
1. Introduction
Sea ice is an important component of the climate system. As such, it is crucial for climate models to accu-
rately represent interactions between the atmosphere, the sea ice cover and the ocean. Satellite observations 
from Synthetic Aperture Radar show that sea ice deformations (i.e., strain rates of the sea ice velocity field) 
are ubiquitous features of the sea ice cover in polar regions. Sea ice deformations occur over a wide range 
of spatial scales: from the meter scale to thousands of kilometers (Stern & Lindsay, 2009). Moreover, they 
are often highly localized and characterized by elongated shapes (Kwok et al., 2008). These elongated bands 
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of deformations are referred to as Linear Kinematic Features (LKFs). As LKFs are associated with the for-
mation of leads and pressure ridges, they have a strong effect on sea ice production, salt rejection and the 
associated mixing, as well as on ocean-ice-atmosphere exchanges of momentum, heat and moisture.

For realistic simulations of LKFs, sea ice models require an accurate representation of rheology. Rheology 
is the relation between applied stresses, mechanical material properties and the resulting deformations. In 
almost all climate models, sea ice is represented as a continuous viscous-plastic (VP) material (Blockley 
et al., 2020) either in the classical VP framework (Hibler, 1979) or following the elastic-viscous-plastic (EVP) 
approximation (Hunke & Dukowicz, 1997), although recently, alternative rheologies have been suggested 
(Dansereau et al., 2016; Girard et al., 2011; Rampal et al., 2016; Tsamados et al., 2013).

All of these rheologies rely on the continuum assumption, which implies that statistical averages can be tak-
en over a large number of floes or a representative volume element (Feltham, 2008; Gray & Morland, 1994). 
The validity of the continuum assumption and hence of the VP rheology at grid spacings of the size of ice 
floes is unclear (Coon et al., 2007; Feltham, 2008). Even so, the majority of practical applications still use the 
(E)VP model and will do so in the foreseeable future (Blockley et al., 2020).

To some extent, (E)VP models do simulate LKFs (e.g., Hutter & Losch, 2020), reproduce statistics of ob-
served sea ice deformations and spatio-temporal scaling laws (e.g., Bouchat & Tremblay, 2017). As observa-
tions, model simulations also display deformations occurring at different spatial scales; a larger number of 
well defined LKFs are simulated as the grid is refined (e.g., Wang & Wang, 2009).

Various factors affect the number of simulated LKFs, for example, solver convergence (Koldunov et al., 2019; 
Lemieux et al., 2012), mesh resolution (Hutter et al., 2018; Wang & Wang, 2009), strength parameterization 
(Hutter & Losch, 2020) and magnitude of the wind stress (Hutchings et al., 2005). These previous studies 
motivated our interest in further investigating the simulation of LKFs. To our knowledge, this article pre-
sents the first study of the impact of the grid staggering of velocity variables on the simulation of LKFs.

To address this question, we define a benchmark problem to compare several spatial discretizations on tri-
angular and quadrilateral meshes with respect to their ability to resolve LKFs. The results are obtained with 
the Los Alamos Sea Ice Model (CICE, Hunke et al., 2015), the sea ice module of the Massachusetts Institute 
of Technology general circulation model (MITgcm, Losch et al., 2010), the Finite-Volume Sea Ice–Ocean model 
(FESOM, Danilov et al., 2015), the sea ice module of the Icosahedral Nonhydrostatic Weather and Climate 
Model (ICON, Mehlmann & Korn, 2021), and also with the academic software library Gascoigne (Becker 
et al., 2021). Note that all different model codes implement the same VP sea ice dynamics. Iterative solutions 
are either obtained by implicit methods or by modified EVP methods. We indeed show that the staggering of 
the velocities plays an important role in resolving LKFs, in terms of both total length and number.

The paper is structured as follows. Section 2 presents the viscous-plastic sea ice model. Section 3 describes 
the benchmark problem. The Arakawa A, B, C, and CD-grid staggering and the corresponding discretiza-
tion are introduced in Section 4. The numerical results are presented in Section 5 and discussed in Section 6. 
We conclude in Section 7.

2. The Viscous-Plastic Sea Ice Model
For brevity, only a simplified model for three prognostic variables is presented here: the sea ice concentra-
tion 𝐴𝐴 𝐴𝐴 , the mean sea ice thickness 𝐴𝐴 𝐴𝐴 and the sea ice velocity 𝐴𝐴 𝐯𝐯 . The sea ice dynamics are described by a 
system of coupled partial differential equations:

�ice���𝐯𝐯+ ���� × 𝐯𝐯 = div� +��(𝐯𝐯) − �ice��∇�̃�, (1)

𝜕𝜕𝑡𝑡𝐴𝐴 + div (𝐯𝐯𝐴𝐴) = 0, 𝐴𝐴 ≤ 1, (2)
𝜕𝜕𝑡𝑡𝐻𝐻 + div (𝐯𝐯𝐻𝐻) = 0, (3)

where 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖 is the ice density, 𝐴𝐴 𝐴𝐴𝑐𝑐 is the Coriolis parameter, 𝐴𝐴 𝐴𝐴 is the gravitational acceleration, �̃�  is the sea 
surface height and 𝐴𝐴 𝐴𝐴𝑧𝑧 is the vertical ( 𝐴𝐴 𝐴𝐴 -direction) unit vector. In this form, Equations 2 and 3 neglect all ther-
modynamic source terms. The forcing term 𝐴𝐴 𝐴𝐴(𝐯𝐯) is the sum of the ocean and atmospheric surface stresses

𝜏𝜏(𝐯𝐯) = 𝐶𝐶𝑤𝑤𝜌𝜌𝑤𝑤‖𝐯𝐯𝑤𝑤 − 𝐯𝐯‖2(𝐯𝐯𝑤𝑤 − 𝐯𝐯) + 𝐶𝐶𝑎𝑎𝜌𝜌𝑎𝑎‖𝐯𝐯𝑎𝑎‖2𝐯𝐯𝑎𝑎, (4)
where 𝐴𝐴 𝐯𝐯𝑤𝑤 and 𝐴𝐴 𝐯𝐯𝑎𝑎 are the surface ocean velocity and surface wind vectors.
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The internal stresses in the ice 𝐴𝐴 𝐴𝐴 are modeled by the viscous-plastic (VP) 
sea ice rheology (Hibler, 1979).

