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ABSTRACT

In this paper, we introduce a reduced order model (ROM) for the propagation of nonlinear multi-directional ocean wave-fields. The ROM relies
on Galerkin projection of Zakharov equations embedded in the high-order spectral (HOS) method, which describes the evolution of nonlinear
waves. The dominant flow features of wave evolution are computed from proper orthogonal decomposition (POD) and these modes are used for
the projection. The HOS scheme to compute the vertical velocity is treated in a novel way for an efficient implementation of POD-based ROM.
We refer to this alternative formalism of HOS as HOS-simple. The final reduced order model (ROM) is derived from the Galerkin projection of
HOS-simple. For the case of irregular waves, where the number of modes required are in the range of 200, the ROM has no significant advantage
since both HOS and HOS-simple are much faster than real-time. The real advantage is demonstrated in multi-directional (or short-crested) irreg-
ular waves, where the ROM is the only model capable of achieving real-time computation, a major improvement to the standard HOS method.
The potential use of the ROM in propagating short-crested waves from far-field to near-field for real-world applications involving wave probes in
a wave tank/controlled environment as well as X-band radar in open ocean is also demonstrated.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0070246

I. INTRODUCTION

Fast and accurate prediction of ocean wave-fields is becoming
increasingly important for marine and offshore industries. With the
ongoing digitalization effort undertaken by industries to enhance the
safety, productivity, and reliability of their systems and the associated
operations, the ability to predict the operating environment, starting
with ocean wave-fields, will contribute to the digitalization effort. This
ability also helps to shape out future systems, such as navigation of
autonomous vessels and the development of smart and intelligent off-
shore and marine renewable energy systems.

In general, two types of wave prediction models exist: phase-
averaged and phase-resolved models. Phase-averaged models are well-
established and have existed for several decades.”””” These models
describe the evolution of wave spectra and produce wave spectra or
statistics that describe significant wave heights, spectral periods, and
wave propagation directions. Wave-by-wave prediction models that

are phase-resolving, on the other hand, are still in their infancy. For
short-term predictions, say a few tens of seconds to minutes in the
future, the actual ocean surface profile is predicted as a function of
space and time.'””>"” The general practice is to use phase-averaged
models to study wave climate conditions, while the phase-resolved
models are critical for scenarios that require precise knowledge of the
sea surface elevation at a given time and location, such as autonomous
navigation, marine operations, and development of real-time digital
met-ocean.

Numerous nonlinear wave models have been created during the
last few decades to solve the nonlinear evolution of sea-state over large
domains for long time periods. The majority of them were created
within the framework of potential flow theory, taking into account the
fact that ocean wave propagation is essentially irrotational and inviscid
(until the point of wave breaking or where strong wave-current inter-
action exists). Several attempts have been made to solve the whole
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Euler or Navier-Stokes equations. However, due to the computational
work required, the solution is limited to small domain scales. In paral-
lel, solving the fully nonlinear potential flow formulation efficiently
and accurately remains a significant challenge. For a comprehensive
overview on various numerical approaches used for modeling the evo-
lution of nonlinear ocean waves, the readers are referred to Ref. 13.
This excellent review by Fenton contains salient features of the most
important numerical models such as finite difference, finite element,
boundary element, pseudo-spectral methods, Green-Naghdi theory,
and local polynomial approximations in the context of nonlinear wave
models.

Due to its pseudo-spectral formalism, the high-order spectral
(HOS) method is highly efficient and accurate in this setting. When
dealing with the propagation of open-ocean wave-fields at constant
sea depth, it has been demonstrated that the HOS method is more effi-
cient than advanced models that solve the volume problem using
finite-difference discretization.” Numerous authors have extensively
employed and validated the HOS method to investigate a variety of
physical mechanisms, including nonlinear energy transfers,”” modula-
tional instabilities,”** bi-modal seas,”* and freak waves.'”***" As a
result, this method can be regarded as mature and applicable to real-
world engineering problems. Despite all the advantages of the HOS
method, it is still computationally expensive to solve the nonlinear
evolution of multi-directional ocean wave-fields in real-time.”>”* The
main objective of the present work is to overcome this limitation of
the HOS method in terms of computational speed via reduced order
modeling (ROM), while retaining its inherent advantages listed above.

Proper orthogonal decomposition (POD) is a mathematical
approach for extracting a basis for a modal decomposition from an
ensemble of signals. Kosambi,” Loéve and Karhunen™”* indepen-
dently proposed the methodology, which is sometimes referred to as
Kosambi-Karhunen-Loéve  theorem.  However,  comparable
approaches have been developed across a range of diverse fields.”” In
statistics, the process is referred to as principal component analysis
(PCA) whereas in oceanography and meteorology, it is referred to as
the method of empirical orthogonal functions (EOFs)."” POD has
been effectively employed in a broad variety of domains, including sig-
nal analysis and pattern recognition,"” fluid dynamics and coherent
structures,'” and image reconstruction.”'

