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Abstract

Savanna ecosystems make up a large proportion of land area and play a considerable role

in the storage and cycling of carbon. Vegetation structure is the principle factor control-

ling carbon storage in these ecosystems, as it controls biomass carbon stocks and inputs

to soil. However, vegetation structure in savannas is highly variable in space and time,

depending on local factors such as disturbance (fire and herbivory) as well as regional

factors like climate or nutrient availability. Previously, investigations to quantify vegeta-

tion structure have been limited by the manual field inventories at the plot scale or coarse

spatial resolution satellite data. This paucity of precise vegetation structural data under-

lies our inability to determine trajectories of vegetation change under disturbance regimes

and changing climate scenarios. Additionally, not all the processes influencing vegetation

structural dynamics operate at the same spatial scale, and can not be understood with

the same level of detail (grain).

This thesis addresses these shortcomings by exploring data on fine-scale vegetation struc-

ture in savanna landscapes through the use of structural inventories at multiple scales

from high resolution 3D terrestrial LiDAR and Radar data. Furthermore, this work char-

acterizes the synergy between disturbances, resources and vegetation structure. First, the

response of savanna vegetation structure to long-term fire regimes were investigated across

four distinct savanna types along a rainfall gradient in South Africa. This was achieved

by acquiring 3D data with a Riegl VZ-2000 terrestrial laser scanner across long-term (63

years) experimental burning plots in Kruger National Park (KNP). The results from this

study reveal that the relationship between vegetation and fire are context dependent, and

are strongly influenced by rainfall. Second, knowledge of savanna vegetation dynamics

is often constrained due to sparse landscape scale vegetation inventories that character-

ize the spatial heterogeneity. To enable the characterization of vegetation structure at

landscape scale, we collected 106 long-range scans (>2000 m) from topographic vantage

points and hill-slopes across the entire KNP. In order to validate the accuracy of long-

range scanning in large area monitoring samplings, a canopy height and cover change

matrix with respect to increasing distance from the scanner was produced. For this, we

used reference plots of 1 ha from multiple scans in the footprint of long-range scans. The

relationships were highly significant, and displayed a low RMSE of 1.0 m until 600 m

from the scanner location. Furthermore, despite the decreasing point density, canopy

cover metrics from long-range scans were comparable to those reported from the reference
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plots. The high correlation of biophysical attributes derived from long-range scans allowed

us to trace the trajectories of woody vegetation structure at landscape scale under diverse

ecological settings. The last part of the dissertation discusses the scaling implications of

long-range scanning for training and validating spaceborne Radar imagery for monitoring

of larger areas. Overall this work demonstrates that vegetation responses to long-term

burning regimes differ between savanna landscapes types, and management policies in

protected areas need to take this into account while formulating conservation policies.

Similarly, mapping methods differ in their efficiency at different sites which needs to be

considered when designing mapping protocols in order to accurately reflect the present

vegetation.

Keywords- Savanna ecosystem, vegetation structure, fire-regimes, Terrestrial Laser scan-

ning, scaling, Radar remote sensing
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Zusammenfassung

Savannen-Ökosysteme bilden einen großen Teil der Landfläche und spielen eine wichtige

Rolle bei der Speicherung und dem Kreislauf von Kohlenstoff. Die Vegetationsstruktur ist

der Hauptfaktor, der die Kohlenstoffspeicherung in diesen Ökosystemen steuert, da diese

die Kohlenstoffvorräte und -eintragungen aus Biomasse in den Boden bestimmt. In Sa-

vannen ist die Vegetationsstruktur jedoch in Raum und Zeit sehr variabel, abhängig von

lokalen Faktoren wie Störungen (Feuer und Pflanzenfresser) sowie regionalen Faktoren wie

Klima oder Nährstoffverfügbarkeit. Bisher waren Studien zur Quantifizierung der Veg-

etationsstruktur durch manuelle Feldinventuren im Plot-Maßstab oder grob aufgelösten

Satellitendaten eingeschränkt. Dieser Mangel an genauen Daten geht einher mit un-

serem Unvermögen, Veränderungen der Vegetationsstruktur durch Störungen sowie sich

verändernden Klimaszenarien zu erfassen. Darüber hinaus finden nicht alle Prozesse, die

die Dynamik der Vegetationsstruktur beeinflussen, mit der gleichen räumlichen Auflösung

statt und können somit nicht in der gleichen Detailgenauigkeit verstanden werden.

Diese Arbeit untersucht das Potential von Inventuren der Vegetationsstruktur, welche

auf den Skalen von hochaufgelösten 3D terrestrial LiDAR- und Radardaten durchgeführt

werden. Darüber hinaus charakterisiert diese Arbeit das Zusammenwirken von Ökosys-

temstörungen, Ressourcen und Vegetationsstruktur. Zunächst wurden die Auswirkungen

von langfristigen Feuerexperimenten auf die Vegetationsstruktur in vier verschiedenen

Savannentypen in Südafrika entlang eines Niderschlagsgradienten untersucht. Hierfür

wurden 3D-LiDAR Daten von 63 Jahre bestehenden Feuerexperimente im Krüger-

Nationalpark (KNP) mittels eines terrestrischen Laserscanner VZ-2000 der Firma Riegl

erhoben. Die Ergebnisse dieser Studie zeigen, dass die Beziehung zwischen Vegetation

und Feuer kontextabhängig ist und stark vom Niederschlagsregime beeinflusst wird.

Zweitens ist das Wissen über die Dynamik von Savannenvegetation durch die weni-

gen Vegetationsinventuren auf Landschaftsebene, welche die räumliche Heterogenität

charakterisieren, limitiert. Um die Charakterisierung der Vegetationsstruktur auf

Landschaftsmaßstab umzusetzen, wurden 106
”
long-range scans“ (LiDAR-scans bis zu

einer Entfernung von 2000 m) von topographischen Aussichtspunkten und Hügeln im

gesamten KNP durchgeführt. Die Genauigkeit der
”
long-range scans“ beim Monitoring

auf Landschaftsmaßstab wurde mittels der Änderung der Bestandeshöhe sowie des

Bedeckungsgrades mit zunehmendem Abstand vom LiDAR Scanner validiert. Hierfür

wurden Referenzflächen (jeweils 1 ha) im Footprint der
”
long-range scans“ durch

sogenante
”
Multiple Scans“ aufgenommen. Die abgeleiteten Variablen Bestandeshöhe

und Bedeckungsgrad aus den
”
long-range scans“ und den Referenzflächen zeigen einen

signifikanten Zusammenhang mit einem niedrigen RMSE für die Entfernung von 1, 0

m bis 600 m vom Standort des Scanners. Trotz der abnehmenden Punktdichte in den

”
long-range scans“ waren die Werte der Bestandesbedeckung mit denen der Referenzplots

vergleichbar. Auf Grund der hohen Korrelation zwischen den biophysikalischen Größen

aus den
”
long-range scans“ mit den Referenzflächen ist es möglich, die verholzte Vege-

tationsstruktur auf Landschaftsmaßstab unter verschiedenen ökologischen Bedingungen
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zu ermitteln. Ausgehend von diesen Ergebnissen werden im letzten Teil der Dissertation

die Implikationen der Skalierung von
”
long-range scans“ auf das Training und die

Validierung von weltraumgestützten Radarbildern zum Monitoring größerer Gebiete

diskutiert. Diese Arbeit zeigt, dass die Reaktion der Vegetation auf Langzeit-Feuerregime

unterschiedlich in den jeweiligen Savannenlandschaften ist, was bei der Ausarbeitung von

Managementrichtlinien für Schutzgebiete beachtet werden muss. Ebenso unterscheiden

sich die Kartierungsmethoden in ihrer Effizienz die verschiedenen Standorte zu erfassen,

was bei der Entwicklung von Kartierungsprotokollen berücksichtigt werden muss, um die

aktuelle Vegetation genau wiederzugeben.

Schlüsselwörter - Savannen-Ökosystem, Vegetationsstruktur, Feuerregime, Terrestrisches

Laserscanning, Skalierung, Radarfernerkundung
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2 State of the art and research questions

1.1 Background and motivation

“These steppes were principally covered with the grasses of the genera killingia, cenchu-

rus, and paspalum, which at the season scarcely attain a height of nine or ten inches

near Calabazo and St. Jerome der Pirital, although on the banks of the Apure and Por-

tuguesa they rise to the length of four feet. Along with these were mingled some turnerae,

malvacae, and mimosae. The pastures are richest on the banks of the rivers and under

the shades of corypha palms. These trees were singularly uniform in size; their height

being from twenty-one to twenty-five feet, and their diameter from eight to ten inches..

A few clumps of a species of rhopala occur here and there”. (Travels and Researches of

Alexander von Humboldt, 1833, Chapter 15, Journey across the Llanos from Aragua to

San Fernando)

This quote from Humboldt’s writing wonderfully describes the existence of one of the

complex vegetation structure ecosystem - Savannas. A variable tree cover which sprawls

across continuous herbaceous layer, with diversity in stature and architecture defines the

complex structure of savanna systems (Scholes & Archer, 1997; Ratnam et al., 2011).

Savannas are geographically vast located in the wet-dry tropics of Africa, South America,

Australia and Asia (Scholes & Archer, 1997), occupying roughly an eighth of the global

land surface. Due to the extensive global distribution, savanna ecosystems contribute

significant environmental and economic value to the world. For example, savanna ecosys-

tems store 15% of Earth’s carbon and account for 30% of the global terrestrial net primary

production, equivalent to that of tropical forests (Grace et al., 2006). Additionally, savan-

nas are biodiverse systems, which harbor a range of tree species and fauna (Parr et al.,

2014; Murphy et al., 2016). At present, one-fifth of world’s population live in and around

savannas, and depend on a multitude of savanna goods and services including fuel wood,

food and livestock grazing (Frost et al., 1986; Olsson & Ouattara, 2013).

As human population grows and expands, savanna habitats are increasingly threatened

due to changing land tenure and land-use policies (Galvin & Reid, 2010; Bond & Parr,

2010). A global study by Goldewijk (2001), estimated that in the past three centuries

savanna ecosystems have witnessed largest land-clearing. Furthermore, climatic extremes

such as dry years (Hill & Hanan, 2010), and government driven afforestation initiatives for

carbon sequestration (Ratnam et al., 2016) are a threat to the savanna ecosystems glob-

ally. These changes are likely to alter the vegetation structure and carbon sinks/strengths

of savanna ecosystems. Therefore, to keep these systems sustainable, it is crucial to doc-

ument accurate vegetation structure, carbon storage and long-term change trajectories.

This information can assist better policy decisions, land holders and non-government

organizations in the management of savanna lands. Consequently, systematic mapping

approaches at suitable scale and frequency is a key to advance vegetation structure re-

trievals in savanna systems, and our ability to predict the future changes.

Motivated by the significance of savanna systems in mediating terrestrial ecosystem func-

tioning and services, this study is geared toward a better understanding of savanna struc-
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ture and function. More specifically this thesis unites two strands of knowledge - method

development for characterizing savanna vegetation inventories from high resolution remote

sensing data sources, and subsequently realizing the power of derived products in unrav-

elling savanna vegetation dynamics and function. It presents the distribution of savanna

vegetation structure from plot to regional scales, as well as the influence of changing land-

use patterns, rainfall and soils on vegetation structure and their contribution to carbon

cycle.

In the introduction, background information on biotic and abiotic factors controlling

savanna vegetation structure is presented. Later, a short introduction on the estimation

of savanna vegetation structure by remote sensing methods are discussed. The last part

of the introduction presents the main objectives and structure of the whole thesis with a

short overview of each chapter’s contribution.

1.2 Biotic and abiotic determinants of savanna structure

Many who have glanced at savanna landscapes have wondered about their architecture and

form. Why aren’t savannas complete forest or grasslands? And why does heterogeneity

vary between landscapes? Scientific interest in the vegetation heterogeneity of savannas

dates back to Charles Darwin who wrote about the complexity of savanna structure while

en route to South America-

“The general and entire absence of trees in Banda Oriental is remarkable. Some of the

rocky hills are partly covered by thickets, and on the banks of the larger streams, especially

to the north of Las Minas, willow trees are not uncommon. Extremely level countries,

such as the Pampas, seldom appear favourable to the growth of trees. It has been inferred

with much probability, that the presence of woodland is generally determined by the annual

amount of moisture; yet in this province abundant and heavy rain falls during the winters;

and the summers, though dry, is not so in any excessive degree. We see nearly the whole

of Australia covered by lofty trees, yet that country possesses a far more arid climate.

Hence, we must look to some other unknown causes.”(Charles Darwin, 1839, Voyage of

the Beagle, Chapter 3)

As observed by Charles Darwin, vegetation assemblages in savanna ecosystems are dy-

namic and spatially heterogeneous (Jeltsch et al., 1998). Which factors, and to what

extent vegetation structure is constrained, has long been debated. It has been shown that

multiple interacting factors such as climate, fire, herbivory, hydrology and topographic

factors govern the spatio-temporal variability and dynamics in savannas (Tinley, 1982;

Bond, 2008). These factors dominate vegetation structure at multiple spatial scales (Fig-

ure 1.1), and result in varying vegetation patterns at micro, landscape and regional scale

(Gillson, 2004).
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Figure 1.1: Conceptual chart of biotic and abiotic factors influencing savanna vegetation structure at
various scales. The outer box represents the boundary of savanna ecosystems, with climate, topography
and substrate controlling ecosystem structure at larger scales, while interactive controls depicted inside
the box act at smaller spatial scales.

1.2.1 Climate

In the arid and semi-arid regions, where savanna ecosystems mostly occur, climate and

vegetation links are governed through the dynamics of rainfall. Rainfall events regulate

the availability of soil moisture, growth of woody vegetation, and determine the maximum

carrying potential of tree cover at a given site (Woodward et al., 2004). A broad continuum

of rainfall range supports the existence of mixed tree-grass compositions (Lehmann et al.,

2011), spanning from low canopy cover in dry Serengeti grasslands of Africa (300 mmyr-1)

and intermediate canopy cover Oak savannas of northern California (605 mmyr-1) to high

canopy cover in wet mixed tree-grass communities of the cerrado in South America (1500

mmyr-1).

Analogous to the occurrence of savannas in diverse rainfall regimes, one could question

whether there is a rainfall threshold which determines the mixed tree-grass composition

existence. Sankaran et al. (2005), drawing on information from sites across Africa, span-

ning a broad rainfall gradient, identified savanna regions receiving a rainfall in the range

of 150-650 mm yr-1 support a stable mixture of trees and grass layer, as water limitation

prevents occurrence of closed canopies. Within this range, tree cover increases linearly

with the rainfall (Figure 1.2a), and attains maximum canopy cover at 650 mmyr-1. In

contrast, savannas residing in regions with rainfall greater than 650 mm yr-1, become
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unstable systems and are likely to have closed canopies. A similar recent observation by

Staver et al. (2011), highlighted the variations of tree cover across sub-Saharan Africa,

where a bimodal distribution along the rainfall gradient was observed, with presence of

savanna in the regions that received rainfall less than 1000 mmyr-1, while regions receiving

2000 mmyr-1 were forest systems (Figure 1.2b).

Figure 1.2: (a) Derived relationship between woody cover and mean annual precipitation (MAP) at
African savanna sites (Sankaran et al., 2005) (b) Woody cover estimates for Africa showing a bifurcated
distribution with fewer sites in the 50-70% (Staver et al., 2011).

1.2.2 Fire regimes

How do savanna ecosystems attain stable mixed tree-grass compositions in a high rainfall

region? The disturbance based models, proposed by Higgins et al. (2000) and Sankaran

et al. (2005), explain the positive disturbance feedback mechanism for the bi-modality

(Figure 1.2b) and suppression of closed canopies across high rainfall regions. Herbivory,

severe wind-storms and fire regimes are key disturbances which frequently affect the veg-

etation structure in savannas, while at the same time maintaining stable mixtures of trees

and grasses (Levick & Asner, 2013; Bond & Keeley, 2005; Platt et al., 2002).

Fire is one of a suite of drivers which is indelibly etched in savanna ecosystems for billions

of years (Brain & Sillent, 1988), occurring naturally by lightning or more recently through

human activities for fuel wood and livestock grazing (Scott, 2000). The high flammability

of savannas emanate from prolonged dry seasons combined with dead fuel accumulation

which forms conditions conducive to the initiation and spread of fires. In the last 100

years, fires have been used as a management tool in savannas, for maintaining vegetation

in a more open state than otherwise would occur (Parr & Andersen, 2006). From studies

in different savanna systems around the world, we know that fires affect plant communities

by influencing the size-class structure, woody vegetation biomass, and composition. Some
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studies have shown that fire regime effects are minimal (1% decrease in canopy cover) in

arid savannas, while fires in mesic savannas result in a 23% decrease in cover (Bucini &

Hanan, 2007). This suggests that fire effects on vegetation structure can not be considered

in isolation, and are rather governed by climatic context (Lehmann et al., 2011). The fire-

rainfall synergistic effect on vegetation observed in these studies emerge from coarse scale

analysis of vegetation patterns. Hence, quantitative analyses that take into account fire

frequency manipulation over longer time periods are needed to thoroughly characterize

the influence of fire on savanna vegetation heterogeneity.

The consequences of fire for vegetation structure at micro to landscape scales are regulated

by the intensity, season and frequency of fire (Gill, 1975). For example, savanna fires are

fuelled by grass biomass, so rainfall conditions and soil fertility favorable to grass growth

could increase the fire intensity, thus limiting tree populations (Archibald et al., 2010).

Conversely, rainfall conditions may increase the moisture level of fuel-load, which inhibits

fire intensity and allows more trees to escape the fire (Bond, 2008; Staver & Levin, 2012).

Similarly, effects of fires on vegetation structure of savanna ecosystems vary with the

frequency of occurrence. Fires of high frequency limit the transition of tree saplings

to adult size classes through a “fire-trap” mechanism, where tree saplings are forced to

smaller height class woody re-sprouts (Higgins et al., 2000). Fires occurring at longer

time intervals can be more intense, causing a direct decline in the canopy cover of woody

vegetation, and are accompanied by slow demographic changes. Clumping in form of

multi-stem trees and shrubs is one such demographic change (Grady & Hoffmann, 2012),

which is hypothesized as a defence mechanism against fire (Scholes & Archer, 1997).

Whether longer fire return intervals pave the way for increased woody biomass or modify

the structure to more denser canopies needs deeper exploration.

Despite the general acceptance of fire regimes in stabilizing the tree-grass ratio, the emis-

sions resulting from fire regimes remain a major concern. Approximately 85% of the

global savanna lands burn annually (Andela et al., 2017), releasing 1341 Tg of carbon

annually in the atmosphere (Van Der Werf et al., 2017). These emissions are strongly

influenced by the season of burning. For instance, mean monthly fire emissions for 15

year time period (2000-15) were 40% higher in the late dry season than early dry season

burning (Lipsett-Moore et al., 2018). Currently, although there is a considerable effort

in shifting the burning period to the early dry season in some systems, which can help

to abate carbon emissions (Russell-Smith et al., 2013), there is limited evidence to the

effects of modulating fire frequencies in late dry season.

1.2.3 Substrate and topography

Tree-grass mixtures are also driven by the variability in soil texture, which mediates

the hydraulics - run-off, infiltration, water retention and evaporation of the rainfall water

(Rodŕıguez-Iturbe & Porporato, 2007; Fernandez-Illescas et al., 2001; Colgan et al., 2012).

The inverse texture hypothesis proposed by Noy-Meir (1973), relates the effect of soil

texture in arid and semi-arid systems on woody cover. This hypothesis suggests that
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a dry region with coarse sandy soil will support more canopy cover. One belief for the

hypothesis is that coarse sandy soils allow for deeper percolation of soil water due to

capillary movement, which can be accessed by the trees during the period of dry season

(Holdo, 2013). Conversely, fine textured soils have higher water retention capability, but

when they dry out, moisture clings to the tightly bound clay particles, exacerbating water

stress for the vegetation, and keeping the woody cover low (Fensham et al., 2015). On

the contrary, in wet regions, coarse soils are more vulnerable to run-off and leakage due

to low infiltration (Xu et al., 2018). The inverse texture hypothesis thus postulates that

in wet regions, more woody trees persist in the fine textured soil landscapes.

Substrate properties in combination with topography such as hillslopes further amplify

the savanna vegetation patterns by modifying the nutrient availability across the slopes

(Colgan et al., 2012). For instance, during rainfall events on sandy soils, downslope

movement of rainwater can carry salts and and clay at the foot-slope. This accumulation of

salts at the foot-slope, result in the formation of impervious sodic B horizons and seasonal

water-logging, which keeps the woody cover low (Venter and Scholes, 2003). Regardless

of the mechanism, tree-grass mixtures differ depending on edaphic conditions.

1.2.4 Tree-grass interactions

Another avenue by which vegetation pattern and composition in savannas emerges is

through tree-grass interactions. The nature of tree-grass interactions can either facilitate

or suppress plant growth forms, depending on ecophysiological characteristics of tree and

grasses and resource requirements (light, water and nutrients). Water is a limiting factor in

savannas, influencing subsistence mechanism for tree and grasses to coexist together. The

success of tree-grass coexistence results from spatial partitioning of soil water by rooting

depth i.e. utilization of top surface water by grasses, while trees persist by accessing

water in the deeper soil layers (Walter & Burnett, 1971; Ward et al., 2013). Even though

rooting depths of trees and grasses are spatially separated, grass layer can still compete

with trees by up-taking a significant amount of water from upper soil, resulting in a

reduced flow of water to deeper layers (Xu et al., 2015; February et al., 2013). This

below ground competition in tree strata can be lessened by the large spatial expanse of

lateral roots (Schenk & Jackson, 2002). Furthermore, grasses can reduce the growth and

survival of woody seedlings, due to below and above ground competition for light, water

and nutrients. In addition to below and above ground competition, tree-grass interactions

can facilitate each other. For instance, trees may stimulate herbaceous layer growth by

amelioration of harsh environmental conditions, nutrient enrichment, or increased resource

availability (Pugnaire et al., 1996; Ludwig et al., 2004).

This overview indicates the wide range of biotic and abiotic conditions which shape the

savanna vegetation structure. The strong interconnection between the factors is one of the

main reasons why deciphering the extent to which different factors influence the ecosystem

is so complex. Hence, studies which not only consider the isolated effects of these factors,

but also examine the interactive effects, are required.



8 State of the art and research questions

1.3 Woody encroachment and homogenization in savanna land-

scapes

Woody encroachment is a pervasive phenomenon occurring in savannas worldwide over

the last century. It can be defined as proliferation of stem densities and biomass of woody

plants, resulting in open canopy systems switching to impenetrable thickets. Increases in

woody plant cover has been observed in savanna ecosystems of Africa, Australia, North

and South America, Australia, Africa and southeast Asia (Stevens et al., 2017; Murphy

et al., 2014; O’Connor et al., 2014). Expansion of woody thickets create homogeneous

landscapes, which jeopardises the habitat suitability and biodiversity (Parr & Andersen,

2006). For example, in a study across cerrado savannas of South America that has been

experiencing woody expansion for over 30 years, Abreu et al. (2017) reported a decline of

27% in plant species and a 67% loss of endemic species. An increase of woody vegetation

globally across the savannas could be advantageous from a carbon sequestration perspec-

tive, but it may threaten the grazing potential of savanna landscapes, thereby affecting

pastorals and subsistence farmers, and impact on biodiversity conservation.

The underlying causes of woody encroachment are the subject of considerable debate.

Land-use changes via agriculture, urban development, suppression of fire and heavy graz-

ing have been implicated as potential contributing factors (Wigley et al., 2010; Roques

et al., 2001). The classic two-layer root niche separation Walter Hypothesis Walter &

Burnett (1971) gives one possible explanation to this occurrence, suggesting that if the

grass layer is removed e.g. from heavy grazing, it allows more water to percolate into

deeper soil layers, which is preferentially used by woody plants. The spatial rooting niche

separation in not ubiquitous at all the sites. For instance, there was no significant in-

fluence of changing herbaceous density on recruitment of Acacia karoo seedlings in an

arid savanna (Du Toit, 1972). While, at some savanna sites, recruitment of the heavily

encroaching species Acacia mellifera was found to be much more sensitive to rainfall than

to grazing (Kraaij & Ward, 2006).

