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ABSTRACT

In this master thesis, I want to pave the way for investigating the intraspecific
variability of leaf areas on a global scale for Salix bebbiana, Alnus incana and Viola
canina. Since there are no extensive studies for leaf area variability especially not
for longer time scales, I decided to collect the data from the digitized herbar
specimens to study pervasively.

To this end, I want to analyze the variability of leaf area for three selected species
from digital herbar specimen using image recognition techniques (Trait Ex). I
want to investigate environmental drivers of leaf area by taking various measures
like features related to spatial variation in environment (soil data, current climate
data), features related to climate change over temporal domains (change in climate
data sets) and features representing the season (day of year) (figure 1) into the
account using machine learning techniques.

Figure 1: Factors affecting leaf area

The specific objectives of this master thesis are Trait Ex optimization and giving
first user potential feedback of Trait Ex for the automation of Trait Ex tool and
building machine learning models to investigate the intraspecific variability of leaf
area for three species to environmental data, climate change data and seasonal
data. This study will serve as a prototype to investigate the interspecific variability
of leaf areas for all available species (worldwide) in the future.

Finally, I found the environmental factors that affect the intraspecific variability
of leaf sizes for three selected species. In addition to this, I implemented different
machine learning methods and technical approaches to get better insights into the
data. Overall the results are stupendous and this study serves as the prototype
to evaluate the interspecific trait variability of leaf areas.
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Chapter 1

Introduction

1.1 General Idea

One of the greatest challenges facing humanity is to understand the mechanisms
by which human activities are altering the environment and biota of our planet
[1] [2]. Due to the changes made to the environment by man-made activities
(deforestation, pollution), global temperature’s are alarmingly raising. According
to NASA and NOAA, the past five years (2015 - 2019) are, collectively, the
warmest years in the modern record [3]. According to the IPCC report, due to
rapid industrialization from the last three decades, the global temperature was
unexpectedly raised nearly 1◦C compared to earlier decades [4]. The vegetation
has to adapt to changing environments and at the same time modifies it
according to the changes in climate and other environmental conditions.

Plants influence everything from food chains to climate change. They store carbon,
fix nitrogen and produce oxygen. They shape weather patterns, provide flood
defence, purify water, provide food, and offer solace and inspiration [5]. One needs
to understand how the plant species are adapting themselves to environmental
change. One way to understand adaption is reporting about relationships between
environmental factors and the intraspecific changes in plant functional traits.

Plant functional traits (e.g. stem, roots, leaves etc.) are the morphological,
physiological and phenological characteristics that represent ecological strategies
and determine how plants respond to environmental factors, affect other trophic
levels and influence ecosystem properties [6]. Leaf traits are the most important
functional traits among all available plant traits and using leaf traits one can
predict the performance of the whole plant [7]. The major factors affecting the
leaf traits are temperature, precipitation, geographical location and humidity etc
[8] [9].

Leaf size is coordinated with many other features of plant architecture, canopy
display, and plant hydraulics, apparently leading to many equally viable leaf size
strategies for a given climate [9]. Nonetheless, it appears that climate provides the
dominant control on the global geographic limits to leaf size on the interspecific
level [9]. The most interesting features that influence the leaf sizes are mean annual
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temperature, mean annual precipitation, growing degree days(GDD), mean annual
irradiance, humidity, wind speed, soil types, water availability, nitrogen content,
texture of the soil and cation exchange capacity etc [10] [11] [9].

Space for time substitution To understand and predict the adaptation of
plants to changing environmental conditions, frequently spatial gradients are used
as natural laboratories reflecting the temporal effects [8]. It is very cost and time-
intensive to travel all around the world to collect field data on plant functional
traits like leaf size of large numbers of species from different eco-regions. Even
more, it is impossible to study such relationships on a temporal time scale on
which climate change is happening, which means centuries. It is unclear whether
relationships over spatial gradients can be used to predict temporal gradients.

Figure 1.1: Herbar
Specimen

Herbar specimen Recently, initiatives extracting trait
information [12] from digitized herbar specimens using
machine learning became more popular due to the
increasing samples of digitized herbar specimen. The
Herbar specimen [13] is the collection of preserved plant
or plant parts and the associated data used for scientific
study. These specimens are usually in dried form mounted
[14] on a sheet of paper as shown in figure 1.1 and available
in the databases Gbif (refer section 2.1.1) [15] and Idigbio
(refer section 2.1.1) [16] as digital images. In today’s digital
world, millions of herbar specimens are digitized and the
number is increasing daily. By combining this new data
source with image recognition techniques it became possible
to observe adaptations in leaf size over large spatial and
especially large temporal domains, which is very new. By
combining this data with paleontological and historical climate information from
climate simulation outputs and further gridded environmental data (e.g. different
models of CMIP5 [17]) it is for the first time possible to study the adaptation of
leaf size to changing environmental conditions worldwide on the temporal scale of
several centuries.

Trait Ex [18] is a semi-automated image processing tool which is used to measure
the morphological functional traits from digitized herbar specimen. Trait Ex can
measure quantitative traits such as the length, area, width and perimeter of leaves
along with the petiole length from digitized herbar specimens [19]. Since Trait Ex
is a semi-automated tool, one can measure the morphological functional traits of
herbar specimen with freehand only (refer section 2.1.4). It is possible to automate
the Trait Ex with some efforts.

Trait Ex has been developed only recently and until now it was not applied to
a large number of herbar specimens. So, first user feedback would be needed to
optimize the functionality of Trait Ex for future users. The Trait Ex automation
depends on the coupling of Trait Ex with the automated image segmentation,
which may be available from the Trait Ex team within the next years. This will
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open new ways to measure thousands of herbar specimen traits within a short
time.

Study species In this thesis, the sample species Salix bebbiana, Alnus incana
and Viola canina had been selected based on the following reasons:

1. A high number of digital herbar specimens are available compared to other
species.

2. The species should be widely spread across the globe and well distributed
over the time of sampling, this gives us a better understanding while
analysing the results.

3. The species are selected in such a way that these herbar specimens are
compatible and easy to work with Trait Ex as discussed in section 2.1.4.

Random Forests [20] is one of the supervised machine learning algorithms and
it is also the most used algorithm compared to other machine learning
algorithms because of its robust nature, great accuracy and good interpretative
results. Random Forest is an ensemble method that builds multiple decision
trees and merges them to get a more accurate and stable prediction.

The reason for selecting Random Forest is that the functional relationships
between the environmental data and leaf area should not be defined by us, the
Random Forest automatically finds the relationship in the given data. Since a lot
of environmental features can potentially influence leaf area, it is important to
identify and select the most important ones to build a good machine learning
model using feature selection (explained below).

Partial Least Square linear regression model is a very simple machine
learning model which will look after only linear relations between the data. It is
computationally beneficial (fast run time) compared to nonlinear models like
Random Forests. The main idea behind the usage of the linear model in this
project is to save the run-time of the model and to see whether there are
non-linear relations available in data (whether performance is reduced compared
to random forest model).

Feature selection is the process of selecting the features automatically that
contribute most to the response variable. In most of the cases, feature selection
is required in machine learning because the training time for the model reduces,
the model is computationally fast and also over-fitting is omitted and therefore
cross-validation correlation usually increases.

Spatial auto-correlation [21] reports the presence of systematic spatial variation
in a variable. Some of the examples for the spatial auto-correlation is geological
data, house price’s at the same location etc. In the case of spatial auto-correlation,
components of data set are correlated with itself in terms of spatial distances and
therefore the assumption of independence is violated (Random Forest model and
linear model).

If spatial auto-correlation is present in the given data, then the machine learning
model gives us the overestimated R2 value. One can overcome this positive or
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negative auto-correlation by block cross-validation strategies (figure 2.27) [22],
these strategies give the way for the realistic R2 value.
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Chapter 2

Methods used

2.1 Data acquisition

Data acquisition plays an important role in this thesis because if the data is not
processed correctly at any stage of data extraction, then the model will be worse
than expected. So, great care had been taken while extracting the data from
different databases. The images from scanned herbar specimen were processed
and downloaded from Gbif (refer section 2.1.1) [15] and Idigbio (refer section
2.1.1) [16]. After that, the leaves of the herbar specimens had been measured
using Trait Ex (refer section 1.1).

In addition to this, the huge amount of environmental data had been processed
from different databases named CMIP5 (refer section 2.1.6) [17], Worldclim (refer
section 2.1.6) [23], Terraclim (refer section 2.1.6) [24], SoilGrids (refer section
2.1.6) [25] and Harmonised world soil data (refer section 2.1.6) [26]. As discussed,
the environmental data had been processed from different databases because the
leaf area has to be analysed based on both current climate, climate change, soil
and seasonal data.

The leaf area could be modulated with space, time, season. The space approach
is replaced with the environmental data sets Worldclim (refer section 2.1.6) [23],
Terraclim (refer section 2.1.6) [24], SoilGrids (refer section 2.1.6) [25] and
Harmonised world soil data (refer section 2.1.6). The time approach is replaced
by the change of climate model simulations (CMIP5, refer section 2.1.6) [17] and
the season approach is replaced by the day of year.

2.1.1 Extracting data from Idigbio and Gbif

Idigbio and Gbif are the open databases, the data and images of millions of
herbar specimens are being conserved and made available in digital format for
the scientific research community. From this huge databases, the herbar
specimen data is being processed to run the analysis based on leaf area. In
addition to the herbar specimen storage URLs, the information of latitude,
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longitude, date collected, scientific name, institution code, catalogue-number and
other information (not important to this project) is also available.

The data had been analysed by excluding the grass species from the total data
available from Gbif and Idigbio, the preprocessing and download routine for Idigbio
and Gbif metadata is shown in figure 2.1. All the required data after excluding
the unnecessary data was stored in a pickle file and further, this metadata pickle
file is used to process and edit the data in the next steps.

Download of Meta data information from data providers
in between years 1600-2019.

Phylum is Tracheophyta,
Basis of records is Preserved

specimen,
has Image is True,
has Geo-reference is True.

GbifIdigbio

Excluding the groups named ”Polypodiopsida”, ”poales”, ”Marattiopsida”,
”Pinopsida”, ”Lycopodiopsida”, ”Equisetopsida”, ”Lycadopsida”.

Concating Gbif and Igidbio records.

Refine scientific names with Gbif backbone taxonomy
and harmonize to species levels.

Extract link
locations Gbif

Extract link
locations Idigbio

Drop duplicates according to link locations.

Choose species based on large number of individuals and
distribution in space and time.

Figure 2.1: Flowchart for processing the Idigbio and Gbif meta data on scanned
herbar specimen

2.1.2 Selected species

After downloading all the available metadata from the databases Idigbio and Gbif,
the metadata pickle file is available as discussed in section 2.1.1. The study species
Salix bebbiana, Alnus incana and Viola canina were selected based on certain
criteria as discussed in section 1.1. By using the columns date collected, latitude
and longitude from the metadata pickle file, the following figures (figure 2.3, figure
2.5, figure 2.7) are created for three species Salix bebbiana, Alnus incana and Viola
canina. The histograms (figure 2.3a, figure 2.5a, figure 2.7a) shows that the data
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is available also from pre-industrial times and it should be possible to observe
climate change effects.

Salix bebbiana

Salix bebbiana is commonly known as Bebb willow and it is a large shrub 10 feet
(three meter) tall or a small multi-stemmed tree with a bushy top 15 to 25 feet (4.6
to 7.6 m) tall [27]. Normally, the largest mature leaves of Salix bebbiana are 2.6
to 6 inches (6.6 to 15 cm) long and the bark is smooth when young but becomes
rough and furrowed when it is old enough.

