c = 1) can be understood
as the condensation of these excitations. The exact diag-
onalization spectrum and how the low energy spectrum
behaves is shown in Fig. 22.

Under a unitary rotation ({τx, τy, τz} →
{−τz, τy, τx}) where the cluster Hamiltonian gets
mapped to Eq. D1 and perturbation hz(hy) leads to a
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hα

0.0

0.5

1.0

1.5
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∆ hz

hy

2(1− hz)
2(1− h2

y)

FIG. 22. The low energy spectrum of a one dimensional clus-
ter state in presence of magnetic fields (hα = {hx, hz}) (see
Eq. F1) for a 16 site system.

x(y) polarized state. Using transformation to Majorana
operators (see Eq. D11) and defining bond complex
fermion operators through

ci =
1

2
(γi−1 + iγ̃i+1) (F2)

Eq. F1 becomes

H =
∑
i

(2ni − 1) (F3)

+ hz
∑
i

(
ci+1ci−1 + c†i+1ci−1 + c†i−1ci+1 + c†i+1c

†
i−1

)
− hy

∑
i

i−1∏
j

(
iγj γ̃j

)[
i(ci−1 − c†i−1)

]
(F4)

where ni = c†i ci. Therefore the ground state of the cluster
Hamiltonian (hy = hz = 0) is given by 〈ni〉 = 0 ∀i
while the excitations are given by particles at site i with
〈ni〉 = +1. Using this fermionic description it is easily
seen that τxi leads to a hopping process by two lattice
sites in the single excitation sector; while a τyi operator
changes the parity sector (along with a string) leading to
creation of charges. A quadratic action of τy brings it to
the same excitation sector leading to an effective hopping
by three lattice sites.

While the magnetic field terms above are ultra local
and cannot lead to any dispersion of a single excitations
in the vertical direction for the stacked system (Eq. 23) –

no interchain couplings of the kind mediated by (H̃4) or

by (H̃2) can lead to any vertical dispersion for these single
excitations. This leads to the fact that the λ2 = 1 (even
at a non-zero λ1) transition is extremely anisotropic in
character where the spin-spin correlations are expected
to be power law only in the x direction, while continues
to remain short ranged in the y-direction. At λ2 = 0,
λ1 direction creates no dynamics in the single excitation
sector, but perturbatively brings down the two-excitation
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FIG. 23. The horizontal (in (a)) and vertical (in (b)) subsys-
tems symmetries, in an open (Lx, Ly) = (4, 3) system.

sector. However before the gap to the two-excitation sec-
tor closes, a level crossing mediated by an excited state
with a host of excitations leads to a first order transition
at λ2 = 1.

To understand the role of the subsystem symmetries
on the dynamics, we consider the cluster term of the
Hamiltonian in Eq. F1 and revisit the above discus-
sion in light of the sub-system symmetries. Consider
the Hamiltonian given in Eq. F1 which has two equiv-
alent way of considering the sub-symmetries which pro-
tect the SPT order. (i) P1 =

∏
i τ
z
2i−1, P2 =

∏
i τ
z
2i and

(ii)P1 =
∏
i τ
z
2i−1K2i−1, P2 =

∏
i τ
z
2iK2i. A z perturba-

tion preserves both pairs of symmetries (i) and (ii), lead-
ing to a sublattice preservation of the excitations. On the
other hand a y perturbation, given the way time-reversal
symmetry behaves in this system, continues to preserve
(ii), and does not change the eigenvalues of the horizontal
sub-system symmetries with anti-unitary character. It is
the same way that the y-perturbations don’t change the
eigenvalue of vertical subsystem symmetries (see Eq. 35).
Therefore, excitations over the cluster state as generated
by the y field are not constrained by horizontal and ver-
tical sub-system symmetries.

Appendix G: Boundary modes of large Γ
Hamiltonian

Our discussion of the large Γ phase in (λ1, λ2) plane in
section III C focused on the bulk system, the correspond-
ing phases and tentative phase diagram of the same. We
now discuss the nature of boundary modes in this system
and which symmetries protect them.