An alternate hypothesis proposes global drivers such as increasing atmospheric CO2 con-

centrations as a possible explanation responsible for expansion of woody plants in savannas

(Bond & Midgley, 2012). Rising CO2 can drive woody expansion in savannas, through

a number of mechanisms (i) elevated CO2 preferentially favours C3 synthesis relative to

C4 grass layer, thus increasing the growth of woody plants, (ii) rising CO2 reduces the

transpiration rate of grasses, causing more water to percolate in deeper soil layers for the

woody plant growth and (iii) faster escape of juvenile trees from the fire-trap.

A fire regime of higher frequency and intensity is a potent agent in combating woody en-

croachment. Late dry season infrequent fires, which are intense and much larger in spatial

extent could be viewed as an opportunity to lessen the woody proliferation. Consequences

can be seen as positive or detrimental depending on the view point. For example, Higgins

et al. (2012), showed that the effects of fire intensity were greatest for intermediate sized

woody vegetation (1-5 m canopy height), while larger trees (>5 m height) faced negligi-
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ble probability of topkill. There is, however, also a view that because of the interactive

effects of highly intense fire regimes and herbivory, savanna landscapes may experience a

homogenization of the vegetation structure (Smit et al., 2016). Solutions to woody plant

encroachment can not be contemplated from the fire regimes alone, but it should also

incorporate rainfall and topography of the region, and how interactions between these

factors retain the vertical structure of the vegetation.

1.4 Savanna vegetation structure estimation

The aforementioned sections briefly elucidate the dynamics and functioning of savanna

ecosystems, and how climate and land-use changes accelerate the strong biophysical feed-

back. Appraising these changes rely on the accurate and detailed information about

savanna vegetation structure and biophysical parameters at various scales.

Plot and transect scale manual vegetation measurements have been the foundation for

vegetation surveys in savanna ecosystems for over 60 years (Herrick et al., 2005), which

include measurement of vegetation height, fractional cover, biomass and plant species.

With increasing recognition of carbon sequestration potential of savannas, vegetation

surveys in savannas have expanded to long-term plot networks. Long-term plot scale

inventories established in mixed tree-grass communities of South Africa (Biggs et al.,

2003; Siebert & Eckhardt, 2008), northern Australia (Edwards et al., 2003), Brazilian

cerrados (Moreira, 2000) and India (https://lemonindia.weebly.com/research.html) have

enabled to study vegetation dynamics in response to drivers such as fire regimes, grazing

and geology. Though long-term dataset are a valued asset for underpinning many land-

management and policy decisions, vegetation biophysical metrics are constrained to much

smaller spatial scales (<1 ha).

Remote sensing images are a key method to spatially characterize vegetation structure

because of their synoptic view and recurrent mapping capabilities. Optical images are

commonly available remote sensing data, consisting of multiple bands of data, which can

offer different information on vegetation structure characteristics based on its spectral

reflectance. Moderate to coarse resolution multi-spectral optical dataset from Landsat

and MODIS sensors have been successfully used as a consolidated tool for estimating

woody cover extent and changes (Gaughan et al., 2013; Gessner et al., 2013) in savanna

ecosystems. Optical reflectances and their tree cover proxies such as EVI(Enhanced Veg-

etation Index) and NDVI (Normalized Difference Vegetation Index) are highly sensitive

to the photosynthetic parts of vegetation, however in heterogeneous systems, it is dif-

ficult to separate woody cover from the grass layer due to spectral similarities between

tree and herbaceous layer. It is possible to minimize this spectral ambiguity by utilizing

multi-seasonal proxies that can capture the phenological differences between the two plant

forms (Higginbottom et al., 2018; Lu et al., 2003; Roderick et al., 1999). In savannas,

most woody vegetation shed their leaves in dry season, which decreases temporal varia-

tion in optical data derived proxies, as shrubs maintain leaves throughout the dry season
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(Bucini et al., 2010). Besides this, capturing the phenological contrast between the two

plant forms may be impeded by the rainfall and soil variability.

A number of fine resolution vegetation maps have also been generated form optical images

at regional to global scales, such as the global vegetation continuous field product from

Landsat sensor (Hansen et al., 2013). Often derived with less explicit local site informa-

tion, these global Landsat resolution data are unable to provide accurate representation

of vegetation metrics. Furthermore, these global products have limited use in savannas as

the calibration procedure omits smaller trees (<5 m) and shrubs, thereby underestimating

woody cover.

In contrast to optical dataset, Synthetic Aperture Radar (SAR) sensors, which operate in

the microwave region (1mm-1m) of the electromagnetic spectrum, are not saddled by the

mixed reflectances from trees and grasses, are instead sensitive to the vegetation struc-

ture including low biomass savanna systems (Santos et al., 2002). SAR systems actively

transmit microwave energy at different wavelengths and measure the amount of energy

that is returned to the sensor by the underlying vegetation and surface, also known as

backscatter. In the microwave region, a combination of factors such as wavelength, dielec-

tric constant and geometrical properties of vegetation elements permit such an interaction

by SAR backscatter (Woodhouse, 2006). Moreover, in savanna systems, greater diversity

in backscatter interactions are observed due to large variability in size, density and spa-

tial distribution of vegetation. Previous studies on microwave backscattering at various

frequencies and polarizations were found to be sensitive to savanna vegetation structure

(Ryan et al., 2012; Mitchard et al., 2011; Lucas & Armston, 2007). In terms of wavelength,

it is generally understood that longer wavelengths at L and P bands are more suitable for

quantifying woody vegetation structure as the backscatter occurs mostly from branching

elements and stems of the woody vegetation (Le Toan et al., 1992; Mitchard et al., 2009).

However, at shorter wavelengths particularly X- band, radar energy attenuates quickly in

the canopy, before interacting with stems and large branches.

Recent developments in open access SAR data streams from C-band Sentinel-1 (Torres

et al., 2012) and L-band ALOS-PALSAR mosaics (Shimada et al., 2016) have made a step

change in our understanding of savanna vegetation structure gradients across large scale.

Both sensors have the capability of acquiring cross polarized (HV, horizontal sent-vertical

received or VH, vertical sent-horizontal received) backscatter in addition to co-polarized

(HH- horizontal sent-horizontal received, VV- vertical sent-vertical received) data. The

enhanced data collection capabilities resolve trees and grasses distinctly, thus deciphering

the conundrums of actual carbon storage potential of savannas.

SAR backscatter is not a direct measure of carbon storage or aboveground biomass of a

system, but is governed by accurate and sub-optimal acquisition of reference vegetation

biophysical parameters (canopy cover, height), that may be related to it. Most evidence

for savanna biomass at larger scales stem from relating remote sensing proxies to plot-

scale measured vegetation biophysical parameters. However, Staver (2018) points out

predictions at plot scale (<1 ha), suffer from sample size limitations, due to variability in
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vegetation cover and thereby are not representative of inherent heterogeneity in savannas.

Apart from sample size limitations, several fundamental barriers, for instance, sparse,

non-repeatable and biased site selection measurements preclude plot inventories to be

an avenue for ascertaining savanna vegetation structure and trajectory at larger spatial

scales. More objective validation and calibration methods at plot and landscape scale

level can potentially increase the accuracy of remote sensing based products.

The current endeavours to accurately map vegetation structure at plot to regional scale

are on the brink of technology revolution with the advent of LiDAR (light detection and

ranging) (Lefsky et al., 2002; Dubayah & Drake, 2000). LiDAR is an active remote sensing

technology that acquires high resolution 3D data by measurement of light scattering from

vegetation layers. It therefore has the potential to curtail the uncertainties of in-situ

measurements (Mascaro et al., 2011). 3D data acquired from LiDAR sensors consist of

collection of spatially distributed points illuminated along the path of the laser, with

each point representing the distance (range) between sensor and target. Current LiDAR

systems measure distance by using time of flight mechanism, where elapsed time between

between emission of laser pulse from the sensor and time of detection at the sensor is

measured. Another way of calculating distances is by estimating the phase difference

between transmitted and received signal. These distance measurement are converted to a

three-dimensional co-ordinate by using the location and orientation of the LiDAR sensor.

In most of the vegetation mapping applications, pulse ranging LiDAR are employed,

while CW LiDAR are seldom utilized. Additionally, LiDAR systems can also be classified

based on return energy, namely discrete return, which records few returns from each laser

pulse, and full waveform LiDAR, which captures the whole backscatter energy distribution

(Wagner, 2010).

LiDAR focused studies have also exploited the use of intensity and shape of incoming

laser pulses to identify target characteristics. For instance, at 1064 nm wavelength, in a

vegetated landscape, it is possible to differentiate between green and brown biomass as

high intensity laser pulses are retrieved from tree trunks, while clusters of leaves reflect

lower intensity (Yao et al., 2011) laser pulses. This variation in intensity of returns allows

for quantifying distribution and density of canopy elements (Moffiet et al., 2005), which

gives LiDAR remote sensing an edge over other mapping capabilities. While LiDAR has

a demonstrated capacity to support vegetation inventory and monitoring, most work has

been focused on temperate conifer and tropical forest ecosystems, with limited research

in savanna ecosystems.

LiDAR data utilization for savanna vegetation structure mapping date back to early

2000s, with most 3D measurements acquired from large footprint (>10 m) spaceborne

and airborne platforms. Height metrics from large footprint sensors have proven to be

significantly correlated with basal area, aboveground biomass and carbon density of sa-

vannas, owing to the volumetric nature of 3D measurements. Examples include, Gwenzi

& Lefsky (2014), showed the capability of waveform LiDAR to assess vegetation heights in

Oak savannas from large footprint GLAS (Geoscience Laser Altimeter System) on-board
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ICEsat (Ice, Cloud, and land elevation satellite). Goldbergs et al. (2018), demonstrated

that canopy height metrics derived from Riegl LMS-Q560, a full waveform airborne Li-

DAR sensor, correlated to estimates of aboveground biomass across a tropical savanna.

Yet, vegetation in savannas vary widely in structure, composition and architecture, large

footprint LiDAR are unable to resolve the structure of shrubs beneath the canopy.

Terrestrial LiDAR or Terrestrial laser scanner (TLS) is a ground based LiDAR technique

which produces highly dense uninterrupted 3D point cloud within millimetres of accuracy

(Disney et al., 2018). Figure 1.3 shows an example of TLS data from a South African

savanna, acquired during the late dry season. TLS has revolutionized the measurement

capacities from three-dimensional vegetation structure - mean we are now able to identify

and measure the vegetation dimensions unbiased from vegetation structure, distribution

and composition. Therefore, TLS estimates can potentially reduce the uncertainties in

terrestrial carbon stocks of savannas and enable improved calibration and validation of

satellite biomass products.

Figure 1.3: Illustration of terrestrial LiDAR data captured in South African savanna and coloured
according to amplitude. Amplitude is higher for the woody component than the photosynthetic part
of the vegetation.

For application of TLS in the field, it is placed 1-2 m above ground and vegetation is

scanned from multiple locations to capture hectare scale, consistent and greater point

clouds (Wilkes et al., 2017). As the 3D dataset are very large, converting to tree and

plot scale biophysical properties is a major challenge. Several approaches have aimed to

measure key structural metrics at plot scale in forest ecosystems, such as canopy cover,

tree locations, stem density and canopy height (Côté et al., 2012; Dassot et al., 2012;

Pueschel, 2013). Tree level structural attributes can be inferred by reconstructing de-

tailed structure of trees, which provides more accurate estimation of volume and biomass

(Raumonen et al., 2013; Hackenberg et al., 2015). For heterogeneous savanna vegetation,

such reference dataset from TLS are currently unavailable. Few studies in dryland sage-

brush steppe ecosystem of western United States have demonstrated the potential of TLS

in quantifying shrub canopy canopy volume using 3-D convex hull approach (Olsoy et al.,

2014).



1.5 Aims and research questions 13

It is clear from this review that remote sensing imagery acquired from terrestrial, air-

borne or spaceborne platforms have emerged as a vital tool for monitoring and mapping

vegetation structure across ecosystems. The complexity, and consequent difficulty with

mapping of savanna vegetation structure demands that we establish a better synergy of

these available dataset, their spatial scales and at the same time reducing the known

uncertainties.

1.5 Aims and research questions

The main objective of this thesis is to examine woody vegetation structure subject to

land-management and environmental controls in the semi-arid savannas of South Africa.

This thesis also showcases the utility of high resolution 3D data from TLS and Radar

remote sensing dataset in the context of mapping and monitoring savanna vegetation.

Three broad research questions with sub-research questions are addressed in this thesis

and are outlined below. Figure 1.4 describes key topics covered in each research objective

and dataset requirements.

(i) Objective 1 - Analyzing vegetation structure and spatial organization across

fire-regimes

The role of fires as the main driver of vegetation dynamics in savannas, maintaining the

equilibrium between grasses and trees has been documented in several previous studies.

However, studies of the variation in vegetation structure by fire occurrence have been

limited to transect scale analysis, with a limited reliability in documenting whole horizon-

tal and vertical vegetation structural change. My research uses high resolution 3D point

cloud data from TLS across South African savannas for more enhanced understanding of

vegetation structure change subjected to long-term fire-treatments. The use of TLS data,

further enabled the derivation of vertical plant profiles, documenting the level of landscape

homogenization in savannas. By linking variation in woody cover, height, biomass and

vertical profiles to fire management strategies across climatic and geologically different

sites in Chapter-3, we expand our understanding of the role of fires in shaping woody

communities and carbon sequestration potential of savanna systems. In particular, the

following research questions are addressed in Chapter-3 of this thesis:

• How vegetation vegetation structure and above-ground carbon storage respond to in-

creasing fire frequency?

• How does the effect of fire-regimes vary across plot and landscape scale?

• Do differences in rainfall and geology interact with fire-regimes in altering vegetation

structure?

The results and discussions on the above mentioned research questions can be found in

section 3.3 and 3.4.
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Figure 1.4: Framework demonstrating the link between the objectives resulting from this dissertation.
Upper boxes show the different topics and links studied in this dissertation. Colored boxes in the middle
indicate objectives in this dissertation. Grey boxes in the bottom row indicate different data types and
methodologies applied in the different objectives.

(ii) Objective 2 - Characterizing savanna vegetation structural attributes at

landscape scale - method development

Chapter-4 analysis was performed at plot scale(7 ha), with 3D dataset generated from

multiple TLS scanning locations. However, the heterogeneity in woody vegetation struc-

ture also varies along hillslopes to landscape scales. At present, most landscape to regional

scale savanna vegetation mapping rely on extrapolating limited field inventory data com-

prising of height, canopy cover and diameter. The often very limited availability of field

inventory data in savannas lead to errors related to the landscape scale representation

of these sampling plots. In general, field inventory data should meet the following de-

mands:(i) minimal effort, and (ii) Capture several hectares of vegetation structure with

high precision.

While TLS data provides detailed representation of the vegetation structure, TLS does

not provide regional or landscape scale 3D data. The development and availability of

high precision, long-range TLS (LR-TLS) can provide 3D data at much larger scales.

This can lead to the easy deployment and overcome sample size limitations that primitive

TLS scanning suffers from. Such a method suggests for application in savannas, where

there are sparse records of accurate vegetation inventory data. The specific issues to the

application of LR-TLS in extracting savanna vegetation structure are dealt in Chapter-

4 :

• How do structural measurements from LR-TLS degrade with distance from scanner?

• What are the distances over which LR-TLS can reliably extract 3D structural char-
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acterization?

• What are the implications of LR-TLS approach in vegetation monitoring?

The results and discussions on the above mentioned research questions can be found in

section 4.3 and 4.4.

Objective 3 - Assessing spatial patterns of woody structure in a savanna system

with earth observation data

To date studies investigating woody vegetation structure at regional and landscape scale

in savanna ecosystems, have been limited by the accurate ground data for the calibra-

tion and validation of satellite derived AGB datasets. The ground reference data are

collected at different height thresholds over sparsely distributed small size plots (<1 ha),

from which estimations of aboveground biomass and carbon are based. This leads to the

following problems: (i) No meaningful validation- due to sparse distribution of sampling

plots, (ii) vegetation products from different field data sources are hard to compare, and

(iii) uncertainties are not well defined. Therefore, the aim of Chapter-5 is to improve the

estimates of woody vegetation structure at regional scales using the thoroughly investi-

gated LR-TLS for calibration and validation of Radar satellite data. In this part of the

thesis, the following research questions are addressed:

• What is the sensitivity of Radar backscatter at two wavelengths (C and L band) to

long-range scan derived biomass and canopy cover?

• How do differences in height thresholds impact the accuracy of woody vegetation

structure estimations?

• What is the spatial variability of vegetation structure across the landscapes?

The results and discussions on the above mentioned research questions can be found in

section 5.3 and 5.4.

1.6 Outline of the thesis

The thesis consist of six chapters, including this introductory chapter and a brief study

site and instrumentation description (Chapter 2). Chapters 3 to 5 provide answers to the

research questions presented in section 1.5, and outline of chapters with their overarching

goal is presented in Figure 1.5

Chapter 3 examines the effect of sixty-three years of experimental burning on woody

cover, height, carbon storage and vertical vegetation structure across savanna sites embed-

ded in a rainfall and geological gradient. The central aim of this chapter is to disentangle

the vegetation responses to increased late-dry season fire-regimes. Understanding vege-

tation, fire and climate dynamics is important for the effective carbon management in

savanna landscapes. Thus, this chapter recommends fire regime strategies according to

the climate of the site.
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Chapter 4 introduces an approach to estimate savanna woody vegetation at landscape

to hillslope scale from Long-range TLS. This approach was tested on two distinct savanna

sites and validated with thirteen reference measurements.

Figure 1.5: Conceptual representation for the chapters of this thesis in relation to the main objectives
and research questions across various spatial scales. Figure style adapted from Schimel et al. (2019).

Chapter 5 adapts the methodology from Chapter-4 to estimate the landscape scale

vegetation estimates from point clouds. With vegetation metrics extracted from 900 ha

data, extrapolation to regional scale was achieved by using Radar data.

Chapter 6 summarizes the major findings of this thesis and later these findings are

discussed in relation to the research questions. This chapter also gives a brief overview

of the future directions in the savanna ecology with the 3D dataset acquired during this

PhD work.

Each thesis aim chapter (3 to 5) consist of it’s own introduction as well as method section,

as these chapters have different research objectives. Also, these chapters correspond to

complete manuscripts for submission to peer-reviewed journals. This might lead to some

repetitions of the introductory material.

Chapter 3 was published in Ecosphere1, chapter 4 was published in the International
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Journal of Applied Earth Observation and Geoinformation2, and chapter 5 will soon be

submitted for publication3.

1Singh, J., Levick, S. R., Guderle, M., Schmullius, C., & Trumbore, S. E. (2018). Variability in fire-induced
change to vegetation physiognomy and biomass in semi-arid savanna. Ecosphere, 9(12), e02514.

2Singh, J., Levick, S. R., Guderle, M., & Schmullius, C. (2020). Moving from plot-based to hillslope-scale
assessments of savanna vegetation structure with long-range terrestrial laser scanning (LR-TLS). International
Journal of Applied Earth Observation and Geoinformation, 90, 102070.

3Singh, J., Saatchi, S. S, Levick, S. R., Guderle, M., Berger, C & Schmullius, C. Explicit woody canopy
characterisation for improved remotely sensed observations of above-ground biomass in semi-arid savanna. (In
preparation)





Chapter 2

Study site and instrumentation
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2.1 Study Area

The study area of this thesis work is the semi-arid savanna landscapes of Kruger National

Park (KNP), South Africa (23◦98’S, 31◦55’E) (Figure 2.1). KNP is a national reserve

located in north-eastern South Africa that covers an area of almost 2 million ha. The park

encompasses broad ecological gradients, from semi-arid semi-arid north (400 mm mean

annual rainfall) to the mesic south (750 mm mean annual rainfall) (MacFadyen et al.

2018). The long-term MAP is 506.6 mm, where rain occurs mostly between October and

March. Along with the rainfall gradient, KNP has a longitudinal geological gradient, with

granites being dominant in the west which weathers to sandy soils while soils in the east

are clay rich derived from basalt geology (Venter, 1986). The terrain in KNP is fairly flat

(average slope 1.6 ±2.5◦) with few geological formations in the southwestern corner and

eastern border.

Figure 2.1: Location of the KNP with longitudinal geomorphological division and north-south rainfall
gradient.

KNP is comprised primarily of sub-tropical wooded savannas, and consist of diverse

range of vegetation namely, mopane (Colophospermum mopane), knobthorn (Acacia ni-

grescens), marula (Sclerocarya bierra), Combretum species, sicklebush (Dichrostachys cin-

erra) and silver cluster-leaf (Terminalia sericea) (Gertenbach, 1983). Vegetation height

falls in the 2-8 m range, with vegetation taking up the form of single or multi-stemmed

physiognomy.

This work is comprised by three subprojects that were conducted in distinct sites of KNP:
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Analyzing vegetation structure and spatial organization across fire-regimes (Chapter 3),

characterizing savanna vegetation structural attributes at landscape scale - method de-

velopment (Chapter 4) and assessing spatial patterns of woody structure in a savanna

system (Chapter 5). Detailed site, data descriptions and processing are found in the

research objectives chapters.

2.2 Woody vegetation data

2.2.1 Terrestrial laser scanning-3D data

Woody vegetation data for KNP was acquired using Riegl VZ-2000 terrestrial laser scanner

(TLS) during the dry season period of October 2016 (Figure 2.2). Riegl VZ-2000 scanner

covers a vertical field of view of 100° (+60°/-40°) and a 360° horizontal frame scan, with a

measurement rate up to 400000 points per second (Table 2.1) at 1 MHz pulse repetition

rate. At the study site, two scanning mechanisms were adopted (i) multiple scanning

consisting of 15 scans, to achieve a complete and objective coverage of all trees and shrubs

(explained in detail in Chapter 3 section 3.2), and (ii) long-range single scans, to map

landscape scale vegetation structure (explained in detail in Chapter 4 section 4.2). Instead

of relying on the reflectors for the co-registration of 3D scans, the work in this thesis

utilises dead trees, branch nodes and tips as tie points for merging the scans together.

Normally, a set of 6 tie points were matched in every scan. Afterwards, the multi scans

were registered using Riegl’s proprietary software RiSCAN PRO (http://www.riegl.com).

The overall registration accuracy between the merged scans was 0.01 m. Subsequently,

all acquired data were further georeferenced to the coordinate system UTM 36S. Such

transformation was useful for calibrating and validating spaceborne data with the derived

vegetation metrics from TLS.

Table 2.1: Specifications of Riegl VZ-2000 laser scanner (Data source Riegl VZ-2000 data sheet).

Specifications Riegl VZ-2000

Max. vertical field of view (◦) 100
Max. horizontal field of view (◦) 360
Accuracy (mm) at 150m range 8

Points per sec (max) 396000
Beam divergence (mrad) 0.3

Max. resolution (◦) 0.0015

2.2.2 Earth observation data

The work in this thesis relies on earth observation dataset from L-band ALOS-2 PALSAR-

2 and C-band Sentinel-1 SAR sensors. These dataset were mostly utilized to extrapolate

the patterns of savanna vegetation from landscape to regional scale, and to determine

how varying height thresholds can impact the accuracy of mapping. More details can be

found in Chapter 5 section 5.2. The following text gives a brief introduction of the SAR
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Figure 2.2: Riegl VZ-2000 terrestrial laser scanner at a terrestrial vantage point in KNP.

dataset.