(a) Salix bebbiana overview (b) Salix bebbiana bark

(c) Salix bebbiana leaves (d) Salix bebbiana fruits

Figure 2.2: Salix bebbiana detailed overview

Salix bebbiana occurs from Newfoundland west to Hudson Bay and across
Canada to the Yukon Territory and interior Alaska. It extends south to
southeastern Alaska, British Columbia, the mountains of Washington, central
California, Arizona, New Mexico, and Wyoming, through western Nebraska,
Montana, and south and east from North Dakota and South Dakota to the
northeastern United States. Salix bebbiana is usually found on moist sandy or
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gravelly soils but is adapted to a wide variety of soil textures. It will tolerate
moderately alkaline soils but does poorly in extremely acidic or alkaline
conditions [27].

The figure 2.3a is the histogram for the available data (metadata pickle file) based
on the year. Maximum herbar specimens are collected around the year 1970 for
the species Salix bebbiana. Salix bebbiana species distribution around the globe
based on available data (metadata pickle file) is showed in the figure 2.3b and
spatial distribution of the Salix bebbiana based on total data is showed in the
figure 2.3c. The global maps for the spatial distribution of total data are taken
from the Map of Life [28] databases. This shows that the herbar specimens cover
the species distribution well.

(a) Salix bebbiana histogram from
Idigbio and Gbif

(b) Salix bebbiana saptial distribution
from Idigbio and Gbif

(c) Salix bebbiana total spatial
distribution from map of life [28]

Figure 2.3: Salix bebbiana spatial and temporal distributions

Alnus incana

Alnus incana is also known as the grey alder and speckled alder and it is a species
of tree in the birch family which is spread across the cooler parts of the Northern
Hemisphere [29]. It usually grows from 15 feet to 82 feet (4.6-25 m) tall and the
wood is soft, leaves are oblong and serrated at the margins. In the ecological
context, Alnus incana also plays an important role to eradicate the afforestation.
These can be achieved by planting the Alnus incana on non-fertile soils and it
enriches the nitrogen-fixing bacteria in its root nodules [29].

As discussed in section 2.1.2 the figures 2.5a, 2.5b and 2.5c are the histogram
of the data available, the spatial distribution of Alnus incana based on available
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(a) Alnus incana overview (b) Alnus incana bark

(c) Alnus incana leaves (d) Alnus incana fruits

Figure 2.4: Alnus incana detailed overview

data (metadata pickle file) and the Alnus incana spatial distribution based on
total data (data from map of life [28]) respectively.

Viola canina

Viola canina is commonly known as heath dog-violet or heath violet is native to
Europe and is a species of the genus Viola. it is a herb, usually growing to 5
to 15 cm tall. The leaves of Viola canina are much smaller compared to other
genus types of Viola. Viola canina is a species with a wide range of distribution
in the Northern temperate region of the Old World from North-Eastern Siberia
westwards to South Greenland and from Lapponia south to the Mediterranean
area [30].

As discussed in the section 2.1.2 the figures 2.7a, 2.7b and 2.7c are the histogram
of the data available, the spatial distribution of Viola canina based on available
data (metadata pickle file) and the Viola canina spatial distribution based on total
data (data from map of life [28]) respectively.
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(a) Alnus incana histogram from
Idigbio and Gbif

(b) Alnus incana spatial distribution
from Idigbio and Gbif

(c) Alnus incana total spatial
distribution from map of life [28]

Figure 2.5: Alnus incana spatial and temporal distributions

2.1.3 Download of images

There are hundred’s of herbar specimen URLs available in metadata pickle file
and each image has to be named uniquely to track and review the specific herbar
specimen later. So, the column named sample id had been created in metadata
pickle file by using the institution code and catalog-number. The sample id may
contain the duplicates because the institution code and catalog-number are same
for some samples (herbar specimens) so another column named image id (Unique
column) is needed and it had been created by enumerating the sample id. Now,
every entry of the image id column had a unique name and these names can serve
as the name for the folders and the name for the images.

The images had been downloaded using the URLs provided by the Idigbio and the
Gbif databases (metadata pickle file) and stored in a well-organised way (Figure
A.1) to access the images easier with Trait Ex. The Python function (refer section
A.1) is developed in such a way that if one of the URL is not responding then
it will skip the specific URL and continues with the next URL and at the same
time the Python function resizes the image that is stored in the specific URL with
specified width (1900 pixels) and height (2400 pixels). The objective workflow
for downloading images, measuring the herbar specimen leaves with Trait Ex and
merging csv files from Trait Ex output is shown in figure 2.8
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(a) Viola canina overview (b) Viola canina bud

(c) Viola canina flowers (d) Viola canina stem

Figure 2.6: Viola canina detailed overview

2.1.4 Description of Trait Ex workflow

Graphical interface of Trait Ex

Trait Ex has different functionalities which are spread over three menus arranged
across the top of the desktop [19]: Project, Tools, Help. The visualization of a
graphical user interface of the Trait Ex is shown in figure 2.9.

In figure 2.9, section one represents a menu bar, section two represents work
space panel, section three represents a preview panel and section four represents
measurement panel [19]. The purpose of the four sections are elaborated below:

1. Menu Bar: Provide access to all Trait Ex Functions.

2. Work space Panel: Provide access to all measured specimen images.

3. Preview Panel: Display a preview on the current specimen image to be
measured.

4. Measurement Panel: Display a table containing the quantitative trait values
for each measured leaf.
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(a) Viola canina histogram from
Idigbio and Gbif

(b) Viola canina spatial distribution
from Idigbio and Gbif

(c) Viola canina total spatial
distribution from map of life [28]

Figure 2.7: Viola canina spatial and temporal distributions

Checking null values in given URLS and removing those
samples.

Removing special characters in institution code and
catalogue number.

Creating sample id with institution code (eg: cmn) and
catalogue number (eg: can10896)
Sample id looks like cmn can10896

Creating image id to enumerate the sample id.
eg: cmn can10896 1, cmn can10896 2, ...., cmn can10896 n

Download of all the images stored in URLS.

Creating folders for each species and for each image.
eg: Species name/image id name/image id.png

Taking one to five measurements for each sample with
TraitEx (only well developed leaves).

Concating all the output csv files from Trait Ex.

Figure 2.8: Flowchart for downloading the images
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Figure 2.9: Graphical interface of Trait Ex

Basic functionality of Trait Ex

One can measure the leaf area, leaf perimeter, leaf length, leaf width, petiole
length with Trait Ex. Now the basic and necessary steps to measure the leaves
within the herbar specimen [19] are shown below.

Step 1: Selecting image folder Using “Select Image Folder” button in the
left-hand corner of Trait Ex, one can select a folder containing the pre-selected
and resized digitized specimen images (Figure 2.10) [19].

Figure 2.10: Button for selecting image folder in Trait Ex

After selecting the input folder, all digitized specimen images are loaded in the
work space as shown in the figure below (Figure 2.11).

After loading all digitized specimen images in the work space, one can select each
image separately and then, the selected image will be displayed in the preview
panel as shown in the following image (Figure 2.12).

Step 2: Set the Scale The second step in the quantitative trait measurements
pipeline is setting the scale and units. The process involves calibrating a single
image against known values, then applying that calibrated image to the unknown
image [19].

Here one has to click on “Select Object” button to open a new instance of the
selected specimen image (Figure 2.13).
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Figure 2.11: Preview of loaded images in Trait Ex

Figure 2.12: Preview of selected image in Trait Ex

Figure 2.13: Button for opening the current image to set the scale

One can select the straight-line tool in the right-hand corner of Trait Ex to draw
a line along the scale bar of known length (10 cm had to be taken). Then, one has
to search for the mentioned scale (known length) in the digitized herbar specimen.
After that, one has to select ”Set Scale” from the menu [19] (Figure 2.14).

Here one can click on “Set Scale” button from the menu. The Plot Scale dialog
box will open. Here, one can check if the scaling process was done perfectly or not
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Figure 2.14: Selecting a straight line tool for the menu bar of Trait Ex

[19] (Figure 2.15).

Figure 2.15: Button for setting the scale in Trait Ex

Note that the process of scaling is applied for each selected specimen image loaded
in the work space. Once this step is done for a specimen image, it is not required
to redo this work again during the measuring process of selected specimen [19] .

Step 3: Select the leaf to be measured After setting the scale, one can
measure the quantitative traits.

Select the image using “Select Object” button from the menu to open again a new
instance of the selected specimen image. Select the leaf of interest to be measured
using the rectangular, polygon, or freehand selection tools [19] (available next to
straight line tool) (Figure 2.16).

Figure 2.16: Select the leaf of interest after loading the images in Trait Ex
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Click on “Measure” button from the menu to measure the quantitative traits of
the selected leaf (Figure 2.17). The measured traits will be displayed as a table
in the measurement panel. Moreover, a red bounding box will be drawn in the
preview panel to make it easy for the user to know which leaf is already measured
[19] (Figure 2.18).

Figure 2.17: Button for measuring the selected leaf in Trait Ex

Figure 2.18: Measurements for the selected leaf in the herbar specimen

Note that the leaf orientation influences the reliability of Trait Ex tool. To obtain
good results [19], the leaf should be fixed as follow:

1. The petiole should be located at the bottom

2. Whereas the blade is oriented upwards.

If the selected leaf does not meet these criteria, a set of option (shown below) is
setting up in Trait Ex to resolve such issues (Figure 2.19).

• Flip vertically: the output image will be rotated 90 degrees.

• Rotate 90 Left: rotates the entire image counter-clockwise 90 degrees.

• Rotate 90 Right: rotates the entire image clockwise 90 degrees.

Figure 2.19: Options for changing the leaf orientation in Trait Ex

2.1.5 Effective usage and data organization of Trait Ex

I used Trait Ex to extract leaf size values for the species Salix bebbiana, Alnus
incana and Viola canina from 8355 digital herbar specimens using Trait Ex
workflow (refer section 2.1.4). Different aspects of output files and data
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organization (special cases of herbar specimens, data limitations of herbar
specimens based on compatibility of Trait Ex and how hundred’s of output csv
files are merged?) are discussed below.

Overview of output files (Trait Ex)

The images are saved as discussed in section 2.1.3. Now, if the number of measured
leaves in a herbar specimen is five, then there are more than 23 output files which
will be stored in the specific sub-directory. For each measured leaf, there are some
output files as discussed below:

Trait Ex output csv files There are always three csv output files, first one is
the main csv file, this file is common for all and it is updated if the leaf is
measured within a specific herbar specimen. The second file contains only
individual measurements, the third file is for initial raw measurements. If the
number of measured leaves is three, then the main csv will look like as shown in
figure 2.20. These csv files contains a summary of all measurements associated
with the respective image.

Figure 2.20: Visualization of main csv file from output files of Trait Ex

Trait Ex output image files There are two output image files, first one is the
cropped image of the measured leaf as shown in figure 2.21 and the second one is
the mask of the cropped image as shown in figure 2.22.

Figure 2.21: Cropped view of measured leaf after the measurement in Trait Ex
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Figure 2.22: Mask of the measured leaf after the measurement in Trait Ex

Trait Ex output text files There are two output text files, first one contains
some number regarding the scale and the second file contains the mapping points
of the measured leaf.

Available data based on different aspects

Table 2.1 shows the available images after and before the measurement of leaf sizes
of herbar specimens with Trait Ex, the total number of leaves measured with the
Trait Ex and the total number of features added to the specific species. The reason
behind the decrease of 20 to 40 per cent of data points after the measurement of leaf
sizes of herbar specimens with Trait Ex are due to some special cases. The special
cases are the presence of juvenile leaves (figure 2.23a), saplings (figure 2.23b), no
images (figure 2.23c) in herbar specimen, no measurable leaves in herbar specimen
(overlapped leaves (figure 2.23d) and no perfect petiole (figure 2.23e)) and no scale
(figure 2.23f) available in herbar specimen.