The nonlinear viscous-plastic rheology relates the strain rate tensor

�̇ = 1
2
(

∇𝐯𝐯 + ∇𝐯𝐯�
)

, �̇′∶=�̇ − 1
2
tr(�̇)�, (5)

where 𝐴𝐴 tr(⋅) is the trace, to the stress tensor 𝐴𝐴 𝐴𝐴 . The relationship is given by

𝜎𝜎 = 2𝜂𝜂 𝜂𝜂𝜂′ + 𝜁𝜁 tr( 𝜂𝜂𝜂)𝐼𝐼 − 𝑃𝑃
2
𝐼𝐼𝐼 (6)

with the viscosities 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 , given by 𝐴𝐴 𝐴𝐴 = 𝑒𝑒−2𝜁𝜁 and

𝜁𝜁 = 𝑃𝑃0

2Δ(�̇�𝜖)
, Δ(�̇�𝜖)∶ =

√

2
𝑒𝑒2
�̇�𝜖′ ∶ �̇�𝜖′ + tr(�̇�𝜖)2 + Δ2

min. (7)

𝐴𝐴 Δmin = 2 ⋅ 10−9 s−1 is the threshold that describes the transition between 
the viscous and the plastic regimes. The replacement pressure 𝐴𝐴 𝐴𝐴  and the 
ice strength 𝐴𝐴 𝐴𝐴0 in Equation 6 are respectively expressed as

𝑃𝑃 = 𝑃𝑃0
Δ

(Δ + Δmin)
, 𝑃𝑃0(𝐻𝐻,𝐻𝐻) = 𝑃𝑃⋆𝐻𝐻exp (−𝐶𝐶(1 − 𝐻𝐻)) . (8)

All parameters values are summarized in Table 1.

The standard approach for solving the coupled sea ice system (Equations 1–3) is a time splitting method 
(Lemieux et al., 2014). We first compute the solution of the sea ice momentum Equation 1, followed by 
the solution of the transport Equations 2 and 3. For stability reasons, a fully explicit time stepping scheme 
for the momentum equation with a VP rheology requires a time step smaller than a second even on a grid 
resolution as coarse as 100  𝐴𝐴 km (Ip et al., 1991), so that implicit methods in time are necessary. An implicit 
time discretization requires iterative methods such as a Picard solver (Lemieux & Tremblay, 2009; Zhang 
& Hibler, 1991) or Newton methods (Lemieux et al., 2010; Losch et al., 2014; Mehlmann & Richter, 2017b). 
To avoid an implicit discretization, the EVP model was introduced (Hunke & Dukowicz, 1997) where an 
artificial elastic term added to the VP rheology allows an explicit discretization of the momentum equation 
with relatively large time steps. However, the original EVP model does not lead to the same deformations as 
simulated with a VP model. Thus, a modified version of the EVP method was developed that ensures con-
vergence to the solution of the VP model (Bouillon et al., 2013; Kimmritz et al., 2015; Lemieux et al., 2012). 
We refer to this pseudo-time stepping method as the mEVP solver. In this manuscript, we use an implicit 
time discretization and solver of the VP model, when available (CICE, Gascoigne, MITgcm), and otherwise 
the mEVP method (FESOM, ICON). We discuss this choice in Section 6.

2.1. Method Section

We evaluate the shear deformation 𝐴𝐴 𝐴𝐴𝐼𝐼𝐼𝐼 to quantify the effect of velocity staggering on the formation of LKFs:

𝜖𝜖𝐼𝐼𝐼𝐼 =
√

(�̇�𝜖11 − �̇�𝜖22)2 − 4�̇�𝜖212, (9)

where 𝐴𝐴 𝐴𝐴𝐴11, 𝐴𝐴𝐴22 and 𝐴𝐴 𝐴𝐴𝐴12 are the elements of the strain rate tensor given in Equation 5. LKFs are detected fol-
lowing Hutter et al. (2019) and the number of LKFs and the total length of all LKFs combined are used as 
metrics for comparing simulation. The combination of the two metrics adds some robustness to the anal-
ysis because the detection algorithm sometimes splits features at intersections leading to an overestimate 
of the number of LKFs. As the detection algorithm requires gridded data, all model fields are interpolated 
on a 2 km regular Cartesian mesh. We adapt the original algorithm (Hutter et al., 2019) for our idealized 
experiments by the following minor changes: (a) We do not use the histogram equalization in the LKF pixel 
filtering process, as all simulated shear fields have the same range of magnitudes. (b) The maximum and 
minimum kernel sizes of the Difference of Gaussian (DoG) filter is set to 𝐴𝐴 6 ⋅ Δ𝑥𝑥

2 km
 and 𝐴𝐴 1.2 ⋅ Δ𝑥𝑥

2 km
 , to ensure that 

the detected LKFs are wider than one pixel and no grid-scale noise is detected. Here, 𝐴𝐴 Δ𝑥𝑥 is the length of the 
grid edge. (c) We use a filter threshold 0.1 for the DoG using the logarithmic representation of the shear 
deformation. (d) LKFs with a length below 𝐴𝐴 4.8 ⋅ Δ𝑥𝑥 are discarded to make sure that the detected LKFs have 
an aspect ratio of at least 4.