A significant innovation in the application of POD to big prob-
lems in fluid dynamics is the use of a series of snapshots, which is
composed of a collection of state solutions evaluated at various time
instants and calculated from the model’s temporal evolution. The
snapshots are used to compute the POD basis vectors in order to
obtain an optimal representation of the data such that the two-norm
of the error between the original and reconstructed snapshots is mini-
mized for any given basis vector size. Additionally, it has been demon-
strated that POD technique combined with the Galerkin projection
procedure is an efficient method for creating reduced order models.””
This technique derives the most energetic modes in a time-dependent
system, allowing for the construction of a low-dimensional description
of the system’s dynamics. The field of reduced order modeling is vast,
and novel techniques are being developed at a rapid rate. The readers
are referred to Refs. 1 and 29 for a review on projection-based model
reduction techniques and to Refs. 4 and 31 for a complete survey of
model reduction for turbulence control methods and modal analysis
of fluid flows.

ARTICLE scitation.org/journal/phf

The Galerkin projection falls under intrusive methods for model
order reduction. Recently with the introduction of machine learning
to fluid mechanics, there have been numerous attempts to develop
nonintrusive models for model order reduction.”*’ In particular, the
work by Maulik et al.”® developed a nonintrusive model via deep auto-
encoders for shallow water equations. The focus of this article is on
intrusive model order reduction for the evolution of ocean waves. For
the first time, this work attempts to develop a projection-based
reduced order model of the HOS method to solve for the nonlinear
evolution of ocean wave-fields. Galerkin projection of nonlinear free
surface boundary conditions is carried out to obtain a low-
dimensional model. The projection is carried out on the POD modes
obtained from the snapshot data. The main motivation behind this
work is to develop a real-time model that can describe the nonlinear
evolution of multi-directional waves or short-crested seas.

The article is organized as follows. Section I gives a brief descrip-
tion of the high-dimensional model. Section III describes the detailed
mathematical formulations and the development of projection-based
reduced order models. Section I'V presents the results from the numer-
ical experiments on unidirectional and multi-directional irregular
waves. Section V discusses their potential use for real-world applica-
tions, and Sec. VI concludes the present study.

Il. HIGH-DIMENSIONAL MODEL

The formulation behind the HOS methods of Refs. 7 and 36 is
presented in this section briefly. The flow is considered to be irrota-
tional, homogenous, incompressible, and inviscid under a free surface.
The governing equations for the HOS method are formulated in terms
of surface velocity potential i and wave elevation 7. They are obtained
from the kinematic and dynamic free surface boundary condition of

free surface flow, written as follows:
2 2
oy op\* ot (an) _

2
e L @)
fe=n} Ox
(1)

ot ox dz
The premise of the HOS scheme is in the expansion derived for

8t+8x*8x

the term J¢ | (2=} 8iven as

ot i”:’"*‘n_f o
oz L j| Ozit] ’
m=1 i=0
o SO @
—iloz
=

The detailed numerical procedure to solve Egs. (1) and (2) is
given in Ref. 16 and readers are referred to the same for further details.
In this study, the open-source code HOS-Ocean code developed by
Ecole Centrale de Nantes (ECN) is used, see Refs. 2 and 9. The formu-
lation behind the evolution engine HOS-Ocean is not the main target
of this paper and therefore only the necessary details are presented
here for the sake of brevity. HOS-Ocean is used to generate synthetic
nonlinear wave-fields.
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I1l. REDUCED ORDER MODEL

The basic theory behind model order reduction and POD is out-
lined first in this section. Consider a general nonlinear governing
equation consisting of linear and nonlinear parts written as follows:

Lx + f(x) = 0, (3)

where L € VN denotes the linear part of the governing equation
and f € VN embeds the nonlinear part, and x € 2" denotes the
state of the system at hand. The basic principle of model order reduc-
tion is to represent x using a reduced basis ® € 2V*" and corre-
sponding modal coefficient o, € %", where

x = Qu,. (4)

The reduced basis ® can be computed using POD. Let %
= {x1,Xz, ..., Xy } be the snapshot matrix containing the solutions of
the state for a finite number, nt, of time steps. The POD procedure
involves computing a singular value decomposition (SVD) on this
snapshot matrix to obtain the reduced basis ®.

Substituting x from Eq. (4) into Eq. (3) and taking the orthogonal
projection of the equation onto the reduced basis, we get

O'LOa, + O'f(Day) = 0,

S (5)
Lo, + ®'f(Pa,) = 0.