ALOS-2 PALSAR-2

ALOS-2 PALSAR-2 1 is acronymed for Advanced Land Observing Satellite, which is a L-

band (23.5 cm) SAR wavelength sensor on-board Japanese Aerospace Exploration Agency

(JAXA). PALSAR-2 is a successor of PALSAR sensor and became operational in the year

2014. PALSAR-2 provides data in a dual (HH and HV) and full (HH,HV,VH and VV)

polarizations in scanSAR (swath width: 250-300 km), fine beam single polarization (FBS)

(swath width: 40-70 km), fine beam dual polarization (FBD) (swath width: 40-70 km)

and full polarimetric (swath width: 20-60 km). The revisit period for PALSAR-2 is 14

days. For the work in this thesis, dual pol FBD scenes in HH and HV polarization with an

incidence angle between 28.6 ◦ to 32.9 ◦ were acquired. The study area is covered by four

scenes: two from November 8, 2015, and two from December 1, 2015. All images were ac-

quired in ascending mode and SLC (Single look complex) data form. Since the cumulative

precipitation for November and December in year 2015 was below the average rainfall in

previous years, we assume SAR data will have minimum influence of soil moisture. Five

processing steps were performed on SLC SAR data- (i) multi-looking, for achieving square

pixels on ground (1 look Range x 5 Azimuth), and derive backscatter intensity, (ii) radio-

metric calibration with a sensor specific calibration factor of -83 dB, (iii) geocoding using

20m digital elevation model (DEM), and (v) topographic normalization.

1In some sections of the thesis ALOS-2 PALSAR-2 SAR sensor has been written as PALSAR-2 or ALOS
PALSAR-2.
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Sentinel-1A

Sentinel-1 is a C-band (5.5 cm) SAR system consisting of two satellite system,

which orbit 180◦, launched in 2014 and 2016 respectively. Sentinel-1 acquires

data in four different modes namely stripmap (SM), interferometric wide swath

(IW), extra wide swath (EW) and wave mode (WV). SM, IW and EW modes

acquire data in dual polarization (https://directory.eoportal.org/web/eoportal/satellite-

missions/c-missions/copernicus-sentinel-1 ). For this study, SAR data acquired in

IW mode in dual polarization (VV and VH) are used. Altogether, 5 scenes

in October 2015 were used in this study. Scenes were downloaded and post-

processed in Google Earth Engine (https://developers.google.com/earth-engine). Google

earth engine uses pre-processing steps implemented by the Sentinel-1 toolbox

(https://step.esa.int/main/toolboxes/sentinel-1-toolbox) to derive backscatter coefficient.

The processing steps were - (i) border and thermal noise removal, (ii) radiometric correc-

tion, and (iii) terrain correction. The final products were resampled to a resolution of 20

m.

This chapter briefly introduced the data requirements for the research objectives per-

formed in this thesis work. Detailed 3D and spaceborne data processing methods can be

found in the respective research objective chapter, where different scanning mechanisms,

statistical analysis and calibration and validation of spaceborne data are explained in

detail.
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Effects of fire regimes on savanna

vegetation structure - A local scale

analysis
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Abstract

Fire plays an intrinsic role in shaping the biophysical attributes of savanna ecosystems.

Savanna fires limit vegetation biomass below their climatically determined potential, but

the magnitude of this effect and how it varies across heterogeneous landscapes is poorly

understood. In this study, we explore woody tree structure and canopy characteristics

across a fire manipulation experiment that has been maintained for 63 years in South

Africa’s Kruger National Park (KNP). Our study design assessed three late dry-season

fire regimes (biennial, triennial and unburnt) across a precipitation gradient (737 - 496

mmyr-1) spanning four different landscapes with a mixture of sandy and clay soils. We

used terrestrial laser scanning (TLS) to quantify tree height, canopy cover, and above-

ground carbon storage across the experimental treatments. Vegetation physiognomy was

influenced by the interaction between landscape and fire frequency. In the absence of

fire, woody height, cover and biomass increased with increasing rainfall. The presence of

fire acted to reduce structure and biomass as expected, but the magnitude of this effect

increased with increasing rainfall. We found minimal difference between the effects of

biennial or triennial burning - except at the wettest site where the triennial fire plots

had half the biomass of those burnt biennially. The rainfall dependent fire-vegetation

relationships shown here provide empirical quantification of top-down constraint by fire

and highlight the challenges of predicting responses to disturbances in these inherently

heterogeneous ecosystems. Robust quantification of 3D structure and dynamics through

terrestrial laser scanning will be useful for constraining carbon stock models and predicting

trajectories of change under future climate and land-use conditions.
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3.1 Introduction

Savannas cover roughly 20% of the world’s dry tropical landscapes (Scholes & Archer,

1997; Murphy et al., 2015). They are critical to the regulation of the terrestrial carbon

cycle and contribute 30% of global net primary production (Grace et al. 2006). Savanna

ecosystems are characterized by a mixed physiognomy that includes a continuous grass

layer mixed with variable amounts of woody cover (Sankaran et al. 2008). Because of

the contrasting response of the two coexisting plant guilds (trees and grasses) to en-

vironmental and climatic variables such as water and light availability, and rising CO2

concentration and temperature, it is challenging to isolate the effects influencing the rela-

tive abundance of these co-occurring life forms. Classical ecological theory such as Walter

two-layer hypothesis, predicts the equilibrium coexistence of trees and grasses due to spa-

tial niche separation, and assumes that grasses use subsurface water while, trees have

access to deeper water reserves (Walter & Burnett 1971; Ward et al. 2013). In addition to

water availability, tree-grass co-existence has been ascribed to the stochastic interactions

between edaphic conditions and consumer control (herbivores and fires) (Coughenour &

Ellis, 1993; Scholes & Archer, 1997; Bond & Keeley, 2005; Levick & Rogers, 2011), how-

ever an ecological explanation for the observed savanna structural intricacy that unites

the characteristics of these factors in space and time is still not available.

Fire exerts strong control on savanna structure, and modification of fire regimes influ-

ences the functioning of savanna vegetation communities (Moreira 2000; Bond et al. 2005;

Govender et al. 2006; Higgins et al. 2007; Smit et al. 2010; Levick et al. 2012). Fire driven

structural changes occur at multiple scales, altering vertical canopy height distributions

and plant basal area at the local scale, and changing the tree-grass balance at landscape

scales. These hierarchically nested structural variations have important implications for

ecological processes, including changes in carbon stocks (Bond et al. 2005; Higgins et al.

2007), nutrient cycling (Pellegrini et al. 2015), hydrology, (Asner et al. 2004; Savadogo

et al. 2007) and wildlife habitat availability (Parr & Andersen 2006). Therefore, studying

the effects of prevailing fire regimes on vegetation structure is integral to understanding

the current changes occurring in these ecosystems, such as loss of large trees and increased

shrub thickening (Levick & Asner, 2013), and for forecasting ecosystem response under

changing climate and land-use scenarios.

Natural and anthropogenic fires in savanna ecosystem account for the vast majority of

global burned areas, with 20% burnt annually (Dwyer et al. 2000; Lehmann et al. 2014),

thus reducing the substantial dry matter (Scholes et al. 1996). Numerous studies corrob-

orate that fire mostly reduces woody biomass and the absence of fire could potentially

transform these landscapes into closed woodlands (Van Wyk 1971; Bond et al. 2005). A

four decade fire manipulation study across the savannas of Kruger National Park, South

Africa, showed that total fire suppression allowed significant increases in woody biomass;

lower fire frequency regime caused smaller increases, but more frequent fires resulted in

greater losses of woody biomass (Higgins et al. 2007). Similarly, Australian estimates

suggest that while the net ecosystem productivity in savannas without fire is 3 MgC
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ha−1yr−1, it is only 1 MgC ha−1yr−1 with fire (Williams et al. 2004), as well as tree di-

versity of mesic savannas in Australia increases where fire is excluded (Lawes et al. 2011),

with few species typically associated with rainforest (Williams et al. 2003). Significant

changes in fire regimes could therefore potentially lead to a biome switch.

Fire limits woody plant demography through its impact on seedling recruitment, growth

and topkill (Higgins et al. 2000; Bond & Keeley 2005; Hanan et al. 2008). Topkill in tree

saplings prevents them from escaping the zone of influence of grass fuelled fires, thus caus-

ing multi-stemmed morphology and reducing the number of larger size classed individuals

(Enslin et al. 2000; Jacobs & Biggs 2001). Similarly, even with some large individuals top-

kill can cause considerable loss of biomass, which can not be quickly regained (Hoffmann

& Solbrig, 2003). The capacity to resprout depends on the interactive effect of character-

istics of the fire regime i.e. frequency, season and intensity (Gill, 1975), bud availability

and their level of protection, and availability of resources (nutrients and water) (Clarke

et al., 2012). Resprouting increases with increasing soil fertility and moisture gradient

which causes canopy and understorey closure rapidly after fire events (Clarke et al. 2005).

In wet (high-rainfall) savannas, where tree-grass competition is reduced due to water

availability, trees can potentially escape the flame zone and gain taller canopies despite

high fire frequency (Levick et al. 2012; Lawes et al. 2011). On the other hand, lower fire

frequencies can result in more intense, destructive burns due to greater accumulation of

fuel load (Govender et al. 2006).

Burn intensity can be experimentally manipulated by selecting the season of the fire, as

well as the return frequency. Early dry season fires are of low intensity and less extensive,

while late dry season burns often produce high intensity fires (van Wilgen, 2009). High

intensity fires can be very effective at reducing encroachment by woody shrubs in the wet

savannas, which opens up the landscape but at the same time such practices result in the

loss of large trees (Smit et al. 2016). Further, the effects of fire regimes on vegetation

structure can vary with geological substrates, through the differential soil and vegetation

patterns that they give rise to (Levick et al. 2012; Smit et al. 2010). In addition, the

vegetation-fire dynamics can be regulated by herbivory which alters the fuel loads, thereby

collectively shifting savanna landscapes towards either grassland or woodland (Asner &

Levick 2012; Pellegrini et al. 2017). However, it is often difficult to characterize the

relative effects of herbivory from other ecological processes, leading to uncertainty about

its relative importance as a driver of vegetation structure across landscapes (Levick &

Rogers 2008; Asner et al. 2015; Davies et al. 2018).

Monitoring with traditional field-based techniques has provided insights into the role of

fire regimes in shaping woody vegetation structure (Enslin et al. 2000; O’Regan 2005;

Higgins et al. 2007; Devine et al. 2015). However, field inventory studies are restricted

to specific plots and rely on sampling strategies such as belt transects or quadrats, which

may not adequately describe the spatial variability of vegetation structure within a land-

scape. In recent years, airborne light-detection and ranging (LiDAR) techniques have

emerged as a key remote sensing technology for advancing the knowledge of vegetation
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structural changes in savannas due to fire (Smit et al. 2010; Levick et al. 2012; Smit et al.

2016). These approaches have enabled the characterization of vegetation organization in

space and time, including canopy position, extent and connectivity (Lefsky et al. 2002).

Nevertheless, in a mixed tree-grass system significant proportion of the vegetation occurs

in short size-classes and resides beneath the overstory canopy. Airborne instruments often

fail to detect the shrub stratum canopy and stem architecture. The effect of the arrange-

ment of fine-scale vegetation elements becomes more critical when examining the effect

of fires on vegetation communities at small and local scales. As such, there is a need to

capture and describe these complex vegetation structures in greater detail.

Terrestrial LiDAR, also referred to as terrestrial laser scanning (TLS), characterizes the

three dimensional (3D) distribution of vegetation structure at high resolution and accu-

racy (Dassot et al. 2011). In doing so, it enables measurement of conventional woody

biophysical parameters with less uncertainties (Calders et al. 2015), and allows for the

creation of new metrics such as canopy density and base height which capture additional

aspects of woody vegetation structure (Newnham et al. 2015). Cuni-Sanchez et al. (2016)

demonstrated the potential of one such new metric i.e vertical plant profiles across a Cen-

tral African savanna-forest mosaic for assessing long-term structural differences among

the vegetation types. These new metrics have provided fresh insights into the distribu-

tion, abundance and diversity of vegetation species. TLS data can therefore be used to

inform conservation managers as to the impacts of fire policies on fine scale changes in

savanna structure.

In this study, we employ advances in TLS technology to capture the 3D structure of woody

vegetation across a long-term fire experiment in Kruger National Park, South Africa.

Our specific research questions (as defined in section 1.5 at page 13) are to explore: (1)

how vegetation structure (average and maximum height, canopy cover) and above-ground

carbon storage respond to varying fire frequencies; (2) does the effect of fire regimes vary

across plot and landscape scale; and (3) how differences in rainfall across the landscapes

interact with fire frequency in altering vegetation structure.

3.2 Study site and experimental design

Our study focused on the Experimental Burn Plots (EBPs) of Kruger National Park

(KNP), a national reserve covering 1.9 million ha in north-eastern South Africa (Fig-

ure 3.1). KNP is comprised primarily of sub-tropical wooded savannas, and consist of

mopane (Colophospermum mopane), knobthorn (Acacia nigrescens), marula (Sclerocarya

bierra), Combretum species, sicklebush (Dichrostachys cinerra) and silver cluster-leaf

(Terminalia sericea) (Gertenbach 1983).

The park encompasses a gradient of increasing rainfall from the semi-arid north (400 mm

mean annual rainfall) to the mesic south (750 mm mean annual rainfall) (MacFadyen

et al. 2018). Soils are heterogeneous and are related to the geomorphological division

between granites in the west, weathering to sandy soils, and clay soils derived from basalt
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Figure 3.1: (a) Location of the four experimental burn plots within Kruger National Park, South
Africa. Differences in vegetation structure along the precipitation gradient. (b) Upper photograph is
from Mopani EBP receiving 496-mm mean annual precipitation (MAP) on basaltic soils. (c) Lower
photograph is from Pretoriuskop EBP receiving 737-mm MAP on granitic soils.

erosion in the east. The EBPs were set up in the KNP in 1954 to study the effects

of fire on vegetation under grazing pressure from herbivores (van Wilgen et al. 2007).

The experiment consists of application of controlled fires at varying frequencies (annual,

biennial and triennial), and seasons (Dry: August and October; Wet: February, April,

and December), on a set of 7 ha plots with four replicates across the four major vegetation

landscapes (Mopani, Satara, Skukuza and Pretoriuskop) of the KNP.

Our study focused on all four EBP regions, stretching from Mopani and Satara in the

north to Skukuza and Pretoriuskop in the south. We investigated two burn strings at

each site, and the selected EBPs spanned 168 ha with differing plant productivity and

physiognomies, caused by the gradients in mean annual precipitation ( Mopane: 496

mm, Satara: 544 mm, Skukuza: 650 mm and Pretoriuskop: 737 mm), geology and soil

types (fertile in Mopani and Satara, infertile in Skukuza and Pretoriuskop) (Biggs et al.

2003). Within each EBP, we evaluated three late dry-season treatments: (i) fire exclusion

(unburnt), (ii) October triennial burn, and (iii) October biennial burn. The late dry-

season fires were considered due to their effect on demographic legacies of current tree

populations (Levick et al. 2015), since between 1941-1996, most management fires in KNP

and surrounding savanna landscapes were concentrated in the late dry season (Govender

et al., 2006).
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Figure 3.2: The TLS scanning setup of the EBPs with solid black dots indicating the scan locations.
Sampling of the EBPs was achieved by placing random circles of 40 m radii depicted with dotted circles.

3.2.1 Woody vegetation data

We mapped EBPs across four landscapes in October 2016 using the RIEGL VZ-2000

terrestrial laser scanner (RIEGL Laser measurement systems GmbH). The RIEGL VZ-

2000 is a multiple return LiDAR scanner which operates in the near infrared spectrum

(wavelength 1500 nm) with a beam divergence of 0.30 mrad. The laser ranging data

were combined with an external differential GPS (accuracy 3 cm), to determine the 3D

location of each laser return. Inertial measurements (roll, yaw and pitch) of the scanner

were collected through an internal compass and inclination sensors. We used a systematic

scanning design, by placing the scanner at 50 m intervals along each EBP, giving a

minimum of 15 scans per EBP (Figure 3.2). These multiple single scans ensured complete

coverage of the vegetation structure within the EBP. However, to reduce the time and

effort required for multi-scan approach (see Liang et al. 2016), we utilized a vehicle rooftop

mount for operating the scanner, with a scanner height of 2.5 m. The LiDAR data for

all the scan positions were collected at 1010 kHz pulse repetition rate and an angular

sampling of 0.02° in both azimuth and zenith direction, ensuring sufficient point density

to enable fine scale description of even smaller woody vegetation.

3.2.2 Point cloud processing

Multiple LiDAR scans of each EBP were first co-registered using the RiSCAN PRO pack-

age (RIEGL GmbH). A coarse registration between the scans was achieved using large

woody trees (branch tips and nodes) as tie points, which were present in all the scans.

Since the LiDAR survey took place in the leaf-off stage at the end of the dry season,

the occlusion of woody trees by bushes and understory from different scan positions was

minimised. The coarsely merged scans were fine tuned by eliminating the translation and
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Unburnt

Figure 3.3: Normalized height distribution of vegetation within a 100 x 30 m transect of the laser
footprint, represented at 5 m height increments. The colour scale from green through red indicates
increasing vegetation height. The panel shows data from biennially (B2-yr) and triennially (B3-yr)
burnt plots, and fire exclusion (unburnt) from the Satara site, with maximum height of 12 m.

rotation errors with a multi-station adjustment (MSA) approach. MSA iteratively ad-

justs the position and orientation of each point-cloud by least square error optimization.

Once the best fit between the scans is completed, the calculated transformation matrix is

applied to all the raw point clouds, to associate them into a common coordinate system.

The standard deviation of the registered scans for all EBPs ranged from 0.01 to 0.02

m. Registered point clouds were then filtered to remove noisy isolated points or those

with low reflectance using the default reflectance filters in RiSCAN PRO. The presence

of noise was often attributed to dust in the atmosphere, wind or edges of the bushes close

to the scanner. Point clouds were then trimmed to include only 3D data within the EBP

region.

The pre-processed LiDAR data were used to derive height normalized point clouds (Figure

3.3), which were subsequently used to produce count frequency rasters by batch scripting

several modules of LAStools (rapidlasso GmbH, 2014; Isenburg (2014)). We computed

height count rasters from 0 m, at every 0.5 m interval of the LiDAR data, and scaled

them to percentage canopy profiles. Woody canopy height was estimated at a step size of

0.05 m to create approximately 8000 X 9000 pixel rasters using the highest ‘z’ coordinate
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among all the LiDAR returns in the corresponding pixel area. The resulting canopy height

grids were hard classified in SAGA GIS (SAGA GIS,2016; www.saga-gis.org), assuming

the LiDAR data between 0.0-0.5 m as ground points, while the points between 0.5-30 m

were categorized as woody vegetation. The reclassified grids were then expressed as the

percentage canopy cover.

3.2.3 Statistical analyses

We distributed eighteen 0.12 ha plots (20 m radius) randomly within the TLS 3D data

of each EBP treatment, totalling 432 sample plots (Figure 3.2), to assess differences

in vertical canopy profiles, cover and height comparisons. The 20 m radius size of the

subplots enabled us to sample large area of the plots and subsequently minimizing the edge

effect. Percentage canopy cover and mean height of each sample plot were computed for

all pixels higher than 0.5 m. We used a one way ANOVA and a Tukey’s post hoc (P<0.05)

test to compare the differences in mean canopy cover and mean canopy height between

areas of fire and fire exclusion (unburnt) in different landscapes. The relationship between

fire frequency and landscape and their effect on woody cover, average and maximum

height were analyzed using linear mixed effects models in R (Team-RCore, 2016), with

the package NLME (Pinheiro et al., 2014). Explanatory variables in the model were fire

frequency and landscape (Mopani, Satara, Skukuza and Pretoriuskop), while the subplots

nested within each treatment replication and landscape were specified as the random

variable. Models with all possible combinations were fitted using maximum likelihood

(ML) method, and were evaluated using Akaikes information criterion (AIC), a model

selection index, which favours both model fit and simplicity (Burnham & Anderson, 2002).

From the AICs, the ∆ AIC score for each model was calculated by comparing them to the

least AIC score model, for assessing the probability of the best-fitting model, where for the

best model ∆ AIC = 0. For each model, we calculated Akaike weights (wI), a normalized

relative likelihoods of the models (Wagenmakers & Farrell, 2004). Next, Akaike weights

were used to calculate the weight of evidence (w+) for each of the explanatory variable

by adding the Akaike weights for all the models in which the explanatory variable was

present (Burnham & Anderson, 2002).

Aboveground biomass at the plot level was estimated from the TLS-data-derived single

predictor variable ‘HXCC’(Colgan et al. 2013) (Equation (3.1)). This equation was

preferred as it is derived from actual weighing of the harvested tree samples and considers

the specific wood density. Furthermore, many of the tree species sampled in this study

are commonly found in KNP.

AGBplot = −11.5 + 25.8HplotXCCplot (3.1)

where H is the mean top-of-canopy height of a plot and CC is the mean canopy cover of

a plot.
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3.3 Results

3.3.1 Shifts in vegetation structure across fire frequencies and landscapes

At the regional scale fire frequency did not significantly influence the average height of

woody plants (F (2, 432) = 0.154, p = 0.85). Analysis of change in maximum height over

all landscapes also revealed a non-significant effect of fire frequency (F (2, 432) = 0.72,

p = 0.48). However, the response of woody cover to fire treatments differed markedly

across the no-fire (unburnt) vs. fire treatments (F (2, 432) = 45.75, p<0.001), with the

highest woody cover observed in the unburnt plots. At the regional scale the effect of

triennial fire treatments was more pronounced in reducing woody cover (11.18%, p<0.001)

than the biennial fires, which led to a decrease of canopy cover by 8.5% per 0.12 ha

(p<0.001).

Landscapes varied in average vegetation height from 1.5 m in northern dry Mopani EBPs

to 4.5 m in southern wet Pretoriuskop EBPs. At the landscape scale, fire frequency had a

divergent effect on average vegetation height. In the southern wet savanna sites, average

height was higher in the biennially burnt plots, whereas in the northern dry savanna

unburnt plots had taller vegetation. Triennial and biennial fire treatments in Mopani EBP

strings led to a significant decrease in average height by 0.34 m and 0.32 m respectively

(F2, 105 = 9.53,p<0.001) (Figure 3.4). In contrast, fire regimes did not significantly

influence the average height in Satara and Pretoriuskop burn plots (Satara: F2, 105 =

0.419, p = 0.65; Pretoriuskop: F2, 105 = 0.917, p = 0.40). However, for Skukuza, the

unburnt plot had 0.40 m less average height than the biennially and triennially burnt plots

(F2, 105 = 3.298,p = 0.040) (Figure 3.4). The variation in average height across the burn

plots was best explained by the linear mixed model when only landscape variable(wI =

0.7,w+ = 0.71) was taken into account (Table 3.1,3.2).

Maximum vegetation height exhibited a varied response to differences in fire frequency

regimes, with taller canopies present in the the annually burnt plots of the wetter southern

EBPs of Pretoriuskop and Skukuza (Figure 3.4). However, the maximum heights observed

in the northern Mopane EBPs were similar across the fire treatments and unburnt plots

(Figure 4 3.4 b). In common with the linear mixed models for average height, landscape

rather than fire frequency, had its most considerable effect on the maximum height of

the woody vegetation (wI = 0.7,w+ = 0.71) (Table 3.1, 3.2). In the Pretoriuskop and

Skukuza wet savannas, the maximum height was 13.89 m and 8.61 m higher than the

drier Mopani EBP strings.