We investigate how the subsystem symmetries (see
Eq. 37) act on the boundaries in the (λ1, λ2) = (1, 1)
point. It is easier to start from the λ2 = 0 line where
we have a set of stacked cluster phases. When we are in
one of the vertical SPTs (say H3). Interestingly one finds
that both in the ground states of H3 and H4,

{PTvn , PTvn+1
} = 0 (G1)

on the top and bottom boundaries leading to 22Lx de-
generacies where PTvn symmetries are given in Eq. 37
(see Fig 23) . The corresponding horizontal subsystem
symmetries given in Eq. 36 commutes leading to no pro-
tected boundary modes on the right and left boundaries
for H̃3.

Given the H1 and H2 perturbations respect the sym-
metries given in Eq. 37, the boundary modes on the top
and bottom boundaries remain stable in all of (λ1, λ2)
plane as is found leading to 22Lx degeneracy even at
the (1, 1) point. Interestingly given the energetics at the
λ2 = 2 line, one gets additional boundary modes on the
left and right boundaries which increasing the degeneracy
to 22(Lx+Ly).

We now investigate how the symmetries protect the
boundary modes at λ2 = 2 line where we have boundary
modes on all the four boundaries. Here again for H1 (see
Eq. 21) each of the vertical and horizontal sub-system
symmetries (see Eq. 37) can be written as a product of
stabilizers where it acts anomalously on the boundaries.
For instance the horizontal subsystem symmetries behave
as

PTLhn = τzj=1+d2
∀ n ∈ odd (G2)

PTRhn = τxj=Lxτ
z
j=Lx−d1

KLx ∀ n ∈ odd (G3)

PTLhn = τxj=1τ
z
j=1+d1

Kj=1 ∀ n ∈ even (G4)

PTRhn = τzj=Lx−d2
∀ n ∈ odd (G5)

It is easy to see that these anti-commutes on the left and
right boundaries. The vertical subsystem symmetries are
given by

PTBvn = τzj=1−d2
∀ n ∈ odd (G6)

PTTvn = τxj=Lyτ
z
j=Ly−d1

Kj=LyKj=Ly−d1 ∀ n ∈ odd

(G7)

PTBvn = τxj=1τ
z
j=1+d1

Kj=1Kj=1+d1
∀ n ∈ even (G8)

PTTvn = τzj=Ly+d2
Kj=Ly+d2

∀ n ∈ odd (G9)

Since these anticommute on the top and bottom bound-
aries they again lead to the 22Lx degeneracy. This shows
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why H1 has a 22Lx+2Ly−2 degeneracy in the system. Sim-
ilar analysis for H2 shows the same degeneracy count.
Therefore on the λ2 = 2 line the subs-system symme-
tries (see Eq. 37) protect the boundary modes on all the
boundaries. Introduction of H3 and H4 even while they
do not break the symmetries interfere with the anoma-
lous character of the symmetry operators since the way
they behave in the bulk is dependent on the stabilizers.
Since H3 and H4 couple spins in the vertical direction,
they immediately hybridize the free spins which lie on the
left and right boundaries leading to the removal of degen-
eracies stabilized in the λ2 = 2 limit. On the other hand
these same vertical SPTs stabilize free spins on the top
and bottom boundaries, as discussed before, and hence
do not disturb the degeneracies there. Hence the com-
plete (λ1, λ2) has exact degeneracies on the top and bot-
tom boundaries. Given this degeneracies are independent
on the any finite size (or therefore even when the bulk
gap is dominated by Kubo gaps), these are stable and
occurs in all of (λ1, λ2) plane.

1. Effect of perturbations on the boundary modes

The large Γ phase (see Eq. 23), at (λ1, λ2) = (1, 1)) has
a degeneracy of 22Lx in an OBC geometry, see Fig. 20(b),
where Lx is the length of the top and bottom boundaries.
We now study the effect of various perturbations on this
ground state degenerate manifold.

a. Symmetry allowed Ising perturbation: When fer-
romagnetic Ising interactions among the boundary spins
are introduced, which are allowed by the microscopic
symmetries (see table I), we find that the top and the bot-
tom boundaries behave as one-dimensional Ising Hamil-
tonians which spontaneously break time-reversal symme-
try to order in the z direction.