It can be observed that by taking the orthogonal projection, we
are effectively reducing the dimension of the problem from N to m.
However, the nonlinear term ®'f(®a,) = 0 still has computational
operations to be performed in the order of N computation to be per-
formed. To alleviate this difficulty, the Discrete Element Interpolation
Method (DEIM) method proposed by Ref. 6, which approximates the
nonlinear function at few sampling points m < N and interpolates at
all other locations. DEIM also uses POD on the set of nonlinear snap-
shots # = {f},f,, ..., fy} to compute the reduced basis ®; € RN
for the nonlinear function f. The interpolation matrix P =
le1,es,...,em] € BV where e; € {0, l}N is constructed using QR
decomposition of the nonlinear reduced basis ®;. The DEIM approxi-
mation of the nonlinear function f is given by

f(x) = D (P'®f) 'P'f(x). (6)

The key term in the above equation is P’f(x), which is the non-
linear function sampled at m points and has the order of 1 computa-
tion. The DEIM interpolant ®;(P'®;) " can be pre-computed before
the start of the real-time computation and therefore reduces the order
of computation from N to m. The reduced system of equations to be
solved is given as follows:

Lo, + ®'®;(P'd;) ' P'f(Pa,) = 0. 7)

Applying this to the governing equations of the HOS method
[Eq. (1)], we first re-write in a simpler format by grouping them
between linear and nonlinear terms, expressed as follows:

o
ot +gn+ Yy =0,

on (8‘51

(8)
o E) + 1y, =0,

scitation.org/journal/phf

where 7' =/ from the HOS scheme. Substituting 1 = ¢,y and
¥ = ¢ oy and taking orthogonal projection with ¢, , ¢, on the above
equation, we obtain

O
w + Ogdy oy + dyig =0,

806; ¢
! ¢ W O(l// + ¢17’7NL

)

The interpolation matrices P, Py are computed for nonlinear
terms 17z and Yy and DEIM approximation is used in the above
equation to obtain the reduced system of equations, written as follows:

o, -
8—f + (¢Q,g<i>ﬂ) X oy + ¢(»¢W{P Wm} ra
(10)
81 ’ 3¢¢ /
o ( ) E) <y Gy (Pt}

where 1%, and y/%, are nonlinear terms computed at discrete sampling
points. Before proceeding to formulation details of nk, and Y%, , we
must first address the computation of % and its reduced order form.

From the HOS scheme, —; is given in Eq. (2) where t' = .
Substituting the modal decomposition of # and ¥ into Eq. (2) and
rearranging the spatial and temporal components together, we derive
the reduced form of the operator 22 Seas

M m— 11 . a; +1 ) - ( )
2 2 : i m—i i m—i
( ) m=1i= 1_'|:¢ ® Zl+l¢ :|*[0(77 ®O‘T :|7
M—1

d)s_m) _ qbi® _1¢ m—i)
i:zl T 0z

o™ = o, @ a1,

O‘El) = %y, ‘f)gl) = ¢y

where the notation (),; denotes the first reduced order formulation for
the operator g—;. A second reduced order formulation for the same
operator is also presented in later parts of this section. The definition
of the operator ® is given as

(1mn

d:[O(l,O(z], ﬁ:[ﬁhﬁZL
2 = [o2, 10, 0201, 03], (12)

x® ﬂ = [alﬁla alﬁZ? 062/31, aZﬁZ}

The spatial derivatives d( present in the nonlinear terms are

computed by taking spectral derlvatlves of the respective spatial modes
a'(]“w as follows:

% _ a¢1] o % 8¢|//
ax  ox " ax ox
o _ ¢, % 8¢¢,

oz 0z Bz 0z

‘?9—(2) = ifft(fft(()) * k tan h(k % h)).
(13)

00— () #1110,

With the above formulations, the nonlinear terms #; and /&,
are computed as follows:
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1//§,L:0.5<P¢,0—xwoc¢,) ~0.5 (Pd, (82)1> {1+(P¢,0x’7an> ,
o ¢ o
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() (5 )

(14)
The final reduced order model of the HOS equations is given as
follows:
8oc¢,

o (%gd) ) X oy = ¢(b¢m{1’@/¢wm}_1¢§b
aa: ( %) ocl/,—qﬁ ¢'M{ ’7¢’71\u_} r]NLv

2
P lp ot
ob, \°
x{1+ (Pq,a—x”oc,,) }
¢ ¢ 09,
M = (Pna—zwoc,,,) + (Pna_lp“l/f) (Pna_x?“n) (15)

) o, \’
(), e () |
i+

m=1i=0
) _ N o O
=D 0y @
o™ = o, ® ol
D= Ol 4)5” = d’.pv

The order of the HOS equations N is reduced to r in the above
reduced order model. However, it can be observed from the term
(%5),, that the order of computation is of O(r™) where m is the non-
linear order of the HOS scheme. The exponential nature of this com-
putation cannot be avoided and can be inefficient for a finite quantity
of r and m. From our numerical experiments, we find that the compu-
tational cost of the above reduced order model with r =6, M =5
will be similar to that of standard HOS scheme with N = 1024,
M = 5. The computational complexity of standard HOS scheme is

O(NMlogN). With the current formulation of ( 1),1> the reduced order
model does not provide any significant gain in the computational
speed for more realistic cases of unidirectional and multi-directional
irregular waves where r tends to be around 50-100.