Parameter Definition Value

𝐴𝐴 𝐴𝐴ice Sea ice density 900  𝐴𝐴 kg∕m3

𝐴𝐴 𝐴𝐴a Air density 1.3  𝐴𝐴 kg∕m3

𝐴𝐴 𝐴𝐴w Water density 1,026  𝐴𝐴 kg∕m3

𝐴𝐴 𝐴𝐴a Air drag coefficient 1.2  𝐴𝐴 ⋅ 10−3

𝐴𝐴 𝐴𝐴w Water drag coefficient 5.5  𝐴𝐴 ⋅ 10−3

𝐴𝐴 𝐴𝐴𝑐𝑐 Coriolis parameter 1.46  𝐴𝐴 ⋅ 10−4𝑠𝑠−1

𝐴𝐴 𝐴𝐴⋆ Ice strength parameter 27.5  𝐴𝐴 ⋅ 103N∕m2

𝐴𝐴 𝐴𝐴 Ice concentration parameter 20

𝐴𝐴 𝐴𝐴 Ellipse aspect ratio 2

Table 1 
Physical Parameters of the Momentum Equation
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2.2. Data and Software Availability Statement

Data sets for this research as well as routines to process it are available in (Mehlmann et al., 2021) and freely 
and anonymously accessible via https://data.mendeley.com/datasets/kj58y3sdtk/1.

3. Benchmark Problem
The benchmark problem describes the deformation of sea ice caused by a moving cyclone. We consider the 
quadratic domain 𝐴𝐴 Ω = (0, 512 km)2 with the spatial points 𝐴𝐴 (𝑥𝑥𝑥 𝑥𝑥) ∈ Ω given in kilometers. The simulation 
is run for 𝐴𝐴 𝐴𝐴 = [0, 2] days, where the time 𝐴𝐴 𝐴𝐴 is measured in days. Inspired by Hunke (2001) we prescribe a 
circular steady ocean current

𝐯𝐯𝑤𝑤 = 𝑣𝑣max
𝑤𝑤

⎛

⎜

⎜

⎜

⎜

⎝

(2𝑦𝑦 − 𝐿𝐿)∕𝐿𝐿

−(2𝑥𝑥 − 𝐿𝐿)∕𝐿𝐿

⎞

⎟

⎟

⎟

⎟

⎠

, (10)

with 𝐴𝐴 𝐴𝐴 = 512 km and
𝑣𝑣max
𝑤𝑤 = 0.01m s−1. 

The wind field is described by an anti-cyclone which moves from the center of the domain to the upper right 
corner. The center of the anti-cyclone moves in time as

𝑚𝑚𝑥𝑥(𝑡𝑡) = 𝑚𝑚𝑦𝑦(𝑡𝑡) = 256 km + 51.2 kmday−1 ⋅ (𝑡𝑡). (11)

The maximal wind speed is set to 𝐴𝐴 𝐴𝐴max
𝑎𝑎 = 30

𝑒𝑒
ms−1 ≈  11  𝐴𝐴 ms−1 . To reduce the wind speed away from the center, 

it is multiplied by the factor

𝑠𝑠 = 𝑒𝑒
100

exp
(

− 𝑟𝑟
100 km

)

, 𝑟𝑟 =
√

(𝑚𝑚𝑥𝑥 − 𝑥𝑥)2 + (𝑚𝑚𝑦𝑦 − 𝑦𝑦)2. (12)

The anti-cyclonic surface wind velocity is expressed as

𝐯𝐯𝑎𝑎 = −𝑠𝑠 ⋅ 𝑣𝑣max
𝑎𝑎

⎛

⎜

⎜

⎜

⎜

⎝

cos(𝛼𝛼)(𝑥𝑥 − 𝑚𝑚𝑥𝑥) + sin(𝛼𝛼)(𝑦𝑦 − 𝑚𝑚𝑦𝑦)

−sin(𝛼𝛼)(𝑥𝑥 − 𝑚𝑚𝑥𝑥) + cos(𝛼𝛼)(𝑦𝑦 − 𝑚𝑚𝑦𝑦)

⎞

⎟

⎟

⎟

⎟

⎠

, (13)

where we selected 𝐴𝐴 𝐴𝐴 = 72◦ . 𝐴𝐴 90 − 𝛼𝛼 = 18◦ describes the (arbitrarily chosen) deviation of the wind vector from 
geostrophy. The wind and ocean current are visualized in Figure 1.

We initialize the simulation with sea ice at rest and assume a constant ice concentration of 1.0 and a small 
perturbation of the ice thickness around a mean of 𝐴𝐴 𝐴𝐴0(𝑥𝑥𝑥 𝑥𝑥) =  0.3 m. These initial conditions are

𝐯𝐯(0, 𝑥𝑥, 𝑥𝑥) = 𝐯𝐯0(𝑥𝑥, 𝑥𝑥) = 𝟎𝟎ms−1, (14)

𝐴𝐴(0, 𝑥𝑥, 𝑥𝑥) = 𝐴𝐴0 = 1, (15)

𝐻𝐻(0, 𝑥𝑥, 𝑥𝑥) = 𝐻𝐻0(𝑥𝑥, 𝑥𝑥) = 0.3m + 0.005m
(

sin
( 60𝑥𝑥
1000 km

)

+ sin
(

30𝑥𝑥
1000 km

))

, (16)

where 𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴 are given in km. At the boundary of the domain we apply a no-slip condition for the velocity:
𝐯𝐯 = 𝟎𝟎 on 𝜕𝜕Ω. (17)

The benchmark problem is designed so that both the gradient of anti-cyclonic wind field (Equation 13) and 
boundary condition (Equation 17) lead to LKFs.