As mentioned above, for the special cases, the excel sheet (contains the information
like URL, sample id and image id of each species from metadata pickle file) is
maintained and updated while measuring the leaf sizes of the herbar specimen with
Trait Ex. This excel sheet is useful to eradicate the special cases automatically
using some machine learning techniques for future species.

Combining Trait Ex results per species

After measuring all the leaf sizes of available herbar specimens in the specified
species with Trait Ex, the main csv’s from all the sub-directories (refer figure A.1)
has to be appended to obtain the Trait Ex data frame from single csv files. After
some data processing (removing every second row (contains petiole length data)
in the Trait Ex data frame and adding this information as a separate column) as
shown in the python code (refer section A.2), the Trait Ex data frame and the
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Species
name

Total
number of

image
URLs

available
before

download

Total
number of

images
remained

after
measured
with Trait

Ex

Total
number

of
features
added

Total
number of

leaves
measured
with Trait

Ex

Salix
bebbiana

3230 1744 78 5934

Alnus
incana

2871 1950 78 5104

Viola
canina

2308 1675 78 3683

Table 2.1: Available data of the species based on different aspects

metadata pickle file (data frame) is merged based on the Image id column.

Let us call the merged data frame as the main data frame form now, the main
data frame has the data from Idigbio, Gbif and the original leaf trait values from
Trait Ex data frame. From now, the data from different data sets are going to be
merged to the main data frame and then the machine learning algorithm comes
into the play. One can see the number of features added to the metadata frame
according to the specific species selected in table 2.1.

2.1.6 Extracting features from different databases

As discussed in section 2.1, the leaf area could be modulated by the environment,
climate change and season. To find which feature data set is influencing the leaf
area, different features are extracted from various databases as discussed below.

Features representing the spatial variability of the environment

To represent the spatial variability of the environment, I used several databases
containing interpolated measurements of current climate and soil. Latitude (-90 to
90 in degrees) and longitude (-180 to 180 in degrees) are the common dimensions
for all the environmental features. The current climate data represent mean values
of today’s environment and refer to measurements of the years 1970-2000. Soil data
have assumed constant over time. All the environmental features are appended to
the main data frame using latitude and longitude.

WorldClim WorldClim [23] is a data set of spatially interpolated monthly
climate data for global land areas at a very high spatial resolution
(approximately 1 km2). Worldclim data set included monthly temperature
(minimum, maximum and average), precipitation, solar radiation, vapour
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(a) juvenile leaves (in downloaded
images)

(b) Saplings (in downloaded images)

(c) No image (in downloaded images)
(d) Overlapped leaves (in downloaded

images)

(e) No perfect petiole (in downloaded
images)

(f) No scale (in downloaded images)

Figure 2.23: Special cases of digital herbar specimen (downloaded images)

pressure and wind speed, aggregated across a target temporal range of
1970–2000, using data from between 9000 and 60,000 weather stations, another
19 bioclimatic features [31] are also available in worldclim data set and
calculated using the available features. The detailed overview of the features
available in the data set is shown in table 2.2.

Table 2.2: WorldClim data specifications.

Feature long name Feature
short name

Units Spatial
resolution

To be continued
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Table 2.2 – Continued from previous page
Feature long name Feature

short name
Units Spatial

resolution

Annual Mean
Temperature

BIO1 ◦C 1km

Mean Diurnal Range
(Mean of monthly
(max temp - min

temp))

BIO2 ◦C 1km

Isothermality
(BIO2/BIO7) (* 100)

BIO3 No units 1km

Temperature
Seasonality (standard

deviation *100)

BIO4 No units 1km

Max Temperature of
Warmest Month

BIO5 ◦C 1km

Min Temperature of
Coldest Month

BIO6 ◦C 1km

Temperature Annual
Range (BIO5-BIO6)

BIO7 ◦C 1km

Mean Temperature of
Wettest Quarter

BIO8 ◦C 1km

Mean Temperature of
Driest Quarter

BIO9 ◦C 1km

1Mean Temperature
of Warmest Quarter

BIO10 ◦C 1km

Mean Temperature of
Coldest Quarter

BIO11 ◦C 1km

Annual Precipitation BIO12 mm 1km

Precipitation of
Wettest Month

BIO13 mm 1km

Precipitation of
Driest Month

BIO14 mm 1km

Precipitation
Seasonality

(Coefficient of
Variation)

BIO15 mm 1km

Precipitation of
Wettest Quarter

BIO16 mm 1km

Precipitation of
Driest Quarter

BIO17 mm 1km

Precipitation of
Warmest Quarter

BIO18 mm 1km

Precipitation of
Coldest Quarter

BIO19 mm 1km

To be continued
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Table 2.2 – Continued from previous page
Feature long name Feature

short name
Units Spatial

resolution

Average temperature Tavg ◦C 1km

Solar radiation Srad kJm−2day−1 1km

Terraclim TerraClim [24] is a data set of monthly climate and climatic water
balance for global terrestrial surfaces from 1958-2015. These data provide
important inputs for ecological and hydrological studies at global scales that
require high spatial resolution and time-varying data. All data has monthly
temporal resolution and a 4-km (1/24th degree) spatial resolution.

The available temporal domain of terraclim is from 1958 to 2015 but the data
from 1970 to 2000 (mean) had been processed in this project because available
temporal data for worldclim is 1970 to 2000. The common features in the
worldclim and the terraclim are omitted from the worldclim data set, this means
the remaining features of both climate data sets (worldclim and terraclim) are
completely complementary (table 2.3). The features from terraclim and
worldclim are processed similar to the features extraction of Soil Grids database
(refer section A.3).

Table 2.3: Terraclim data specifications.

Feature long name Feature
short name

Units Spatial
resolution

Maximum
temperature

Tmax ◦C 4km

Minimum
temperature

Tmin ◦C 4km

Vapour pressure vap kPa 4km

Precipitation
accumulation

ppt mm 4km

Downward surface
shortwave radiation

srad Wm−2 4km

Wind speed ws ms−1 4km

Potential
evapotranspiration

pet mm 4km

Runoff q mm 4km

Actual
evapotranspiration

aet mm 4km

To be continued
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Table 2.3 – Continued from previous page
Feature long name Feature

short name
Units Spatial

resolution

Climate water deficit def mm 4km

Soil moisture soil mm 4km

Snow water
equivalent

swe mm 4km

Palmer drought
severity index

pdsi unitless 4km

Vapor pressure deficit vpd kPa 4km

SoilGrids database SoilGrids database is used to extract the soil features, it
is the global digital soil mapping that makes use of global soil profile information
and covariate data to model the spatial distribution of soil properties across the
globe [25]. The SoilGrids predictions are made at six different depths (top depths
are 0, 5, 15, 30, 60 and 100 cm), only the data for top four depths are processed
in this project. The weighted mean (based on depths) (refer section A.3) for top
four depths (till 30cm) had been calculated per feature (table 2.4).

Table 2.4: Soil Grids data specifications.

Feature long name Feature
short name

Units Spatial
resolution

Grade of a sub-soil
being acid e.g. having
a pH < 5 and low BS

ACDWRB Grade 10km

Available soil water
capacity (volumetric
fraction) with FC =

pF 2.0

AWCh1 percentage 10km

Available soil water
capacity (volumetric
fraction) with FC =

pF 2.3

AWCh2 percentage 10km

Available soil water
capacity (volumetric
fraction) with FC =

pF 2.5

AWCh3 percentage 10km

Saturated water
content (volumetric
fraction) for teta-S

AWCtS percentage 10km

To be continued
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Table 2.4 – Continued from previous page
Feature long name Feature

short name
Units Spatial

resolution

Depth to bedrock (R
horizon) up to 200 cm

BDRICM cm 10km

Probability of
occurrence of R

horizon

BDRLOG percentage 10km

Absolute depth to
bedrock

BDTICM cm 10km

Bulk density (fine
earth)

BLDFIE kg/m3 10km

Cation Exchange
Capacity of soil

CECSOL cmolc/kg 10km

Weight percentage of
the clay particles

(<0.0002 mm)

CLYPPT percentage 10km

Volumetric
percentage of coarse
fragments (>2 mm)

CRFVOL percentage 10km

Histosols probability
cumulative

HISTPR percentage 10km

Soil organic carbon
density

OCDENS kg/m3 10km

Soil organic carbon
stock

OCSTHA ton/ha 10km

Soil organic carbon
content

ORCDRC permille 10km

pH index measured in
water solution

PHIHOX pH 10km

pH index measured in
KCl solution

PHIKCL pH 10km

Sodic soil grade SLGWRB grade 10km

Weight percentage of
the silt particles

(0.0002–0.05 mm)

SLTPPT percentage 10km

Weight percentage of
the sand particles

(0.05–2 mm)

SNDPPT percentage 10km

Texture class (USDA
system)

TEXMHT factor 10km

Available soil water
capacity (volumetric
fraction) until wilting

point

WWP percentage 10km
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Harmonized world soil database Harmonized world soil data is another soil
data set which had similar features like SoilGrids but used different methods in
data modelling. The harmonized world soil features (table 2.5) are also processed
to compare with the Soil Grids database.

Table 2.5: Harmonized world soil data specifications.

Feature long name Feature
short name

Units Spatial
resolution

Available water
capacity

AWC mm 1km

Depth of obstacles to
roots

ROOTS Coded
values 0

through 6

1km

Subsoil bulk density S BULK
DENSITY

kgdm−3 1km

Cation exchange
capacity of the clay

fraction in the subsoil

S CEC
CLAY

cmol per
kg

1km

Subsoil CEC soil S CEC
SOIL

cmol per
kg

1km

Subsoil clay fraction S Clay % weight 1km

Subsoil gravel content S Gravel % volume 1km

Subsoil organic
carbon

S OC % weight 1km

Subsoil pH (in water) S PH
H2O

−log(H+) 1km

Subsoil sand fraction S Sand % weight 1km

Subsoil silt fraction S Slit % weight 1km

Topsoil bulk density T BULK
DENSITY

kgdm−3 1km

Cation exchange
capacity of the clay

fraction in the topsoil

T CEC
CLAY

cmol per
kg

1km

Topsoil CEC soil T CEC
SOIL

cmol per
kg

1km

Topsoil clay fraction T Clay % weight 1km

Topsoil gravel content T Gravel % volume 1km

Topsoil organic
carbon

T OC % weight 1km

To be continued
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Table 2.5 – Continued from previous page
Feature long name Feature

short name
Units Spatial

resolution

Topsoil pH (in water) T PH
H2O

−log(H+) 1km

Topsoil sand fraction T Sand % weight 1km

Topsoil silt fraction T Slit % weight 1km

Additional features There are some further features which may create a great
influence on leaf area. The additional features (table 2.6) are also appended to the
main data frame using latitude and longitude columns. In addition to this, the
data from the digital elevation model (altitude around the globe) is also appended
to the main data frame.

Draught stress index is calculated (refer section A.5) as actual
evapotranspiration (Terraclim) divided by potential evapotranspiration
(Terraclim). Seasonal amplitude of climate water deficit (Terraclim) and palmer
drought severity index (Terraclim) are calculated as annual maximum value
minus annual minimum value of a specific feature (refer section A.5). Latent
heat, Latent heat mean absolute deviation, Net radiation, Net radiation mean
absolute deviation, Day time land surface temperature and Night time land
surface temperature are calculated from the satellite data of the specific year
2001 (refer section A.5).