An alternative reduced order model for the operator 2 9: is pro-
posed in this work, which has the computational order of O(r). The
caveat to this alternative formulation is that it involves an approxima-
tion to the HOS scheme. From our numerical experiments, we find
that this alternative formulation is applicable for waves with steepness
?—5 < 0.1 but has a phase difference with the results from the standard

HOS scheme.

scitation.org/journal/phf

A. Alternative formulation for computation of 3¢

In this section, we outline the alternative formulation for the
computation of % to alleviate the difficulties associated with computa-
tional complexity.

First, we modify the definition of wave elevation #. In the stan-
dard HOS formulation, the surface wave elevation is given by

n=">_ Cyr)e". (16)
j

We change the above definition of wave elevation by including a
shape function dependent on z, written as

y = Z C,(1) cosh(kj(z +d)) 4z

; cosh(i;(d)) © z={0}. (17

This shape function is introduced so that at z= 0, 5 remains the
same but 9 ” ex1sts The direct manifestation of the above definition is
the presence of 21 > which is used in the efficient simplification of the
standard HOS scheme. First, we outline the details of the HOS scheme
for M = 3, written as follows:

ot!
1 _ Wl _
=y, %
R 0_11 W — o2 8211
- Ta 8z "oz
PN LN i O i Vi A
Tor " 2oz Tz "oz T o
ot

Zow® L w® L w®,

Now, with knowledge of the new formulation for # and the fact
that 3—'27 exists, we derive the simplified HOS scheme as follows:
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Figure 1 compares the results from HOS, HOS-simple, and linear

wave theory for %. By linear wave theory, we mean % = 92 Tt can be

seen that results from HOS-simple are closer to those fI'OI‘I{;ZHOS than
those from the linear wave theory, and both HOS-simple and
HOS completely coincide as time progresses. We have also plotted %
in Fig. 2, which is the main difference between HOS-simple and linear
theory. One can notice that the term g—z has significant contribution

and also possesses the nonlinear asymmetry between the crest and

trough common to steeper waves.
Using the above alternative formulation, we define a second
reduced order form for the operator 2, which is given as follows:
— 0
0z
ob, (19)
1+
The order of computation in the above formulation is not of
exponential nature but is linear on the order of O(r). The reduced
order model with (%), is referred to as ROMI1 and the one with
same as for ROM1 [Eq. (15)], except for the term () .
Finally, the construction of ROM entails two major steps, which
are as follows:

¢,
(5).-
0z r2 B o
oz "
(%5),, is referred to as ROM2. The final equations for ROM?2 are the

* computation of modes ¢,, and ¢, from simulation data and

e computation of all the reduced operators in Eq. (15) before set-
ting up the prediction of ROM. By reduced operators, we mean
all the terms involving ¢, .

t=2.3806s
—HOS ---HOS-simplified -—-Linear

7
y
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More comparisons between these two formulations are outlined
in the Sec. I1I B in the context of regular waves.

B. Comparison of ROM formulations

In this section, we compare the results from ROM formulations,
HOS, and HOS-simple presented in Sec. IIT A for three regular waves
capturing different steepness characteristics.

Table I refers to the details of the cases considered for this analy-
sis. For each case, simulations are carried out using the normal HOS
scheme, simplified HOS scheme, ROM1, and ROM2. All the codes are
written in MATLAB for the sake of consistency and for the develop-
ment of ROMs. Common simulation parameters for the HOS method
are presented in Table II.

As mentioned in Sec. ITT A, before proceeding for ROM simula-
tions, one has to construct the ROM by computing the modes from
POD of the simulation data and evaluating the reduced operators of
the ROM equations. The number of ROM modes are chosen by exam-
ining the eigenvalues from the singular value decomposition (SVD).

Figure 3 depicts the cumulative energy of the POD modes, and
Fig. 4 shows the effect of the number of POD modes and DEIM con-
trol points on the accuracy of the results, all for the case of regular
wave HO.1. The midpoint (7, 20) is chosen for POD modes and DEIM
points respectively for the case HO.1. Table IIT outlines the number of
POD modes and DEIM points considered for all the three cases of reg-
ular waves. Upon choosing the number of modes, all the reduced oper-
ators of the system are pre-computed once before the start of ROM
predictions. It should be noted that although one could have

t=7.9353s
—HOS ---HOS-simplified -—-Linear

Y7
A
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FIG. 1. Comparison of % computed using the normal HOS scheme, HOS-simplified scheme, and linear version for regular wave case HO.1.
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FIG. 2. Snapshots of 22 at different time instants for regular wave case HO.1.

