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I. HAMILTONIAN

Due to the periodic arrangement of the molecules, the molecular operators of the lowest unoccupied orbital c of molecule ν
can be transformed to a Bloch basis ck =

∑
ν exp(−ik ·Rν)cν/

√
Nm with Nm the number of molecular unit cells and wave

vector k1–3. At the same time, valence band electrons in the TMDC layer are described by operators vk. In this notation, we can
construct a many-particle Hamiltonian, which is parameterized from electronic structure ab initio calculations:

H =
∑
λ,k

ελ,kλ
†
kλk + ie0

∑
λ,k

E(t) · (∇kλ
†
k)λk + ~

∑
k

Ωk(t)
(
v†kck + c†kvk

)
+

1

2

∑
λ,λ′,ν,ν′

k,k′,q

V λνν
′λ′

k,k′,q λ†k+qν
†
k′−qν

′
k′λ
′
k. (1)

The first term describes the free kinetic energy. The single-particle energies are εc,k = EG and εv,k = ~2k2/2m with effective
hole mass m. The second and third term describe intra- and interband transitions, respectively. The last term includes Coulomb
interaction. To account for inter- and intraband renormalization effects and exciton formation we can restrict the band indices to
the combinations of: all band indices correspond to valence or conduction band and to even numbers of valence and conduction
band indices. Uneven numbers of band indices would describe Meitner-Auger processes. However, since valence and conduction
band are in different layers, the Meitner-Auger process would require a large wave function overlap to significantly contribute and
can therefore be neglected4. Together with a random phase approximation for electronic occupations 〈λ†kλk′〉 → 〈λ†kλk′〉δk,k′

we obtain the Hartree-Fock Hamiltonian

H =
∑
k

(
εc,k +

∑
k′

V mol
0 fc,k′ +

∑
k′

V0fv,k′ −
∑
k′

V mol
k−k′fc,k′ −

∑
k′

Vk−k′fv,k′

)
c†kck

+
∑
k

(
εv,k +

∑
k′

V WS2
0 fv,k′ +

∑
k′

V0fc,k′ −
∑
k′

V WS2

k−k′fv,k′ −
∑
k′

Vk−k′fc,k′

)
v†kvk

+ ie0E(t) ·
∑
λ,k

∇kλ
†
kλk

−
∑
k

(∑
k′

Vk−k′p∗k′ − dk ·E(t)

)
v†kck −

∑
k

(∑
k′

Vk−k′pk′ − d∗k ·E(t)

)
c†kvk (2)

=
∑
λ,k

ε̃λ,kλ
†
kλk −

∑
k

∆k

(
v†kck + c†kvk

)
+ ie0

∑
λ,k

E(t) · (∇kλ
†
k)λk + ~

∑
k

Ωk(t)
(
v†kck + c†kvk

)
. (3)

which reproduces the semiconductor Bloch equations in the Hartree-Fock limit, including effects as exciton formation or
band gap renormalization. The single-particle energies ε̃λ,k are renormalized by Hartree-Fock contributions of intra- and
interlayer Coulomb interaction, which contain the carrier occupation fλ,k = 〈λ†kλk〉 in TMDC and molecule layer and
∆k =

∑
k′ Vk−k′pk′ accounts for the formation of bound excitons and corresponds to the built up of a macroscopic coher-

ence in the EI state. The microscopic transitions are defined as pk = 〈v†kck〉 and Vk denotes the interlayer Coulomb potential5.
The last two terms include light-matter interaction consisting of intra- and interband transitions. The latter are determined by
the Rabi frequency Ωk = dk · E(t)/~ with electronic dipole moment dk and electric field E(t). In this manuscript, we use
the band gap energy as parameter, tunable by a static external additional out-of-plane electric field via the Stark effect6. This
tuning enables different electronic phases of the heterostructure. Since the excitonic insulator phase results from a spontaneous
formation of excitons, we first focus on the ground state calculation in absence of an external exciting optical field.