4. Discretization
Most sea ice models use structured (quadrilateral) meshes and either an Arakawa B-grid like in CICE (Hun-
ke et al., 2015) or Arakawa C-grid discretization as in the sea ice module of the MITgcm (Losch et al., 2010). 
We are not aware of any sea ice models on Arakawa A-grids or CD-grids on quadrilateral meshes. Some 
recent sea ice model developments use unstructured meshes with triangular elements. This includes the 

https://data.mendeley.com/datasets/kj58y3sdtk/1
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A-grid-like discretization in the sea ice component of FESOM (Danilov et al., 2015), the CD-grid-like dis-
cretization in the sea ice module of ICON (Mehlmann & Korn, 2021) and a quasi-B grid discretization in 
the sea ice module of the Finite-Volume Community Ocean Model (FVCOM, Gao et al., 2011). The latter is 
similar to the quasi-B grid staggering realized on hexagonal meshes in the Model for Prediction Across Scales 
(MPAS, Petersen et al., 2019). In this paper, we compare discretization of the viscous-plastic sea ice model 
with an Arakawa A-grid, B-grid, C-grid and CD-grid staggering of velocities on structured quadrilateral 
grids (upper row in Figure 2) and triangular meshes (lower row in Figure 2).

We note that different approaches vary in the number of degrees of freedom of the velocity field (DoFs), 
which are defined per unknown, by the numbers of vertices, cells and edges. On quadrilateral meshes the 
CD-grid has 2N DoFs (with N the number of grid vertices), whereas A, B, C-grid contains N DoFs. On tri-
angular grids, the A-grid-like approximation has N DoFs. This is increased by factor 1.5 in case of the B-grid 
staggering and tripled in the CD-grid discretization. To illustrate this, the degrees of freedom for the grid 
with 2 km mesh spacing are given in Table 2.

4.1. Model Configuration

In the following we describe the discretization of the benchmark problem (Section 3) in the different mod-
els. An overview is provided in Table 2.

Figure 1. Stationary velocity field of the ocean current (left hand side) and wind field at time t = 2 days (right hand 
side). The bold blue arrow indicates the displacement of the atmospheric anti-cyclone from day zero to day two.
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10 m/s

10 m/s

5 m/s

5 m/s
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Figure 2. Different staggering explored in this manuscript. We indicate the placement of the latitude/zonal velocity 
𝐴𝐴 𝐯𝐯 = (𝑢𝑢𝑢 𝑢𝑢) , the normal component of the velocity and the tracers by 𝐴𝐴 ∙ , -, and 𝐴𝐴 𝐴 , respectively.

A - grid B - grid CD - grid C - grid



Journal of Advances in Modeling Earth Systems

MEHLMANN ET AL.

10.1029/2021MS002523

6 of 16

4.1.1. Gascoigne (A-Grid, B-Grid and CD-Grid Staggering on Quadrilaterals)

We implemented the benchmark problem in the academic software library Gascoigne 3D (Becker 
et al., 2021). Gascoigne is a flexible toolkit that provides basic routines to discretize two or three dimen-
sional partial differential equations with finite elements. Further, Gascoigne provides high level routines 
for working with adaptive meshes as well as efficient linear and nonlinear solvers based on Newton-Krylow 
multigrid methods. For an overview we refer to Richter (2017).

In the framework of Gascoigne we compare finite element discretizations that are based on an A-grid, B-grid 
or CD-grid placement of the variables. The finite element with a C-grid staggering is not considered as the 
corresponding finite element space is not large enough to approximate the full strain rate tensor (Acosta 
et al., 2011) of the VP sea ice rheology. The Arakawa A-grid, B-grid, and CD-grid staggering corresponds to 
the Q1-Q1, Q1-Q0, and CR-Q0 finite element pairs. The first component of the pair refers to the discretiza-
tion of the sea ice velocity, and the second component addresses the discretization of the sea ice thickness 
and concentration. Q0 denotes the piecewise constant element and Q1 refers to the bilinear quadrilateral 
element (Braess, 2007). On quadrilaterals, CR is the nonconforming rotated bilinear element (Rannacher & 
Turek, 1992), which is a variant of the triangular nonconforming piecewise linear Crouzeix-Raviart element 
(Crouzeix & Raviart, 1973). Discretizing the sea ice momentum equation on quadrilateral and triangular 
meshes with the CD-grid-like CR-element causes oscillations in the velocity field. This instability has its 
origin in the discretization of the strain rate tensor, which is part of the viscous-plastic rheology (Mehlmann 
& Korn, 2021). To reduce these oscillations, an edge based stabilization is used. A short description of the 
stabilization can be found in Mehlmann and Korn (2021).

In Gascoigne the sea ice momentum equation is approximated with an implicit Euler method in time. The 
system is solved with a Newton scheme (Mehlmann & Richter, 2017b) and the resulting linear systems of 
equations are approximated with the GMRES method preconditioned by a parallel multigrid method (Failer 
& Richter, 2020; Mehlmann & Richter, 2017a). The nonlinear system is solved to a tolerance of 𝐴𝐴 10−13 , where-
as the linear problems in each Newton step are computed with an accuracy of 𝐴𝐴 10−2 .

The tracers, which are placed on cell centers in the B-grid and CD-grid staggering, are advected with an 
upwind scheme. For A-grid-like discretization, the tracers are placed on vertices and a Flux-Corrected trans-
port scheme is used (Mehlmann, 2019).