0z

TABLE I. Regular wave cases considered for the analysis.

HO.1 HO0.05 HO0.01
Water depth (m) 1 1 1
Wave length, 4 (m) 1 1 1
Wave period, T (s) 0.76179 0.79049 0.79991
Wave height, H (m) 0.1 0.05 0.01
Wave steepness, H/ 10% 5% 1%

TABLE II. Common input simulation parameters for the HOS method: regular

waves.

Parameter Value
Frequency 48/T
Domain length 60" 1
Discretization 1024
Relaxation period 4T

Nonlinear order 5

developed a single ROM for all the three cases considered here,
we chose to build ROM separately for all the three cases for a
qualitative comparison with the full order model results
respectively.

—Wave elevation
—Surface potential

Cumulative Energy
o o o
IN o (o)

o
o

0 10 20 30 40 50
Mode number

FIG. 3. Cumulative energy of POD modes of wave elevation and surface potential
for regular wave HO.1.

The performance of the HOS-simple scheme is first assessed for
all the regular wave cases and compared with the results from standard
HOS scheme. Figure 5 provides the comparison. The HOS-simple
scheme performs well for all three wave steepness values without get-
ting destabilized. The nonlinear nature of steep waves, i.e., sharper and
narrower crests compared to flatter troughs, is perfectly captured by
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TABLE Il. Number of POD and DEIM points considered for regular wave cases.

Case POD modes DEIM points
HO0.01 3 8
HO0.05 5 15
HO.1 7 20

the HOS-simple scheme. However, there is a noticeable phase differ-
ence for the case of higher steepness H0.1. The phase difference is
attributed to the approximations invoked in the derivation of the
HOS-simple scheme. Further studies are being carried out to deter-
mine the cause and to minimize the difference.

Figure 6 presents a qualitative comparison of wave elevation
obtained from HOS, ROM1, and ROM2. In terms of accuracy, ROM1
is much closer to the HOS results across all the cases whereas ROM2
deviates from HOS for the case of higher steepness (HO0.1), which is
expected since HOS-simple also deviates in a similar fashion. This
deviation is in terms of phase difference of the solution and it should
be noted that the nonlinearities associated with high steep waves are
perfectly captured by ROM2.

Quantitative comparisons of the computational speed between
all the models (HOS, HOS-simple, ROM1, and ROM2) are provided

t=15.8098s
0.05 T T
—HOS —HOS-simple
< 0f b
0.05 L . \ \ |
1 2 3 4 5
X
(b)
t=15.9982s
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ol =15.2358s
‘ —HOS —HOS-simple
0.05 - g
= of
0,05 | :
0.1 . . . . ‘
0 ! 2 3 4 5
x
(a)
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0.005
= ot
-0.005 |
0.01 . :

FIG. 5. Comparison of wave elevation between the HOS-simple and HOS schemes: (a) HO0.1, (b) H0.05, and (c) HO.01.
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FIG. 6. Comparison of wave elevation between HOS and ROM: (a) HO.1, (b) HO.05, and (c) HO.01.

in Fig. 7. The computational speed of the HOS-simple scheme is much ROMI performs quite well for M =3 but loses its computational
faster than the standard HOS scheme. It can be seen that ROM2 is advantage for M = 5. Therefore, solely based on their computational
much faster by an order of magnitude compared to HOS-simple and efficiency, ROM2 can be potentially used for practical applications
two orders of magnitude compared to the standard HOS model. requiring a phase-resolved forecast of the wave environment in

10" -
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—HOS-simple ---real time

,| —HOS
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FIG. 7. Computational time comparison (a) r = 6,M = 3 and (b) r = 6,M = 5.
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real-time. For the rest of this paper, the proposed reduced order model
(ROM) is referred to as ROM2 in the plots.

IV. RESULTS

ROM2 is subsequently built based on training data from a gen-
eral database. Subsequently, the performance of ROM2 is further
investigated on completely unknown or unseen wave conditions. The
analysis is carried out for unidirectional and multi-directional waves
and is presented in Secs. IV A and IV B.

A. Unidirectional irregular waves

For the unidirectional irregular waves, we develop a general data-
base of different wave conditions made up of six distinct sea-state
steepness values and around 200 random wave realizations for each
steepness. In total, 1200 wave simulations are carried out using HOS-
Ocean’ to generate a synthetic database. We consider the range of
steepness 0.01 — 0.06 and waves with spectral peak period T}, ranging
from 1.0 to 4.0s. Note the scale used in the database is for a typical
wave tank or basin but the methodology can be equally applied to the
full-scale parameters encountered in open ocean.

