Primary Data Description: On equilibrium fluctuations, von Storch, 2022

The data are produced by the following MATLAB scripts given below in blue. Most of them use the functions $lorz_n.m$, $lorz_f_n_shift.m$ to get Lorenz solutions x and its differential forcing f. $lorz_f_n_shift$ writes out not only x (as it is done in lorz_n) also the differential forcing f.

	Scripts	Functions & data needed
Figure 2	 plot_ts_xf calculates and plots two different Lorenz equilibrium solutions Equilibrium solutions are obtained by starting from a state (x1,y1,z1), which is an equilibrium state that is obtained by integrating the Lorenz model over a long time period (stored in var.mat) and then slightly perturbed by adding a normal random variable integrate this slightly-perturbed state for another nts time steps to produce a spin-up integration integrate the Lorenz model from the end of the spin-up integration to produce an equilibrium solution 	lorz_n lorz_f_n_shift var.mat contains the initial conditions produced by get_var
Figure 3	<pre>get_var calculates variance a) by time averaging a single equilibrium solution, and b) by averaging over an ensemble of equilibrium solutions. The time averaged variance is a function of the length of the solution. The ensemble averaged variance is a function of ensemble size.</pre> Equilibrium solutions are obtained as described above. plot_var plots the result	lorz_n produces a solution of the Lorenz model using the Runge Kutta method and a time step dt=0.01. The solution starts from (x1,y1,z1) and has the length n
Figure 4	<pre>get_c calculates auto-correlation functions of x from a single equilibrium solution of three different lengths plot_c plots the time-averaged auto-correlation functions</pre>	lorz_n var.mat
Figure 5	get_gammacalculates auto-correlation functions of x from an ensemble of three different ensemble sizesplot_gammaplots the ensemble-averaged auto-correlation functions	lorz_n var.mat
Figure 6	<pre>get_gamma_f calculates auto-covariance functions of f from an ensemble of size en=1e+6 get_gamma_xf calculates cross-covariance functions between x and f from an ensemble of size en=1e+6 plot_gamma_xf plots the results</pre>	lorz_f_n_shift var.mat

	Scripts	Functions & data needed
Figure 7	<pre>get_spxf_shift calculates ensemble averaged spectra, including both the power spectra of x and those of f, and the co-spectra and the coherence and phase spectra between x and f, using one ensemble of size 1000 consisting equilibrium solutions of length 1e+7+1 get_white_lf_var a) identifies the frequency at which the spectrum</pre>	lorz_n lorz_f_n_shift var.mat omega.mat
	deviates 5% from its low-frequency plateau and stores the result in omega.mat (needed in plot_spxf), b) calculates the variance associated with the low-frequency plateau	
	plot_spxf plots power spectra of x and f and the coherence and phase spectra between x and f	
Figure 8	<pre>plot_spf_linear plots the spectra of f and the amplitude of the cross-spectrum between x and f (output of get_spxf_shift) in linear scale (rather than log scale)</pre>	
Figure9	get_signal calculates the spectra of two impulse-like signals. The non-zero values at the central piece of a signal is obtained from an AR1-process plot_signal plots the resulting spectra	ar1
Figure B1	get_sp_m calculate spectra derived from three ensembles of size 1, 10 100. The ensembles contain equilibrium solutions of size 1e+7+1.	lorz_n var.mat
	The spectra derived from an ensemble of size 1000 is calculated by get_spxf_shift.	
	plot_sp_m plots spectra of the first component obtained from four ensembles of sizes 1, 10, 100, and 1000.	
Figure B2	get_sp_n calculates spectra averaged over 4 ensembles of size=1000, each consisting equilibrium solutions of length 2N=1e+3, 1e+4, 1e+5, 1e+6.	lorz_n var.mat
	plot_sp_n plots the result	
Figure C1	get_sp_n_plus1 calculates the difference between two sample spectra, $S_{k,N+1}$ - $S_{k,N}$. The two sample spectra are derived from two non-overlapping pieces of the same equilibrium solution, with length $2(N+1)+1$ and $2N+1$	lorz_n var.mat
	<pre>plot_sp_n_plus1 plots the result</pre>	
Figure C2	get_fc_1 calculates the the Fourier coefficient at the same frequency from 100 records of length T from a single equilibrium solution	lorz_n var.mat
	plot_fc plots the Fourier coefficients	