The magnitude of effects of fire frequency on woody canopy cover differed across the sites

and across the productivity gradient. In all the EBPs across the park, woody cover was at

a maximum in the unburnt plots compared to the burnt plots (Figure 3.4). Although both

the northern EBPs lie in the same geological substrate and have similar fire treatments,

woody canopy cover response to different fire frequency varied significantly across the two

regions (Figure 3.4). A Tukey post hoc test revealed that triennial fires were more effective
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Figure 3.4: Average height (a), maximum height (b), and canopy cover (c) in plots subjected to
different burn treatments. B2= biennial, B3= triennial and Unburnt= fire exclusion. Colour shading
indicates the increasing MAP from Pretoriuskop to Mopane.

in reducing the woody cover by 10% in Mopani EBPs, whereas triennial fires in Satara

EBPs reduced the woody cover only by 3.5% as compared to the biennial fires, which had

the effect of decreasing the Satara canopy cover by 6.3%. In Southern EBPs triennial fire

was associated with less canopy, which reduced the canopy cover by 9.29% and 21.9%

for Skukuza and Pretoriuskop respectively. The best model explaining the woody cover

heterogeneity was obtained by fitting the fire frequency and landscape (wI = 0.54) (Table

3.1). Fire frequency (w+ = 0.91) proves to be an important predictor in determining the

woody cover across the different landscapes (Table 3.2). The woody cover in Pretoriuskop

and Skukuza was 13.6% and 7.12% higher than the woody cover observed in northern dry

EBP strings. A contrasting feature observed is that Satara has 6.45% lower woody cover
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Table 3.1: Results from an analysis of the effects of fire frequency and landscape upon three-
dimensional vegetation characteristics at the EBPs in Kruger National Park, South Africa. Results
are the Akaike’s Information Criterion for linear mixed effect models, with * referring to the most
parsimonious model.

Structural parameters Avg height Max height Woody cover

Model Terms AIC ∆ AIC wI AIC ∆ AIC wI AIC ∆ AIC wI

Fire Frequency*landscape 314.08 29.22 0 174.23 30.25 0 421.86 6.43 0.02
Fire frequency+landscape 297.21 12.34 0.01 156.68 12.71 0.001 415.43 * 0.54

Fire frequency 295.43 10.56 0.003 153.95 9.97 0.005 416.30 0.87 0.35
Landscape 248.86 * 0.7 143.97 * 0.7 419.31 3.87 0.07
Null model 286.65 1.78 0.2 146.71 2.73 0.2 420.18 4.75 0.04

Table 3.2: The importance of two variables (landscape and fire frequency) examined as predictors
of average and maximum vegetation height, and woody cover, with * referring to the variables with
reasonable level of support as predictors.

Variable w+

Average vegetation height
Fire frequency 0.004

Landscape 0.71∗

Maximum vegetation height
Fire frequency 0.006

Landscape 0.70∗

Woody cover
Fire frequency 0.91∗

Landscape 0.63

than Mopani strings. High woody cover is reduced by the triennial fire than the biennial

fire at wet sites (Pretoriuskop), whereas fire frequency has a relatively lower effect at dry

sites (Satara) (Figure 3.4).

3.3.2 Vertical vegetation profiles

The structural height distinction between burnt and unburnt plots is demonstrated by

their vertical height distribution profiles (Figure 3.5). In the unburnt treatments, all

the plots except for Satara contained higher frequencies of LiDAR returns from the shrub

layer (0.5 m - 2 m) (Mopani: 10.83%, Satara: 5.535%, Skukuza: 7.49%, and Pretoriuskop:

6.43%). In contrast, plots subjected to fire treatments exhibited a different pattern, with

a reduced percentage of LiDAR returns from the shrub layer.

The response of the vegetation to different fire frequencies was heterogeneous across the

landscapes with higher fire frequencies associated with lower canopy height in the drier

northern EBPs (0.057% LiDAR returns at 5m canopy height in unburnt plot), but with

taller canopies in the wetter southern EBPs (5.8% LiDAR returns at 5 m in unburnt

plot) (Figure 3.5). Finer scale exploration of the vegetation canopy height distributions
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Unburnt

Figure 3.5: Structural responses of woody vegetation height to different fire frequencies as a function
of landscape type.

at the four landscapes revealed contrasting physiognomies, with northern EBPs (Mopani

and Satara) displaying an inverse-J distribution, while that of the southern EBP (Preto-

riuskop) exhibiting a bi-modal height class structure. In all landscapes, the slope of the

vertical distribution profiles decreased with increasing fire frequencies and the shift in the

slope was stronger in the triennial fire regimes than the biennial fires. The two South-

ern EBP sites (Skukuza and Pretoriuskop) have the same underlying granite geology and

geographic proximity, but the 3D vertical canopy profiles for the two sites were entirely

different due to difference in MAP(>100 mm) and vegetation species composition. A

greater proportion of the LiDAR returns from the 4-6 m height class were observed in the

triennial fire regime of Skukuza site, while at Pretoriuskop triennial fires were associated

with less LiDAR returns from the taller canopies. The transition from overstorey height
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class to reduced canopy (shrubs) due to fire varied across the landscapes. The natural

break (inflection) occurred at heights of 1.5 m (Mopani), 1 m (Satara), 1 m (Skukuza)

and 2.8 m (Pretoriuskop). The changes in the shape of the canopy height profiles reflect

a complex dynamic relationship between woody vegetation structure and fire frequency

under different climatic and edaphic conditions.

3.3.3 Aboveground biomass across the sites

The importance of fire regimes versus resources (climate and soil) in shaping the vegetation

was evaluated with woody plant biomass. Fire suppression allowed woody biomass to

accumulate at substantial rates (7-33 tha-1), which increased along the MAP gradient

from north to south (Figure 3.6).

Unburnt

Figure 3.6: Woody biomass in plots subjected to different burn treatments estimated from the
terrestrial LiDAR point cloud data. Results are shown for the long-term experimental burn plots at
Mopani and Satara, the dry savanna and Skukuza and Pretoriuskop, the wet savanna subjected to a
burn frequency of B2= biennial, B3= triennial and Unburnt= fire exclusion.

The difference between the potential biomass (unburnt plots) and actual biomass (burnt

plots) for the rainfall deficit landscapes was very small. At the two dry sites on basalt

geology, annual burning resulted in a loss of woody-biomass carbon (0.5 tha-1). In contrast,

the wettest sites on granite substrate continued to accumulate woody biomass up to 20

tha-1 under the increased fire frequency regime. However, the wettest sites experienced

the greatest aboveground biomass losses during less frequent fire events. Also, for the

Skukuza landscape, which receives 100 mm less MAP than Pretoriuskop, the difference
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between the woody plant biomass generated by the biennial and triennial fires is much

less, while at Pretoriuskop the woody plant biomass in the fire treatments differs by 15

tha-1.

3.4 Discussion

3.4.1 Regional variation in vegetation structure in the absence of fire

At a regional scale the spatial pattern of woody vegetation structure appears to be driven

by the interplay of multiple environmental gradients. In KNP, the east-west geological and

north-south rainfall gradient have been hypothesized to be largely responsible for variation

in woody vegetation structure. While this assumption was true for all 3D vegetation

structure metrics, the differences in their magnitudes were distinct. When we consider the

fire excluded plots of our study, we observe that the northern basaltic regions have shorter

and sparser canopies than the woody canopies of the southern granite substrate (Figure

3.5). The basalt landscapes are characterised by clay soil, which tightly binds moisture

during dry season, resulting in a low water availability (Colgan et al. 2012). Low water

availability has the potential to increase competition between grasses and juvenile trees,

thereby keeping the woody vegetation short. Conversely, granite substrates support taller

woody vegetation because of the competitive edge of trees over grass in terms of deeper

rooting systems with access to more stable moisture reserves (Walter & Burnett, 1971;

Alizai & Hulbert, 1970). Consistent with this observation, the southern granite plots,

which receive 737 mmyr-1 MAP, have 23% more woody cover (Figure 3.4) than the dry

basaltic control plots. The woody cover in savannas increases linearly with MAP, and a

MAP of 650 mmyr-1 and above is sufficient for canopy closure, thus local disturbance such

as fire regimes becomes a key factor in constraining the spatial expansion of the woody

vegetation (Sankaran et al., 2005).

3.4.2 Top-down control by fire in savanna system

The 63 years of prescribed burning across the EBPs of the KNP have led to marked

differences in woody vegetation structure, and our results indicate that the patterns and

processes of vegetation structural change vary at different spatial scales. When aver-

aged across the four experimental sites (Mopane, Satara, Skukuza and Pretoriuskop),

fire frequency had no significant effect on average height. At the landscape scale, how-

ever, average canopy height declined in the northern Mopane plots, and increased in the

Skukuza plots, with increasing fire frequency. Differences in average canopy height across

the northern low MAP regions of the park may be due to the confounding effects of

water stress, arising from the increased tree-grass competition, whereby trees produce

shorter multiple stems rather than a single taller stem. It is also possible that different

species respond differently to the fire regimes. For instance, in the Skukuza landscape,

fire treated plots were associated with a greater proportion of LiDAR returns in the 4 - 8

m height classes, and a lower LiDAR returns above 4 m in the fire excluded plots (Figure
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3.4 b and Figure 3.5). Similar findings are reported by Levick et al. (2015), who showed

that the Skukuza fire exclusion regions were associated with shorter vegetation, while a

greater proportion of the taller vegetation was observed in the higher fire frequency. The

vegetation communities in the Skukuza are dominated by Combretum apiculatum, which

Higgins et al. (2007) hypothesized regenerates poorly under low fire frequencies and that

saplings are shade intolerant.

Our study has shown that the effect of fire frequency on woody vegetation structure

differs by region, in relation to rainfall and soil type. For the EBPs in the drier regions

(MAP= 544 mmyr-1) of the park, the maximum height of the woody vegetation was

usually reduced under higher fire frequency conditions, while the wetter southern region

of the park supported taller vegetation canopy under high fire frequency (Figure 3.4

b). Moreover, the wetter sites of KNP possessed much higher canopy cover under a high

frequency burning regime. In the regions of high fire occurrence, fire stimulates the growth

of the plant, in an effort to exceed the flame zone (Bond & Keeley, 2005; Archibald & Bond,

2003). Also, the highest fire frequency considered in our study is burning every 2 years,

which is a sufficient time frame in a wet region to stabilize competition among the trees

and grasses, leading to greater growth and survival of trees (Archibald & Bond, 2003).

However, deriving an understanding from this explanation is not simple as fire intensity is

a linear function of fuel load which increases with increasing MAP (Govender et al. 2006).

For instance, frequent fires lead to a reduction in fire intensity by preventing the buildup

of grass fuel load, thereby facilitating more individuals into the upper height classes and

more canopy expansion. However an additional year in between the successive fires at

a wet site will cause large reductions in the woody canopy cover due to high intensity

fires arising from greater accumulation of the fuel load between the fire events (Figure 3.4

c).

As the rainfall increases from north to south across the reserve, there is a gradual transition

of distribution of vegetation communities. The response of vegetation communities to fire

regimes differs with their adaptation capabilities, in relation to environmental stresses and

herbivory. The complex interactions associated with the plant species and environmental

stresses are evident from the vertical vegetation profiles (Figure 3.5). The vegetation

structure in the northern basalt region is depicted by a flat height class distributions. The

flattened height class distribution or inverse J shaped indicates a strong top-down control

on vegetation structure in the basalts. Basalts weather to nutrient rich soil and support

high herbivory density, which keeps the juvenile trees within the fire-trap and weakens

the larger trees by girdling, increasing their vulnerability to future fire events (Helm

et al. 2011; Moncrieff et al. 2011). Presence of inflection points at 0.5 m and 2 m in the

EBPs distributed across Satara landscape indicate a feedback from the selective foraging

activities of the herbivores, resulting in a patchy distribution of vegetation damage by

fire (Figure 3.5). As such the influence of fire on vegetation structure is sensitive to the

herbivory density (Pellegrini et al. 2017). However, the high nutrient concentration in

basalts leads to increased grass production, high fire intensity and, reduced vegetation
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height (Bond & Keeley, 2005).

3.4.3 Empirical evidence of ‘consumer control’

Our exploration of woody biomass across the experimental treatments contributes to a

more comprehensive understanding of consumer control by fire, which was conceputalized

previously by Bond & Keeley (2005). Our results provide the first quantitative test of this

conceptual model (Figure 3.6). At dry sites, woody biomass was found to be less sensitive

to fire frequency, instead presence of fire alone was more influential in lowering the biomass.

The effect of fire frequency on woody biomass are greater in the wetter sites, where woody

biomass in biennial and triennial burnt plots differed by 10 tha-1. Notable here is the mesic

site Pretoriuskop on granites, where unburnt plots supported up to 33 tha-1 of the woody

biomass and those burned every 2 years retained more woody biomass than those burned

every 3 years. This was unexpected given the role of fire in limiting woody vegetation in

more mesic savannas. Multiple mechanisms may influence the increase in woody biomass

in-spite of frequent burning, including growth of fire-resistant trees, and the plausible

increase in atmospheric CO2 concentrations could increase the chances of trees escaping

fires (Bond et al. 2003; Buitenwerf et al. 2012). Still the large differences between potential

(unburnt plot) and actual (burnt plots) woody biomass at wet sites suggest significant

consumer control on savanna ecosystems.

3.4.4 Limitations and future directions

Recently there have been many vegetation structure models derived from airborne Li-

DAR and spaceborne datasets, to explain the role of fire in shaping savanna systems and

tree-grass balance (Smit et al. 2010; Bucini et al. 2010; Levick et al. 2012, 2015). Given

the KNP’s low to medium woody cover, present remote sensing models cannot account

for impacts of fire on the structure and dynamics of dual layering or sub-canopy woody

vegetation. In turn, TLS measurements provided dense 3D point clouds, capturing the

high degree of heterogeneity inherent across the EBPs and enabled us to quantify the

structural features accurately. Savannas exhibit complex vegetation structure with sub-

stantial seasonal variations between trees and grasses (Archibald & Scholes, 2007), so TLS

mapping should ideally be conducted in leaf-off periods to prevent occlusion by grasses

and shrubs. Our use of TLS point cloud data and high resolution canopy height profiles

has provided some useful insight into savanna woody vegetation spatial patterns emerging

from fire regimes and landscape interaction at the plot scale. However, there is much more

to be learned from the 3D metrics in terms of woody canopy architecture and biomass

allometry.

We have focused heavily on the effect of fire frequency at small and site-specific scales,

and acknowledged the interaction of fire with a single determinant landscape as a function

of rainfall. It is likely that the interactive effects of fire regimes and herbivory abundance

may vary the woody biomass significantly. Also, despite the large spatial extent of each

burn treatment, plot-based experiments fail to depict the stochastic relationship between
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disturbance regimes, and environmental and topographic processes (Levick et al. 2012;

Staver 2018). Therefore, we recommend the integration of 3D inventory metrics with

broader-scale remote sensing analyses to achieve a comprehensive model that accounts for

the productivity of savanna systems under a wide range of topographic and bio-climatic

conditions. However, a single regional model can not adequately represent savanna woody

vegetation characteristics at a global scale. In our study, relationship between moisture,

fire regimes and woody vegetation structure vary across the four landscapes of KNP

(Figure 3.5). Differences in these relationships reflect the greater role of region specific

climate, phenology, growth rates, canopy architecture, and biomass allometry of woody

taxa in determining the structure of savanna vegetation. Similarly, Lehmann et al. (2014),

predicted net decrease in African woody biomass from a single global model, whereas

the regional model predicted a net increase. Thus any such extrapolation to a global

scale must incorporate the evolutionary and environmental differences of each regional

ecological setting, to underpin the trajectories of change in vegetation to future climate,

with implications for global carbon stocks.

3.4.5 Implications for management

The fire induced changes reported here in both the vertical and horizontal components

of the woody layer highlight the large influence that land managers can exert on savanna

vegetation through alteration of fire frequency. Our findings show that through long-term

biennial and triennial burning in the Mopane landscape, diverse woody structures are

being transformed to short homogenized communities together with significant changes

in canopy cover and aboveground carbon storage (Figure 3.5). Frequent fires in combi-

nation with browsing will lead to higher abundance of short height class individuals by

preventing woody tree recruitment. Longer fire return intervals could be beneficial to

woody recruitment, but at the same time may serve to suppress canopy height because

of high intensity fires.

A broad spectrum of fixed fire treatments are applied across KNP as a whole, but deeper

investigation is needed to ensure that there is enough variability for trees to escape the

flame zone and attain the upper height class and canopy expansion. Presence of large

trees substantially influences the carbon sequestration potential (Levick & Asner, 2013)

and faunal diversity (Cumming et al. 1997) of the system. Fire managers have been

encouraged to introduce spatio-temporal variability in the fire regime through landscape

scale patch mosaic burning (Parr & Andersen, 2006), but managers have less control

over the total area of the park burnt annually due to the occurrence of unplanned fires

(van Wilgen et al. 2014). Increased woody cover of the mesic Pretoriuskop sections of

the southern granitic substrate is of growing concern, yet it is an area with one of the

highest fire frequencies in the park. Importantly, it is not just variation in frequency

that is needed, but variation in fire intensity, with infrequent hot fires needed to combat

thickening (Smit et al. 2016). Stratifying ignition locations by catchment and hillslope

position could result in a more diverse spatial pattern of fires over time (Levick et al.
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2012).

Lastly, our findings here provide useful quantification of the degree to which different fire

regimes can suppress above ground carbon storage, and how this changes with spatial

context. These trends are of global significance, at a time when many countries hosting

the savanna biome are contemplating carbon sequestration initiatives (Russell-Smith et al.

2013; Bradshaw et al. 2013; Lipsett-Moore et al. 2018).

3.5 Conclusions

This study highlights the variable effects of fire-frequencies on vegetation structure across

rainfall and topographic gradient of a savanna system. Though presence of frequent fires

constrained the vegetation structure at dry sites, in wetter savanna sites, fire occurring

every 3 years reduced the woody vegetation more than frequent fires. Fire-regime effects

varied across the landscapes, with stronger influence at granite sites due to presence of

more fuel load than basalt sites. Additionally, varying fire frequencies were required

to maintain an open tree-grass coexistence at wet sites, while at dry sites the presence

of fire rather than fire frequency was a stronger explanatory factor in altering woody

vegetation.
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Abstract

Reliable quantification of savanna vegetation structure is critical for accurate carbon ac-

counting and biodiversity assessment under changing climate and land-use conditions.

Inventories of fine-scale vegetation structural attributes are typically conducted from field-

based plots or transects, while large-area monitoring relies on a combination of airborne

and satellite remote sensing. Both of these approaches have their strengths and limita-

tions, but terrestrial laser scanning (TLS) has emerged as the benchmark for vegetation

structural parameterization - recording and quantifying 3D structural detail that is not

possible from manual field-based or airborne/spaceborne methods. However, traditional

TLS approaches suffer from similar spatial constraints as field-based inventories. Given

their small areal coverage, standard TLS plots may fail to capture the heterogeneity of

landscapes in which they are embedded. Here we test the potential of long-range (>2000

m) terrestrial laser scanning (LR-TLS) to provide rapid and robust assessment of savanna

vegetation 3D structure at hillslope scales. We used LR-TLS to sample entire savanna

hillslopes from topographic vantage points and collected coincident plot-scale (1 ha) TLS

scans at increasing distances from the LR-TLS station. We merged multiple TLS scans

at the plot scale to provide the reference structure, and evaluated how 3D metrics derived

from LR-TLS deviated from this baseline with increasing distance. Our results show that

despite diluted point density and increased beam divergence with distance, LR-TLS can

reliably characterize tree height (RMSE = 0.25 - 1.45 m) and canopy cover (RMSE = 5.67

- 15.91 %) at distances of up to 500 m in open savanna woodlands. When aggregated

to the same sampling grain as leading spaceborne vegetation products (10-30 m), our

findings show potential for LR-TLS play a role in constraining satellite-based structural

estimates in savannas over larger areas than traditional TLS sampling can provide.
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4.1 Introduction

Savannas are heterogeneous ecosystems composed of mixed-tree grass communities that

cover 20 % of the global vegetated land surface (Scholes & Archer, 1997). Given their

significant contribution to terrestrial net primary production (1-12 Mgha-1yr-1), savannas

are important for the regulation of the global carbon cycle (Grace et al., 2006). However,

understanding of savanna structural dynamics and their carbon sequestration potential re-

mains limited in the face of global environmental (Williams et al., 2004; Wigley et al., 2010;

Buitenwerf et al., 2012; Stevens et al., 2017) and land-use changes (Archibald et al., 2013).

To effectively implement sustainable land management practices, while at the same time

maintaining a range of tree-grass mixtures for biodiversity conservation, savanna ecosys-

tems warrant comprehensive and timely inventory efforts. Structural information is not

only fundamental to advancing savanna ecological process understanding, but also assists

in the development of baseline information required for global carbon emission agreements

(e.g., REDD+). Therefore, regular monitoring campaigns are necessary to characterize

and map savanna vegetation structure under diverse land-use conditions.

Mapping savanna vegetation structure is challenging due to heterogeneity at hillslope and

regional scales that arises from the interaction of topography, soils, climate and biological

factors (Meyer et al., 2007; Levick & Rogers, 2011; Sankaran et al., 2008; Vaughn et al.,

2015). Most of our current understanding of savanna vegetation structure derives from

field-based measurements using either plots or transects. While such field data can be

scaled to larger extents with remote sensing imagery (Lucas & Armston, 2007; Boggs,

2010), their limited spatial coverage means they may fail to account for variable vegeta-

tion structure across the landscape (Asner et al., 2009; Mathieu et al., 2013). In response,

there has been growing interest in the use of Light Detection and Ranging (LiDAR) to

augment traditional field measurements (Dubayah & Drake, 2000; Lefsky et al., 2002;

Asner et al., 2007) with high-resolution 3D data of vegetation canopies. LiDAR data

can be acquired from spaceborne, airborne or terrestrial sensors, with each sensor meet-

ing different vegetation mapping needs (Urbazaev et al., 2015; Levick & Rogers, 2008;

Staben et al., 2018), improving predictions and minimizing extrapolation errors (Frazer

et al., 2011). A key advantage of airborne LiDAR is wide geographic coverage but detec-

tion of smaller trees and shrubs, which are important components of savanna ecosystem

functioning, is still challenging.

The last decade has witnessed a growing interest in ground-based LiDAR, or terrestrial

laser scanning (TLS), for high precision 3D quantification of vegetation structure. TLS

instruments facilitate unprecedented spatial structure and reflective representation of veg-

etation components, right down to individual branch and leaf scales (Dassot et al., 2012;

Newnham et al., 2015). 3D data collected from TLS is considered to capture a much more

holistic representation of vegetation structure than can possibly be achieved through man-

ual fieldwork, and has successfully been applied as an effective and accurate approach to

calibrate vegetation models (Dittmann et al., 2017; Calders et al., 2018), and define stand

structural diversity (Ehbrecht et al., 2017). Also, metaproperties from TLS such as laser
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returns, intensity and distance can reflect the underlying conditions of the ecosystem

(Paynter et al., 2018). Key geometrical attributes including tree height (Hopkinson et al.,

2004; Strahler et al., 2008), vertical height profiles (Singh et al., 2018) and canopy struc-

ture (Hardiman et al., 2018) can be reconstructed and measured with high accuracy from

TLS data. Besides basic vegetation attributes, TLS point clouds enable non-destructive

approaches to quantify canopy and stem volume, which reduces uncertainties in biomass

estimations that arise from conventional inventory methods. (Calders et al., 2015; Disney

et al., 2018; Stovall et al., 2018; Gonzalez de Tanago et al., 2018).