More concretely, in a 3 × 3 cluster (see Fig. 20(b))
whose resulting Hamiltonian is

H(Jh) = H(1, 1)− Jh (τz0 τ
z
1 + τz1 τ

z
2 + τz15τ

z
16 + τz16τ

z
17)

(G10)
the splitting of the ground state degenerate manifold is
shown in Fig. 24. Clearly among the 22Lx |Lx=3 = 64
degenerate states (at Jh = 0), four unique states are cho-
sen which correspond to the two Ising symmetry broken
states in the top and bottom boundaries.

b. Bulk τx(z) field: Next we apply the symmetry al-

lowed (breaking) bulk τx(z)-field to the (λ1, λ2) = (1, 1)
point of the Hamiltonian in Eq. 23 in an OBC geometry.
We consider the Hamiltonian:

H(hx(z)) = H(1, 1)− hx(z)

∑
i

τ
x(z)
i (G11)

In Fig. 25(a) and 25(b) we show the corresponding
results. Even while a symmetry allowed x-field splits
the 64-fold degeneracy of the same 3 × 3 cluster (see
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FIG. 24. Evolution of the ground state degeneracy splits
in presence of an Ising exchange perturbation, see Eq. G10.
Along the y-axis we plot the energy of the mth state af-
ter subtracting the Jh = 0 GS energy, i.e. ∆0

m(Jh) =
Em(Jh)− E0(Jh = 0).

Fig. 20(b)) into sub-branches, a time-reversal symme-
try breaking τz field immediately polarizes the boundary
spins into a unique ground state.

The above analysis shows that even while the large Γ
phase has a set of boundary modes (given its proximity
to weak SPTs), these modes are extremely susceptible to
both symmetry preserving and symmetry breaking per-
turbations, thereby reflecting their fragile character.

Appendix H: Additional numerical results for the Γ
limit

To show that the large Γ phase is indeed smoothly
connected to the paramagnet, we tune it to the x− para-
magnet (via parameter δ1) in presence of Ising pertur-
bation (∝ δ2) (see Eq. 40 in the main text). While
the suscpetibility comes down with increasing strength of
Ising perturbation(see Fig. 11), one finds that the min-
ima of energy gaps (min(∆m) = mth excitation gap)
remains finite as a function of δ1 for different values of
δ2 (see Fig. 26). One also finds that the topological en-
tanglement entropy(γ) remains close to zero across the
complete interpolation showing that the large Γ phase is
not a gapped topologically ordered state.

Appendix I: Additional numerical results for the
KJΓ Hamiltonian

Here we present additional results for the behavior
of bipartite entanglement for different cuts in the KJΓ
phase diagram (see Fig. 16). Following Eq. 43, we cal-
culate the different scaling coefficients of entanglement
entropy (dubbed as X

Fit
; X = α, γ) along with the

topological entanglement entropy (γ) calculated using
the Kitaev-Preskil method [83]. The behavior of these
quantities in the t2 direction for t1 = 0.0, 0.6 is shown in
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FIG. 25. Splitting of the degeneracy in an OBC geometry
of the H(1, 1) (in Eq. 23) in the presence of τx(z)-field as a
function of the field strength (hx(z)), also see Eq. G11.

Fig. 27. Clearly both in FM and Γ phase, γ ∼ 0 while
in Z2 QSL, γ ∼ log(2).

Appendix J: Field theory for the transition from TC
to Heisenberg limit

Here we present additional details for the Gauge Mean
Field Theory that describes the transition between the
TC and the Heisenberg limit (discussed in section. V A).

1. Gauge Mean Field Theory

Following Ref. [1] we start our analysis by decoupling
the first term in Eq. 44 within gauge mean field theory
where the gauge fluctuations has been neglected. The
first term in Eq. 44 is written using this decoupling as:
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FIG. 26. (a) The first (∆1) and the second (∆2) gap to the
GS energy following the Eq. 40 where we keep δ2 constant and
vary the δ1 to tune the Γ-phase (δ1 = 0) to a τx-paramagnet
(δ1 = 1). The calculation is done for a system size Lx ×
 Ly = 2 × 4. (b) The behavior of topological correction to
the entanglement entropy (γ) is shown for the Hamiltonian
in Eq. 40 as a function of δ1 for constant δ2 = 0.0, 0.2. The
calculation is done in a (Lx, Ly) = (4× 3) lattice.