The Hamiltonian is then diagonalized with a Bogoliubov transformation. The new ground state is given by7

|Ψ̃0〉 = Πk

(
u∗k − w∗kc

†
kvk

)
|Ψ0〉 = Πkα

†
k|0〉 (4)
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with |Ψ0〉 = Πkv
†
k|0〉 as the conventional semiconducting ground state constructed from the vacuum state |0〉. The coherence

factors |wk|2 and |uk|2 describe the probabilities that the pair state is occupied or unoccupied, respectively. The diagonalization
yields the coherence factors

|uk|2 =
1

2

(
1 +

Σk√
Σ2

k + ∆2
k

)
, and |wk|2 =

1

2

(
1− Σk√

Σ2
k + ∆2

k

)
. (5)

Finally, we define the Coulomb potential

V ll
′

q =
e20

2ε0A|q|εll′q

; εll
′

q =

{
εq, l 6= l′

εiq, l = l′ ≡ i (6)

with i = {0, 1} for molecular and TMDC layer. The dielectric functions read

εq = κg0|q|g
1
|q|f|q| and εiq =

κg1−i|q| f|q|

cosh(δ1−i|q|/2)hi|q|
(7)

with the abbreviations

fq = 1 +
1

2

(
(
κ0
κ

+
κ

κ0
) tanh(δ0|q|) + (

κ1
κ

+
κ

κ1
) tanh(δ1|q|) + (

κ0
κ1

+
κ1
κ0

) tanh(d0|q|) tanh(δ1|q|)
)

(8)

hiq = 1 +
κ

κi
tanh(δi|q|) +

κ

κ1−i
tanh(δ1−i|q|/2) +

κi
κ1−i

tanh(δi|q|) tanh(δ1−i|q|/2) (9)

giq =
cosh(δi|q|)

cosh(δ1−i|q|/2)

(
1 +

κ

κi
tanh(δi|q|/2)

)
. (10)

The parameters are κi =
√
εi‖ε

i
⊥ and κ for the dielectric background, αi =

√
εi‖/ε

i
⊥, δi = αidi with the layer thickness di.

II. EQUATIONS OF MOTION

The macroscopic polarization is defined as P(t) = −δHlm/δE(t) with the light-matter Hamiltonian Hlm. Already in
excitonic basis, the macroscopic polarization reads

P(t) = −
∑
µ,k

(
f
(0)
k ϕµ,kdk + ie0ϕ

∗
µ,k∇kp

(0)
k

)
Pµ + ie0

∑
λ,k

[∇kλ
†
k]λk (11)

from the macroscopic polarization we can calculate the optical current

j(t) = −
∑
µ,k

(
dkϕµ,kf

(0)
k + ie0ϕµ,k∇kp

(0)
k

) d

dt
Pµ(t) + e0

∑
k

vkF
(1)
v,k(t) (12)

j(ω) = −
∑
µ,k

(
dkϕµ,kf

(0)
k + ie0ϕµ,k∇kp

(0)
k

)
iωPµ(ω) + e0

∑
k

vkF
(1)
v,k(ω) (13)

where we introduced the particle velocity vk = ~k/m and Fourier transformed to get from Eq. (12) to Eq. (13). Since the
molecule electrons are infinitely heavy they do not contribute to the current that only the valence band electrons F (1)

v,k‖
are

relevant. We derive the equations of motion for the optical excitations, which read

i~
d

dt
pk = (2Σk + ie0E(t) · ∇k) pk −∆kfk + ~Ωkfk (14)

i~
d

dt
fk = 2i=m (∆kpk) + e0E(t) · ∇kfk (15)

with 2Σk = ε̃c,k− ε̃v,k and inversion fk = fv,k−fc,k. Then, we expand the polarization and density into orders of the exciting
electric field

pk = p
(0)
k + p

(1)
k +O(2) (16)

fk = f
(0)
k + f

(1)
k +O(2). (17)
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Staying in the first order of the electric field the HIOS Bloch equation reads

i~
d

dt
p
(1)
k = 2Σ

(0)
k p

(1)
k −∆

(1)
k f

(0)
k + 2Σ

(1)
k p

(0)
k −∆

(0)
k f

(1)
k + ~Ωkf

(0)
k + ie0E(t) · ∇kp

(0)
k (18)

i~
d

dt
f
(1)
k = 2i=

(
∆

(0)
k p

(1)
k + ∆

(1)
k p

(0)
k

)
+ ie0E(t) · ∇kf

(0)
k . (19)