Realisation of the ecological importance of the 3D information that TLS provides has led

to optimisations in data acquisition and processing. The acquisition of single scan TLS

measurements offers a rapid and efficient means of characterizing vegetation structure

(Liang et al., 2016), due to reduced field effort and faster post-processing, thereby enabling

data acquisition at a greater number of sampling points. Single scan approaches have been

successfully used for the estimation of canopy cover (Muir et al., 2018), wood volume

(Astrup et al., 2014), basal area measurement (Seidel & Ammer, 2014) and vertical plant

profiles (Calders et al., 2014). However single scan approaches can physically only sample

one side of a tree and are more prone to occlusion of distant vegetation by the foreground

elements (Strahler et al., 2008; Hilker et al., 2010; Wilkes et al., 2017). The degree

of occlusion within a single scan is influenced directly by the vegetation structure, tree

stand density and plot size (Olofsson & Olsson, 2018). A systematic multiple scanning

approach with subsequent co-registration of scans reduces this occlusion effect (Wilkes

et al., 2017), and has been shown to produce improved accuracy of vegetation structural

metrics (Calders et al., 2015; Saarinen et al., 2017). The additional setup time and logistics

associated with multiple position scanning (Wilkes et al., 2017) can lead to similar to that

required for manual field inventories of vegetation structure (Newnham et al., 2015), and

this often constrains the TLS measurements to plot-scales (<1 ha).

Much of the progress to date in TLS measurement of vegetation structure has taken place

in temperate and tropical forested systems. As such, the sampling range of common

TLS sensors has not been considered a limiting factor, since field of view seldom exceeds

sensor range. In open systems like savannas, field of view can greatly exceed the sampling

range of common TLS sensors. However recent break-throughs in time-of-flight LiDAR

sensor technology have dramatically increased the usable sampling range of TLS sensors,

with some providers now offering ranges of up to 6000 m (e.g. Riegl VZ-6000). These

instruments have the potential to map entire hillslopes from a suitable vantage point

with a single scan approach, allowing capture of data at 10-100’s ha scales. Long-range

terrestrial laser scanning (LR-TLS) necessitates trade-offs between laser energy and pulse

frequency, where increasing pulse energy subsequently reduces the laser pulse frequency

and increases scanning time. Although laser beams are coherent light energy, most sensors

are subject to a degree of beam divergence, meaning that the width of the beam (footprint)

increases with distance from the scanner. Over the short distances typical of plot-based

TLS approaches this is of little consequence, but understanding the effects of beam diverge
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on retrieval of vegetation structure parameter becomes important when considering long-

range scanning.

In this study, we aimed to assess the potential of LR-TLS scans for extracting key struc-

tural attributes of savanna woody vegetation at hillslope scales. Specifically, we explore

how structural measurements from LR-TLS degrade with distance from the scanner, and

identify the distances over which LR-TLS can be reliably used for 3D structural charac-

terization. Also this study highlights the implications of long-range scanning.

4.2 Methods

4.2.1 Study area

This study was conducted in the semi-arid savanna landscapes of Kruger National Park

(KNP), South Africa (23◦98’S, 31◦55’E) (Figure 4.1). KNP is a national reserve located in

north-eastern South Africa that encompasses an area of almost 2 million ha. We focused

on two sites in the south-western part of the park, using natural vantage points at Math-

ekenyani and Stevenson Hamilton lookouts (Figure 4.1). The areas around these vantage

points comprise of flat and low slope terrain that are dominated by the short height class

and broad canopies of semi-deciduous Combretums and Accacia nigrescens, which occur

in a matrix of evergreen Euclea divinorum (Gertenbach, 1983). Woody canopy cover

ranges from as low as 20% to near closed canopy cover of 50% across dispersed trees and

shrubs, and closed woodlands of more than 80% cover in riparian areas (Table 4.1). The

region has a mean annual rainfall of 550 mmyr-1, most of which falls between October and

March (MacFadyen et al., 2018). Soils in most of the south-western KNP are derived from

granite substrates which are nutrient-poor, and exhibit significant catenal variations from

deep sand and loam on upland to duplex sodic soil on bottomlands (Venter, 1986).
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Figure 4.1: (a) Location of the two sampling landscapes (shown with black circles) in Kruger National
Park, South Africa. The rightmost panels show examples of 2D LiDAR data from the two sites, with
the level-plots describing vegetation heterogeneity. Mathekenyani and Stevenson sites are shown in (b)
and (c) respectively.

Table 4.1: Characteristics of two study landscapes located in Kruger National Park, South Africa.
Canopy cover and slope are calculated from the multi-scan TLS data.

Site Plot Canopy cover(%) Elevation (m) Understorey Slope (◦)

KNP Mathekenyani 52.21 12 Little 1.95
KNP Stevenson 37.7 25 Little 3.13

4.2.2 Terrestrial LiDAR sampling at landscape and plot-scales

Both sites were mapped in October 2016 (late dry season) using a Riegl VZ-2000 terrestrial

laser scanning system (RIEGL Laser Measurement Systems GmbH). The RIEGL VZ-2000

is a multiple return long-range 3D scanner, which operates in the near-infrared spectrum

(1550 nm) and produces a beam divergence of 0.35 mrad. The instrument provides the

3D information at a rate of 400,000 measurements sec-1, and the measurements can be
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obtained up to a distance of 2500 m on a natural surface. The inclination sensor provides

rotation matrices (roll, yaw and pitch) of the scanner, allowing for accurate projection of

the laser pulses. To improve the accuracy of the 3D positioning, LiDAR laser ranges were

combined with an external differential Leica GS14 GNSS GPS (accuracy <3 cm).

The landscape scanning design consisted of acquiring single long-range scans from elevated

vantage points. Scans were taken with an azimuth and zenith range of 180◦ and 100◦

respectively. The scanner settings were the same at both sites and are summarised in

Table 4.2. This scanning setup resulted in a mean point density of 158.6 per m 2 at 100

m to 6.02 laser returns per m 2 at a distance of 600 m.

15
-2

5m
 

100m 

200m 

LiDAR point density with increasing distance per m2 

100 m 600 m 

158.6 65 29.44 18.22 6.09 10.7 Scanner 

Figure 4.2: Conceptual representation of the long-range scanning set-up adopted in this study. The
black outlined squares indicate the multi-scan reference plots positioned 100 m apart from each other,
and overlaid in the long-range scan footprint up to 600 m, with an associated decreases in point density.

Table 4.2: Specifications for the RIEGL VZ-2000 scanner utilized for the 3D long-range data acqui-
sition in Kruger National Park, 2016

Beam divergence 0.35 mrad
Pulse repetition rate 50 kHz

Angular sampling 0.02 degrees
Maximum range 1500 m
Acquisition time 35 minutes

In each landscape, we collected reference plots using a multi-scan set-up within equidistant

1 ha areas. Each reference plot was located within the footprint of the LR-TLS scans
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(Figure 4.2). We placed six reference-plots in 100 m intervals up to a distance of 600 m

from the vantage point. The reference-plots were scanned from the four cardinal directions

at 550 kHz, with an angular resolution of 0.02◦. The multi-scan approach captured the

full 3D structure of the plots, providing a level of structural detail that cannot be achieved

through manual field-measurement. As such, we treated these plots as ground-truth data

against which to assess the LR-TLS (Figure 4.3).

4.2.3 Point cloud processing

LR-TLS and reference-plot scans for each respective landscape were co-registered using the

RiSCAN PRO package (RIEGL GmbH), to eliminate the rotation errors between different

scans. A coarse registration between the scans was achieved by using large woody trees

(branch tips and nodes) as the tie points. Fine tuning of translation and rotation errors

within the scans was done by using multi-station adjustment (MSA) approach. MSA

uses iterative closest point (ICP) algorithm to adjust the orientation and position of each

3D dataset, and calculates the best overall fit. The best fit transformation and rotation

matrix are applied to each raw point cloud to associate them to a common coordinate

system. The standard deviation for the distances between merged point clouds ranged

from 0.01 to 0.02 m. The point clouds were post-processed to remove noise occurring due

to partial or false returns from the sky or dust by using the range and deviation default

filters in RiSCAN PRO.

The co-registered LiDAR data points from reference-plots and LR-TLS scans were then

ground classified, and height normalized. Canopy height models (CHM) from normalized

point clouds were generated by selecting the highest ‘z’ coordinate 3D point among all

LiDAR returns within a ‘1 x 1 m’ grid cell, thus converting the 3D data to raster for further

analysis. The resulting canopy height grids were classified in SAGA GIS (www.saga-

gis.org). LiDAR data between 0.0 and 0.5 m was classified as ground points, while all

points above 0.5 m were categorized as vegetation. These classified grids were aggregated

to percentage canopy cover at ‘30 x 30 m’ for every reference and LR-TLS plots. The

number of ‘1x1’ m pixels in every ‘30 x 30 m’ grid with height greater than 0.5 m were

then divided by the total number of ‘1 x 1’pixels in that grid, yielding the percentage

of canopy cover present in each grid cell. For the comparison between LR-TLS and the

reference-plots, difference values were derived by subtracting the value of each pixel of

the LR-TLS raster from the corresponding pixel of the reference-plot raster.

Normalized point clouds were used to produce the LiDAR return counts from 0 m at

every 0.5 m interval of the LiDAR data in LAStools (rapidlasso GmbH, 2014;Isenburg

(2014)). These LiDAR counts were converted to percentage of frequency, and plotted

against canopy height to visualize the vertical vegetation profiles of the landscapes.
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Figure 4.3: Reference-plot example, derived from multi-scan TLS and shown in oblique view with
colour scale representing height above ground level. TLS instruments capture vegetation 3D structural
detail in a holistic manner that cannot be recorded manually in the field.

4.2.4 TLS derived indicators for validation at individual tree scales

3D data collected from LR-TLS and reference-plots were used to estimate structural

parameters for individual trees, such as the plant height (m) and ground projected area of

the canopy (m2). The individual trees and shrubs were extracted from the normalized LR-

TLS and reference-plot scans, using Quick Terrain Modeler(www.appliedimagery.com).

In each segmented tree and shrub, LiDAR measured plant height was determined as the

vertical distance between the highest point and stem base at the ground. The segmented

trees and shrubs were converted to raster form by generating the individual canopy height

models (described in section 4.2.3). Gaussian filtering with varying parameters were

implemented on the individual trees and shrubs to smooth the canopy surface. A standard

deviation of 1 and search radius ranging from 2-5 m was used in the Gaussian filter.

The next step was applying the watershed segmentation, which assumes the presence

of dark pixels in between tree crowns, where dark pixels represent ground surface while

bright pixels represent tree canopies. To reduce the high degree of over-segmentation

within a tree crown, threshold based region merging was implemented to amalgamate

the segments. These segments were later converted to polygons and area geometry was

calculated to extract canopy area. An individual watershed segmentation approach over

plot-scale segmentation was implemented to overcome the high degree of segmentation

within individual trees due to presence of multiple stem allometry.
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4.2.5 Statistical analyses

To evaluate the effect of increasing distance on LR-TLS performance, we distributed 30 x

30 m grid within overlapping footprints of the LR-TLS scans and the reference-plots and

extracted the height and canopy cover metrics. Statistically significant differences among

canopy metrics from LR-TLS and reference plots were determined with a paired-sample

t-test (p <0.05). A linear regression between reference and long-range LiDAR woody

cover and height at plot and individual scale was calculated and model performance was

assessed with coefficient of determination (R2). To account for the error propagation in

the two sites, root mean square error (RMSE) and bias between LR-TLS and reference-

plots was calculated.

Vertical height distribution profiles from the LR-TLS and reference-plots at increasing

distance from the scanner were compared with respect to distribution patterns. To test

whether increasing distance from the scanner had a significant effect on the vegetation

vertical profiles, a two-tailed Mann Whitney U test was performed with a confidence

interval of 0.05. The statistical significance was evaluated at 3 height classes - (i) 0− 2.5

m (understorey and shrub), (ii) 2.5−5.5 m (midstorey) and (iii) 5−8 m (overstorey).

4.3 Results

4.3.1 Vegetation height-class characterisation with LR-TLS

Comparison of the proportional distribution of LiDAR returns by height class showed that

LR-TLS scans were capable of closely replicating the vegetation vertical profile structure

of the savanna landscapes, despite their lower point density (Figure 4.4 and 4.5). A general

trend of increasing divergence between LR-TLS and reference-plot data was observed with

increasing distance of laser ranging.

With a mean woody canopy cover of 52.21 % within the 1 ha reference plots at the

Mathekenyani site, the overall distribution of LiDAR returns at a distance of 100 m from

the LR-TLS was analogous to the reference (t = −1.84, df = 14, p = 0.08) (Figure 4.4).

In general, up to a distance of 400 m, the LR-TLS derived vertical profiles represent a

symmetric distribution with those of the reference-plots (p>0.05, for the 3 height classes).

At 500 m distance, significant differences in point distribution arose in the shortest height

class (p = 0.04, t = −2.92, df = 4), while the relative distribution of points for the two

taller classes was similar between LR-TLS and reference-plots (t = 1.8331, df = 4, p =

0.14).
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Figure 4.4: Comparison of vertical height distribution derived from LR-TLS and reference-plots in
vertical intervals of 0.5 m at increasing distances in the Mathekenyani landscape.

Differences in vertical vegetation profiles in the Stevenson-Hamilton landscape were more

variable across the range of distances explored. Vertical profiles shape was very similar

up to 400 m distance (p >0.05)(Figure 4.5). However, some individual plots showed large

discrepancy between the LR-TLS and reference profiles. For example, at 100 m distance

there was a relatively greater proportion of returns from the mid-storey vegetation in the

LR-TLS profiles than the reference-plot profiles, and deviated across the height range at

distances of 500 m and 600 m (Figure 4.5).
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Figure 4.5: Comparison of vertical height distribution derived from LR-TLS and reference plots in
vertical intervals of 0.5 m with increasing distances in the Stevenson-Hamilton landscape.

4.3.2 Canopy height and cover differences

The overall distribution of canopy heights within the three defined height classes measured

with LR-TLS correlated well with reference-plot metrics, performing better at Math-

ekenyani (R2 = 0.80) than at Stevenson-Hamilton (R2 = 0.54) (Table 4.3) and (Figure

4.6).

The performance of LR-TLS in the estimation of mean canopy height was similar among

the two landscapes, and tended to slightly overestimate canopy height. Mean canopy

height differences between LR-TLS reference-plot values were not statistically different up

to a distance range of 600 m in either landscape (Mathekenyani: p = 0.79, Stevenson: p =

0.26). Underestimation of canopy height was greater (1.62 m difference) where undulating

hillslopes and denser canopy was present, such as at the 500 m plot in Stevenson-Hamilton

landscape, and negligible (0.10 m) on flatter more open sites.
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Figure 4.6: Canopy height (a) and canopy cover (b) differences between LR-TLS and reference-plots
with increasing ranging distance.

Canopy cover estimates from LR-TLS demonstrated high correlation with the reference-

plot data, with slight overestimation in both landscapes (Table 4.4). Differences in canopy

cover estimates increased exponentially with ranging distance, varying from 1 % in the

closer plots to a maximum of 15.43 % in the distant plots (Figure 4.6). Agreement between

LR-TLS and reference-plots was best across plots on flatter terrain.

4.3.3 Individual tree metrics

For individual trees and shrubs, LR-TLS measured canopy heights were linearly correlated

with the reference-plot data in both landscapes up to 400 m ranging distance (R2 =

0.99−0.87, Figure 4.7 a,b). The detection of individual stems, especially shorter-statured

shrubs, declined at distances greater than 500 m in both landscapes, resulting in an
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underestimation of height. The RMSE for the canopy height at the furthest measured

plots (600 m) were 2.44 m and 1.14 m respectively for Mathekenyani and Stevenson-

Hamilton landscapes.

Figure 4.7: (a) Deviation in canopy height, and (b) canopy ground projected area (GPA) with
increasing ranging distance in the two study landscapes. The colour coding represents the linear
interpolation model at different laser ranging distances.

Canopy ground projected area for the individual trees can be determined with high confi-

dence from the long-range scans up to 300 m of distance (R2 = 0.99−0.79, Figure 4.7c,d).

As canopy ground projected area is directly proportional to the point density, strong un-

derestimation in the long-range scans is observed after a distance of 300 m (RMSE>3.05).

The linear regression model between reference and long-range scans differed at two sites,

with the slopes of Stevenson site model diverging the most from the 1:1 reference line after

a distance of 300 m (500 m:R2 = 0.16, RMSE = 10.3;600 m:R2 = 0.12,RMSE = 7.87

Figure 4.7c,d).
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4.4 Discussion

Our results demonstrate the utility of long-range terrestrial laser scanning (LR-TLS) for

quantifying savanna vegetation structural metrics at hillslope-scales. Despite the trade-

offs of long range scanning (reduced point density and increased beam divergence at

longer ranging distances), we found that vegetation structural parameters can be reliably

extracted up to 500 m away with LR-TLS in savanna landscapes, enabling structural

sampling over broader areas that encompass the inherent heterogeneity.

4.4.1 The effect of increased ranging distance on the error propagation

LR-TLS and reference-plot vertical profiles were generally well matched, indicating that

long-range scan observations can account for 3D vegetation structural patterns. The veg-

etation vertical profiles from LR-TLS mirrored the shape of the reference-plot profiles,

with the relationships only degrading at ranging distances longer than 400 - 500 m. This

effect arises from both the increased beam divergence, leading to reduced sensitivity to

finer-scale vegetation elements, and a decrease in point density. We consider the de-

crease in point density to be a function of both the angular sampling resolution of the

scanner, as well as site specific conditions which relate to increased occlusion from fore-

ground vegetation and a loss of ground returns at lower incidence angles at longer ranging

distances.

The reliable performance of height estimation from LR-TLS in our study landscapes was

likely due in part to the presence of sparse canopies, and the clear lines of sight that char-

acterize savanna landscapes. The accuracy of long-range scanning for vegetation metrics

retrieval differed slightly among the two landscapes, reflecting differences in vegetation

physiognomy and terrain morphology. Increased ranging distance from the scanner had

less impact on canopy height retrieval in the Mathekenyani landscape, characterised by

larger trees, than at the Stevenson-Hamilton landscape which was more shrub dominated.

In addition to the distribution of taller trees, differences in canopy architecture due to

leaf shape and branching angles, could have influenced these differences. For instance

frequent crown openings in large tree dominated Mathekenyani landscape allowed deeper

penetration of the laser pulses, and thereby resulting in a low RMSE of 0.32 m at 500 m

distance. Srinivasan et al. (2015) also reported the underestimation of canopy height due

to increasing canopy branching and distance from the scanner. Thus, when employing

single scans for quantifying vegetation metrics, it is important to consider the laser pulse

penetration through canopies to reduce the shadow effects and incomplete sampling of the

vertical profiles. Also, some canopy height measurement error at the Stevenson-Hamilton

landscape occurred as a result of topographic effects, where occlusion from catenal hills-

lope crests caused a reduction in ground returns. At the longer distances of 600 m, this

shadowing by topography can misrepresent the true tree height in the normalisation phase

of the processing chain. This potentially leads to canopy height bias because accurate

representation of the terrain is crucial for calculating the canopy height models.
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These factors discussed above are also relevant for canopy cover estimation, however as

cover is an area based measure further considerations also apply. The high deviation and

RMSE of canopy cover estimates after 400 m can be attributed to the occlusion of lower

strata vegetation, the step size, at which ‘z’ value is interpolated for every output pixel of

the CHM, and the window size for subsequent analysis. Decreased sensitivity to smaller

vegetation individuals and components with ranging distance leads to a cumulative decline

in canopy cover estimates. Usually a step size close to the laser spot size is recommended

for resolving small vegetation individuals (Khosravipour et al., 2014), however we found

that small vegetation elements and understorey plants can not be reliably identified by

keeping the same step size with increasing distance from the LR-TLS. Laser spot size for

Riegl VZ-2000 increases by 0.3 mm per 100 m of range (Riegl VZ-2000 datasheet), and

as such the step size should therefore be adjusted at every 100 m range to account for the

increasing beam diameter. The window size used for subsequent analyses also strongly

influenced the accuracy of canopy cover estimates derived from LR-TLS. We found that

the RMSE and linear regression model fits improved as window size increased from 0.09

ha to 1 ha. Though, Wilkes et al. (2017) describes 10 x 10 m sampling grid as an upper

size limit for characterizing vegetation structure in a homogeneous and closed canopy

sites. However, in heterogeneous savanna landscape, trees are non-uniform in size and

widely spaced, providing enough laser pulse penetration through the sampled area. A

lower perimeter to area ratio in large plot sizes results in fewer plot-edge effect, due to

presence of tree crowns located outside the plot (Levick et al., 2016).

For individual large trees, LR-TLS accurately depicted the structure at ranging distances

up to 400 m. Even small branches were documented at these distances, and the branching

structure was retained in the LR-TLS data (Figure 4.8a). While LR-TLS could charac-

terize the shrub height reliably, the internal canopy structure of shrubs in the farthest

plots could not be differentiated (Figure 4.8b).
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Figure 4.8: An example of height normalized LiDAR returns of a single tree (a) and shrub (b) from
reference-plots and LR-TLS at a ranging distance of 400 m.

.

Underestimation of individual tree height with increased ranging distance was most often

due to the loss of the lower stem architecture and ground points. Denser scan patterns, i.e.

multi-scan approaches, increases the ability to resolve the stem architecture, particularly

towards the ground, and therefore increases the fidelity of canopy height and projected

area estimates. Larger differences in individual tree canopy height and ground projected

area at distances further than 300 m were particularly evident in the Stevenson-Hamilton

landscape, where presence of undulating terrain and a slope of 3.1◦ led to the attenuation

of laser pulses and more occlusion.

4.4.2 Reliable quantification of 3D vegetation structure at hillslope-scales

LR-TLS suitably captured vegetation structural measures such as height, height profile

distribution, and canopy cover at both plot and individual tree scales at distances of up

to 400 m and 500 m in the two landscape we studied. Earlier studies demonstrate the

utilization of TLS based vegetation metric estimation confined only to 0.01-1 ha spatial

scale (Beland et al., 2019). In our study, if we consider 400 m as conservative range for

reliable structural quantification, LR-TLS could theoretically be used to sample 50 ha of
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landscape in a single scan - taking less than 1 hour with the settings used in this study. Of

course this is assuming a full 360◦ scan from a point elevated above the canopy, which is

not feasible in many situations. Nonetheless, even if only 180◦ or 90◦ scanning is possible

- this approach still enables the acquisition of 3D structural data over 10’s ha - scales that

are required to adequately represent the heterogeneity of savanna ecosystems. Even larger

areas can potentially be reliably mapped with the proposed method, if the vegetation is

not obscured by occlusion and if the survey position can be elevated higher above the

canopy. Topographic occlusion in the sampled areas was lowest at the Mathekenyani

landscape, while the 3D point cloud at Stevenson-Hamilton displayed greater occlusion.

The amount of occlusion also varied with vegetation physiognomy and distribution, as

well as the height of the sensor in relation to the landscape. A sparse canopy and a mean

nearest difference of 2 - 3m between individuals was sufficient to prevent the attenuation of

laser pulses in the Mathekenyani landscape. Also, the wider beam diameter at increasing

distance (beam diameter = 0.3 m at 1000 m) from the scanner reduced the penetration

through the understorey. Ducey et al. (2013), suggested that a small beam diameter leads

to a better penetration through low branches and understorey vegetation. Raising the

scanner higher above the canopy layer is the best option for reduce the occlusion effect,

but statistical methods can also be employed to adjust the effects of occlusion (Strahler

et al., 2008; Lovell et al., 2011).

With a high angular resolution of 0.02 degrees, 3D point clouds with a density of >5/m2,

at distances up to 600 m was produced, allowing long-distance scans to capture a large

proportion of the target canopies and tree individuals. Point density diluted exponentially

as the distance to the scanner increased, resulting in a heterogeneous point density. Many

studies have reported that heterogeneous point density from single scanning mode has no

adverse effect on the retrieval of physical attributes such as canopy height and cover (Thies

& Spiecker, 2004; Maas et al., 2008; Moskal & Zheng, 2011), but ours is the first to explore

the consequences over such long distances. Uniform point density is often required for

clustering and classification of 3D points clouds with semi-automatic approaches (Olofsson

et al., 2014), but this could be achieved by sub-sampling the point clouds if needed.

4.4.3 Limitations and future direction for large scale monitoring of savanna vege-

tation

Our use of LR-TLS has provided an alternative method for characterizing savanna veg-

etation structure at hillslope scales. However, we acknowledge a few limitations of this

approach, which should direct new research and method development in this direction.