Features representing temporal variability due to climate change

To represent the temporal variability of the climate (climate change), I used the
projected data from the climate model (MIROC-ESM) available via the CMIP5
[17]. CMIP5 [17] is Coupled Model Inter-comparison Project phase 5. The CMIP5
model projections are less reliable compared to the measured database like CRU
[32], however, the measured data is not available for years before 1880. The CMIP5
data has to be analyzed from 1600 on-wards because the herbar specimen samples
are available from the year 1600.

CMIP5 data contains three different time phases: past1000 [33] (before 1850
gridded as yearly), historic (1850-2005 gridded as daily), current (2005-present
gridded as hourly) data sets. Irrespective of the available time-frequency, the
monthly gridded data is processed. The detailed overview and the data
processing steps are shown in the python code (refer section A.4). Since all the
data of CMIP5 are downloaded as NetCDF (n-dimensional arrays) files, there
are some interesting details like spatial resolution, short name of feature, long
name of feature and units are shown in table 2.7.
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Feature long name Feature
short name

Units Spatial
resolution

Draught stress index NA NA 4km

Seasonal amplitude of
climate water deficit

NA mm 4km

Seasonal amplitude of
palmer drought severity

index

NA unit less 4km

Latent heat LE MJm−2d−1 10km

Latent heat mean
absolute deviation

LE mad MJm−2d−1 10km

Net radiation Rn MJm−2d−1 10km

Net radiation mean
absolute deviation

Rn mad MJm−2d−1 10km

Day Time Land
Surface Temperature

LST Day K 10km

Night Time Land
Surface Temperature

LST Night K 10km

Table 2.6: Additional features data specifications

Feature long name Feature
short name

Units Spatial
resolution

Daily maximum near
surface air temperature

tasmax k 300km

Daily minimum near
surface air temperature

tasmin k 300km

Near surface air
temperature

tas k 300km

Precipitation pr kg/m2/s 300km

Surface Down-welling
short radiation

rsds Wm−2 300km

Surface temperature ts K 300km

Wind speed sfcwind ms−1 300km

Atmospheric water
vapour content

prw kgm−2 300km

Table 2.7: CMIP5 data specifications

In addition to the data specifications specified in table 2.7, there are some common
dimensions for all the features like latitude (-90 to 90 in degrees), longitude (0 to
360 in degrees) and the available time (850 to 2100 in year). The climate change
data set had been created by calculating the anomalies of climate compared to
today’s climate as the difference between the CMIP5 data and the mean of CMIP5
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data is calculated for the years 1970 to 2000 (because WorldClim had temporal
domain only for 1970 to 2000). The feature values from the climate change data
set is appended to the main data frame using the latitude, longitude and the date
collected columns of all the herbar specimens.

Seasonal features

To represent the seasonal effect, I used day of year which is calculated from the
date collected column for all the available data (metadata pickle file).

Finally, the main data frame contains the data from Idigbio metadata, Gbif
metadata, Trait Ex data frame data, anomalies of CMIP5 data, Worldclim data,
Terraclim data, SoilGrids data, Harmonized world soil data, Digital elevation
model and day of year.

2.2 Building a machine learning model to

predict the leaf size from features related

to environment, climate change and season

Why Random Forests? Random Forests are selected because of its sheer
advantages over the other machine learning models. There might be a chance
that we may have some non-informative features in our model because of a lot of
climatic and soil data features. Most of the times, Random Forests is the best
choice to deal with non-informative data because it accommodates less
importance to non-informative features. This model deals with both categorical
and continuous features but, moreover, it creates hundred’s of decision trees to
avoid over-fitting and increase model accuracy. This is a robust method and
working well with standard hyper parameters.

Figure 2.24: Explaining Random Forest
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How Random Forest regression works? Random Forests consist of several
hundreds of decision trees (figure 2.24), each of them builds on a random subset
of observations and features from the data set. Not every node sees all the
features or all the observations, and this guarantees that the trees are
de-correlated and therefore less prone to over-fitting. Each tree is also a sequence
of yes-no questions based on a single or combination of features. At each node
(this is at each question), the tree divides the data set into 2 buckets, each of
them hosting observations that are more similar among themselves and different
from the ones in the other bucket [34]. Figure 2.25 is one of the sample tree
(only up to three depths) from the Random Forest and it is generated using the
real data (main data frame).

Figure 2.25: Explaining Random Forest tree

Why Partial Least Square regression? Partial Least Square regression is
used to see whether the data have non-linear relationships or not. The main
advantages of Partial Least Square regression are no particular feature selection
is needed and run time is faster compared to the Random Forest model especially
when working with larger data sets. The detailed explanation of Partial Least
Square regression is given in the URL http://www.eigenvector.com/Docs/Wise
pls properties.pdf.

How Partial Least Square regression works? Partial Least Square
regression reduces the features to a smaller set of uncorrelated features and
performs Least Square Regression on these reduced set of features. Partial Least
Square regression is a good method to use when the features are highly
correlated or when the data have more features than observations. Partial Least
Square regression does not assume that the features are fixed, this means that
the features can be measured with error, making Partial Least Square regression
more robust to measurement uncertainty.
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2.2.1 Missing value strategy

Random Forest Imputation (MissForest) [35] had been used to fill the missing
values in the main data frame. MissForest imputes the missing values using the
Random Forests in an iterative fashion [35] as discussed below.

• This method starts imputing the missing values with the column contains
the smallest number of missing values, let us call this as candidate column.

• In the second step, all the missing values of remaining non-candidate columns
are filled with column mean for numerical columns and column mode for
categorical values.

• After that, the imputer fits a Random Forest model with the candidate
column as the response feature and the remaining columns as the features
overall rows where the candidate column values are not missing, then the
missing values of the candidate column are filled with the prediction of the
Random Forest.

• Following this, the imputer moves to the next candidate column with the
second smallest number of missing values among the non-candidate columns
in the first round.

• This procedure repeats itself to fill all the missing values in the given data
set.

2.2.2 Removing outliers

Removing outliers is not required for the data used in this thesis because every
herbar specimen leaf area is measured with hand by using the semi-automated
tool Trait Ex. Even though, outliers are removed by using the IQR (Inter Quartile
Range) (refer figure 2.26) strategy to avoid the human-made mistakes and Trait
Ex mistakes (with special cases (refer figure 2.23)). The equation to remove all
the possible outliers is shown below.

Data without outliers = (Data > (Q1− 1.5∗IQR))&(Data < (Q3 + 1.5∗IQR))

Where,
Q1 = Median of the n smallest values (first 25% of data).
Q3 = Median of the n largest values (last 25% of data).
IQR = Q3-Q1.

99 data points of Salix bebbiana, 78 data points of Alnus incana and 70 data points
of Viola canina are removed from the total data points as outliers.

2.2.3 Creating customized block cross validation

Customized block cross-validation is dividing the given data into different sets
based on the block strategies. This block cross-validation is required when the

30



Figure 2.26: Representation of the Interquartile Range

data came from latitude and longitude positions (data points are dependant on
each other) or to divide the seasonal effects on sales.

If two data points came from nearby spatial location then there might be a chance
that one data point could go into training data set and other might go into testing
data set. In this case R2 is not realistic because same kind of information is
already seen in training data set. To avoid all these kind of sampling biases,
customized block cross-validation is required. There might be a chance that the
herbar specimens used in these analysis are collected from nearby spatial locations
because each herbar specimen is collected by different botanists around the globe.
In the main data frame, data is divided into blocks as discussed below.

Figure 2.27: 3*3 Spatial blocking

As discussed in the section A.6 every data point is designated with specific block
number 0 to 8 based on latitude and longitude position. This block number is used
to split the final data frame into 9 folds, so the data from each fold is independent
to other fold, this ensures that all the herbar specimens are independent to each
other.
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For example, if 9 blocks (figure 2.27) are taken from the 360∗180 virtual matrix
(as discussed in section A.6), each block in the figure 2.27 must be filled with
different number in between 0 to 8.

2.2.4 Working with different combinations of available
data sets

To understand which data sets are helping the most for predicting leaf area,
different combination of data sets are experimented to get the insights of the
combinations using benchmark model. The Normal R2 value (using 70% of the
data set for training and 30% of the data set for testing), customised block cross
validation (refer section 2.2.3) R2 value, Out of bag score (2/3rd data is used as
training and 1/3rd as testing) etc are shown in tables 2.8 and 2.9.

The terminology of the tables 2.8 and 2.9 are explained below:

• PLS regression = Partial Least Square regression.

• R2 = R2 calculated using 70% of data as training set and 30% as testing set.

• R2
train = Train score for the data (70% train and 30% test data).

• Oobscor = Oob score is calculated using total data with Random Forest
regressor.

• R2
bs = R2 calculated using customised block cross validation (refer section

2.2.7).

• HWSD1 = HWSD + TC + WC + Cmip + Cmipmd + Cmipac + doy +
DEM,

• HWSD2 = HWSD + WC + TC + Cmip + doy + DEM,

• HWSD3 = HWSD + WC + TC + Cmipmd + doy + DEM,

• HWSD4 = HWSD + WC + TC + Cmipac + doy + DEM,

• HWSD5 = HWSD + WC + TC + Cmip + Cmipmd + doy + DEM,

• HWSD6 = HWSD + WC + TC + Cmip + Cmipac + doy + DEM,

• HWSD7 = HWSD + WC + TC + Cmipmd + Cmipac + doy + DEM,

• SD1 = SD + TC + WC + Cmip + Cmipmd + Cmipac + doy + DEM,

• SD2 = SD + WC + TC + Cmip + doy + DEM,

• SD3 = SD + WC + TC + Cmipmd + doy + DEM,

• SD4 = SD + WC + TC + Cmipac + doy + DEM,

• SD5 = SD + WC + TC + Cmip + Cmipmd + doy + DEM,

• SD6 = SD + WC + TC + Cmip + Cmipac + doy + DEM,

• SD7 = SD + WC + TC + Cmipmd + Cmipac + doy + DEM,
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Dataset
Random Forests PLS regression

R2 R2
train Oobscor R2

bs R2 R2
train R2

bs

HWSD1 0.2763 0.6816 0.2727 0.2506 0.0952 0.3197 0.1533

HWSD2 0.2797 0.6707 0.2688 0.2447 -
0.0244

0.3125 0.1469

HWSD3 0.2799 0.6707 0.2685 0.2449 -
0.0244

0.3125 0.1469

HWSD4 0.2770 0.6807 0.2731 0.2486 0.2055 0.3042 0.1560

HWSD5 0.2798 0.6706 0.2685 0.2442 -
0.0132

0.3112 0.1540

HWSD6 0.2763 0.6817 0.2729 0.2504 0.1227 0.3202 0.1487

HWSD7 0.2763 0.6818 0.2733 0.2510 0.1227 0.3202 0.1487

SD1 0.2723 0.6984 0.2732 0.2491 0.1554 0.3395 0.1813

SD2 0.2729 0.6922 0.2723 0.2438 0.1893 0.3285 0.1823

SD3 0.2737 0.6923 0.2730 0.2436 0.1893 0.3285 0.1823

SD4 0.2730 0.6963 0.2695 0.2470 0.1497 0.3256 0.1657

SD5 0.2733 0.6922 0.2725 0.2434 0.1841 0.3282 0.1895

SD6 0.2728 0.6982 0.2726 0.2483 0.1479 0.3411 0.1761

SD7 0.2725 0.6983 0.2731 0.2487 0.1479 0.3411 0.1761

TcWc out 0.2534 0.6811 0.2691 0.2321 0.1816 0.2967 0.1839

Soil out 0.2760 0.6801 0.2743 0.2560 0.1863 0.3134 0.1991

SD1doy 0.2774 0.6841 0.2228 0.2096 0.1251 0.3265 0.1550

SD2doy 0.2764 0.6797 0.2306 0.2013 0.1391 0.3149 0.1539

SD3doy 0.2768 0.6796 0.2305 0.2015 0.1391 0.3149 0.1539

SD4doy 0.2707 0.6751 0.2049 0.1822 0.0889 0.2706 0.0887

SD5doy 0.2759 0.6797 0.2307 0.2009 0.1361 0.3139 0.1543

SD6doy 0.2777 0.6841 0.2228 0.2091 0.1230 0.3278 0.1510

SD7doy 0.2777 0.6842 0.2232 0.2090 0.1230 0.3278 0.1510

Table 2.8: Possible R2 values for Salix bebbiana
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Dataset
Random Forests PLS regression