4.1.2. MITgcm (C-Grid Placement on Quadrilaterals)

We apply the sea ice module of the MITgcm (Losch et al., 2010) for Arakawa C-grid simulations on quadri-
lateral grids. In the MITgcm, the momentum equations and in particular the divergence of the stress tensor 

Model Grid Staggering Solver Transport DoF (2 km)

Gascoigne 𝐴𝐴 □ A Newton FEM-FCT 130,560

𝐴𝐴 □ B Newton Upwind 130,560

𝐴𝐴 □ CD Newton Upwind 261,120

MITgcm 𝐴𝐴 □ C Newton FV with flux limiter 130,560

CICE 𝐴𝐴 □ B Picard Remapping 130,560

FESOM 𝐴𝐴 △ A mEVP FEM-FCT 𝐴𝐴 1324801 / 𝐴𝐴 1527362

𝐴𝐴 △ B mEVP FEM-FCT 𝐴𝐴 3032602

𝐴𝐴 △ CD mEVP Upwind 𝐴𝐴 3953781 / 𝐴𝐴 4559942

ICON 𝐴𝐴 △ CD mEVP Upwind 𝐴𝐴 44871862

Note. The superscript 1 marks the degrees of freedom (DoF) on the triangular grid with the same total number of 
vertices as the quadrilateral mesh, whereas the 2 indicates the DoF of the mesh which consists triangles with a side 
length of 2 km.

Table 2 
Overview of the Model Configuration
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are discretized using a finite-volume method on a quadrilateral, curvilinear Arakawa C-grid. The strain rate 
tensor components, are approximated by central differences. Details of the discretization can be found in 
the appendix of Losch et al. (2010) or at https://mitgcm.readthedocs.io.

The momentum equations use an implicit Euler method in time. In each time step, the nonlinear system 
of equations is solved implicitly using a Jacobian-free Newton Krylov (JFNK) solver (Losch et al., 2014). 
An inexact Newton method is used, where the linear system is solved with an accuracy depending on the 
nonlinear convergence rate. The nonlinear solution required to have a residual 𝐴𝐴 10−4 times smaller than the 
initial residual. For details see Losch et al. (2014) or https://mitgcm.readthedocs.io. Ice thickness and con-
centration are advected with a second order scheme with a superbee flux limiter.

4.1.3. CICE (B-Grid Placement on Quadrilaterals)

The sea ice model CICE (Hunke et al., 2015) is used for Arakawa B-grid simulations. On a sub grid level 
in the Arakawa B-grid setup of CICE, the sea ice velocity and the stresses are discretized using bilinear 
basis functions in a finite element sense (Hunke et al., 2015). In CICE, the VP solution is calculated using 
a recently implemented Picard solver. The nonlinear solution is approximated by performing 100 Picard 
iterations. The linear system is solved until the relative criterion 𝐴𝐴 10−2 is reached. Details on the solver choice 
and configurations are discussed in Section 6. The tracers in CICE are transported with the incremental 
remapping scheme (Lipscomb & Hunke, 2004).

By default, CICE uses an ice-thickness-distribution (ITD) model with five thickness categories. As the in-
itial ice thickness is 0.3 m and the thickness does not exceed 0.46 m during our simulations, only the first 
category with an upper limit of 0.64 m is populated. Ice strength 𝐴𝐴 𝐴𝐴0 in Equation 8 is computed from the 
sum over all thickness categories, so that our CICE simulations are equivalent to simulations with only one 
thickness category. Note that the strength parameterization is different from the CICE default.

4.1.4. FESOM (A-Grid, B-Grid, CD-Grid on Triangles)

FESOM by default applies a P1-P1 finite element discretization, which is based on an A-grid placement of 
the variables (see Danilov et al., 2015, for details). For this study also a finite-volume B grid and a CR-P0 
finite element pair, using a CD-grid placement of the variables, have been realized. The B-grid placement 
corresponds to the quasi-B grid staggering used in MPAS (Petersen et al., 2019). In analogy to the quad-
rilateral case, P1 and CR refer to the piecewise linear element and the nonconforming linear element on 
triangles. As on quadrilateral meshes, the space of finite elements that corresponds to a C-grid staggering is 
too small to approximate the strain rate tensor (Acosta et al., 2011). Instead, this issue motivates the use of 
the Arakawa CD-grid placement on triangular meshes. As outlined for the quadrilateral case (Section 4.1.1) 
we use a stabilized version of the CD-grid-like CR-P0 finite element. The quasi-B-grid discretization on 
triangular meshes may also suffer from noise in the velocity field if strain rates are computed at vertices or 
triangles. We stabilized the approximation by reconstructing the strain rates at the element-edges (Danilov 
et al., 2021).

In FESOM, the discretization of the sea ice momentum equation is based on the explicit mEVP solver. For 
a large number of sub-cycles per time step the method converges to the VP solution (Kimmritz et al., 2015). 
However, in practice only a limited number of iterations of the mEVP solver are applied to reduce the 
numerical cost (Koldunov et al., 2019). We follow the suggestion of Koldunov et al.  (2019) and use 100 
sub-cycle steps per time step, which has been shown to be a good compromise between the number of LKFs 
resolved and the numerical cost. We discuss the impact of the number of subiterations in Section 6. In the 
A-grid and B-grid discretization the tracers are advected with a flux-correction scheme (Löhner et al., 1987), 
whereas the CD-grid set up uses an upwind scheme.