First, our results may not extrapolate well from open savanna to other vegetation com-

munities. For example, at riparian sites occlusion by dense understorey layers will inhibit

deep laser pulse penetration up to 400 m. Also, performance of the LR-TLS will differ

among flat and undulating terrain, with more bias in canopy height measurements in

landscapes with undulating morphology. In general, occlusion could be reduced by ac-

quiring multiple LR-TLS scans from different positions. Second, our study explored the

efficiency of LR-TLS over two landscapes in open savanna, and a larger sample size will
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be required to ascertain the generality of this method in different systems. Third, our

use of LR-TLS is unique in that the scanner was positioned above the canopy to capture

hillslope-scale 3D data. We had the advantage of the elevated vantage points, but at other

sites alternatives such as elevating tripods or vehicle roof top mounts can be explored.

Lastly, the individual plant scale analysis required a high degree of manual processing to

extract single trees from the point cloud data. Although much progress has been made

on automating these tasks in forested systems (Burt et al., 2018), these techniques need

further development before they can be successfully applied to savanna tree structures

which are more complex. This opens up the possibility of testing various automatic seg-

mentation approaches for single tree extraction from LR-TLS, and subsequently realizing

the potential of open access tools such as ForestR (Atkins et al., 2018) in defining the

vegetation complexity.

In the next few years, vegetation structural information will be available from a number

of satellite missions, including L - and S-band SAR (NISAR), P-band SAR (BIOMASS),

spaceborne ISS-mounted LiDAR (GEDI) and ICESat-2. These products will facilitate

mapping at regional and global scales, and will compliment the availability of open-

access and high spatio-temporal resolution imagery from the Sentinel platforms - providing

very valuable opportunity for fine characterization of savanna vegetation at landscape

to regional scales. While the data collection capabilities can always be enhanced, the

real challenges for applying these sensors to large area monitoring are calibration and

validation. Field-based plot inventory data are not suitable in isolation, and while airborne

LiDAR currently plays a key role and will continue to do so, we also need to explore new

ways for reducing uncertainty in biomass allometries and upscaling models. For open tree-

grass systems and shrublands, the LR-TLS approach presented in this paper can provide

the continuum of ground reference data that can also encompass stand variation. This

has the potential to improve the spatial extrapolation of vegetation structure from remote

sensing proxies, which is a key to reducing uncertainties in the global carbon budget.

Furthermore, the fixed scanning position of LR-TLS will enable repeat measurements

of higher precision than what is possible from aircraft or UAV platforms, opening the

door for examining fine-scale dynamics in vegetation canopies over hillslope scales. This

is particularly relevant in savanna ecosystems, where future research should explore the

potential of repeat LR-TLS to analyze structural changes over time for understanding the

loss of big trees and patterns of woody encroachment (Levick & Asner, 2013; Lindenmayer

et al., 2012).

4.5 Conclusions

Our exploration of long-range terrestrial scanning (LR-TLS) shows great promise for the

reliable extraction of savanna woody vegetation inventory parameters including canopy

height, vertical profile distribution, and canopy cover at hillslope scales. Plot and individ-

ual tree level metrics can be accurately retrieved from ranging distances of 400 m, meaning

that 10-50 ha can be sampled in under one hour depending on the landscape. The use of
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LR-TLS for vegetation mapping in savanna will help overcome a key limitation of TLS in

terms of limited spatial extent, enabling measurement and monitoring at hillslope-scales.

LR-TLS will provide a useful tool to compliment field and airborne surveys in the direct

calibration and validation of satellite derived biophysical attributes.



Chapter 5

Improved characterization of woody

vegetation at regional scales using

earth observation data
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Abstract

Quantifying regional scale estimates of vegetation structure and aboveground biomass

(AGB) is a major challenge in savanna landscapes due to their inherent heterogeneity.

Most field-based measurements, and remote sensing calibration/validation exercises, oc-

cur at local plot scales that may not adequately represent the highly variable tree cover

present in savannas. We reconstructed three-dimensional (3D) vegetation structure at

broad landscape scales across a semi-arid savanna in South Africa, using long-range ter-

restrial laser scanning (LR-TLS). We sampled vegetation structure across hillslopes from

topographic vantage points at multiple locations, covering more than 900 ha of diverse

habitat. We used LR-TLS estimates of woody cover and canopy height to model AGB at

landscape scales. Our high-resolution woody parameter layers were integrated with L -

and C - band radar satellite imagery (ALOS-PALSAR-2 and Sentinel-1), to map woody

properties over the broader savanna region that had gradients in rainfall as well as variable

geology. We conducted a sensitivity analysis to assess the vegetation height threshold at

which radar backscatter was most responsive to woody canopy. The correlation between

radar backscatter and LR-TLS derived woody properties peaked at 2 m above ground

level for the L-band data, and at 1.5 m for the C-band data (R2 for HV ALOS-PALSAR-

2 was 0.7 and R2 of VH Sentinel-1 was 0.52). The root mean square error (RMSE) of the

AGB estimation differed from 6.65 Mgha-1 for the ALOS-PALSAR-2 to 8.04 Mgha-1 for

the Sentinel-1 backscatter data. These results highlight the need for explicit consideration

of woody canopy height thresholds in regional scale biomass mapping. Furthermore, while

current L- and C-band sensors capture larger vegetation structures well, they are not sen-

sitive to the shrub layer - which is also missed in most airborne LiDAR surveys, and can

make up a significant proportion of AGB in certain savannas. Understanding shrub layer

dynamics is important for assessing trajectories of ecosystem change, and for for moving

beyond carbon accounting to more holistic measures of habitat condition. LR-TLS pro-

vides a robust means for assessing how well vegetation structures are represented from

space, and could facilitate the refinement of AGB up-scaling equations in heterogeneous

landscapes.
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5.1 Introduction

Savanna ecosystems are a continuum of mixed physiognomies, defined by the patchy occur-

rence of woody and herbaceous plant communities in the landscape (Bond, 2008; Scholes

& Archer, 1997). This coexistence of two plant guilds causes exceptional heterogeneity in

ecosystem structure (Pickett et al., 2003), which varies from size class distribution (Rogers

et al., 2003; Helm & Witkowski, 2012) at landscape scale to three-dimensional arrange-

ment of vegetation elements from ground to top of canopy at plant scale (Archibald &

Bond, 2003). Precipitation, fire regimes and herbivory maintain and amplify the growth

rates and composition (Sankaran et al., 2005; Smit et al., 2010; Asner et al., 2009; Febru-

ary et al., 2013), and further exacerbate the spatial organization of savanna structure

components. Due to the large spatio-temporal fluctuations in the vegetation structure,

savanna carbon dynamics represent a large uncertainty (Ciais et al., 2011; Higgins et al.,

2007). Therefore, accurate estimates of vegetation structure and biomass across savanna

landscapes is vital to assess the absolute magnitude of carbon stocks and fluxes emerging

from these dynamic systems. Such information is critical for refining the uncertainties in

land-atmosphere carbon fluxes, due to fire , and to assist in predicting the trajectories

of savanna vegetation dynamics under changing climate and land use practices (Wessels

et al., 2011; Kgope et al., 2010; Wigley et al., 2010). While vegetation structure maps

are of interest to international initiatives such as REDD+ and UNFCCC, the scope and

scale of this opportunity remains unclear in savannas.

Our ability to quantify the spatial pattern of vegetation structure and biomass in savanna

ecosystems are often based on plot-scale field inventories conducted in traditional ways

(Higgins et al., 1999; Eckhardt et al., 2000; Cook et al., 2005). However, these field-based

measurements are limited in their capacity to capture the multi-dimensional variability in

savanna structure, due to their small sample sizes from sparse distribution and insufficient

plot size (Staver, 2018). In addition, the measurements fail to account for allometry of

multi-stemmed individuals, and the vertical distribution of woody structures from the

ground to the top of canopy. Terrestrial laser scanning (TLS) also referred as Terres-

trial LiDAR (light detection and ranging) offers an efficient solution to the problems of

unrepresentative structure. TLS acquires the detailed three dimensional (3D) represen-

tation of the vegetation by transmitting coherent laser beams and measuring distances

based on the time delay of the returned laser pulses (Newnham et al., 2015; Dassot et al.,

2011). The returning laser signals characterize the spatial arrangement, size and radio-

metric attributes of woody and non-woody components. As a result, 3D data from TLS

provides a non-destructive, repeatable and automated way to quantify the vegetation

metrics within an ecosystem. The application of TLS technology to semi-arid landscapes

is rapidly expanding, and has been used to estimate basic vegetation metrics such as

canopy height, cover and vertical distribution of 3D points with high accuracies (Ander-

son et al., 2018; Olsoy et al., 2016; Muir et al., 2018; Singh et al., 2018).While strength

of TLS data in replicating field measurements is evolving over the years (Calders et al.,

2015), the measurements are normally confined to the same plot scales (<1 ha) that also
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apply to regular inventory methods. Those spatial scales may miss regular variations with

topography, rainfall or underlying geology that operate at broader spatial scales. Recent

advancements in laser scanning has allowed TLS devices to be optimized for long-range

(>100 ha) scanning by having a trade-off between the laser energy and pulse rate, which

enables to spatial mapping of large areas. Singh et al. (2020), demonstrated the potential

of long-range scanning for estimating savanna woodland vegetation structure in leaf-off

condition. The authors acquired continuum of ground data, and reported a high retrieval

accuracy of canopy height and cover, with a RMSE of 0.25 m and 5.67% respectively. In

essence, long-range scans in savanna ecosystems present an opportunity to go beyond plot-

scale inventories, and extrapolate the measurements to broader landscapes using satellite

measurements.

The growing availability of satellite measurements particularly SAR (Synthetic Aperture

RADAR) has helped to quantify the vegetation structure and biomass over much larger

areas in savannas (Mermoz et al., 2014; Urbazaev et al., 2015). All-weather sensing, and

sensitivity to density, orientation and geometrical features of vegetation constituents (e.g.

canopy, stem, branches), makes radar data an efficient way to characterize vegetation

structure (Woodhouse et al., 2012). As the density and size of the vegetation scatterers

increase, there is an asymptotic increase in the received energy (backscatter intensity),

thus SAR backscatter can identify variable canopy cover (sparse or closed), disturbance

and regrowth in savannas (Mitchard et al., 2011). The degree to which vegetation struc-

ture can be resolved and signal attenuation depends on polarization, incidence angle and

wavelength of the SAR system. For instance, Lucas et al. (2004) highlighted the sensi-

tivity of cross-polarized data (HV, horizontal send, vertical receive, or VH, vertical send,

horizontal received) to vegetation structure, as only those scatterers will be detected that

change the orientation angle of incoming SAR signal, thus capturing the strong response

from trees and shrubs. Generally, signal with shorter SAR wavelengths, such as X-band

(2.5-4 cm wavelength) and C-band (4-8 cm wavelength), produce strong backscatter from

top layer of canopy due to interaction with leaves and branches, but with thorough signal

penetration in the grass stratum (Le Toan et al., 1992). While longer wavelengths, such

as P-band (30-100 cm wavelength) and L-band (15-30 cm wavelength) perform better

in extracting woody structural properties, as the backscatter results mostly from signal

interactions with woody branches, trunks and ground surface and minimizes information

from twigs and leaves (Saatchi & Moghaddam, 2000; Mitchard et al., 2009). It has been

observed that in high biomass systems, C and L-band wavelength saturate at an AGB

level of 75-150 Mgha-1 (Saatchi et al., 2007a; Dobson et al., 1992). However, L and C-band

wavelengths appear well adapted for the savanna ecosystems, where the canopy is seldom

closed, and AGB is typically less than 100 Mgha-1 (Carreiras et al., 2012; Urbazaev et al.,

2015). The ability of different SAR wavelengths to estimate aspects of savanna vegetation

structure, including woody canopy cover, volume and height was demonstrated (Bucini

et al., 2010; Naidoo et al., 2015; Mathieu et al., 2013).

So far, savanna vegetation structure retrieval models from SAR have commonly used
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range of airborne LiDAR measured landscapes for the calibration of SAR backscatter to

biomass, height and canopy cover, with empirical relations (e.g. log relation and power

law) and machine learning algorithm. Results of these studies are of immense importance

for understanding the distribution of vegetation structure in savannas. However, the

performance of SAR vegetation models in estimating vegetation structure depends on

detailed measurements of vegetation dimensions, as variability in vegetation structure

can have large impact on backscatter intensity. The uncertainty issues in LiDAR trained

SAR models stem due to two reasons 1) distribution, amount and time-stamp of the

LiDAR data, and 2) use of arbitrary height thresholds for canopy cover and biomass

derivation. As a result, transferability of these relationships across different savanna

structure is limited, and does not allow accurate estimations of woody cover and biomass.

Further development towards relating backscatter to savanna structural properties, such

as those readily measurable using terrestrial LiDAR, is hence still required. These LiDAR

trained SAR models when derived over a range of vegetation landscapes can reveal the

structural formations and spatial variations of vegetation structure, change, sink and

source of carbon.

In this context, this study presents the first use of long-range TLS data as a potential

approach to improving satellite-based woody canopy cover and biomass calibration and

validation. This part of the thesis investigates the sensitivity of SAR backscatter at two

wavelengths (C and L-band) to long-range scan derived biomass and canopy cover of a

semi-arid savanna ecosystem of South Africa. Emphasis is laid on how differences in

height thresholds impact the retrieval of woody canopy cover and biomass. The results

are then discussed in the context of spatial variability of across topography and rainfall

gradient.

5.2 Long-range scans acquisition sites and processing

5.2.1 Study site

The savanna vegetation structure was studied across Kruger National Park (KNP)

(23◦98’S, 31◦55’E), a 20,000 km2 national reserve located in the north-eastern South Africa

(Fig. 5.1a). KNP is a sub-tropical wooded savannas, dominated by mopane (Colophos-

permum mopane) in the north, knobthorn (Acacia nigrescens) and marula (Sclerocarya

bierra) in central part, and Combretum species and silver cluster-leaf (Terminalia sericea)

in the southern part of the park(Gertenbach, 1983).

KNP is located in a low-lying (400 m above sea level) and gently undulating landscape,

but has an east-west geologic gradient with granite in the west and basalt in the east

(Venter, 1986), that strongly influences the soil and vegetation properties (Figure. 5.1a,b).

Granitic substrates weather to nutrient-poor sandy soils and support a varying woody

cover between 20% to near closed canopy woodlands of 60% canopy cover (Eckhardt et al.,

2000). The soils on basalt substrates are more fertile (dark vertic clay soils) resulting

in highly productive grasses. The high bulk of grass layer causes high intensity fires,
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(Smit et al., 2013), which reduces woody plant density. Not only a geological gradient,

KNP encompasses a north-south rainfall with the semi-arid north (400 mm mean annual

rainfall) to the mesic south (750 mm mean annual rainfall) (MacFadyen et al., 2018)

(Figure 5.1c). The rainfall gradient together with fire regimes (Govender et al., 2006),

grazing (Donaldson et al., 2018) and mega-herbivore activity (Asner et al., 2015) regulates

the plant productivity and physiognomies in the study site.

Figure 5.1: (a) Location of study site with LiDAR sampled plots within Kruger National Park, South
Africa overlaid on elevation data, (b) major geology in the study site, and (c) mean annual precipitation
of the park at 5◦ grid size.

5.2.2 Remote sensing data and processing

Terrestrial LiDAR data

Terrestrial LiDAR 3D data were collected by surveying across multiple vegetation land-

scapes within the KNP in 2016, using the Riegl VZ-2000 laser scanner (RIEGL Laser

Measurement Systems GmbH) (Figure 5.1a). The terrestrial LiDAR survey was carried

out in the late dry season (October), when vegetation was at leaf-off stage and grasses

were diminished by grazing. A random sampling approach was utilized for acquring 3D

data across the park, and focus was to cover the wide spectrum of vegetation structure

present in the park. The RIEGL VZ-2000 is a near-infrared (wavelength 1500 nm) mul-

tiple return LiDAR scanner which can scan objects upto 2000 m distance in a clean line

of sight, with a beam divergence of 0.30 mrad. While scanning, an external differential

global positioning system (GPS) (accuracy 3 cm) was utilized, to accurately determine
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the geographic location of each LiDAR return. The orientation matrices (roll, yaw, and

pitch) of the scanner were collected through an internal compass and inclination sensors

of the Riegl VZ-2000 scanner. The landscape scanning design consisted of acquiring sin-

gle long-range scans from elevated vantage points (>15 m above ground level) or from

a vehicle rooftop mount, with a scanner height of 2.5 m across the hill-slopes. For the

topographic vantage points, the scanner was operated at 50 kHz, while a pulse repetition

rate of 550 kHz was used for hillslope scanning. All the scans were taken at an angular

sampling of 0.02◦. Initially the scans were taken at full azimuth range of 360◦ at a coarse

resolution, which were later trimmed to an azimuth and zenith range of 180◦ and 100◦ re-

spectively. This trimming was performed to include only the region of interest, and reduce

the noise from sky. This scanning setup resulted in a mean point density of 158.6 and

6.02 laser returns per m2 at a distance of 100 m and 600 m respectively from the scanner

location, enabling fine-scale description of even smaller woody vegetation. For this study,

we collected LiDAR 3D data across 100 locations, widely distributed across the KNP,

and capturing broad range of edhapic conditions and vegetation physiognomies (Figure

5.1a). Maximum range of the scanner was 1500 m, that captured 7-150 ha, varying with

vegetation structure at the sites.

ALOS PALSAR -2 SAR data

The Phased Array type L-band Synthetic Aperture Radar-2(PALSAR-2) operates at L-

band wavelength (1.27 GHz; 23.6 cm) which is on board the Japan Aerospace Exploration

Agency’s (JAXA) Advanced Land Observation Satellite 2 (ALOS). PALSAR-2 sensor is

a polar, sun synchronous orbit sensor with a 14-day revisit time. Five scenes of ALOS

PALSAR-2 fine beam dual polarized (FBD) (coherent HH and HV ) imagery, acquired

for path 180 and 181 on 1 December 2015 and 8 November 2015 respectively were used

for this study. Each scene covers an area 59[Az] x 70[Rg] km. The scenes were acquired

in the ascending orbit, and were provided in single-look complex (SLC) level1.1 format.

The cumulative rainfall on the date of acquisition was 56.9-100.4 mm (www.sanparks.org).

We assume that this low precipitation during the acquisition of PALSAR-2 data will not

increase the dielectric constant due to high evaporative rates.

The first processing step with the SLC data were - multi-looking intensity, where square

pixel in ground range co-ordinates (azimuth resolution- 12.5m, multilook: 1 in range,

5 in azimuth) were obtained. Next, multilooked images were radiometrically corrected

with a PALSAR-2 sensor specific calibration factor of −83dB. These multilooked and

radiometrically calibrated scenes were geocoded and corrected for topographic artefacts

by using a 20 m digital elevation model (DEM) from Shuttle Radar Topography Mission

(SRTM). The next step included topographic normalization using the method reported

by Santoro et al. (2006), for retrieving the final backscatter coefficient (σ◦). After the

geocoding process, all scenes were combined to create a mosaic. The geocoded and terrain

corrected mosaics of HH and HV polarized data were converted to linear power of σ◦.
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These mosaics were converted to linear power intensity by using:

σ◦
linearpower = 10(σ◦

dB/10) (5.1)

All PALSAR-2 data pre-processing steps were performed in GAMMATM radar processing

software (GAMMA Remote Sensing http://gamma-rs.ch).

Figure 5.2: Landsat-8 and PALSAR-2 and Sentinel-1 SAR polarimetric imagery over the Kruger
National Park in October 2015. The C and L band images are false colour composites.

Sentinel-1 SAR data

Sentinel-1A is a C band wavelength (5.5 cm) SAR sensor, imaging at 5.40 GHz with

a 12 day temporal resolution. The level-1 Ground Range Detected (GRD) product in

the Interferometric Wide (IW) swath mode, which has dual polarized V V and V H was

used in this study. For this study, five Sentinel-1A images were acquired from Google

Earth Engine during 25-26 October 2015 time period. The processing steps in Google

Earth engine included (1) thermal noise removal using the look-up table within the meta-

data, (2) radiometric correction by using sensor calibration parameters provided in the

GRD metadata, and (3) terrain correction and normalization using 20 m DEM data from

SRTM.

The backscatter coefficients in units of decibel power (dB) from the processed Sentinel-
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1A data are converted to linear power (Equation 5.1), and then aggregated to a 100m

resolution using simple averaging with a “4x4” window.

5.2.3 Estimation of woody cover and AGB from long-range terrestrial LiDAR

The LiDAR data points from long-range andhillslope scans were first ground classified,

and height normalized. Normalized point clouds were utilized to generate the LiDAR

return count for every site by utilizing several modules of LAStools (rapidlasso GmbH,

2014;Isenburg (2014)). The LiDAR counts were calculated from 0 m to 12 m (maximum

canopy height in KNP), at a bin size of 0.5 m interval of the LiDAR data, and were

plotted against canopy height to represent vegetation vertical profile structure. Woody

canopy height models were prepared by selecting the highest 3D point within the ‘1 x1

m’ grid cell. The canopy height rasters were used to generate the canopy cover maps

by reclassifying the canopy height grids in SAGA GIS (SAGA GIS, 2016; www.saga-

gis.org) by varying the height threshold from 0.5-5 m, where LiDAR data between 0 m

and threshold were marked as ground points, while all the points above height threshold

were classified as woody vegetation. A percentage canopy cover map was prepared by

calculating the number of pixels above the height threshold and then dividing by the

number of pixels in that grid. The classified grids were scaled to percentage canopy cover

for every scan data.

Aboveground biomass at the plot level was calculated from a single predictor variable

‘HxCC’(Colgan et al., 2013) (Equation 5.2), where H is the mean top-of-canopy height of

a plot and CC is the mean fractional canopy cover of a plot. This equation was preferred

as it was derived by harvesting and weighing plot-scale major vegetation species occurring

in KNP, against which airborne LiDAR methods estimations were compared.

AGBplot = −11.5 + 25.8×Hplot × CCplot (5.2)

5.2.4 Estimation of regional woody cover and AGB from SAR data

To establish the relationship between LiDAR derived vegetation metrics and SAR

backscatter intensity, a regular spatial grid of 100 m resolution cells was created in QGIS

2.160 (http://qgis.osgeo.org), and applied over the dataset. A 100 m resolution was cho-

sen mainly to reduce the issues of SAR speckle, and pixel level co-registration inaccuracy.

Also, in the previous studies across savanna ecosystems, a grid size of 105 m was suggested

to be providing strongest correlation between SAR backscatter and LiDAR derived woody

variables (Mathieu et al., 2013). The strength of relationship between radar backscatter

to woody cover and AGB was evaluated by using statistical regression. Backscatter from

co-polarized (HH and VV) and cross-polarized(HV and VH) channels are tested to assess

the relationship using Equation 5.3, 5.4, where σ◦ is the backscatter data from Sentinel

and ALOS-PALSAR-2 sensor.

σ◦ = a× biophysical parameter + b (5.3)
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σ◦ = a+ b× ln(biophysical parameter) + c× (ln(biophysical parameter))2 (5.4)

An empirical relationship proposed by Saatchi et al. (2007a) was utilized to model AGB

from SAR backscatter polarizations.

ln(AGB) = a0+a1(copolar)+a2(copolar)
2+a3(cross−polar)+a4(cross−polar)2 (5.5)

In this models AGB is the aboveground biomass (Mgha-1), and a0, a1, a2, a3 and a4 are

coefficients to be derived from the data.

5.2.5 Statistical analysis of the woody vegetation spatial pattern and map-

ping

The empirical model performance was analyzed with the coefficient of determination (R2),

root mean square error (RMSE) (Equation 5.6) and mean absolute error (MAE) (Equation

5.7). To assess the error distribution, we computed the residuals (Equation 5.8).