R2 R2
train Oobscor R2

bs R2 R2
train R2

bs

HWSD1 0.1605 0.6282 0.2094 0.1466 0.1304 0.2310 0.1384

HWSD2 0.1628 0.5981 0.1979 0.1415 0.1324 0.2204 0.1504

HWSD3 0.1628 0.5981 0.1979 0.1415 0.1324 0.2204 0.1504

HWSD4 0.1559 0.6151 0.2061 0.1470 0.1191 0.2330 0.1360

HWSD5 0.1572 0.6051 0.2030 0.1416 0.1392 0.2191 0.1502

HWSD6 0.1612 0.6209 0.2098 0.1460 0.1289 0.2313 0.1422

HWSD7 0.1612 0.6209 0.2098 0.1460 0.1289 0.2313 0.1422

SD1 0.1715 0.6325 0.2044 0.1549 0.1359 0.2438 0.1520

SD2 0.1688 0.6093 0.1998 0.1527 0.1305 0.2323 0.1499

SD3 0.1688 0.6093 0.1998 0.1527 0.1305 0.2323 0.1499

SD4 0.1682 0.6180 0.2086 0.1543 0.1228 0.2433 0.1464

SD5 0.1776 0.6221 0.2068 0.1529 0.1361 0.2302 0.1499

SD6 0.1747 0.6280 0.2078 0.1546 0.1424 0.2437 0.1500

SD7 0.1747 0.6280 0.2078 0.1546 0.1424 0.2437 0.1500

TcWc out 0.1768 0.6193 0.1986 0.1680 0.1414 0.2171 0.1499

Soil out 0.1644 0.6215 0.2032 0.1473 0.1254 0.2229 0.1469

SD1doy 0.1571 0.6215 0.1919 0.1467 0.1384 0.2408 0.1582

SD2doy 0.1421 0.5920 0.1775 0.1513 0.1329 0.2282 0.1529

SD3doy 0.1421 0.5920 0.1775 0.1513 0.1329 0.2282 0.1529

SD4doy 0.1442 0.6020 0.1835 0.1453 0.1315 0.2410 0.1555

SD5doy 0.1581 0.6054 0.1887 0.1514 0.1372 0.2270 0.1509

SD6doy 0.1548 0.6095 0.1953 0.1466 0.1402 0.2404 0.1556

SD7doy 0.1548 0.6095 0.1953 0.1466 0.1402 0.2404 0.1556

Table 2.9: Possible R2 values for Alnus incana
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• TCWC out = SD + Cmip + Cmipmd + Cmipac + doy + DEM,

• Soil out = TC + WC + Cmip + Cmipmd + Cmipac + doy + DEM,

• SD1doy = SD + TC + WC + Cmip + Cmipmd + Cmipac + DEM,

• SD2doy = SD + WC + TC + Cmip + DEM,

• SD3doy = SD + WC + TC + Cmipmd + DEM,

• SD4doy = SD + WC + TC + Cmipac + DEM,

• SD5doy = SD + WC + TC + Cmip + Cmipmd + DEM,

• SD6doy = SD + WC + TC + Cmip + Cmipac + DEM,

• SD7doy = SD + WC + TC + Cmipmd + Cmipac + DEM.

Where,

HWSD = Harmonized world soil database,

TC = Terra clim model,

Wc = World clim model,

Cmip = Coupled Model Intercomparison Project 5,

Cmipmd = Cmip mean deviation,

Cmipac = Cmip actual values (Data set created by using CMIP5 data and with
the models of worldclim [31]),

SD = SoilGrids data,

doy = day of year,

DEM = Digital Elevation Model.

I decided to use Random Forest models for all my analysis because in the tables
2.8 and 2.9, R2 values of Partial Least Square regression are consistently lower
compared to R2 values of Random Forest models. Within Random forest models,
the R2

bs values are consistently lower compared to R2 values. Generally, R2
bs

values and normal R2 values should be near to each other, if data points are
independent of each other. In the case of spatial autocorrelation (refer section
1.1), R2

bs is lower than normal R2. Therefore, the block selection cross-validation
model is selected because it gives the realistic R2 values and this model is prone
to overfitting and bias of the data.

I decided to use data set SD3 = SD + WC + TC + Cmipmd + doy + DEM
because Cmipac and Cmip data is not needed since Cmipmd is representing both
(Cmipac and Cmip) and data set SD3 had better R2 values compared to other
data sets in tables 2.8 and 2.9.
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2.2.5 Feature selection method

To acquire the most contributed features (from total feature set) to the response
feature, two feature selection methods are used, they are Recursive feature
elimination with cross-validation (https://scikit-learn.org/stable/modules/
generated/sklearn.feature selection.RFECV.html) and Guided hybrid genetic
algorithm for feature selection [36]. After comparing the results of both methods,
the feature set selected using the guided hybrid genetic algorithm had more
explanatory power (table 2.10) compared to the recursive feature elimination
with cross-validation. Moreover, recursive feature elimination with
cross-validation method selected double the number of optimum features
compared to guided hybrid genetic algorithm. Because of the mentioned reasons,
the guided hybrid genetic algorithm for feature selection using block
cross-validation had been selected and all the results are compiled using it.

2.2.6 Hyperparameter tuning

Hyperparameter tuning is tuning the parameters of the specified model (here
Random Forest regressor) to get the best possible explanatory power for given
data. To tune hyperparameters, one has to create the random set of
hyperparameters and RandomizedSearchCV or https://scikit-learn.org/stable/
modules/generated/sklearn.model selection.RandomizedSearchCV.html will
search for the best parameters from the given random set of hyperparameters. I
have used this method to search for the best parameters to gain more
explanatory power (block cross-validation is used).

2.2.7 Model Evaluation

In contrast to the basic settings used in the benchmark model, Customised cross
validation model gets the model parameters using parameter tuning (refer section
2.2.6) method and the custom block cross-validation [22] (refer section 2.2.3) is
used to avoid spatial auto-correlation (refer section 1.1) and to ensure the herbar
specimens are independent of each other. The block cross-validated R2 values for
the selected species are shown in table 2.10.

The R2 (Coefficient of determination) is calculated using the below equation [37].

R2(y, ŷ) = 1−
∑n

i=1 (yi − ŷi)2∑n
i=1 (yi − ȳ)2

Where,
ȳ = 1

n

∑n
i=1 yi∑n

i=1 (yi − ŷi)2 =
∑n

i=1 ε
2
i

ŷi = Predicted value of the i -th sample.
yi = corresponding true value for total n samples
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Species name Block cross
validated R2

value using
RFECV

Block cross
validated R2 value
using GHGAFS

Salix bebbiana 0.2444 0.2592

Alnus incana 0.1804 0.1981

Viola canina 0.1059 0.1405

Table 2.10: Comparison of block cross validated R2 values for all selected species
using different methods. Where, RFECV = Recursive feature elimination with cross-
validation, GHGAFS = Guided hybrid genetic algorithm for feature selection.

2.2.8 Presentation of results

Feature importance

Feature importance plot is plotted using the scikit-learn Feature importances
package. Feature importance is calculated as the decrease in node impurity
weighted by the probability of reaching that node. The node probability can be
calculated by the number of samples that reach the node, divided by the total
number of samples. The higher the value the more important the feature. The
feature importance value is calculated using the following equation [38].

RFfii =

∑
j∈all trees normfiij

T

where,
RFfii = The importance of feature i calculated from all trees in the Random
Forest model.
normfiij = Normalized feature importance for i in tree j.
T = Total number of trees.

The higher the RFfii, the more important is the feature.

Partial dependency plots (PDP plots)

When using black-box machine learning algorithms like Random Forest, it is
hard to understand the relations between features and model outcome [39]. In
Random Forest regression it is possible to calculate feature importance score and
it is known which feature is significantly influencing the outcome based on the
importance calculation and it is not possible to know in which direction the
feature is influencing concerning response feature.

To visualize the relation between the influencing features with respect to response
feature, The PDP box (https://github.com/SauceCat/PDPbox) is used and it is
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(a) Sample data set

(b) Data set combinations

(c) Mean values of prediction

(d) Final data used for plotting

Figure 2.28: Different stages of sample data set while plotting PDP plots

based on the following equation.

ˆfxS
=

1

N

N∑
i=1

f̂
(
xS, xCi

)
Where, S = Response feature,
C = Complete feature set other than response feature,
N = Total number of observations in the training set.

For example, let us assume a data set that only contains three data points and
three features (A, B, C) as shown in figure 2.28a [39]. If feature A is influencing the
prediction Y, what PDP does is to generate a new data set (figure 2.28b) and do
prediction as usual (here the assumption is that feature A has three unique values:
A1, A2, A3). In this way, PDP will generate the number of predictions (figure
2.28b) and averaged them for each unique value of feature A (2.28c). Finally, PDP
would only plot out the average predictions (2.28d) [39].

Predict observed plot

It is the plot used to see how well the data points are predicted compared to
the observed data. With the help of the predict observed plot, one can visualize
the prediction errors. The predict observed plot is plotted based on Random
Forest model with block cross-validation using cross-validated predictions (https:
//scikit-learn.org/0.18/auto examples/plot cv predict.html) function from Scikit-
learn.
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Chapter 3

Results

3.1 Comparison of Random Forests with Partial

Least Square regression

The block cross-validated R2 values for the Random Forest model is quite high
compared to the Partial Least Square regression model for all the selected species
(refer tables 2.8 and 2.9). This tells us that there are considerable non-linear
relationships within the data.

3.2 Goodness of fit for Random Forest model

per species

Salix bebbiana peaks the block cross-validated R2 values with 0.259 compared to
Alnus incana and Viola canina (refer table 3.1). The prediction errors of the
model (figures 3.1b, 3.2b and 3.3b) are quite high for all the selected species (Salix
bebbiana, Alnus incana and Viola canina).

3.3 Predictors on leaf size per species

Table 3.1: R2 values for final
Random Forest model

Species name R2 value

Salix bebbiana 0.2592
Alnus incana 0.1981
Viola canina 0.1405

The leaf sizes of three species (Salix bebbiana,
Alnus incana and Viola canina) are highly
influenced by all the selected feature data sets
current environment, season and climate change.
However, season plays a vital role (figures 3.1a,
3.2a and 3.3a) for all the species and climate
change is most influencing for the species Viola
canina.

It is very clear from the results (figures 3.1d, 3.2c
and 3.3c) that the leaf areas of all three species are increasing with the day of year.
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The leaf area is increasing with minimum temperature (figure 3.1e) and night time
land surface temperature (figure 3.2f). But surprisingly, at the same time, the leaf
area is decreasing with surface temperature (figure 3.3d) and it is increasing with
mean temperature of warmest quarter (figure 3.3e) for the species Viola canina.
The relations for remaining features with leaf area are discussed below.