Since p(0)k and f (0)k describe the ground state their dynamics vanish. The first two terms of Eq. (18) correspond to the semi-
conductor Bloch equation. The second two terms are new and couple ground state distributions and excited quantities. The last
two terms describe the optical excitation with interband source with included Pauli blocking8 and intraband source, respectively.
The coupling induced by the third and fourth term can be resolved via the transformation9

P
(1)
k =

Ek + Σ
(0)
k

Ek
p
(1)
k −

Ek − Σ
(0)
k

Ek
p
∗(1)
k −

∆
(0)
k

Ek
f
(1)
k (20)

F
(1)
k =

∆
(0)
k

Ek

(
p
(1)
k + p

∗(1)
k

)
+

Σ
(0)
k

Ek
f
(1)
k . (21)

We obtain

i~
d

dt
P

(1)
k = 2EkP

(1)
k −

∑
k′

Vk−k′P
(1)
k′ + ~Ωkf

(0)
k + ie0E(t) · ∇kp

(0)
k (22)

i~
d

dt
F

(1)
k = ie0E(t) · ∇kf

(0)
k (23)

We can identify the Bogoliubov-Wannier equation

2Ekϕµ,k −
∑
k′

Vk−k′ϕµ,k′ = Eµϕµ,k (24)

which yields the excitonic equations

i~
d

dt
P (1)
µ = EµP

(1)
µ +

∑
k

f
(0)
k ϕ∗µ,k~Ωk + ie0E(t) ·

∑
k

ϕ∗µ,k∇kp
(0)
k (25)

i~
d

dt
F

(1)
k = ie0E(t) · ∇kf

(0)
k (26)

Equation (25) can be Fourier transformed an inserted into Eq. (13). For the occupations we Fourier transform Eq. (26) with
phenomenological dephasing and insert into Eq. (13), which yields for the last term

j(ω) = −e0
∑
k

vk

ie0E(t)∇kf
(0)
v,k

~ω + iγ
=

(
− ie

2
0

~
∑
k

vk ⊗∇kf
(0)
v,k

ω + iγ/~

)
·E(t) (27)

Comparing with the definition of the current j(ω) = −iωε0χ(ω)E(ω) we can identify the scalar susceptibility

χ(ω) = − 1

ε0

∑
µ

dµ ⊗ dµ + jµ ⊗ jµ
~ω − Eµ + iγ

+
e20
ε0~

∑
k

vk ⊗∇kf
(0)
v,k

ω2 + iωγ/~
. (28)

In case that the electronic phase has a valence occupation f (0)v,k with Fermi edge, we can partially integrate the last term in Eq.
(27) and find (

− ie
2
0

~
∑
k

vk ⊗∇kf
(0)
v,k

ω + iγ/~

)
·E(t) =

ie20
m
nel

1

ω + iγ/~
E(ω) (29)

where defined the carrier number nel =
∑

k f
(0)
v,k. Again comparing with the definition of the optic current and assuming a

perpendicular excitation we find the scalar susceptibility

χ(ω) = − 1

ε0

∑
µ

|dµ|2 + |jµ|2

~ω − Eµ + iγ
+

ω2
pl

ω2 + iωγ/~
(30)

with the plasma frequency ω2
pl = e20nel/ε0m.
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III. OPTICAL SELECTION RULES OF EXCITONIC INSULATOR

Investigating the gap equation Eq. (1) of the main text we see that it corresponds to the Bogoliubov-Wannier equation with
vanishing exciton binding energy. This suggests that also the ground state polarization could be projected onto the wave function
acting as solution for Eµ = 0: p(0)k =