RMSE =

√
1

n
Σn
i=1e

2
i (5.6)

MAE =
1

n

n∑
t=1

|et| (5.7)

Residual = yi − yi (5.8)

A 10-fold cross-validation approach (Hastie et al., 2009) was utilized for the semi-empirical

model evaluation, where 70% of data used for training the empirical model and 30% is used

to evaluate model performance. The model predictability and accuracy was assessed by

the coefficient of determination between observed and predicted (10-fold cross-validation)

AGB.

5.3 Results

5.3.1 TLS derived vegetation metrics

Single long-range scans proved valuable for the detail spatial variability of vegetation

structure, by capturing the physiognomy of large and small vegetation at landscape scale

(Figure 5.3a). In total 500 ha of area was mapped representing vegetation along rainfall

and topographical gradients. The first analysis was done by calculating the frequency

distribution of LiDAR returns divided into two distinct geologies, and rainfall categories
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of KNP. The more arid sites (<500 mm yr-1) at the basalt featured lower LiDAR returns

typically due to presence of small and sparse vegetation, and higher levels of LiDAR

returns from the taller vegetation in the wetter sites of granite substrate (Figure 5.3b,c).

The peak in the upper canopy at granite site was larger than the plots on basalt geology.

Plots on the granite substrate also showed a bimodal vertical plant profile, with an upper

canopy peak at 7 m, and lower peak at 1m, due to thick understorey. Also, the vegetation

in two different rainfall regimes differ in terms of aggregation, with arid sites chatacterized

by higher levels of aggregation in vegetation.

Figure 5.3: a) Normalized long-range scan from the southern Kruger National Park. Lower panel
represents the frequency distribution of LiDAR returns calculated for two sites situated in granite (b)
and basalt substrate (c) with a MAP of 747 mm and 353 mm respectively.

Across the study site, mean AGB measurements ranged from 11.8 - 76.8 Mgha-1. The

canopies within the inventoried sites had a cover ranging between 3.78 to 68.35%, and

height of 2.22 to 6.52 m, with a mean of 34.21% and 3.65 m for canopy cover and height

respectively. Box plots with woody properties divided into geology and MAP bins show

that mean canopy height, woody cover and AGB increased steadily with increasing rain-

fall, and all three woody parameters were higher on the granite substrate (Figure 5.4).

The box plots show a strong correspondence between woody canopy cover and AGB,

as expected from the LiDAR-biomass model (Equation 5.2). Along the rainfall gradient

from the driest (<400 mmyr-1) to the wettest (700 mmyr-1) end, mean estimates of woody

cover and AGB increased by 20% and 40% respectively.
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There are clear AGB and woody cover transitions due to variability in topo-edhaphic

factor. The overall variation of AGB across two geologies ranges from values 11.86-28.28

Mgha-1 for basalt substrates to as high as 18.15-76.87 Mgha-1 for granite substrate. Within

the hillslope catenas, there is spatial variation of carbon storage, where more woody cover

is supported across high slope areas.

Figure 5.4: Boxplots of estimates of mean canopy height, cover and AGB in two geologies and along
a rainfall gradient.

Impact of variation in height cut-off

As the height threshold for classifying ground and vegetation 3D points increased, varia-

tion in canopy cover became apparent, which showed differences in canopy cover associated

with different vegetation structure (trees and shrubs) (Figure 5.5 a,b). The higher canopy

cover estimates at 0.5 m relative to estimates at 1.5 m in the 20-60% cover range are seen
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in the linear regression model. This indicates that in areas of high canopy cover, a 0.5

m height threshold detects greater amount of AGB. Distribution of canopy cover shows

that the higher threshold estimates result in relatively lower cover, whereas, lower cut-off

thresholds are more concentrated on the higher end with a range between 30-80% (Figure

5.5c).

Figure 5.5: Estimates of canopy cover at 1m and 1.5m height threshold derived for the scanned sites.
Lines represent linear model fit with dashed line as 1:1 (a,b). Distribution of canopy cover at different
height thresholds (c).

5.3.2 Sensitivity of remote sensing data to vegetation metrics

Regressing canopy cover and AGB calculated from LR-TLS using different height cut-offs

with the PALSAR-2 backscatter data, showed that the best relationships corresponded

to height thresholds between 1.5-2 m, with maximum coefficient of determination of 0.72

(Figure 5.6a). The same analysis when repeated using the Sentinel-1 backscatter data also

confirmed a high coefficient of determination at a height threshold of 1.5 m, explaining

more than 50% of canopy cover variation (Figure 5.6b). As the height threshold increased,

coefficient of determination continued to increase to approximately 72% at the 2 m height

cut-off. At smaller height cut-offs, there is a possible addition of higher grass layer, which

causes these higher values of biomass. These variations are averaged out with greater

values of height cut-off. Based on this analysis for the later results, a height threshold of

2 m was defined for AGB and canopy cover estimations.
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Figure 5.6: Distribution of R2 between height thresholds used to determine woody cover and AGB
in the scanned sites for ALOS-PALSAR 2 (a) and Sentinel-1 (b).

Backscatter coefficients of HH, HV, and VV, VH polarizations from ALOS-PALSAR 2

and Sentinel-1 respectively, were extracted from 100 m pixel resolution. We extracted

backscatter coefficients from 427 plots from 54 different sites. The relationship between

polarized backscatter and AGB and cover are shown in Figure 5.7 and 5.8. The regres-

sion coefficients (R2) were obtained by fitting a linear regression model(Equation 5.3) for

canopy cover and a second order log polynomial regression model(Equation 5.4) for AGB

to the backscatter data at each polarization. For the L band co-polarized (HH) backscat-

ter measurements, R2 values were 0.46 and 0.47 respectively for canopy cover and AGB,

and cross polarized (HV) backscatter measurement R2 values were 0.71 and 0.70 respec-

tively for canopy cover and AGB. The R2 values for C band Sentinel-1 VV measurements

were 0.41 and 0.49 respectively for canopy cover and AGB, while VH polarization resulted

in R2 of 0.52 and 0.50 for canopy cover and AGB. In both frequencies, the HV and VH

sensitivity to AGB and canopy cover was much higher. Plot level backscatter from the

L-band data shows higher sensitivity to AGB, while C-band backscatter data show large

variation with better sensitivity for low biomass values. The correlation between L-band

HH polarization channel and biomass is relatively lower than HV channel, with a loss of

sensitivity occurring at lower biomass values (Figure 5.7b,d).
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Figure 5.7: Relationship of L-band radar backscatter power (m2m2) at two polarizations of HH and
HV with the woody cover (%) and AGB (Mg/ha).



82 Improved characterization of woody vegetation at regional scale

Figure 5.8: Relationship of C-band radar backscatter power (m2m2) at two polarizations of VH and
VV with the woody cover (%) and AGB (Mg/ha).

5.3.3 Mapping

Equation 5.5 was applied to map the estimates of AGB and canopy cover across the whole

KNP by using backscatter from PALSAR-2 and Sentinel-1 sensors. Table 5.1 shows the

model estimates, fitting coefficients, and 10 fold cross validation statistics for the model.

There is significant improvement in model fitting when ALOS-PALSAR-2 backscatter

data is used rather than the Sentinel-1 backscatter. Additionally, Figure 5.9 shows the

scatterplots of the long-range scan calculated AGB versus error in AGB, calculated using

cross validation values from ALOS-PALSAR-2 and Sentinel-1 backscatter data. The error

in ALOS-PALSAR-2 and Sentinel AGB predictions increase as biomass increases. The

plot-by-plot difference between the backscatter predicted and long-range scan estimated

biomass showed an increasing bias towards higher AGB values. By focusing at AGB <50

Mgha-1, the bias reduces substantially, and the difference becomes approximately normally

distributed. The overall RMSE for these data is 6.65 Mgha-1, however this decreases to 2

Mgha-1 for values below 40 Mgha-1.
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Table 5.1: R2,RMSE and MAE of mapped AGB from ALOS-PALSAR-2 and Sentinel-1

Metric a0 a1 a2 a3 a4 R2 RMSE MAE

ALOS AGB (Mg/ha) 2.44 267.78 -9238.67 -8.10 -38.21 0.72 6.65 4.30
Sentinel AGB (Mg/ha) 2.08 63.93 -953.57 19.59 -156.49 0.56 8.04 5.37

Figure 5.9: Errors in predicting AGB from the ALOS (a) and Sentinel-1 (b) backscatter plotted
against long-range scan quantified woody properties.
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5.3.4 Spatial distribution of AGB

Figure 5.10: AGB map of KNP and associated analyses. (a) Spatial pattern of AGB in KNP.
Example A shows the riparian vegetation stands in the northern part of the park. Example B displays
the catenas with high AGB. (b) frequency distribution of AGB for two substrate type, and (c) frequency
distribution of AGB for each rainfall zone.

Distribution of biomass predicted from the Equation 5.5 are shown in Figure 5.10 at 100

m x 100 m (1 ha) gridded map. The AGB in the study site exhibits a striking east-west

gradient related to the geology, with AGB as low as 11.7 Mgha-1 in the basalts to as high

as 63.61 Mgha-1 in the granites. There is a higher concentration of biomass at upper slopes

of catenas, and around riparian areas. In the northern portion of the park, substantial

biomass is restricted to the riparian woodland, with an AGB of 40-50 Mgha-1. Imposed on

this topo-edhapic pattern, effects of increasing rainfall are obvious with an AGB estimate

>50 Mgha-1 in the zones of the park with highest rainfall.The largest stretch of high

AGB is across the northern border region of KNP. The closed woodlands are distributed

over riparian areas, with an average AGB of 104.52 Mgha-1, and AGB values greater

than 80 Mgha-1 are observed over significant 1 ha pixels. Another distinct AGB pattern

extends in the southern KNP at the boundary of granites and basalts. These woodlands

occupy a high slope terrain over the solonetzic duplex soils, with a mean biomass of 57.51

Mg/ha.
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5.4 Discussion

The goal of this study was to infer woody properties in a semi-arid savanna site of South

Africa by investigating multi-frequency L-band ALOS-2 PALSAR-2 and C-band Sentinel-

1, with empirical biomass models developed from long-range scanning using TLS. The

study reports both the relative and absolute errors of AGB (ranging from 0-100 Mgha-1)

and woody cover, across the landscapes nested in rainfall and geological gradient, by using

backscatter coefficients from C and L- band independently. Long-range scans provided

direct measures of canopy height, cover and vertical distribution of vegetation at landscape

scale, which were later used to estimate the aboveground biomass. The large scale synoptic

view of SAR enabled us to scale the long-range scans derived woody properties from

landscape to regional scale, in addition to exploring differences in vegetation structure

across the full expanse of the site. Furthermore, varying the height cut-offs for TLS

derived woody properties provided a means to evaluate the degree of sensitivity of SAR

data to savanna vegetation structure. There are important implications of this sensitivity

for understanding savanna vegetation structure.

5.4.1 Mapping savanna vegetation structure with long-range scans

Our LR-TLS dataset were promising for several reasons. First, woody properties such as

canopy height, canopy cover and the vertical distribution of woody vegetation structure

were quantified using single long-range scans for up to 150 ha at individual sites in the

diverse vegetation conditions, terrain, species and management activities. Landscape

scale sampling from the long-range scanning (LRS) facilitated not only capturing the size

class distribution of the vegetation but also helped in co-registering the LRS with the

spaceborne SAR measurements, and reducing sample variance. The footprint of LR-TLS

can vary with the scanner altitude, beam divergence and scan angle. Previous studies

report that single scanning approach is less accurate, as it measures only 70% of the

trees in the sense forest (Liang et al., 2016). In our study site, the strong performance

of single long-range scans in estimating canopy height and cover is due to the relatively

short vegetation height, selecting sites with a clear line of sight, and scanning in late

dry season which led to a considerable reduction in occlusion due to absence of grass

layer. Also, wide spacing between the trees caused less attenuation in laser pulses with

the increasing distance. Similar investigations in the Australian open woodlands confirm

the potential of single scans for mapping tree height and canopy cover at a coefficient of

determination of 0.90 (Muir et al., 2018). The laser attenuation at 1000 m was only 0.3

m, which is still capable of documenting large woody trees. Also, canopy cover models

derived from the LR-TLS were less affected by a reduction in point density at distances

far away from scanner (>600 m), as interpolation for canopy height models was performed

at 1 m. Second, a simple canopy height X canopy cover metric was able to capture the

variations in AGB across KNP. Last, not only LR-TLS data allowed to estimate the

woody vegetation metrics (canopy height and cover) continuously over large areas, LR-

TLS also provided the vertical vegetation profiles, that help to explain the geometrical
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distribution of of vegetation across the landscapes, which are challenging to measure from

ground.

However, we note that oblique scanning from elevated points, results in good coverage of

woody trees but fewer pulses overall penetrate to the ground, which affects determination

of the surface and therefore the ability to calculate vegetation height.

5.4.2 Backscatter sensitivity to biomass

Cross-polarized (HV and VH) backscatter responded strongly to woody properties, across

the sites differing in their structure and physiognomy. The smaller variance is due to the

low sensitivity of cross-polarized backscatter to moisture content, surface roughness and

topography. However, within some sites, comparatively lower levels of backscatter were

observed for higher AGB. This could be because of the lower densities of canopy, and

shorter vegetation heights, collectively reducing the number of scattering elements. In

savanna and other open ecosystems, substantial AGB is contained in sub-canopy shrubs

of small canopy area and height, which may not be detectable using the SAR system.

The influence of vegetation structure (tree density, vegetation size) on SAR backscatter

has been widely reported. For instance, Lucas et al. (2010) attributed differences in SAR

backscatter across forests and woodlands due to differences in stem density and vegetation

size in the two ecosystems.

A better correlation between L-band HH and HV backscatter and long-range scan esti-

mates was observed than C -band VH and VV polarizations for the retrieval of woody

vegetation structure. The inclusion of C-band Sentinel-1 data for AGB and cover esti-

mations did not improve the retrieval results. This also corroborates a study across the

low-veld region of north-eastern South Africa, which concurred that longer wavelengths

are more correlated with the vegetation structure attributes than the shorter wavelengths

both as individual or combined (Naidoo et al., 2015). The high performance of L-band

is because longer wavelengths can penetrate deep in the vegetation canopy, allowing the

SAR signal to interact with trunk and branches, and thus producing stronger correlation

with the LR-TLS derived woody vegetation metrics. Moreover SAR data was collected

during the late dry season when errors associated with moisture are minimum, which

improves the sensitivity of HV and VH backscatter to woody properties. Also, this study

utilized large number of 1 ha well geolocated long-range scanned plots for calibration and

validation of Radar data, which could be another reason for having high agreement be-

tween long-range derived vegetation metrics and Radar backscatter. Despite the leaf-off

condition, shorter wavelengths have lower correlation with the LR-TLS metrics due to

their limited ability to penetrate the canopy. High variance in the Sentinel-1 data could

also be explained due to it’s sensitivity to surface roughness due to high variability in grass

cover. Some signal penetration in Sentinel-1 is also possible as the canopies in savannas

are not homogeneous, rather canopies are not generally homogeneous and have gaps that

promote the signal penetration.

A semi-empirical modelling approach was more suited for this study as the analysis is



5.4 Discussion 87

done with only four predictor variables (L-band HH and HV, C-band VV and VH) using

data from a single time-period. The model considered double bounce and surface scatter-

ing arising from one single resolution cell as the predictors. However, empirical models

have some limitations, due to over-fitting and parameter interpretation. When applying

Equation 5.5 to the PALSAR-2 and Sentinel-1 scenes, errors of 20-30% are expected,

which will increase by 10%, if specific tree allometries are taken into account.

5.4.3 Spatial distribution of woody biomass

Rainfall and edaphic conditions in KNP control the spatial heterogeneity of AGB and

woody cover. In a semi-arid ecosystem, the maximum potential of woody cover is often

limited by the MAP (Sankaran et al., 2005). Interestingly, in KNP geology has much larger

effect on the distribution and heterogeneity of AGB and woody cover, which is consistent

with the findings from Vaughn et al. (2015). We observed sharp transitions in the AGB

across the geological boundary, where there is negligible difference in MAP. At these

geological boundaries AGB drops by two-fold in the basalt geology. The lower biomass

in basalt terrains can be explained by high intensity fires that result from large fuel loads

derived drying out of highly productive grasses that grow in this nutrient rich clay soil.

The variations in land elevation and slope, related to catena formations, which affects

the hydrological features and soil properties were also related to systematic variations in

AGB. The woodlands mainly distributed along the rivers (seasonal or perennial) have a

more predictable pattern related to water availability.

5.4.4 Uncertainties in the prediction of woody properties

While relating SAR backscatter to the LR-TLS derived woody properties, we observed

some anomalies. For instance, at some sites low HV backscatter was seen for the high AGB

sites. High AGB values could be due to considering mean canopy height and cover at plot

scales. This error can be eliminated by incorporating the canopy height and crown area

of individual trees by using object based methods, and estimating the biomass. Despite

the significant large area mapped by the LR-TLS, some sites possessed shadowing due

to attenuation of laser pulses by vegetation. We therefore recommend acquiring multiple

long-range scans from different positions to minimize the occlusion. Additionally, open

landscapes with no vegetation are not reliable for the calibration of SAR backscatter, as

the backscatter values from surface due to double bounce effect mimic the backscatter

values similar to those of vegetation. The accuracy of biomass estimation in savannas

from SAR measurements could be further improved by the addition of optical vegetation

indices, which provide additional suite of information to address the vegetation structure

heterogeneity in savannas. This combined data approach has been implemented at coarser

to medium scales in the Amazonia (Saatchi et al., 2007b). In general, a combined data

approach can overcome the potential errors, and improve the accuracy.
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5.5 Conclusion

The savanna vegetation structure inventory with LR-TLS data provided the first physio-

graphical variations of canopy height and woody cover at landscape scales in the KNP.

Using the C and L-band SAR backscatter trained with the LR-TLS, we were able to

map the regional scale savanna biomass distribution. Climate and edaphic variables are

largely responsible for the heterogeneity in spatial distribution of biomass and vegetation

structure across KNP. The development of regional carbon estimates from the synergy of

LR-TLS and SAR data will significantly overcome the current major limitations of man-

ual field inventory and opens the opportunity to use LR-TLS scans at landscape scales,

providing a useful tool for direct calibration and validation of satellite derived biophysical

attributes.



Chapter 6

Synthesis
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6.1 Synthesis

The central theme of this dissertation was to characterize savanna vegetation structure

with high resolution 3D data and Radar data products, as well as to showcase their util-

ity in the context of assessing vegetation structure patterns under diverse environmental

drivers. The thesis is therefore intended to make both technical and applied research

contributions in the field of savanna vegetation ecology. Particular emphasis was put on

mapping canopy cover, aboveground biomass and vertical vegetation profiles across distur-

bance and rainfall gradient in varying geologies. These environmental drivers were chosen

because they are thematically connected in regulating savanna vegetation structure (see

Chapter 1 section 1.2), and in the face of changing climate determining their individual

as well as collective role in constraining vegetation structure is imperative. Also, vege-

tation inventories in savannas are sparse with coarse spatial resolution, which limits our

ability in realizing the full potential of environmental drivers. In the following section, the

achievements of this dissertation with respect to each study objectives are summarised,

discussed, and employed to outline the potential avenues for future research.

6.1.1 Summary

Study objective 1 - Analyzing vegetation structure and spatial organization across fire-

regimes

In Chapter 3, a quantitative effect of increasing fire frequencies on aboveground biomass

and vertical vegetation profiles of semi-arid savanna was performed. Special attention was

paid to understand how fires interact with rainfall and landscape to shape the vegeta-

tion structure dynamics. For this purpose, the study assessed the response of vegetation

structure to 63 years of experimental fire manipulation in South Africa’s Kruger National

Park. These experiments applied three late dry season fire regimes (biennial, triennial

and unburnt), nested across a topography and precipitation gradient. Vegetation struc-

ture of the fire manipulation experiment was mapped in 3D high spatial resolution with

Terrestrial LiDAR, which were converted to canopy height, cover, aboveground biomass

and vertical vegetation profiles. The study results highlighted that fire frequencies had

most effect on woody vegetation structure and biomass in more wet savanna sites, but this

effect was weak in dry savanna sites, where only the occurrence of fires constrained the

vegetation structure. The highest rate of biomass removal occurred with the triennial fire

regimes in the most productive sites, indicating a shift from woody carbon storage sink to

source. This study concludes that effects of fire regimes are context dependent, and these

interactions have substantial implications for carbon storage and emissions emerging from

savanna ecosystems.
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Study objective 2 - Characterizing savanna vegetation structural attributes at landscape scale -

method development

In Chapter 4, a new savanna vegetation sampling approach by terrestrial LiDAR was

implemented and evaluated. The aim was to overcome the plot-scale inventories, and in-

corporate wider landscape scale vegetation structure to capture the spatial heterogeneity

embedded in savannas. To this end, terrestrial LiDAR scans at reduced pulse repetition

rate (50 kHz) were acquired from vantage points at two sites in Southern KNP. The 3D

data from long-range scans was converted to canopy height, cover and vertical distribution

of 3D points. To determine the accuracy of LR-TLS quantified biophysical parameters, a

set of multiple TLS scanned reference plots were used, which were laid in the footprint of

long-range scans with increasing distance. The resulting long-range scans from the two

sites underscore the plausibility of extending the traditional sampling range of TLS from

plot scale (<1 ha) to 100’s of ha in less time. Finally, the experiences gained from the

assessment of LR-TLS led us to perform comprehensive scanning across different vegeta-

tion landscapes of KNP, and provide an alternative approach to vegetation inventory for

efficient and precise assessment of savanna carbon resources.

Study objective 3- Assessing spatial patterns of woody structure in a savanna system with earth

observation data

In Chapter 5, long-range scans acquired across different geologies and rainfall regimes were

used to scale up the estimates of tree cover and AGB to regional scale. Focus was laid on

determining the uncertainty that can originate from ambiguous thresholds for defining tree

cover in savannas. In addition to the threshold determination, varied radar backscatter

response to long-range scan derived tree cover and AGB were examined. For this purpose,

dry season acquired C-band Sentinel-1 and ALOS-PALSAR-2 radar images were used.

The results of the study demonstrate that Radar backscatter sensitivity to biophysical

parameters is stronger when a vegetation height threshold of 1.5m is considered. Even

though dry season radar images were utilized, C-band Sentinel-1 derived tree cover and

AGB were outperformed by the L-band backscatter. The analysis of spatial distribution

of biomass revealed strong variations across geologies and topography with thickets and

shrubs contributing high AGB. The study also highlights an important point that high

accuracy in mapping tree cover and AGB at regional scale can be achieved by minimizing

the time gap between backscatter and training data. Since previous research was based

on linking backscatter to training data acquired at fewer locations, the findings of this

study provide land managers with a complete picture of spatial distribution of cover and

AGB.

6.2 Reflection

Motivated by a selection of existing research needs, three scientific contributions were

made in the field of savanna vegetation ecology. The core of the individual contributions

are detailed quality vegetation structure data produced by the synergistic use of TLS
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and Radar imageries for a better understanding of multiple facets of savanna ecosystem’s

structure and dynamics. This section reflects on the objectives of this study, proposed

methods, strengths as well as their implications. A concise summary of discussions on the

objectives taken in this study are provided in the Table 6.1.