• Leaf area increases with precipitation of wettest quarter (figure 3.1c) and
decreases with altitude (figure 3.1f) for the species Salix bebbiana.

• Volumetric percentage of coarse fragments (> 2 mm) (figure 3.2e) had a
negative relation with leaf area and downward surface shortwave radiation
(figure 3.2d) had hump-shaped relation with leaf area for the species Alnus
incana.

• Draught stress index (figure 3.3f) had a negative relation with leaf area for
the species Viola canina.

There is a climate change effect for the species Salix bebbiana (figure 3.1a) and
Viola canina (figure 3.3a) but, there is no sign of climate change for the species
Alnus incana (figure 3.2a).
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(a) Feature importance plot

(b) Observed predict plot

(c) Partial dependency plot
(Precipitation of wettest quarter)

(d) Partial dependency plot (Day of
year)

(e) Partial dependency plot
(Minimum temperature)

(f) Partial dependency plot (Altitude)

Figure 3.1: Salix bebbiana results
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(a) Feature importance plot

(b) Observed predict plot

(c) Partial dependency plot (Day of
year)

(d) Partial dependency plot
(Downward surface shortwave

radiation)

(e) Partial dependency plot
(Volumetric percentage of coarse

fragments (> 2 mm))

(f) Partial dependency plot (Night
time land surface temperature)

Figure 3.2: Alnus incana results
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(a) Feature importance plot

(b) Observed predict plot

(c) Partial dependency plot (Day of
year)

(d) Partial dependency plot (Surface
temperature)

(e) Partial dependency plot (Mean
temperature of warmest quarter)

(f) Partial dependency plot (Draught
stress index)

Figure 3.3: Viola canina results

43



Chapter 4

Discussion of results

Some of the Trait Ex functions like Trait Ex tab placements (menu bar, work-
space panel, preview panel) has been optimized based on my first user experience
(refer section 4.0.1). Different combinations of data are created and implemented
machine learning techniques (Random Forests and Partial Least Square regression)
to get better insights into the data (refer tables 2.8 and 2.9). Secondly, customized
block cross validation (refer section 2.2.3) is created to eradicate the sampling bias
and spatial auto correlation. In addition to this different feature selection methods
(refer section 2.2.5) are used to find the best feature set, hyper parameter tuning
(refer section 2.2.6) is used to find best hyper parameters for machine learning
techniques and partial dependency plots (refer section 2.2.8) are used to visualize
the relationship between the influencing feature and response variable.

4.0.1 Trait Ex first user feedback

Trait Ex is a tremendous tool to extract the leaf sizes from the digital herbar
specimens. I found some drawbacks while working with Trait Ex as follows:

• If the digital herbar specimen has a small or no petiole, then Trait Ex is not
able to extract correct measurements of leaf size.

• Since we have to load every digital herbar specimen into Trait Ex and have to
extract the leaf sizes with hand (refer mapping function in Trait Ex workflow
(refer section 2.1.4)), for this reason, Trait Ex is not a recommended tool
when working with thousands of images.

• Trait Ex is not compatible to work with the special kind of digital herbar
specimens (refer section 2.1.5).

• Trait Ex is mostly useful to extract the leaf sizes for perfect digital herbar
specimens (specimen contains accurate visible petiole and accurate visible
leaf).

• This tool is only useful to work with some specific species (species with
perfect petiole) and not useful for grass type species because there is no
perfect visible petiole for them.
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Suggestions for further development of Trait Ex Trait Ex has to be
optimized to work with all special kinds of herbar specimens (see section 2.1.5)
and it has to be automated to work with thousands of digital herbar specimens
without human interference. Moreover, the tool needs to be improved to avoid
the workflow difficulties (for example loading image folder at once instead of
loading each image into the tool) within the tool and to improve it as a
user-friendly one.

4.0.2 Features on leaf size

There are so many approaches to analyze the leaf area from the climate [7] [8] and
soil data separately and few approaches are available based on both climate and
soil data [40]. In contrary to all these approaches the leaf area had been analyzed
using spatial, temporal and seasonal data for intraspecific level.

Spatial features

Spatial features played an important role in this analysis because herbar
specimens are collected from different spatial conditions (environmental
conditions are completely different in each location). We can see that most of
the features affecting leaf area are related to temperature and precipitation at
the intraspecific level. Leaf area for all the species is affected with temperature
related feature and Leaf area increasing with minimum temperature (refer figure
3.1e) for Salix bebbiana, increasing with night time land surface temperature
(refer figure 3.2f) for Alnus incana and increasing with mean temperature of
warmest quarter (refer figure 3.3e) for Viola canina. Leaf area is positively
correlated with the precipitation related features across the selected species
(refer figure 3.1c).

Our results have shown similar patterns compared to the previous studies [42]
based on herbar specimen for spatial features. The patterns of temperature and
precipitation (figure 3.1c) related features are completely inline with Wright et al.
[9] results. Remaining spatial features are also supporting the relations within the
research papers of Wright et al. [9], S. Lavorel et al. [40]. This shows us that the
digital herbar specimens will serve as the real world experimental specimens for
further scientific analysis.

Temporal features

I absorbed the effect of temporal features on leaf size analysis for all the species
selected, this is very new. Herbs adapt themselves quickly according to the
surrounding environment and this could be one of the reasons that surface
temperature (climate change feature) is the most influencing feature for the
species Viola canina((5-15 cm tall)). Leaf area for Viola canina is increasing
with surface temperature and this trend is very new. But there are some research
papers [41] exploring the temporal change of the various specimens based on
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flowering times but there are no such studies reveals the temporal trends with
leaf area. At the same time, temporal trends are not observed in the species
Alnus incana because it is not quickly possible to adapt themselves for trees.

Seasonal features

Generally leaves increase their size daily and they reach the large size when they
are fully developed and the larger size remains the same until they fall from the
tree. According to this theory, the relation between the leaf area and the day of
year should remain constant because herbar specimens are collected only when
the leaves are fully developed but it has increasing trend as shown in the results
(chapter 3). The increasing trend could be possible because ecologists do not know
whether the leaf size is fully developed or not, so there is a chance that ecologists
may collect the leaves before they developed fully. There are no specific rules when
(which stage of leaf area) herbar specimen have to be collected.

4.0.3 Remarks on the extension of this approach to
multiple species

We have to optimize methodological limitations (refer section A.7) to extend this
approach to multiple species. Trait Ex has to be automated to work extensively
with multiple species within a short period. This could be possible coupling the
object detection software (helpful to identify the objects in digital herbar
specimen) with the Trait Ex leaf extracting process. I have developed the neural
networks algorithm that automatically classifies the images based on special
kinds of herbar specimens (see section 2.1.5), with the help of this algorithm and
some other machine learning techniques it is possible to automate the Trait Ex.

4.1 Future work

We are interested to extend this approach to all the available species from Gbif
(refer section 2.1.1) [15] and Idigbio (refer section 2.1.1) [16]. We are interested
to extend this topic by adding some potential features like land use data and soil
groundwater contamination data. There is a possibility to compare the analysis of
leaf area and the analysis of phenology timing from digital herbar specimen. We
could show that the species adapt to environmental conditions in space and time,
space is more important than time and we can check for space for time analysis
also. Finally, We want to analyze interspecific trait variability of leaf areas for all
the available species.
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4.2 Conclusion

Main objectives of the thesis optimizing Trait Ex and identifying environmental
drivers using machine learning techniques for intraspecific trait variability are
achieved successfully. The whole methodology works good and Trait Ex becomes
very handy to measure the leaf sizes without visiting the actual specimen sites.
Environmental databases are helpful to get the data quickly for specific conditions
and without these data, it is not possible to combine the trait information with
environmental data sets.

Finally, the results are overwhelming and fitting with the research papers [9] [42]
[41] [40] based on herbar specimen data and real trait data. This thesis serves as
the prototype to analyze interspecific trait variability of leaf areas. Furthermore,
one can try to automatize the Trait Ex tool and analyze the trait variability of
leaf areas for thousands of species at once.
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Appendix A

Appendices

A.1 Herbar specimen download

Importing required packages

import matplotlib.pyplot as plt

%matplotlib inline

import csv

import requests

from PIL import Image

import time

import shutil

from PIL import ImageFile

import pandas as pd

import xlsxwriter

from openpyxl import load workbook

Species name and paths, folder creation

#defining species name

Species name = ’Salix bebbiana’

#Below code create the required folder according to species name.

creatingfolder = ’/Net/Groups/BGI/work 1/OBG/Vamsi/Herbarium Download

/pickle files/{}/’.format(Species name)
if not os.path.exists(creatingfolder):

os.mkdir(creatingfolder)

#Path for the raw data, copy the raw data file before starting the

#execution of the codes. Raw data file is enough

#to create all the files and folders automatically

rawdatapath = "/Net/Groups/BGI/work 1/OBG/Vamsi/Herbarium Download

/pickle files/{}/{}.pkl".format(Species name ,Species name)
#Processed data path contains the data which removes all the duplicates

#and filters all the data from the raw data provided.

processed datapath = ’/Net/Groups/BGI/work 1/OBG/Vamsi/Herbarium Download

/pickle files/{}/{} processed.pkl’.format(Species name ,Species name)
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#Excel file path to create the new sheet

Excel path = ’/Net/Groups/BGI/work 1/OBG/Vamsi/Herbarium Download

/Excel files/Species updated/Spieces data 1.xlsx’

#Download path gives the path to download images

downloadpath = ’/Net/Groups/BGI/work 1/OBG/DOWNLOAD Herbar/’

Only for Salix bebbiana Below block of code belongs to Salix bebbiana only,
because the data is processed from Gbif and Idigbio separately.

df=pd.read pickle(’/Net/Groups/BGI/work 1/OBG/Vamsi/Herbarium Download

/pickle files/Salix bebbiana/Salix bebbiana.pkl’)

dfgb=pd.read pickle(’/Net/Groups/BGI/work 1/OBG/Vamsi/Herbarium Download

/pickle files/Salix bebbiana/Gbif/Gbif Salix bebbiana.pkl’)

df.drop duplicates(subset = [’accessuri’],keep = ’first’, inplace = True)

dfgb.drop duplicates(subset = [’accessuri’],keep = ’first’, inplace = True)

AS = df.append(dfgb, sort=False)

AS.drop duplicates(subset = [’accessuri’],keep = ’first’, inplace = True)

AS.shape

Combined Gbif and Idigbio If data from Gbif and Idigbio is combined before
then the file had to be read directly.

#Reading the pickle file

AS =pd.read pickle(rawdatapath)

print(AS.shape)

#Removing the duplicates by accessuri column

AS.drop duplicates(subset = [’accessuri’],keep = ’first’, inplace = True)

print(AS.shape)

#Removing all leading and trailing whitespaces from the given string

AS[’institutioncode’] = AS[’institutioncode’].str.strip()

AS[’catalognumber’] = AS[’catalognumber’].str.strip()

#Replacing all the white spaces with in the string

AS[’institutioncode’] = AS[’institutioncode’].str.replace(" ","")

AS[’catalognumber’] = AS[’catalognumber’].str.replace(" ","")

#Removing all the special characters from the string

AS[’institutioncode’] = AS[’institutioncode’].str.replace(’\W’, ’’)
AS[’catalognumber’] = AS[’catalognumber’].str.replace(’\W’, ’’)

Creating unique ids for each sample like Sample id and Image Id.