∑
ν,Eν=0 ϕν,kp

(0)
ν . Then the momentum-gradient in the intraband matrix element acts

onto the wave function. For a s-type ground state the angular derivative vanishes. Together with an analytical treatment of the
angle-sum we obtain for the intraband source

jµ = e0πe ·
∑
ν,k

ϕ∗µ,k∂kϕν,k

(
1
±i

)
(31)

where the sign stands for µ = p+ and µ = p− final states. These two final states exhibits a circular dichroismic selection rule,
comparable to KK- and K−K−-excitons in monolayer TMDCs.

IV. ELECTRON-HOLE LIQUIDS

In this paragraph we discuss the different properties of EI and electron-hole liquid (EHLs) in two-dimensional semiconductors.
Whereas the interlayer exciton in hybrids exist and can be detected at low densities10, EHLs require a sufficient density to be
stable.

The ground state of the here investigated heterostructure consists of interlayer exciton, where electron and hole are situated
in spatially separated layers. Although being a direct-band gap system at the TMDC K point/molecule flat band, the interlayer
character leads to long lifetimes compared to intralayer excitons. Such interlayer excitons can already exist at low densities.
To estimate the exciton density n in units of the Bohr radius aX11, we calculate na2x = a2X

∑
k |p

(0)
k |2 and find a value of

0.02. The corresponding density n = 3 · 1012/cm2 lies below the Mott transition12,13 and EHL formation threshold known for
TMDC excitons14. Still, due to the comparably high density and the long lifetime, we need also to address the possibility of
electron-hole liquids (EHL) next to the excitonic insulator (EI):

The EHL is a correlated electron-hole plasma. The EHL energy consists of three parts: kinetic, exchange, and correlation
energy. The kinetic contribution corresponds to the kinetic energies of non-interacting electron and holes. The Fock term of the
Coulomb interaction occurs in a mean-field approximation, the correlation occurs due to strong screening as a perturbative cor-
rection. It has been shown that the correlation energy is mainly mediated by large momentum transfer15,16 and that in suspended
monolayer TMDCs the main contribution to the binding energy of the EHL comes from kinetic and exchange energy17: For the
EI considered here, the intravalley Coulomb interaction around the electronic K point is the dominant interaction. Here, short
momentum transfer occurs and reduces the impact of the correlation energy. In particular, the combination with the molecular
flat band favors small momentum transfer. However, also other configurations might occur: TMDCs exhibit a complex band
structure with different side valleys. In our case, only the valence band of WS2 is of interest with an energetic separation between
the global maximum (K point) to other local maxima (Γ point) exceeding the exciton binding energy. In a possible multi-valley
scenario also large momentum transfer could play a role and lead to a preference of the EHL state.

But even in this case (not considered here), the EHL corresponds to a non-equilibrium phase occurring at high electron-hole
pair densities due to optical pumping In the here investigated heterostructure an excitonic ground state (EI) forms in absence of
an optical pump. Therefore, the formation of an EHL would be a two-step processes. First, the formation of the EI (energetic
favourable compared to a full valence and empty conduction band) followed by the transition into an EHL as energetic most
favorable state due to the now present high electron-hole density.

On the other hand, A. Rustagi & A.F. Kemper17 showed, that suspended monolayer MoS2 exhibits a certain phase space,
which consists of a mixture of EI and EHL; a possibility we do not want to exclude for the here investigated heterostructure.

We want to emphasize, that an optical absorption experiment should be able to clarify the nature of the phase. In the main
manuscript we described the unique spectral signatures for semiconductor, metal, and EI. Despite the interlayer character of
the exciton, the oscillator strength of an EI originates from intraband transitions and therefore contribute to a linear optical
response. In contrast, the optical response of an EHL should originate from interband transitions. Therefore, a linear absorption
experiment should also be able to distinguish between the EI and EHL phase.
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