[µxaρ
z
abµ

x
b ] [ρxbc]→ 〈µxaρzabµxb 〉ρxbc +µxaρ

z
abµ

x
b 〈ρxbc〉. Thus the

Eq. 44 becomes:

H̃AFΓ=0 → H̃GMFT
Γ=0 = H̃GMFT

Γ=0 (e) + H̃GMFT
Γ=0 (m) (J1)

where

H̃GMFT
Γ=0 (e) = −

∑
〈ab〉∈H

Jabµ
x
aρ
z
abµ

x
b − JTC

∑
a

µza (J2)

describes the e sector with

Jab = J
[
〈ρxb,b−ŷ〉+ 〈ρxb,b+ŷ〉+ 〈ρxa,a−ŷ〉+ 〈ρxa,a+ŷ〉

]
(J3)

being the effective coupling and

H̃GMFT
Γ=0 (m) = −

∑
〈āb̄〉∈H

Jāb̄µ̃
x
āρ̃
z
āb̄µ̃

x
b̄ − JTC

∑
ā

µ̃zā (J4)
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FIG. 27. Following Eq. 43 the values of αFit , γFit, γ are
shown as we vary t2 (see Fig. 16) for a constant t1 = 0.0
in (a) and t1 = 0.6 in (b), the calculations are done in an
(Lx, Ly) = (4, 3) system. Here a perturbing τz magnetic field
has been applied to break the degeneracy between the two
fold symmetry braking GS manifold.

describes the m sector with

Jāb̄ = J
[
〈ρ̃xb̄,b̄−ŷ〉+ 〈ρ̃xb̄,b̄+ŷ〉+ 〈ρ̃xā,ā−ŷ〉+ 〈ρ̃xā,ā+ŷ〉

]
(J5)

Upto the first order this becomes a series of transverse
field Ising chains in the horizontal direction, we choose
the following gauge:

ρza,a+x̂ = ρ̃zā,ā+x̂ = +1 (J6)

Clearly in the presence of the Heisenberg term, the sin-
gle excitation sector of e & m acquires a dispersion, the
condensation of these soft modes give rise to 〈µx〉 6= 0
and 〈µ̃x〉 6= 0 for the respective chains.

For the above gauge the soft mode develops at zero
momentum as shown in Fig. 28 for both the e and m
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FIG. 28. The electric (black) and the magnetic (red) soft
modes on the direct and dual lattice respectively. The ±
denotes µx = ±1 and µ̃x = ±1 respectively. (a) and (b)

shows the two time reversal partners respectively, (ν̂
(1)
e , ν̂

(2)
e )

for the electric and (ν̂
(1)
m , ν̂

(2)
m ) the magnetic sectors.

sectors. This can be denoted by

ν̂(1)
e = 1; ν̂(1)

m = 1 (J7)

for the e (m) sector on the direct (dual) lattice.
Time reversal symmetry (see Eq. B4) gives the partner

soft mode for both the e andm sectors as shown in Fig. 28
which are given by

ν̂(2)
e = eiπx; ν̂(2)

m = eiπX (J8)

for the e sector and m sectors. The cartesian coordinates
of the direct and dual lattices are given by (x, y) and
(X,Y ) with X = x + 1/2 and Y = y + 1/2 (red dashed
line in Fig. 28(a) and 28(b)). Since no further soft modes
are generated by the remaining symmetry, the transition
out of the Z2-QSL is described using these soft modes.

2. Symmetry transformations of the soft modes

Now, using the symmetry transformations of the gauge
degrees of freedoms in Eqs. B2-B7, the transformations
of the complex soft modes in Eqs. 47 and 48 are obtained:

Td1 :

{
Φe → Φm
Φm → Φ∗e

Td2 :

{
Φe → Φ∗m
Φm → Φe

Tx :

{
Φe → Φ∗e
Φm → Φ∗m

Ty :

{
Φe → Φe
Φm → Φm

T :

{
Φe → −iΦe
Φm → −iΦm

σv :

{
Φe → Φe
Φm → Φm

C2z :

{
Φe → iΦ∗e
Φm → iΦ∗m

Rπ :

{
Φe → iΦ∗e
Φm → iΦ∗m

(J9)

Here we note that the σv and Rπ symmetries acts dif-
ferently on the soft modes compared to the Ref. [1].The
gauge invariant spin order parameter in terms of the
above soft modes are [87–89]:

τ̃zi ∼ |Φe|2 cos(2θe) ∀i ∈ Horizontal bonds

τ̃xi ∼ |Φm|2 cos(2θm) ∀i ∈ Vertical bonds (J10)
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Crucially, the two spin order parameters are odd under
T , C2z, Rπ symmetry transformations.