The parameters of the irregular waves and solver settings for gen-
erating the synthetic database are depicted in Table IV. The operators
of the reduced order model are computed from around 600 cases of
training data and the prediction is carried out on completely unseen
test cases with different steepness values and different wave conditions.
Each wave simulation case has 3000 snapshots; however, we only con-
sider every tenth snapshot for basis generation to reduce the data to be
handled and also to consider sufficient distinctions between adjacent
snapshots.

Figure 8 shows the cumulative energy captured by the POD
modes in the system. Around 200 POD modes and 300 DEIM control
points are used to construct the reduced order operators in the offline
computation phase. ROM2 is also integrated in time with the same
time step dt = 0.1 s to generate the results. Figure 9 depicts the compu-
tational time required by HOS, HOS-simple, and ROM2 for a single
case for qualitative comparison. All the schemes perform faster than
real-time. ROM2 with r =200 is slower than its full order counterpart,
HOS-simple, but a bit faster than the standard HOS model. The com-
putational cost of ROM2 exceeds that of HOS-simple in this case,

TABLE IV. Parameters used to generate synthetic database of unidirectional irregu-
lar waves.

Train Test

Sea-state steepness (H/T;) 0.02 0.04 0.6 001 003 0.05

Tp (s) 1.0-4.0
H, (m) Steepness*TIf
Cases 200 Each
Common simulation parameters
Domain length (m) 100
Spatial discretization 512
Nonlinear order 5
Duration of simulation (s) 300
Temporal discretization (s) 0.1
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FIG. 8. Cumulative energy of POD modes of wave elevation and surface potential
for general database of unidirectional irregular waves.

since the order of the modes (r = 200) is quite high, whereas for a sin-
gle nonlinear regular wave case, r = 6. There is no significant advan-
tage of having ROM2 for the case of unidirectional irregular waves.
Both HOS and HOS-simple are faster than real-time and the HOS-
simple model is around two orders of magnitude faster.

The total error metric, E,, at a time step ¢ over a range of #; test
samples is calculated as follows:

2

E(t) =) &(t,i)/n.

i=1

E(t,i) = '

nt,i _ f’ti
H,
n (20)

Figure 10(a) depicts the propagation of total error, E,, across all
test samples, n,, for each sea-state steepness. Without any intervention,
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FIG. 9. Comparison of computational time per time step for unidirectional irregular
wave.
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FIG. 10. Error propagation of HOS-simple across all samples of dataset (a) without intervention and (b) with intervention.

the error, E,, increases with time and blows up after several time steps.
It is not the case for all wave conditions but the behavior is computed
after averaging over all cases. To mitigate this problem, we intervene
in the time integration by providing the original solution of # and an
estimate of 7, from linear wave theory at every 100 time steps, effec-
tively performing data assimilation at a fixed interval and re-compute
the nonlinear wave evolution. This intervention reduces the error dras-
tically as seen in Fig. 10(b). A sample plot of comparison between the
HOS and HOS-simple models is provided in Fig. 11.

B. Multi-directional irregular waves

For the case of multi-directional irregular waves, a general data-
base is generated using the parameters shown in Table V. In this case,

the spreading to generate multi-directional waves is provided to be
+45° and the mean direction is 0°. Also, around 100 cases are consid-
ered for each steepness; therefore, in total 600 simulations are carried
out using HOS-Ocean to generate the synthetic database.

The operators of the reduced order model are computed from
around 300 cases of training data and the prediction is carried out on
completely unseen test cases with different steepness values and differ-
ent wave conditions. Each wave simulation case has 3000 snapshots;
however, we only consider every 15th snapshot for basis generation to
reduce the data to be handled and also to consider sufficient distinc-
tion between adjacent snapshots.

Figure 12 depicts the cumulative energy captured by the POD
modes in the system. Around 500 POD modes and 700 DEIM control
points are used to construct the reduced order operators in the offline
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FIG. 11. Comparison between the HOS and HOS-simple models for unidirectional irregular wave with Hs = 0.129 mand T, = 1.61 s.
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TABLE V. Parameters used to generate synthetic database of multi-directional irreg-
ular waves.

Train Test

Sea-state steepness (H/T;) 0.02 0.04 0.06 001 003 0.05

Tp (s) 1.0-4.0
H, (m) Steepness*T}f
Cases 100 Each
Common simulation parameters
Domain length in x (m) 60
Domain length in y (m 48
Spatial discretization in x 256
Spatial discretization in y 256
Nonlinear order 5
Duration of simulation (s) 300
Temporal discretization (s) 0.1

computation phase. ROM2 is also integrated in time with the same
time step dt = 0.1 s to generate the results.