4.1.5. ICON (CD-Grid on Triangles)

The FESOM CD-grid implementation follows the implementation of the sea ice module in ICON (Mehl-
mann & Korn, 2021) and differs by using longitude-latitude coordinates, whereas coordinate systems local 
to triangles are used in ICON. Since the test case is done in plane geometry, both approaches are expected to 
lead to the same result. By default the ICON grid uses equilateral triangles. Thus, straight boundaries cannot 
be represented on all sides of the area considered in benchmark problem. Therefore the boundaries on the 
left (west) and right (east) hand side of the domain are formed by outward pointing triangles (Figure 7).

https://mitgcm.readthedocs.io
https://mitgcm.readthedocs.io
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4.2. Choice of Grids

The benchmark problem is analyzed on quadrilateral and triangular 
meshes with grid spacings of 8, 4, and 2 km. The corresponding quadri-
lateral meshes have 4,096, 16,384, and 65,536 cells. To compare the two 
CD-grid type discretizations in FESOM and ICON we also use mesh-
es with standard side lengths. In contrast to ICON, the boundaries are 
straight in FESOM with additional rectangular triangles along the west 
and the eastern boundaries. This implies that the boundary triangles are 
not equilateral. The triangular 8  km grid in ICON has 9,070 cells, the 
4  km grid has 37,082 cells, and the 2  km mesh contains 149,938 cells, 
whereas the triangular mesh in FESOM consists of 9,490 cells (8 km), 
37,926 cells (4 km), and 151,630 cells (2 km).

An appropriate measure to compare triangular and quadrilateral grids is 
the total number of vertices. This is so, because the geometric resolution 
(in the sense of resolvable wave numbers) of a particular mesh is defined 
by the unit cell, which is a translationally invariant element of the mesh. 
A unit cell of a triangular mesh is a rhombus formed by two triangles, 
and the number of unit cells is equivalent to the number of vertices. To 
compare the discretizations on quadrilateral and triangular meshes we 

chose grids with the same number of vertices. Therefore the edge lengths in the triangular case are slightly 
larger with 8.6, 4.3, and 2.15 km. Keeping the same number of vertices in the triangular grid results in twice 
as many cells and 1.5 times more edges than on quadrilateral meshes.

We solve the system on all mesh levels with a time step of 𝐴𝐴 Δ𝑡𝑡 = 2 min. The choice of time step is determined 
by the use of the explicit mEVP solver on the 2 km grid. The discretization with a CD-grid-like placement 
requires slightly smaller time steps than the approximation based on the A-grid or the B-grid type stagger-
ing. The effect is discussed in Danilov et al. (2021)

5. Numerical Evaluation
In this section, we examine the effect of the grid staggering on the formation of LKFs. To quantify the effect, 
we analyze the sea ice concentration 𝐴𝐴 𝐴𝐴 and shear deformation (Equation 9).

5.1. Gascoigne (A-Grid, B-Grid, CD-Grid Staggering on Quadrilaterals)

We start by considering the discrete solutions obtained with different finite element discretizations availa-
ble in Gascoigne (Becker et al., 2021). The B-grid and the CD-grid-like finite element discretization differ 
only by the staggering of the velocity components while the A-grid type and B-grid-like finite element dis-
cretizations are identical except for the placement of the sea ice concentration and thickness.

As both B-grid and CD-grid-like approximations are based on an upwind scheme, we can attribute the rela-
tively large differences in the sea ice concentration in Figure 3 to the different velocity placement. Generally, 
the sea ice concentration obtained with CD-grid-like discretization has more details than the corresponding 
approximation with A- and B-grid-like staggering. This goes so far that the 4 km-solution with CD-grid stag-
gering is qualitatively similar to the sea ice concentrations obtained with the 2 km A-grid and B-grid-like 
discretizations.

The results of the CD-grid staggering show a peculiarity: especially on coarse grids (8 km), many LKFs 
are identified (Figures 4 and 5). A closer analysis of the detected features shows that numerical artifacts 
along the boundary are incorrectly identified as features. These artifacts, which are also visible close to the 
boundaries in the shear deformation (Figure 6) on the 4 and 2 km meshes (although they are not identified 
as features here), as well as the pattern that is visible in upper left corner of the shear deformation and to 
some extent in the sea ice concentration are not numerical instabilities but originate from the approxima-
tion properties of the finite element space. They diminish with increasing resolution and can be explained 

Figure 3. Sea ice concentration after 2 days of simulation (1,440 
iterations) computed on a quadrilateral mesh in Gascoigne.
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as follows: In case of the quadrilateral CD-grid, the finite element space contains a nonlinear term 𝐴𝐴 𝐴𝐴2 − 𝑦𝑦2 in 
addition to the linear polynomials. This extra term does not improve the approximation quality and causes 
an oscillatory behavior within each element. Note the the CD-grid approximation on triangular grids does 
not have this property. As most of features are wider than a grid cell and persists under mesh refinement we 
do not attribute them as numerical noise but to the inability of the finite element space to resolve ”straight 
lines.” A possibility to smooth this pattern in the tracers might be the use of a advection scheme with less 
DoF such as first order Flux-Corrected transport.

In the case of the A-grid discretization, however, the sea ice concentration and sea ice thickness are advect-
ed with a second order Taylor-Galerkin flux-correction scheme (Mehlmann, 2019), so that the much smaller 
differences between A-grid and B-grid (Figure 3) have to be attributed to a combination of different tracer 
point placement and the related difference in advection schemes. This indicates that neither the advection 
scheme nor the placement of the tracers are important for the evolution of LKFs in this test case.