AS[’Sample id’] = AS[’institutioncode’].astype(str) + ’ ’ +

AS[’catalognumber’].astype(str)

AS[’Image id’] = AS.Sample id + ’ ’ + (AS.groupby(’Sample id’).cumcount()+1)

.astype(str)

Setting Index and dropping null values in accessuri to avoid errors while
downloading.
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AS.reset index(level = 0, inplace = True)

AS.drop([’index’],axis = 1,inplace = True)

print(sum(pd.isnull(AS[’accessuri’])))

AS = AS.dropna(axis=0, subset=[’accessuri’])

AS.drop([’level 0’], axis=’columns’,inplace=True)

AS.reset index(drop=True, inplace=True)

AS[’Default speciesname’] = Species name

# Saving processed data file

AS.to pickle(processed datapath , compression=’infer’, protocol=4)

Looping through pandas data frame to execute perfect download of images,
creating folders, sub-folders and images with species name, Image id and
Image id respectively.

for index, row in AS.iterrows():

Common name forspecies= row.Default speciesname

parent folder = os.path.join(downloadpath , Common name forspecies)

# Creating the spieces folder, if it is not there

if not os.path.exists(parent folder):

os.mkdir(parent folder)

filename= row.Image id

url = row.accessuri

print(url)

try:

result = requests.get(url, stream=True)

#sleep time between iteration to iteration beacause if we ping the

#same website repeatedly then it does not respond sometimes

time.sleep(4)

if result.status code == 200:

#joining the path to create image id folder with in the species

#folder

child folder = os.path.join(parent folder , filename)

# Creating the image id folder, if it is not there

if not os.path.exists(child folder):

os.mkdir(child folder)

#creating the jpg file with image id

full path = os.path.join(child folder , ’{}.jpg’.format(filename))
#opening the image file and writing the content

with open(full path , ’wb’) as f:

result.raw.decode content = True

shutil.copyfileobj(result.raw, f)

#opening the image file and resizing to the specified

#height and width

try:

image = Image.open(full path)

image = image.resize((1900, 2400))

ImageFile.LOAD TRUNCATED IMAGES = True
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image.save(full path)

#If image file is not there then it automatically iterate

#to the next image

except:

pass

except:

pass

print(’done’)

Below code opens the existing excel sheet and creates the new sheet with specified
columns.

book = load workbook(Excel path)

writer = pd.ExcelWriter(Excel path , engine = ’openpyxl’)

writer.book = book

AS.to excel(writer, sheet name = ’Replace with species name’,

columns=[’accessuri’,’Sample id’,’Image id’], header=True)

writer.save()

writer.close()

A.2 Merging Csvs

Importing requires pacakages

import matplotlib.pyplot as plt

import csv

import os

import pandas as pd

import pickle

from openpyxl import load workbook

Path names and file names

Species name = ’Viola canina’ #defining species name at once

#Path to read all the csvs present at different folders

All csvs path = ’/Net/Groups/BGI/work 1/OBG/DOWNLOAD Herbar/Processed Images

/{}’.format(Species name)
#Below paths required for only option 1

creatingfolder = ’/Net/Groups/BGI/work 1/OBG/Vamsi/Herbarium Download

/csv files/{}/’.format(Species name)
if not os.path.exists(creatingfolder):

os.mkdir(creatingfolder)

mergecsv path = ’/Net/Groups/BGI/work 1/OBG/Vamsi/Herbarium Download/csv files

/{}/merge.csv’.format(Species name)
#For opening excel file and manipulating the data
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Excel path = ’/Net/Groups/BGI/work 1/OBG/Vamsi/Herbarium Download/Excel files

/Species updated/Spieces data 1.xlsx’

#Lat long data file path, i used the processed file of the given species

lldatapath = ’/Net/Groups/BGI/work 1/OBG/Vamsi/Herbarium Download/pickle files

/{}/{} processed.pkl’.format(Species name ,Species name)
#Finaldata path

Finaldatapath = ’/Net/Groups/BGI/work 1/OBG/Vamsi/Herbarium Download

/pickle files/{}/{} finaldata.pkl’.format(Species name ,Species name)

Options to merge all the csv’s available There are two options available to
merge all the available csv’s, they are:

Option 1 Lets use the piece of code (below), if the csv files in not seperated by
the single delimiter. For example, semicolon is the delimiter for some csv files and
comma is another delimiter for remaining csv files, then below code is very helpful
to merge all the csv’s together.

Attention : Since this code simply joins the line with in the csv’s so, if some one
executed the code second time then it automatically joins all the csv lines again
for the existing merge.csv (in the below case) file. While saving the merged csv
file, change the path as required.

with open(mergecsv path ,"a") as fout:

for f in os.listdir(All csvs path):

expected csv path = os.path.join(All csvs path , f, f + ’.csv’)

csv exists = os.path.isfile(expected csv path)

if csv exists:

x = open(expected csv path)

x.readline()

for line in x:

fout.write(line)

x.close()

df = pd.read csv(mergecsv path , header=None,sep=’[;,]’,engine=’python’,

names=[’LeafID’,’type’,’length’,’width’,’area’,’perimeter’,’circularity’,

’parent’])

df.reset index(inplace=True)

df.rename({’index’: ’ImageID’}, axis=’columns’,inplace=True)

Option 2 Irrespective of the option 1, if the csv’s had only separated by one
delimiter then the below code is useful to merge the csv’s. In option 1, the csv file
is saved in some directory but in the option 2 saving the csv file is not required.

df = pd.DataFrame()

for f in os.listdir(All csvs path):

expected csv path = os.path.join(All csvs path , f, f + ’.csv’)

csv exists = os.path.isfile(expected csv path)

if csv exists:
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x = pd.read csv(expected csv path , header=0,delimiter=’;’,

index col=False)

df = df.append(x)

df.reset index(inplace=True,drop=True)

print(df.shape)

Here is the one method that created the more data frames to ensure final data
frame contains all the data. But in another method, one can simply delete every
second row to get rid of petiole length. Comparing both the methods, first method
is the best one to do because no data has to be deleted with first method.

#Creating a dataframe name pl=petiole length with the column name Petiole

#length contains the data of every second row and the lenght column of

#dataframe df

pl=pd.DataFrame({’Petiole lenght’ : df.iloc[1::2,3]})
#resetting the index

pl.reset index(drop=True, inplace=True)

#wpl= without petiole lenght contains every first row and all the columns

wpl=df.iloc[::2,:]

wpl.reset index(drop=True, inplace=True)

#joining wpl and pl gives us the complete initial data of all the specimens

#including petiole lenght (td=total data)

td=wpl.join(pl[[’Petiole lenght’]])

Since part of the ImageID contains the real Image id, so the string split command
is used and created a new column as Image id and dropped some columns ImageID,
LeafId, type, parent which are not at all required for us. Some of the column names
are changed as per the requirements.

Columnsplit=td[’ImageID’].str.split("/", n = 6, expand = True)

td[’Image id’]=Columnsplit[5]

td.drop([’ImageID’, ’LeafID’,’type’,’parent’], axis=1, inplace=True)

td.rename({’length’: ’Leaf lenght’, ’width’: ’Leaf width’, ’area’: ’Leaf area’
,’perimeter’: ’Leaf perimeter’}, axis=’columns’,inplace=True)

Updating the excel file column (Number of leaves measured)

x=td[’Image id’]

count=x.groupby(x.tolist()).size()

count=count.to frame()

count.reset index(inplace=True)

count.rename({’index’: ’Image id’, ’Image id’: ’Number of leaves measured’},
axis=’columns’,inplace=True)

print(count.head())

book = load workbook(Excel path)

writer = pd.ExcelWriter(Excel path , engine=’openpyxl’)

writer.book = book

writer.sheets = dict((ws.title, ws) for ws in book.worksheets)

Spd=pd.read excel(Excel path , sheet name=’{}’.format(Species name))

57



Spd.set index(’Image id’, inplace=True)

Spd.update(count.set index(’Image id’))

Spd.reset index(inplace=True)

Spd.head()

Spd.to excel(writer, ’{}’).format(Species name)
writer.save()

Now the data frame td was merged with the meta data frame based on Image id
to obtain final data frame.

#Doing mean values for the multiple measurements for each sample

td=td.groupby(’Image id’).mean().reset index()

#opening lat long data file

lldata=pd.read pickle(lldatapath)

#Merging based on td

tdf=pd.merge(td, lldata, on=’Image id’)

tdf.to pickle(Finaldatapath , compression=’infer’, protocol=4)

A.3 Extracting features from Soil Grids data set

Importing all the required libraries

import numpy as np

import xarray as xr

import pandas as pd

Filepaths and species name

Species name = ’Salix bebbiana’

#Finaldata path

Finaldatapath = ’path to the file/{}/{} finaldata.pkl’.
format(Species name ,Species name)

Functions for the weighted averages for data arrays and data set There
is no predefined functions to do the weighted mean, so the functions to do the
weighted average was created by me. The functions below are self explanatory.

def average da(self, dim=None, weights=None):

if weights is None:

return self.mean(dim)

else:

if not isinstance(weights, xr.DataArray):

raise ValueError("weights must be a DataArray")

# if NaNs are present, we need individual weights

if self.notnull().any():

total weights = weights.where(self.notnull()).sum(dim=dim)
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else:

total weights = weights.sum(dim)

return (self ∗ weights).sum(dim) / total weights
def average ds(self, dim=None, weights=None):

if weights is None:

return self.mean(dim)

else:

return self.apply(average da , dim=dim, weights=weights)

Defining weights

# Creating the new data array to define the weights

data = np.array([[0],[0.05],[0.15],[0.3]], np.float32)

weights = xr.DataArray(data, dims=(’layer’, ’y’))

Three dimensions of Soil Grids data Some files had dimensions of latitude:
1800, longitude: 3600, levels: 7 and some files with latitude: 1800, longitude:
3600, levels: 9 and others with latitude: 1800, longitude: 3600. It is not possible
to open all the files with different dimensions at the same time, so all the files with
level 7 was opened in data set ds1, all the files with level 9 in data set ds2, all the
remaining files in data set ds3.

ds1 = xr.open mfdataset(’/path to files/∗.7.nc’)
#loading data in to the memory

ds1 = ds1.load()

#Slicing all the data up to level 4

ds1 = ds1.sel(layer=slice(1.0,4.0))

#Computing weighted average

ds1 = average ds(ds1, dim=’layer’,weights=weights)

#Removing the dimension y which was created by us at the creation of data

#array for weights

ds1 = ds1.isel(y=0)

ds2 = xr.open dataset(’/path to files/OCSTHA.SoilGrid.3600.1800.9.nc’)

ds2 = ds2.load()

ds2 = ds2.sel(layer=slice(1.0,4.0))

ds2 = average ds(ds2, dim=’layer’,weights=weights)

ds2 = ds2.isel(y = 0)

ds3 = xr.open mfdataset(’/path to files/∗.nc’)
ds3 = ds3.load()

#Merging all the datasets

ds4 = ds1.merge(ds2)

ds = ds4.merge(ds3)

ds

Extracting features from the Soil Grids data base using the below code.