3. Symmetry transformation of the gauge fields

Following the U(1) × U(1) mutual CS formalism, we
introduce two internal gauge fields Aµ and Bµ in Eq. 49
that minimally couples to the electric (Φe) and magnetic
(Φm) soft modes respectively. The transformation rules
for the gauge fields follows from Eqs. B2-B7.

Td1 :

{
Aµ → Bµ
Bµ → −Aµ

Td2 :

{
Aµ → −Bµ
Bµ → Aµ

Tx :

{
Aµ → −Aµ
Bµ → −Bµ

Ty :

{
Aµ → Aµ
Bµ → Bµ

T :

{
Aµ → −Aµ
Bµ → −Bµ

σv :

{
Ax → Ax, Ay → −Ay, Aτ → Aτ
Bx → Bx, By → −By, Bτ → Bτ

C2z :

{
Ax → Ax, Ay → −Ay, Aτ → −Aτ
Bx → Bx, By → −By, Bτ → −Bτ

Rπ :

{
Ax → Ax, Ay → Ay, Aτ → −Aτ
Bx → Bx, By → By, Bτ → −Bτ

(J11)

4. The phases

To capture the phases at the mean field level, for u > 0,
we have

〈Φe〉 = 〈Φm〉 = 0 (J12)

Thus the complex soft modes can be integrated out so
that the effective theory is described by SCS , which is
the Z2 QSL phase.

For u < 0 both the electric and magnetic modes con-
dense, i.e.,

〈Φe〉, 〈Φm〉 6= 0 (J13)

In this case due to the Anderson-Higgs mechanism
the gauge fields acquire a mass and their dynamics is
dropped. The four fold terms in Eqs. 52 and 53 becomes

∼ −λ
(
|Φe|4 cos(4θe) + |Φm|4 cos(4θm)

]
(J14)

Therefore, for λ > 0 the free energy minima occurs for

θe, θm = 0,±π/2, π (J15)

which gives the two possible the symmetry broken part-
ner spin ordered states as:

〈τ̃zi 〉 ∼ 〈|Φe|2 cos(2θe)〉 ∼ ±1 ∀i ∈ Horizontal bonds

〈τ̃xi 〉 ∼ 〈|Φm|2 cos(2θm)〉 ∼ ±1 ∀i ∈ Vertical bonds
(J16)

Further the state breaks T , C2z and Rπ. In this phase,
the interaction between the electric and the magnetic
modes (Eq. 54) can be written as

Lem ∼ w|Φe|2|Φm|2 cos(2θe) cos(2θm) (J17)

For w < 0(> 0), this results in ferromagnetic (antifer-
romagnetic) spin ordering in terms of τ̃x (on horizontal
bonds) and τ̃z (on the vertical bonds). The antiferro-
magnetic order also breaks translation symmetry under
Td1 and Td2 which interchanges a vertical and horizon-
tal bond. The above phenomenology suggest w ∼ sgn(J).
Therefore the above critical theory indeed reproduces the
right phases.

5. The details of the mutual Z2 gauge theory
formulation

The partition function corresponding to the mutual Z2

action (Eq. 55) is given by

Z =
∑
{ρ}

∑
{ρ̃}

∫
[Dθe] [Dθm] exp [−S] (J18)

where S is given by Eq. 55.
For further manipulation, we re-write the above parti-

tion function as

Z =
∑
{ρ̃}

∫
[Dθm] exp [−Sm] Ze (J19)

where

Ze =
∑
{ρ}

∫
[Dθe] exp [−Se − SCS ] (J20)

We now write the electric action, Se, as in Eq. 59 and
perform standard steps of XY duality in presence of a Z2

gauge field [99–101]
Starting with writing it down within a Villain approx-

imation as

Ze =
∑
{ρ}

∑
{mab}

∫
[Dθe] exp [−SCS ] exp

[
−S(1)

e

]
(J21)

mab is an integer field living on the links of the direct
lattice and

S(1)
e = −t

∑
ab

(
θea − θeb +

π

2
(1− ρab) + 2πmab

)2

(J22)

which we can decouple via an auxiliary link field Lab to
get

Ze =
∑
{ρ}

∑
{mab}

∫
[Dθe] [DL] exp [−SCS ] exp

[
−S(2)

e

]
(J23)
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FIG. 29. A single Jordan Wigner string running through the
H1 direction in an open system.

where

S(2)
e =

1

2t

∑
ab

L2
ab + iLab

(
∆jθ

e
a +

π

2
(1− ρab) + 2πmab

)
(J24)

The integer field mab can be integrated out and re-
stricts Lab to an integer leading to Eq. 60 in the main
text.