5.2. MITgcm (C-Grid Placement on Quadrilaterals) and CICE (B-Grid Placement on 
Quadrilaterals)

The MITgcm configuration differs from Gascoigne's B-grid and CD-grid type setups by the placement and 
discretization of the sea ice velocity and the choice of advection scheme (second order finite volume scheme 

Figure 4. The number of the detected linear kinematic features from the shear deformation field presented in 
Figures 6 and 9 on quadrilateral 𝐴𝐴 □ and triangular 𝐴𝐴 △ meshes. 𝐴𝐴 𝐴𝐴 indicates the number of cells on the different meshes. 
The superscripts 1, 2, 3, and 4 refer to the simulations carried out in the framework of CICE, Gascoigne, FESOM, and 
MITgcm respectively.
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with a superbee flux limiter). The C-grid type discretization resolves less structure in the sea ice concentra-
tion and shear deformation than the CD-grid-like finite element discretization in Gascoigne (Figure 6). The 
same is true for the detected number and total length of LKfs (Figures 4 and 5).

CICE uses a B-grid type staggering such as the Q1-Q0 finite element discretization in Gascoigne. The sea 
ice thickness and concentration are advected with the incremental remapping scheme (Lipscomb & Hun-
ke, 2004). Figure 6 shows that the LKFs in the CICE discretization are wider than the LKFs in the B-grid-
like Gascoigne approximation. Furthermore, the simulated sea ice concentration is more diffusive. We ob-
serve that the CICE simulation produces fewer LKFs in the sea ice concentration and shear deformation 
field (Figure 6) than the approximation based on a CD-grid placement, see Figures 4 and 5.

5.3. FESOM (A-Grid, B-Grid, CD-Grid Placement on Triangles)

We now consider the A-grid-like and B-grid type discretization in FESOM. Figure 7 shows in the first and 
second column the sea ice concentration and shear deformation approximated with an A-grid and B-grid 
type staggering in FESOM. As the only difference between the two approximations is the staggering and dis-
cretization of the velocity field, we attribute the difference shown in sea ice concentration and shear defor-
mation (Figure 7) to the discretization of the sea ice velocity. Figure 7 shows that the CD-grid approximation 

Figure 5. The length of the detected linear kinematic features on quadrilateral (left) triangular meshes (right). 
The superscripts 1, 2, 3, 4, and 5 refer to the simulations carried out in the framework of CICE, Gascoigne, FESOM, 
MITgcm, and ICON, respectively.
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in FESOM produces more LKFs than the A-grid and B-grid-like discretization on the same mesh. The same 
is observed for the detected number and total length of LKFs (Figures 5 and 8).

5.4. ICON (CD-Grid Staggering on Triangles)

The reader is reminded that the approximation in ICON is based on equilateral triangles, whereas FESOM 
adds rectangular triangles to represent the smooth boundaries (Section 4.2). Otherwise, both CD-grid-like 
discretizations are the same.

The sea ice concentration and the shear deformation presented in Figure 7 are similar in both cases.We con-
clude that the castellated western and eastern boundaries in ICON have a small impact on the number of 
resolved LKFs. This finding is supported by the results of the LKFs detection algorithm shown in Figures 5 
and 8. Both CD-grid-like discretizations resolve a similar number and total length of LKFs on the 8, 4, and 
2 km meshes.

Figure 6. The first and second row show the sea ice concentration. The third and fourth row present the shear 
deformation calculated on a quadrilateral mesh. The snapshots are taken after 2 days of simulation. The shear 
deformation is given in 𝐴𝐴 𝐴𝐴−1 and plotted in logarithmic scale.
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5.5. Comparison of Quadrilateral and Triangular Grids

In this section, we compare the approximation of sea ice dynamics on quadrilateral and triangular grids 
with respect to their ability to resolve LKFs. The triangular grids contain twice as many cells as the quad-
rilateral grids, but the same number of vertices. The discretization on the triangular grids is done in the 
framework of the sea ice model FESOM using an A-grid type and CD-grid type staggering.

Figure 9 compares the approximations of the sea ice concentration with A-grid and CD-grid type discretiza-
tions on quadrilateral grids to those on triangular grids. We observe that the A-grid solution using triangles 
is qualitatively similar to the A-grid solution with quadrilaterals. The same conclusion is drawn for the 
CD-grid staggering. We conclude that, given the same number of vertices, the formation of LKFs is more 
sensitive to the velocity staggering than to the use of quadrilateral or triangular grids. This is supported by 
the results of the detection algorithm (Figures 4 and 5). The number and total length of LKFs is similar 
for the CD-type discretization on the structured quadrilateral and triangular meshes. The same is true for 
the A-grid type discretizations. Figure 4 also shows that the Arakawa B-grid and C-grid discretizations on 
structured quadrilateral meshes resolve quantitatively the same number of LKFs as an A-grid-like approx-
imation on triangular meshes.

Figure 7. The first and second row show the sea ice concentration. The third and fourth row present the shear 
deformation calculated on a triangular mesh. The snapshots are taken after 2 days of simulation. The shear deformation 
is given in 𝐴𝐴 𝐴𝐴−1 and plotted in logarithmic scale.
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6. Discussion
We found that the LKF detection algorithm introduces some uncertainty into our analysis. The algorithm 
tends to split features at intersection, so that in some cases one additional LKF that intersects a second one 
can lead to a count of four. For this reason, the algorithm tends to overestimate the number of LKFs for the 
approximations with CD-grid-like staggering, where small and short scale features appear more often com-
pared to the other grid staggerings. For this reason, the total length of all detected features appears to be a 
more robust metric. Therefore, we will discuss only those properties of the discretizations that show a clear 
tendency in all three measures, the number of LKFs, the length of LKFs and the direct visual evaluation of 
the approximation.

The numerical results presented in Section 5 show that among the different model discretizations, approxi-
mations with a CD-grid staggering resolved the most LKFs. One reason is the fact that the CD-type discreti-
zation has more velocity degrees of freedom (DoFs). As a consequence, sharper gradients are resolved and a 
better approximation of the strain rate tensor is obtained. Furthermore, the comparison of the quadrilateral 
A-grid, B-grid and CD-grid like discretiziationS in Gascoigne (Figure 3) indicates that the approximation of 
the strain rate tensor is the most important term of the stress tensor.