Figure 13 depicts the computational time required by HOS,
HOS-simple, and ROM2 for a single case for qualitative comparison.
The HOS and HOS-simple models are slower than real-time in the
case of multi-directional waves. ROM2 with r =500 is almost close to
real-time but significantly faster than the HOS and HOS-simple mod-
els. Unlike unidirectional irregular waves, ROM2 shows greater speed
up for multi-directional waves. From unidirectional to multi-
directional waves, the order of ROM2 considered increases from
r=200 to r= 500 whereas for the full order models HOS and HOS-
simple, the order of the problem increases from N=512 to
N = 256 x 256. This significant increase on the order of the problem
has led to tremendous increase in the computational time as evident
from Figs. 13 and 9.

The same error metric, E,, is computed for the randomly chosen
test case for each steepness and is depicted in Fig. 14. Without any
intervention of the original solution, the error, E, shoots up at
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FIG. 12. Cumulative energy of POD modes of wave elevation and surface potential
for general database of multi-directional irregular waves.
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FIG. 13. Comparison of computational time per time step for multi-directional irregu-
lar waves.

different time instants for different wave steepness values. This blowup
is avoided altogether by intervening in the time integration with the
original solution every 100 time steps. The error, E,, is significantly
reduced and the computation becomes stable with this intervention as
seen from Fig. 14(b).

A sample plot of comparison between HOS and ROM2 is pro-
vided in Fig. 15. It can be seen that ROM2 is able to reproduce the
short-crested wave-field relative to HOS taken as reference wave-field
with reasonably good agreement. The comparisons for both long-
crested and short-crested waves demonstrate the applicability and per-
formance of the proposed ROM.

V. POTENTIAL REAL-WORLD APPLICATIONS

In this section, we discuss the potential use of the proposed ROM
for real-world applications. The applications of ROM and the parame-
ters used to build ROM are summarized in Fig. 16.

A. Wave-field prediction based on upstream wave
probe

One potential application of ROM is to enhance the predictability
of phase-resolved wave-fields in a wave tank or ocean basin based on
upstream wave probe(s). Such a capability could be fed into the real-
time control algorithm of the following examples that can be tested in
a controlled environment: vessels with dynamic positioning (DP),
turret-moored vessel with heading control ability, renewable marine
energy device in response actively to incoming wave-field, or naviga-
tion of remotely controlled and autonomous vessels.

Here, we provide an example using physical experiment con-
ducted in TCOMS ocean basin to validate the performance of ROMs.
A schematic diagram of the basin and the experimental setup is shown
in Fig. 17. The dimension of the basin is 60 m in length x 48 m in
breadth, with water depth set at 10 m. The basin is equipped with
wave paddles along the west and southern sides for wave generation,
and beaches along the northern and eastern sides for wave absorption.
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FIG. 14. Error propagation of ROM2 for multi-directional irregular waves (a) without intervention and (b) with intervention.

The beach along the northern side can be retracted to form a wall if =~ wave probes were installed along the centerline (y=24m), at

needed. x = 8.40, 9.34, 9.84, and 30.00 m. As the wave propagates along the

In this experiment, we generated long-crested irregular waves +x direction. Probes 1, 2, and 3 are referred to as upstream probes,
along the +x direction in the basin. The north side beach was folded while probe 4 is referred to as downstream probe. All probes measured
up as a wall to prevent wave dissipation along the north side. Four at a sampling rate of 128 Hz.
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FIG. 15. (a) Comparison between the standard HOS model and ROM2 for multi-directional irregular waves with Hs; = 0.0681 m and T, = 2.6090 s. (b) Wavenumber spec-
trum and (c) frequency spectrum of the above case.
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FIG. 16. Summary of applications of ROM in the current work.

The procedure for the validation of ROM is as follows:

1. collect surface elevation-time histories, n*?(t),t € [ty — 7, ty] of
the upstream probes for 7 seconds;

2. estimate the wave amplitudes, A;, and phases, ¢;, from the time
histories by least square fitting their Fourier components;

3. construct the initial wave-field, ™" (x, ty), based on the compo-
nents estimated, i.e., 7" (x, o) = >, A; cos (wity — kix + ¢;);

4. estimate the initial surface velocity potential, Wit from
it (x, ty) using linear wave theory; and

5. propagate the initialized wave-field using HOS and in particular
ROM2 in space and time, and then validate their results with the
downstream probe measurement.

We validate our numerical model with long-crested irregular
waves based on JONSWAP spectrum with Hy = 0.15 m, T;, = 2.02 s,
and y = 3.3. The time interval is chosen to be [50 — 10T}, 50] to avoid
the starting transient and the reflection built up from the beach. Based
on the time interval chosen and the location of the upstream probes,
one can compute the predictable time interval at the downstream
probe. The detailed derivation of the predictable zone is discussed in

North side
folded beach (wall)
60m
Upstream Downstream
I 1 I l 1
2 g Probe 1 Probe 2 Probe 3 Probe 4
- %‘ 8.40m 9.34m 9.84m 30.00m =
£
723 = P7
S > B e e 5
x = 30.00m P
v

Long crested wave direction

[

South side

=t Paddles

FIG. 17. Schematic diagram of the basin and the probe setup.