Table 6.1: Summary of the discussions on each scientific contributions

Contributions Strengths Limitations Requirements

Objective 1 (Singh et al.,
2018 )

1. Holistic assessment of
63 years of manage-
ment fires

2. Late dry-season fire
frequency and vege-
tation relationships
across precipitation
gradient

3. First quantitative test
for consumer control
by fire regimes

1. No consideration of
3D inventory metrics
like individual tree
biomass

2. Herbivory abundance
not taken into ac-
count

1. Multi-scan TLS data
across 24 7 ha plots

Objective 2 (Singh et al.,
in press)

1. First demonstration
of long-range scan-
ning for vegetation
structure mapping

2. 150-200 ha of vegeta-
tion landscapes cov-
ered

3. Detailed inspection of
error propagation

1. Limited sites
2. Dependence on

scanner height above
canopy

1. 2 Long-range scans
2. 13 multi-scan refer-

ence plots

Objective 3 1. Incorporation of TLS
reference data

2. Height threshold im-
pact on aboveground
biomass

3. Spatial variabil-
ity of biophysical
parameters

1. 100m resolution
2. No account of tempo-

ral variability

1. Long-range scans
2. Sentinel-1 and ALOS-

PALSAR-2 Radar
data

6.2.1 Analyzing vegetation structure and spatial organization across fire-

regimes

Despite a general recognition of the important role of fire-regimes in maintaining the

open state of savanna ecosystems, altered fire-regime effects on vegetation structure and

biomass across topographic gradients are still not clear. Bond & Keeley (2005), suggested

that extent of consumer control by fire results from interaction with the available mois-

ture content for plants, but so far research has not provided empirical evidence for the

regulation of these interactions. The fact that fire effects are dependent on the season

and frequency of occurrence (Govender et al., 2006), has led to the view that vegeta-

tion structure recede rapidly with increasing fire frequency and late dry season burns will

have severe consequence on vegetation structure (Murphy et al., 2014; Andersen et al.,

2005). Previous studies on fire-vegetation relationships were reported to originate from a

small spatial scale (Enslin et al., 2000; O’Regan, 2005) or for fewer landscapes only in the

early dry season time period (Devine et al., 2015). Moreover, these methods often relied

on manual measurements, or even data from airborne LiDAR was not sufficient enough

to document the smaller vegetation. The present thesis has addressed these deficits by
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analyzing the effects of 63 years of late dry season experimental burning with varied

fire frequencies on woody properties along a rainfall (496-700 mmyr-1) and topographic

gradient (basalt and granite).

Across the rainfall gradient, biomass increased rapidly on the unburnt plots, with upto 30

t/ha in the wettest regions. Previous studies in South African savannas have documented

the same trend, where fire absence led to six times higher woody biomass than in plots

receiving less mean annual precipitation (Higgins et al., 2007). Analogous to high biomass

in wet regions, fire caused a larger percentage biomass reduction in the more dense wooded

wet landscapes than in drier savanna system, which reinforces Bond & Keeley (2005)

consumer effect but with an added empirical evidence. My results challenge the current

widely held belief that fire-regimes do not have an influence on vegetation in dry savanna.

This study provides evidence that fire caused a substantial decline in biomass and woody

cover in dry savanna, though fire frequency had negligible influence. Long-term exposure

to biennial and triennial fires at dry savanna sites, reduced woody cover and height with

the equal magnitude. While, instead of biennial fires, triennial fires were more effective

in reducing the structure at wet sites by tree topkill. This result is significant since

previous studies do not provide empirical evidence of effect of additional year on vegetation

structure in wet and dry savanna. I argue that the greater influence of decreasing fire

frequency on wet savanna is due to the reduced competition between trees and grasses

during an additional year which leads to greater fuel accumulation in wet savanna.

The landscapes considered in this study differ in terms of soil type, which regulates

hydrology, nutrients, vegetation type and herbivore densities (Venter et al., 2003), and

this subsequently modifies the fire-vegetation relationships. Previous studies claimed that

effects of fire are more prominent on basalts, but my study shows the opposite trend, with

large absolute losses on granite sites with increased fire. However, I argue that this could

be due to declines in fuel load across basalt substrates due to the ongoing drought that

took place during the year of data acquisition. This result is an indicator of complex

fire-vegetation relationships spatially as well as temporally.

Altered fire regimes may be involved in homogenizing the vegetation structure in savan-

nas. I tested this hypothesis by assessing the segmented vegetation of three height classes

from 3D data along a gradient of rainfall. In both dry and wet extremes of rainfall gra-

dient, homogenization in the structure is evident at decreased fire frequency plots: dry

savanna sites had more homogeneous structure in unburnt plots while in wet savanna

region medium height class shrubs continuously increased with decreased fire frequency

(Figure 6.1). This suggests that regulation of fire frequency may play a key role in regu-

lating the structure of savannas in an attempt to achieve equilibrium between trees and

shrubs under changing resource availability. Also, this result is of increasing importance

for biodiversity conservation since a homogeneous structure can jeopardise the habitat

suitability of faunal assemblages.
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Figure 6.1: Bar plots for distribution of trees in 3 height classes with varying frequencies.

Taken together, this chapter of the thesis provides evidence that effects of fire regimes

are context dependent (Figure 6.2), and similar fire regime or ignition pattern might not

hold true for all the landscapes. For example, in dry savanna only the presence of fire

constrained the structure, while wet savanna sites demanded frequent fires. Also, this

study can give several management advices, e.g. use of spatio-temporal variability in fire

regimes instead of fixed fire regimes, to enable more cohorts of adult tree to escape the

fire-trap. This will ensure heterogeneity in the landscapes.
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Figure 6.2: A graphical representation showing varying effects of fire regimes across basalt and granite
substrate of KNP. Arrows indicate the strength of fire influence on vegetation, where red symbolises
greater effect while black indicates a weak effect.

6.2.2 Characterizing savanna vegetation structural attributes at landscape scale -

method development

A prevailing concern in savanna ecosystems is the lack of accurate landscape scale vegeta-

tion structure characterization which span climatic, edaphic and biotic gradients (Staver,

2018). Over the last 30 years, savanna vegetation structural descriptors have relied ex-

clusively on manual plot-based studies (<1 ha), which are site specific and cover a small

spatial subset of the landscape. Although plot-scale results are providing advances in sa-

vanna structure estimation, they suffer from the classic conundrum of savanna structure

i.e. to account for clumping and multi-stem vegetation structures (see Chapter 1 section

1.2.2). Recent attempts in mapping vegetation structure from airborne LiDAR have led

to increased spatial coverage as well as describing 3D structural descriptors compared to

existing manual inventories (Asner et al., 2007). However, the challenge always lies in

depiction of shrubs and other smaller vegetation that occur beneath the tree canopy and

contribute substantial carbon storage. Clearly, tools with the ability to measure struc-

tural details and encompassing vegetation of all size classes will help to fine tune many

descriptive characterizations of savannas. To address these shortcomings, I utilized long-

range terrestrial laser scanning as a means to acquire savanna vegetation structure over

wider scales.

In comparison to earlier studies, two major improvements were made by the long-range
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scanning in savanna vegetation structure estimation (Chapter 4). The first one refers

to the characterization of vegetation structure for up to 100’s of ha with single long-

range scan, including areas that are inaccessible for in-situ measurements. The 3D data

captured varied height class vegetation which ranged from small shrubs (1- 3 m) to big

trees (8-10 m), suggesting that data encompasses spatial variability. In the course of

investigation of the feasibility of long-range scans, four biophysical parameters - canopy

height, cover, aboveground biomass and vegetation vertical profiles were characterized and

compared against reference plot measurements. The biophysical parameters matched well

with the reference plots up to 500 m distance (Figure 6.3). In both sites, canopy height

displayed a low RMSE up to 600 m distances from the scanner, indicating that increasing

laser beam divergence has little consequence on canopy height determination in savanna

ecosystems. By contrast, canopy cover was apparently limited by the point density, which

degraded with increasing distance from the scanner. Although, uniform point density is

a pre-requisite for various vegetation metrics (Wilkes et al., 2017), this study suggest of

increasing z value with increased pulse divergence for precise canopy cover estimations.

The second type of improvement is related to the minimal effort in deployment and

time required to acquire the landscape scale 3D data. In particular, the long-range scan

approach minimized the time required for registering the scans together to form a coherent

3D data. We also demonstrate that point density dilutes exponentially with the increasing

distance from the scanner. However, the point density were not completely depleted, and

long-range scans were able to depict the branching structure of large trees up to 400 m

distance (Chapter 4, Figure 4.8). These results are a strong motivation for improvements

in measurements of savanna vegetation structure, and moving beyond simple measures of

height and diameter offered with manual inventory methods.

Figure 6.3: Estimation of aboveground biomass from the long-range and multi-scan setup for (a)
Mathekenyani and (b) Stevenson.

In spite of the advantages of long-range scanning to manual inventory, it is important to

note that the success of the proposed long-range scanning mainly relied on the scanner

height above the canopy, slope, vegetation structure and season of scanning. Thus, differ-
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ent vegetation and topographic settings may result in differing performance of long-range

scans. For example, an increase in terrain slope may cause loss of ground points due to

shadowing, which will ultimately result in overestimation of canopy height. Although, at

some higher slope (>1◦) plots in our setup, a high ground point density of 70 pts/m2 was

recorded, which is due to mixing of vegetation returns with ground returns. Additionally,

in the context of savanna ecosystems, season of scanning is very crucial, as shadowing

will greatly differ between dry and wet season. Low understorey in dry season will permit

deep penetration of laser pulses, which will help to get more ground points and subse-

quently will aid in accurate estimation of canopy height. However, wet season mapping

by long-range scans should aim at taking multiple long-range scans from elevated points,

preferably with different line of sight to minimize the shadows.

My approach of long-range scanning results are based on a limited sample of two sites

in a Southern Africa savanna. Nevertheless, the validation of our approach provides an

insight into the potential of long-range terrestrial laser scanning to account for vegetation

structure, providing enough detailed architectural information to scale from landscape to

regional spatial scale. This approach can be used further to estimate the vegetation struc-

ture in other arid and semi-arid regions, which might improve the current understanding

of savanna structure.

In recent years, spaceborne data collection capabilities have largely increased, e.g. open

access Sentinel data streams, where measurement frequency and spatial resolution are

high enough to capture the vegetation dynamics of savanna. While, this growing vol-

ume of spaceborne data represents a unique opportunity for savanna vegetation structure

science, it also poses a major challenge of fully exploiting these data. These earth obser-

vation missions are dependent on accurate and representative vegetation structure data

for the training and validation of their algorithms. However, accurate ground vegetation

inventory data for savannas are limited, which is a major cause for uncertainty in biomass

and canopy cover extrapolations at savanna sites. In my study of long-range scans, AGB

estimates had RMSE of 0.5 Mgha-1 and 8 Mgha-1 respectively at nearest and farthest plots

(Figure 6.3). This evidence proves that long-range scan 3D data can play a critical role

in calibration and validation of spaceborne datasets.

6.2.3 Assessing spatial patterns of woody structure in a savanna system with earth

observation data

Woody biomass and cover are important descriptors of savanna structure that capture

processes driven by geology, rainfall and topography. The last part of my thesis uses long-

range terrestrial laser scans for scaling up the estimates of biomass and cover to regional

scale using Radar data. Prior to this work, bulk of previous work exclusively focused on

the manual inventory or airborne LiDAR data as training and validation of Radar data.

Moreover, previous research findings were based on the examination of singe landscape,

thus failing to determine the spatial variability at regional scale. The present thesis picked

up these flaws and addressed the famous remote sensing question for savanna vegetation
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i.e. what does the Radar data sense?

My study on scaling up vegetation inventories from landscape to regional scale provides

new insights into understanding and predicting Radar backscatter interaction with sa-

vanna vegetation. For example, similar height thresholds are applied on manual inven-

tory or LiDAR data for training and validating the different wavelength Radar sensor.

However, I argue that this is not true for all the landscapes in savanna, where a lower

vegetation threshold showed higher correlation with smaller wavelength Radar data, while

the opposite trend was observed for the longer wavelength Radar data. However, in a

homogeneous ecosystem, e.g. forest, varying the height threshold will not have a signif-

icant impact on biomass estimates. This result points to one of key reason for carbon

sequestration uncertainty in savanna ecosystems. Furthermore, the study showcases the

significance of minimizing the time gap between training and Radar data to quantify the

biomass stored in savannas. In doing so, point of time biomass will be quantified instead

of a more general representation of vegetation with larger uncertainty. This finding is

in accordance with the temporal variability in savannas due to droughts, herbivory or

fire.

The procedures used in this work are of significant interest for implementing a park wide

monitoring program. In particular, heterogeneity in biomass has emerged as a manage-

ment goal in KNP, in association with maintenance of biodiversity(Rogers et al., 2003).

The biomass and woody cover maps generated in Chapter 5 can provide information at a

watershed or landscape scale, at which park is maintained.

6.3 Closing thoughts

By accounting for existing research needs in the field of savanna vegetation structure dy-

namics, a suite of high resolution remote sensing methods were explored in the present

thesis. These methods are used in unravelling the vegetation structure patterns across

altered fire regimes, rainfall and topographic gradients. The acquired terrestrial laser

scanner 3D dataset proved to be suitable for accurate characterization of different sa-

vanna vegetation biophysical parameters, including canopy height, cover, aboveground

biomass and vertical vegetation profiles. Moreover, the ability to extend these parame-

ters from plot to landscape scale were documented from long-range terrestrial scans. From

a geographical perspective, much of the work is concentrated on managed savanna lands

located in South Africa. However, the described methods and data are expected to work

well for any other savanna landscapes, as long as the used 3D data are of certain standard.

Fortunately, these requirements are growing, with increased deployment of terrestrial laser

scanner and Radar data in the savanna regions of the world. On the application side, the

derived products demonstrate that rainfall, soil types and fire regimes influence vegetation

structure differently. The dataset reinforce Bond & Keeley (2005) consumer control by

fire and that influence of fire regimes increases along the rainfall gradient. Overall the

results highlight that increased fire frequencies are necessary to maintain open savanna
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system in wet regions, but this is not the case in dry savanna. In the final investigation of

this work (Chapter 5), the acquired dataset were effectively employed to produce regional

scale woody biomass map. These maps were then used to determine the spatial relation-

ship between rainfall, geology and biomass. This study was exemplary for showing that

landscape and hillsope scale 3D data are accurate and can be integrated with spaceborne

imageries for large scale vegetation mapping.

6.4 Looking to the future

The study objectives taken in this dissertation opens new issues and leaves unsolved prob-

lems, therefore this section proposes concepts for future research. The future opportunities

directly build upon the dataset acquired for this dissertation i.e. 3D data from TLS and

spaceborne Radar data. New tasks aim at optimizing vegetation mapping protocols and

exploiting more detailed structural vegetation properties, which will further contribute to

our understanding of savanna ecosystems.

6.4.1 Individual tree scale architecture

Vegetation allometry and architecture are of great ecological significance, as they scale up

to shape the structure and dynamics of any ecosystem. In savanna ecosystems, trade-off

between disturbance regimes such as fire and herbivory, and the resource availability pro-

motes the exquisite architecture of woody vegetation and shrubs (Figure 6.4). Both tree

height and canopy cover have been shown to be good predictors of vegetation allometry

and architecture. In Chapter-3, I evidenced the influence of disturbances and resources

(mean annual precipitation and substrate) on the horizontal and vertical stature of veg-

etation from plot-scale analysis of high resolution 3D data. However, averaged plot-scale

analysis conceals the legacy effect of disturbances and environmental factors operating on

woody and shrub guilds from seedling to maturity.
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Figure 6.4: Individual tree point clouds (a) Marula, (b) and (c) Mopane in Experimental burn
plots of Kruger National Park, South Africa, coloured by height from low (blue) to high (yellow).
The contrasting three-dimensional structures across EBPs are associated with the fire frequency and
intensity.

Patterns of tree allometries and architecture in savannas partly reflect growth vs survival

strategies arising from the repeated disturbance effects. For instance, during repeated fire

events, vegetation architecture is geared towards rapid height growth to escape the fires,

and minimize topkill. In addition to vertical growth, increasing herbivory pressure on

vegetation promotes structural defenses by increased branching and wide canopies. These

architectural changes are reflected in stem diameter-height relationships, branching angles

and volume. Measurement of branching angle, volume and canopy spread necessitates

detailed sampling efforts and repeated measurements. This is an area where TLS has the

potential to make new contributions and strategy relationships, e.g. canopy height-stem

volume or stem volume-branching order.

Figure 6.5 shows how complex tree architecture parameters are extracted from point

clouds using Quantitative Structure Models (QSM) (Raumonen et al., 2013). QSM ap-

proach involves fitting combinations of multiple cylinders varying in radius and height.

Total volume, stem and branch volume, branching angles, height and diameter at breast

are some of the complex attributes that can be estimated from the QSM models. I foresee

vegetation QSMs as next step in improving the savanna tree allometries and subsequently

inferring the growth rates, carbon losses after the disturbance events in savannas. While

most reconstruction algorithms have been trained for the temperate trees, several advance-

ments need to follow to accurately create the structure models for multi-stem vegetation

in savannas.



6.4 Looking to the future 101

Figure 6.5: a) TLS point cloud of a Marula (Sclerocarya birrea) coloured by height low (blue) to high
(yellow). (b) QSM model derived from using (Raumonen et al., 2013) algorithm. The total volume,
branch volume and DBH of the tree were 5210 cm3, 3841 cm3 and 53 cm respectively.

6.4.2 Comparison of long-range scans performance over different savanna

landscapes- benchmark study

Despite the suitability of long-range scanning in describing vegetation structure with

unprecedented detail, the method described in Chapter 4 revealed certain limitations.

For instance, the accuracy of long-range scanning across varying topographic gradients

i.e slope, elevation, and vegetation types have not been characterized properly. The focus

of outlook-2, therefore lies in overcoming and addressing these limitations and improving

the scanning mechanism. One way to ensure the efficiency of long-range scanning is to

classify acquired 106 long-range scans across KNP based on vegetation type (low to closed

canopy cover) and topography. A point density measure along increasing distance can be

used later to determine the efficiency of long-range scanning across all landscapes (Figure

6.6). Also, from the experiences gained in this thesis, I assume that scanning savanna

ecosystems is very different than tropical and temperate ecosystems, due to more open

vegetation structure. This opens up an opportunity to devise the first scanning protocols

for mapping savanna ecosystems, which can encompass data acquisition essentials such

as number of scanning positions requirement, pulse repetition rate and scan time. A

standard scanning protocol will allow data interoperability and comparison of long-range

vegetation metrics across other savanna sites.
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Figure 6.6: Work task of the concept for LR-TLS benchmark study.

With several upcoming satellite missions in the coming decade, the number of vegetation

biophysical products will greatly increase. Despite the recognition of biophysical mapping

in policy making and management applications in savanna ecosystems, there is a need

to provide accurate product validation (Duncanson et al., 2019). The high resolution

multi-scan and long-range terrestrial laser scan data collected for this thesis work can be

tools for satellite derived products validation.

6.4.3 Temporal change analysis

The recent IPCC report on Climate change and Land highlighted altered rainfall regimes

across arid and semi-arid areas have been highlighted as major predictors of climate

change (IPCC, 2019). Extremely high rainfall events may be one outcome of this change,

but concerns remain around the occurrence of droughts, as water availability is a key

determinant of savanna structure and function (Sankaran et al., 2005). For example,

Kruger National Park, on which this dissertation work is based, experienced a major 2

year (2014-2016) drought. These drought events open up savannas by rendering increased

tree mortality and imposing implications on terrestrial carbon sink. Drought related

savanna vegetation structure alterations have been reported in several previous studies

(Fensham & Holman, 1999; Fensham & Fairfax, 2007; Swemmer et al., 2018). While

these studies are from different regions of the world, but are consistent with the fact

that drought effects are spatially variable across the landscapes and are related to soil

texture and properties. Understanding how these different landscapes differ in vegetation

structure distribution before and after the drought events represents a major task for

savanna ecologists.

The enormous 3D data collected during this dissertation in 2016 will be a great asset in
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understanding the effects of drought, as the data spans a topographic as well as rainfall

gradient. Canopy cover and biomass from the 3D data, as illustrated in Chapter 4,

can be used to back-calibrate freely available ALOS-PALSAR Radar mosaics for the year

2010, to generate regional canopy cover and biomass map. Here, back-calibration refers to

estimating canopy cover and biomass for few suspected unchanged regions in the year 2016.

Later, a change detection between landscapes can be performed by matching 2010 map

with the 2016 ALOS-PALSAR-2 derived vegetation map presented in this thesis.

6.4.4 Beyond terrestrial LiDAR

As stated in Chapters 3,4 and 5, the TLS point clouds analyzed in this thesis were acquired

from Riegl VZ-2000 terrestrial LiDAR. The data from Riegl VZ-2000 was efficient enough

to unravel the methods development and their application to savanna ecological questions.

One of the major limitation encountered in the long-range scanning was gradual loss of

ground points with increasing distance. I foresee that this limitation of long-range scans

can be overcome by merging long-range scans data with UAV (Unmanned aerial vehicle)

3D data. A UAV mounted with LiDAR sensor can increase the spatial coverage of 3D data

to a great extent. Also, UAV scans at low altitude than airborne LiDAR thereby providing

sufficient information on understory and vegetation trunks. This is important for the

structural description of savannas. Future research should use the fusion of point clouds

from UAV LiDAR with the long-range scanning, to better characterize the ground.
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(a)

(b)

Figure 6.7: (a) TLS and (b) Unmanned aerial vehicle acquired point cloud across Northern Australian
savanna sites. It is evident from UAV point clouds that stems of the vegetation are not properly
characterized. The data quality from UAV is greatly influenced by the flight paths, overlap and laser
sensor. (Data courtesy: Shaun Levick)
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Archibald, S., Lehmann, C. E., Gómez-Dans, J. L., & Bradstock, R. A. (2013). Defining

pyromes and global syndromes of fire regimes. Proceedings of the National Academy of

Sciences , 110 , 6442–6447.

Archibald, S., Nickless, A., Govender, N., Scholes, R. J., & Lehsten, V. (2010). Climate

and the inter-annual variability of fire in southern africa: a meta-analysis using long-

term field data and satellite-derived burnt area data. Global Ecology and Biogeography ,

19 , 794–809.

Archibald, S., & Scholes, R. (2007). Leaf green-up in a semi-arid african savanna–

separating tree and grass responses to environmental cues. Journal of Vegetation Sci-

ence, 18 , 583–594.

Asner, G. P., Elmore, A. J., Olander, L. P., Martin, R. E., & Harris, A. T. (2004). Grazing

systems,ecosystem responses, and global change. Annual Review of Environment and



106 REFERENCES

Resources , 29 , 261–299.

Asner, G. P., Knapp, D. E., Kennedy-Bowdoin, T., Jones, M. O., Martin, R. E., Board-

man, J. W., & Field, C. B. (2007). Carnegie airborne observatory: in-flight fusion of

hyperspectral imaging and waveform light detection and ranging for three-dimensional

studies of ecosystems. Journal of Applied Remote Sensing , 1 , 013536.

Asner, G. P., & Levick, S. R. (2012). Landscape-scale effects of herbivores on treefall in

african savannas. Ecology Letters , 15 , 1211–1217.

Asner, G. P., Levick, S. R., Kennedy-Bowdoin, T., Knapp, D. E., Emerson, R., Jacob-

son, J., Colgan, M. S., & Martin, R. E. (2009). Large-scale impacts of herbivores on

the structural diversity of african savannas. Proceedings of the National Academy of

Sciences , 106 , 4947–4952.

Asner, G. P., Vaughn, N., Smit, I. P., & Levick, S. (2015). Ecosystem-scale effects of

megafauna in african savannas. Ecography , 39 , 240–252.

Astrup, R., Ducey, M. J., Granhus, A., Ritter, T., & von Lüpke, N. (2014). Approaches
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Raumonen, P., Kaasalainen, M., Åkerblom, M., Kaasalainen, S., Kaartinen, H., Vas-

taranta, M., Holopainen, M., Disney, M., & Lewis, P. (2013). Fast automatic precision

tree models from terrestrial laser scanner data. Remote Sensing , 5 , 491–520.

Roderick, M. L., Noble, I. R., & Cridland, S. W. (1999). Estimating woody and herbaceous

vegetation cover from time series satellite observations: GCTE/LUCC RESEARCH

LETTER. Global Ecology and Biogeography , 8 , 501–508.
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