On quadrilateral meshes, the CD-grid-like approximation has twice as many DoFs as the A-grid, B-grid or 
C-grid type staggering. As a consequence, if a 4 km mesh has 𝐴𝐴 𝐴𝐴 grid cells and 𝐴𝐴 2𝑁𝑁 velocity DoFs for an A-, 
B-, or C-grid (2 per grid cell), the CD-grid has 4 𝐴𝐴 𝐴𝐴 DoFs. However, the CD-grid setups resolve at least twice 

Figure 8. The number of the detected LKFs on triangular meshes from the shear deformation presented in Figure 7. 𝐴𝐴 𝐴𝐴 
is the number of cells. The superscripts 1 and 2 refer to the simulation carried out in the sea ice module of FESOM and 
ICON respectively.
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as many LKFs (Figure 4), so that simulations on a 4 km CD-grid (4 𝐴𝐴 𝐴𝐴 DoFs) appear very similar to simula-
tions with A, B, and C-grid staggering on 2 km meshes with 8 𝐴𝐴 𝐴𝐴 DoFs (Figure 4, upper panel and Figure 5, 
left panel). On triangular meshes, the CD-grid-like discretization resolves almost the same number and to-
tal length of LKFs on the 4 km grid (6 𝐴𝐴 𝐴𝐴 DoFs) as the A-grid type discretization on the 2 km mesh (8 𝐴𝐴 𝐴𝐴 DoFs) 
(Figures 4 and 5). So, even on meshes with fewer DoFs, a similar amount of LKFs are detected with the 
CD-grid approximation. However, fewer LKFs are detected in the triangular CD-grid-like discretization on 
meshes with a lower number of DoF (6 N) than the triangular B-grid-like approximation (12 N) (Figure 8).

Previous work suggests that a more accurate solution leads to more and better defined LKFs (Koldunov 
et al., 2019; Lemieux & Tremblay, 2009; Lemieux et al., 2012). Results for our benchmark problem indicate 
that the approximate solutions are sufficiently converged as the number of LKFs does not significantly grow 
if the number of subiterations in the mEVP solver or in the Picard is increased (not shown). Similarly, a 
higher solver tolerance for the Newton methods does not influence the number of resolved LKFs.

The implicit solvers are much more robust to numerical details than the mEVP solver. For example, the 
mEVP solver requires careful tuning of the stabilization parameters ( 𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴 Kimmritz et al., 2015) for each 
new grid (Danilov et  al.,  2021; Kimmritz et  al.,  2015). In addition, the stabilization of the CD-grid-like 
staggering requires a weight that is independent of the spatial resolution. While the choice of this weight 
is described in Mehlmann and Korn (2021) in the context of implicit solvers, its value needs to be tuned for 
the mEVP solver (Danilov et al., 2021). The optimal configuration for the mEVP solver remains an open 
question.

We repeated the experiment with the MITgcm sea ice module with extreme choices of advection schemes, 
a first-order upwind scheme and a seventh-order monotonicity preserving advection scheme and conclude 
that the advection scheme is not important in our context (results not shown). The result is supported 
by similar experiments with CICE and FESOM using an upwind advection scheme. Finally, we point out 
that our analysis does not allow any conclusions about the differences in simulated LKFs between finite 
element, finite volume and finite difference discretizations. We assume that these differences are small as 
the deformation fields simulated by CICE (B-grid, finite difference) and Gascoigne (B-grid, finite element) 

Figure 9. Sea ice concentration on triangular and quadrilateral meshes using the same number of vertices. Therefore 
the edge length in the triangular case is 8.6, 4.3, and 2.15 km. The triangular mesh has around double the number of 
cells and 1.5 more edges compared to the quadrilateral mesh. The snapshots are taken after tow days of simulation 
(1,440 iterations).
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are similar, see Figure 6. But there are too many confounders such as different advection schemes to draw 
reliable conclusions.

7. Conclusion
To conclude, we found in a comparison of different viscous-plastic sea ice models that the staggering and 
discretization of the velocity vector components on a grid with a given spatial resolution can have a large 
effect on the formation of linear kinematic features (LKFs). Approximations with a CD-grid staggering 
lead to more LKFs than the commonly used A, B, and C-grid discretizations. A, B, and C-grid discretization 
resolved similar amounts of LKFs.

Besides the discretization of the velocities, other factors such as the geometry of the cell (triangular or 
quadrilateral), the staggering of the tracers, the advection scheme for the tracers, and the time step are less 
important for the production of LKFs in our specific test case. These factors mainly affect width and defi-
nition of the LKFs and their position in the domain. We expect that details such as the advection scheme 
would become more important in longer simulations with larger ice displacements.

On quadrilateral meshes, the CD-grid discretization doubles the degrees of freedom per grid cell for the 
velocity field and triples them on triangular meshes compared to an A-grid-like discretization. Even so, we 
found that the CD-grid-like approximation produces more LKFs on meshes with fewer DoFs compared to 
A, B, C-grid type discretizations on quadrilateral and A-grid-like discretization on triangular meshes.Fur-
thermore, a CD-grid discretization allows us to resolve more LKFs on grids that have a grid spacing that is a 
factor of two larger than with conventional grid staggering. This is an appealing property because simulat-
ing realistic LKFs in the viscous-plastic sea ice model requires high spatial resolution.

Data Availability Statement
The data and the routines to process it are available in a Mendeley data repository (Mehlmann et al., 2021).
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