Ref. 38 and is not shown here for brevity. A comparison of the numer-
ical model with the experimental result is shown in Fig. 18. The error,
&, is computed using the time history within the predictable zone
based on Eq. (20), and it is found that both HOS and ROM2 have
comparable errors, which are 5.8% and 5.5%, respectively. This implies
that while ROM2 is simplified by the assumption in Eq. (17), it is suffi-
ciently accurate in regard to wave-field propagation.

B. Wave-field prediction based on X-band radar

Nowadays, X-band radars measuring phase-resolved wave
information on-board of a ship or a floating platform have become
increasingly common, see, e.g., FutureWaves (https://www.futurewa-
vesradar.com/) and WaMoS (https://rutter.ca/wamos/). The advantage
of such a capability is to enable the prediction of operating wave-fields
that the ship/platform will encounter, which translates into a predic-
tion of the ship/structure motion response confined within the predic-
tion window or lead time. This capability has widespread applications
in shipping and marine and offshore industries such as route planning,
helicopter takeoff and landing, ship-to-ship operation or installation of
wind turbine platform that requires lead time of the order of seconds
to minutes.

Figure 19 illustrates two possible scenarios on the use of X-band
radars. The first scenario is for a floating or a bottom-founded plat-
form that is moored or fixed to the seabed. The X-band radar provides
measurement coverage of wave-fields at the far-field, denoted by the
black color box. The actual dimension of the coverage, resolution, and
sampling rate depends on the individual radar. The objective is to pre-
dict ahead of time the resulting wave-field that would arrive at the
location of the platform some time later. For steep sea-states, the non-
linear effects of wave-wave interactions become important and hence
the use of nonlinear wave evolution models such as HOS will be
required. Therefore, the proposed ROM is useful as the computational
efficiency, in particular in handling multi-directional evolution of
wave-fields, has been improved to real-time.

The second scenario is for a ship with forward speed (or moving
vessel). Obviously, compared to the first scenario, the prediction
horizon or the lead time for this scenario will be shorter because,
prediction region in the near-field will also move together with ship’s
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FIG. 18. Comparison of surface elevation-time histories between measurement from downstream probe (probe 4) and predictions from HOS and ROM2 for long-crested irregu-
lar waves with H; = 0.15 m, T, = 2.02s, and 7 = 3.3. The prediction error is lower within predictable zone (t € [53, 60.5]s), and it gets very high beyond the predictable
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FIG. 19. An X-band radar on-board of a ship/platform measuring far-field multi-
directional wave-fields.

forward motion, and this adds onto the requirement for fast and effi-
cient wave prediction model. The proposed ROM approach, once
extended to account for ships with forward speed, may be of signifi-
cant value.

Figure 20 illustrates the comparison for the first scenario between
the reference wave-field and the ROM predicted wave-field at the
near-field 10 s later based upon initial measurements at the far-field. It
can be seen that ROM will propagate the wave-field from far-field to
near-field, and in this case reasonably good agreement can be
observed. The predicted wave-field can be further fed into a hydrody-
namic model to obtain the prediction of platform motion response
and this will be investigated in the near future.

VI. CONCLUSIONS

In this work, we have developed a projection-based reduced
order model (ROM) of the higher order spectral (HOS) method for
the nonlinear evolution of ocean waves. A Galerkin projection of the
Zakharov equations is carried out onto the dominant modes com-
puted from proper orthogonal decomposition (POD). We also
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FIG. 20. Far-field to near-field wave propagation by ROM2 for a given far-field multi-directional wave measured by an X-band radar on-board of a moored offshore platform.
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introduce an alternative formulation to compute the vertical water
particle velocity underneath the free surface. This alternative formula-
tion, referred to as HOS-simple in this work, paves the way for an effi-
cient implementation of projection-based ROM. The ROM2 deduced
from the Galerkin projection of HOS-simple is found to be computa-
tionally efficient. Further work will be undertaken to improve the dif-
ference in phase velocity of the underlying wave-fields observed in the
ROM2 and HOS-simple models as compared to the standard HOS
method. At present, the practical solution is to introduce intervention,
interpreted as data assimilation at a fixed interval; by doing so, the pre-
diction error can be contained within a reasonable range. For unidirec-
tional irregular waves, ROM2 offers no substantial advantage because
both the HOS and HOS-simple models are much faster than
real-time. The true advantage is demonstrated in multi-directional
irregular waves, where ROM2 is the only model capable of achieving
real-time computation; hence, phase-resolved wave prediction in real-
time becomes possible. We also demonstrate the potential use of
ROM2 for real-world applications involving a wave tank or controlled
environment and open ocean.
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