Appendix K: A possible transition between the Z2

QSL and a cluster SPT

It is interesting to consider the phase transition be-
tween the Z2 QSL in the Toric code limit and each of the
cluster SPTs given by Eq. 22. Such transitions provide
examples of yet a new class of novel phase transitions
even though presently we do not know a mechanism to
stabilise either the cluster SPT phase or this transition in
the spin system that we have considered. As we discuss
below, this transition is naturally described in terms of
Majorana fermions rather than the spins, which makes
the transition different from the above class of bosonic
transitions discussed above– hence we describe them.

In this Appendix, we develop the mean field theory, in
particular, for the transition between the Z2 QSL with
Hamiltonian given by Eq. 11 and the stacked cluster SPT
H1, given by Eq. 22 such that the Hamiltonian is given
by :

H ′ =
∑
i

[
α τzi+d1

τxi τ
z
i−d1

+ (1− α)τzi+d1
τzi−d2

τyi τ
y
i+d1−d2

]
(K1)

where α is the parameter which can be tuned to drive the
phase transition. For an open system using the Jordan-
Wigner transformations of Eq. D11 as defined in Fig. 29
the above Hamiltonian becomes

H ′ =
∑
i

[α iγ̃i−d1
γi+d1

+ (1− α)γ̃i−d2
γ̃i−d2+d1

γiγi+d1
]

(K2)

where (γ̃i, γi) are the two Majorana fermions at site i
such that under time-reversal symmetry T : (γ̃i, γi) →
(γ̃i,−γi).

In the transformed language, each chain in the stacked
cluster SPT at α = 0 is a pair of spin-less topological
superconductor whereas the Z2 QSL is a cluster Mott
insulator.

A mean field decomposition of the four Majorana term
along the time reversal invariant channels leads to

γ̃i−d2
γ̃i−d2+d1

γiγi+d1
→〈i γ̃i−d2

γi〉 iγ̃i−d2+d1
γi+d1

+ i γ̃i−d2
γi 〈iγ̃i−d2+d1

γi+d1
〉

− 〈iγ̃i−d2
γi+d1

〉 iγ̃i−d2+d1
γi

− iγ̃i−d2
γi+d1

〈iγ̃i−d2+d1
γi〉
(K3)

Let us define the following mean-field ansatz:

ζ1 ≡ 〈i γ̃i−d2
γi〉 ; ζ2 ≡ 〈iγ̃i−d2+d1

γi+d1
〉 (K4)

ζ3 ≡ 〈iγ̃i−d2
γi+d1

〉 ; ζ4 ≡ 〈iγ̃i−d2+d1
γi〉

which we consider as variational parameters and study
the spectrum of the quadratic Hamiltonian as a function
of α. Symmetry dictates that ζ1 = ζ2 = ζ; fourier trans-
forming and defining ΨT = (γ̃k , γk), where k = (k1, k2)
are the reciprocal lattice vectors in d1, d2 direction re-
spectively, the Hamiltonian one obtains is

H =
∑
k

Ψ†
(

0 f(k)
f∗(k) 0

)
Ψ (K5)

where

f(k) = ie−2ik1

(
α+ (α− 1)ei(k1−k2)

(
ζ4 − 2ζeik1 + ζ3e

2ik1
))

(K6)
If ζ3 = ζ4 = 0 for a fixed ζ1 = 1

2 = ζ, f(k) =

iαe−2ik1 − i(α− 1)e−ik2 which implies a direct transition
with a gap closing along the complete k2 = 2k1 + π line
when α = 0.5. With a finite value of ζ3, ζ4 the nodal line
semimetal opens up into a phase with nodal points host-
ing anisotropic Dirac dispersion. Generically one there-
fore expects an intermediate gapless phase in the finite
region of α when interpolating between a weak SPT and
a toric code Z2 QSL.
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