#Reading the pickle file
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df = pd.read pickle(Finaldatapath)

#Creating empty dataframe

edf=pd.DataFrame()

#Iterating to each row in the dataframe till the end

for index, row in df.iterrows():

latitu=row.lat #reading the lat value

long=row.lon #reading the long value

#Selecting the data based on the above lat long value

x=ds.sel(latitude=latitu,longitude=long, method=’nearest’)

#converting dataset to array values

p=x.to array().values

#Creating the data frame and writing all the values from the above array

some=(pd.DataFrame({’AWCh1’:p[0],’AWCh2’:p[1],’AWCh3’:p[2],’AWCtS’:p[3],
’BLDFIE’:p[4],’CECSOL’:p[5],’CLYPPT’:p[6],

’CRFVOL’:p[7],,’OCDENS’:p[8],’ORCDRC’:p[9],’PHIHOX’:p[10],

’PHIKCL’:p[11],’SLTPPT’:p[12],’SNDPPT’:p[13],

’TEXMHT’:p[14],’WWP’:p[15],’OCSTHA’:p[16],’ACDWRB’:p[17],

’BDRICM’:p[18],’BDRLOG’:p[19],’BDTICM’:p[20],

’HISTPR’:p[21],’SLGWRB’:p[22]},index=[0]))
edf=edf.append(some) #appending all the data in to empty dataframe

edf.reset index(drop=True, inplace=True)

final = df.join(edf)

print(final.shape)

final.to pickle(Finaldatapath , compression=’infer’, protocol=4)

A.4 Extracting features from climate change

data set

Importing required libraries

import xarray as xr

import pandas as pd

Filepaths and species name

Species name = ’Salix bebbiana’

#Finaldata path

Finaldatapath = ’/path to species/{}/{} finaldata.pkl’
.format(Species name ,Species name)

Function to fetch all the Cmip data files (past1000, historical, rcp 6.0)
Every scenario (past1000, historical, rcp 6.0) had different path, so I created a
function to combine all the scenarios in to one file.

def CMIP past histo RC6(variable ,variable past1000 ,variable historical

,variable rcp6):
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#Path for past1000 files

path past1000 = ’path to past1000 scenario/past1000/{}/’
.format(variable past1000)

#if the lenght of the files in the directory is more than one then it

#chooses the line immediately after if condition , in other case

#it choose else.

if len([name for name in os.listdir(path past1000) if os.path.isfile

(os.path.join(path past1000 , name))])>1:
ds past1000= xr.open mfdataset(’/path to past1000 scenario/past1000/{}
/∗.nc’.format(variable past1000),decode times=False)

else:

ds past1000= xr.open dataset(’path to past1000 scenario/past1000/{}/
{} Amon MIROC−ESM past1000 r1i1p1 085001−184912.nc’.format

(variable past1000 ,variable past1000),decode times=False)

ds past1000=ds past1000.load()

# slicing the data from 1678 to 2100 because xarray used another time

#frame before 1678 same as pandas

ds past1000=ds past1000.sel(time=slice(302431,365230))

#we decoded the time because we kept decode times=False opening the file

ds past1000=xr.decode cf(ds past1000)

path historical = ’path to historical scenario/historical/{}/’.
format(variable historical)

if len([name for name in os.listdir(path historical) if os.path

.isfile(os.path.join(path historical , name))])>1:
ds historical= xr.open mfdataset(’/path to historical scenario/

historical/{}/∗.nc’.format(variable historical))
else:

ds historical= xr.open dataset(’path to historical scenario/historical

/{}/{} Amon MIROC−ESM historical r1i1p1 185001−200512.nc’.
format(variable historical ,variable historical))

ds historical=ds historical.load()

path rcp60 = ’/path to rcp6 scenario/rcp60/{}/’.format(variable rcp6)
if len([name for name in os.listdir(path rcp60) if os.path.isfile

(os.path.join(path rcp60 , name))])>1:
ds rcp6= xr.open mfdataset(’/path to rcp6 scenario/rcp60/{}/∗.nc’

.format(variable rcp6))

else:

ds rcp6= xr.open dataset(’/path to rcp6 scenario /rcp60/{}/
{} Amon MIROC−ESM rcp60 r1i1p1 200601−210012.nc’.

format(variable rcp6 ,variable rcp6))

ds rcp6 = ds rcp6.load()

ds=xr.concat([ds past1000 ,ds historical ,ds rcp6],

dim=’time’)

#Removing the dimensions which are not required for us

ds=ds.drop(’lon bnds’)
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ds=ds.drop(’lat bnds’)

ds=ds.drop(’time bnds’)

return ds

Cmip mean deviation Calculation of climate change data set and extracting
climate change features are shown below.

var = [’ts’,’tas’,’tasmax’,’tasmin’,’pr’,’rsds’,’sfcWind’,’prw’]

for i in var:

some = CMIP past histo RC6(i,i,i,i)

#Slicing the data from 1970−2000
mean = some.sel(time=slice(’1970−01−01’,’2000−12−31’))
#Calculating the mean

mean = mean.mean()

#Mean deviation is original dataset minus mean value

mean deviation = some−mean
df = pd.read pickle(Finaldatapath)

df[’datecollected’] = pd.to datetime(df[’datecollected’], utc=True)

.dt.date

edf=pd.DataFrame()

for index, row in df.iterrows():

latitu=row.lat

#Here we need to use plus 180 because cmip long values varies

#from 0−360, but normally we had −180 to 180 in our data
long=(row.lon)+180

tim=row.datecollected

x=mean deviation.sel(lat=latitu,lon=long,time=tim, method=’nearest’)

p=x.to array().values

#print(x)

ext=(pd.DataFrame({’{}(meandev of cmip)’.format(i):p[0]},index=[0]))
edf=edf.append(ext)

edf.reset index(drop=True,inplace=True)

final = df.join(edf)

print(final.shape)

final.to pickle(Finaldatapath , compression=’infer’, protocol=4)

A.5 Extracting additional features

Species name = ’Salix bebbiana’

#Finaldata path

Finaldatapath = ’/Net/Groups/BGI/work 1/OBG/Vamsi/Herbarium Download/

pickle files/{}/{} finaldata.pkl’.format(Species name ,Species name)
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Calculating Draught stress index Draught stress index is equals to actual
evapotranspiration/potential evapotranspiration. How to calculate the draught
stress index by using two data sets in python is shown in the below code.

ds aet = xr.open dataset(’path to the file’)

ds pet = xr.open dataset(’path to the file’)

Draught stress index = xr.Dataset({’Draughtstressindex’ : ((’latitude’,
’longitude’), ds aet[’aet’]/ds pet[’pet’])},

coords=ds pet.coords)

Calculating the mean seasonal amplitudes for climate water deficit and
palmer drought severity index Mean seasonal amplitudes are calculated by
subtracting the maximum monthly mean value and minimum monthly mean value
of the given data as shown in the below code (similar for climate water deficit and
palmer drought severity index).

#Opening all the datafiles for a variable

ds pdsi = xr.open mfdataset(’path to data/∗.nc’)
#Slicing the temporal frequency for 1970 to 2000

ds pdsi = ds pdsi.sel(time=slice(’1970−01−01T00:00:00.000000000’
,’2000−12−01T00:00:00.000000000’))

#Doing monthly mean

ds pdsi = ds pdsi.resample(time=’M’).mean()

#Resampling the data and taking the maximum monthly value

ds pdsi max = ds pdsi.resample(time=’A’).max(’time’)

#Resampling the data and taking the minimum monthly value

ds pdsi min = ds pdsi.resample(time=’A’).min(’time’)

#Creating new data set

ds pdsi amplitude = xr.Dataset({’pdsi amplitude’ : ((’time’,’latitude’,
’longitude’), ds pdsi max[’PDSI’] − ds pdsi min[’PDSI’])},

coords=ds pdsi max.coords)

#Doing mean value

ds pdsi amplitude = ds pdsi amplitude.mean(dim=’time’)

After calculating all the required data sets, the features was extracted as shown
in the section A.3

A.6 Block cross validation

Importing required libraries

import numpy as np

import pandas as pd
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Generating block Lets say block size = 1 degree, so nrows in the below code
becomes to 180, ncols becomes to 360. At the beginning the data (virtual matrix
360∗180) has all zero values. Now all the zero values with range of 0 to 8 has to be
filled, because its a 3∗3 blocks. Now one need to visualize the 360∗180 matrix in
such a way that the whole matrix is divided in to equal 3∗3 blocks and one need
to fill all the 3∗3 blocks with the unique numbers from 0 to 8.

Below code consists of i start in range(3) and j start in range(3) and fill number
with some equation. if we run this part of code it automatically gives the unique
fill number value from 0 to 8 for each iteration. we had the fill number 0 to 8
and we need to fill these numbers in 3∗3 blocks. Coming to data now, we had
definition named fill one number, lets go to the definition to see whats happening
there

def generate block(block size):

nrows = int( 180/block size )

ncols = int( 360/block size )

data = np.zeros((nrows,ncols))

for i start in range(3):

for j start in range(3):

fill number = i start ∗ 3 + j start
data = fill one number(data, i start , j start , fill number , nrows,

ncols)

return data

Visualize the virtual matrix and filling the each indices with some
number Here data is filled with all zeros, i start (0 to 2), j start (0 to 2),
fill number (0 to 8), nrows=180, ncols=360. So the code below iterates for each
possible combination of i start, nrows ; j start, ncols, and fills the number with
fill number in the data. Finally, the data output comes as all the 3∗3 blocks
filled with unique number (0 to 8).

def fill one number(data, i start , j start , fill number , nrows, ncols):

for i in range(i start , nrows, 3):

for j in range(j start , ncols, 3):

data[i,j] = fill number

return data

Final output for the block If the lat long position is specified in the below
definition it automatically gives us the fill number by iterating through the above
mentioned definitions. By using all the above definitions, the block numbers will
be given to all the latitudes and longitudes of digital herbar specimens. This
block numbers is used to split the data in to 9 folds, so the data from each
fold is independent to other fold, this ensures that all the herbar specimens are
independent to each other.

def get index(block, block size , lng, lat):
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irow = int((90 + lat) / block size)

icol = int((lng + 180) / block size)

return block[irow,icol],irow,icol

A.7 Methodological limitations

To solve the general aim of this thesis, there are several methodological challenges.

• Measuring the leaf sizes of herbar specimen is challenging because the Trait
Ex tool used for measuring the leaf sizes of herbar specimen is a
semi-automated tool. So I need to process every specimen by hand.

• Various data sets from different sources (Trait Ex tool, different soil
databases, climate databases and climate simulations) have to be
extracted, harmonized and pre-processed.

• Identifying most influencing environmental controls on the intraspecific
variability of leaf area using machine learning approaches.

• Development of a block selection cross-validation procedure.

• Feature selection will be needed since the number of potential features is
large compared to the amount of data.

What happens if the herbar specimen images are not saved in the well
organized way as shown in Figure A.1?

Trait Ex generates seven output files for each measurement measured. So if I store
all the digital herbar specimens in the same directory then it is hardly impossible
to search for the next correct images (which has to be measured) because of
overcrowded output files. It is not a good practice to search the particular image
in hundreds of output files. So I designed a workflow (saving images as shown in
figure A.1) to overcome the overcrowding output files problem.

Figure A.1: Outlook of file directory

65


	Introduction
	General Idea

	Methods used
	Data acquisition
	Extracting data from Idigbio and Gbif
	Selected species
	Download of images
	Description of Trait Ex workflow
	Effective usage and data organization of Trait Ex
	Extracting features from different databases

	Building a machine learning model to predict the leaf size from features related to environment, climate change and season
	Missing value strategy
	Removing outliers
	Creating customized block cross validation
	Working with different combinations of available data sets
	Feature selection method
	Hyperparameter tuning
	Model Evaluation
	Presentation of results


	Results
	Comparison of Random Forests with Partial Least Square regression
	Goodness of fit for Random Forest model per species
	Predictors on leaf size per species

	Discussion of results
	Trait Ex first user feedback
	Features on leaf size
	Remarks on the extension of this approach to multiple species

	Future work
	Conclusion

	Bibliography
	Appendices
	Herbar specimen download
	Merging Csvs
	Extracting features from Soil Grids data set
	Extracting features from climate change data set
	Extracting additional features
	Block cross validation
	Methodological limitations


