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Abstract
Moiré superlattices (MSL) in twisted bilayer graphene (TBG) and its derived structures can host
exotic correlated quantum phenomena because the narrow moiré flat minibands in those systems
effectively enhance the electron-electron interaction. Correlated phenomena are also observed in
2H-transitional metal dichalcogenides MSL. However, the number of moiré systems that have been
explored in experiments are still very limited. Here we theoretically investigate a series of
two-dimensional (2D) twisted bilayer hexagonal materials beyond TBG at fixed angles of 7.34◦ and
67.34◦ with 22 2D van der Waals layered materials that are commonly studied in experiments.
First-principles calculations are employed to systemically study the moiré minibands in these
systems. We find that flat bands with narrow bandwidth generally exist in these systems. Some of
the systems such as twisted bilayer In2Se3, InSe, GaSe, GaS and PtS2 even host ultra-flat bands with
bandwidth less than 20meV even for such large angles, which makes them especially appealing for
further experimental investigations. We further analysis the characters of moiré flat bands and
provide guidance for further exploration of 2D MSL that could host strong electron correlations.

1. Introduction

Moiré superlattice (MSL) is a special type of 2D
layered material, generated by stacking 2D van der
Waals (vdW) materials with a small lattice mis-
match or with a twist angle, including graphene,
hexagonal boron nitride (hBN), transition metal
dichalcogenides (TMDs), various 2D magnets and
superconductors [1]. Different from their parent
2D materials, MSLs with emerging global sym-
metry and periodicity exhibit fascinating quantum
phenomena due to periodic moiré modulation of
onsite potentials, interlayer coupling and intralayer
atomic strain, such as the formation of second-
generationDirac cones [2], Hofstadter butterfly states
[3] and shear solitons and topological point defects
[4–6].

Recent breakthroughs on the discovery of correl-
ated insulator states and superconductivity in TBG

[7, 8] have inspired intensive research on under-
standing the electronic structures [9–17], the correl-
ated insulating phase, [9, 18, 19] and the mechan-
ism of superconductivity [9, 18–23]. Moreover, novel
quantum phenomena are found in TBG, such as cor-
relation induced orbital magnetism [1, 24, 25] and
quantum anomalous Hall states [26–29], cascades
of phase transitions [30], Chern insulators [31, 32],
and unconventional ferroelectricity [33, 34] etc. The
exotic correlated properties of TBG are believed to
be related to the emergence of the flat bands and
the quenching of kinetic energy scales in those states
when the twist angle is around the magic angles [35].

Following the success of TBG, a number of
new moiré flat-band systems beyond TBG are
explored, from the homobilayers, heterobilayers
to multilayers configurations, including trilayer
Graphene/hBN [36, 37], twisted double bilayer
graphene [38–44], twisted trilayer graphene [45–47],
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twisted monolayer–bilayer graphene [48–51] and
twisted TMDs [52–58] and so on. For example, Dai
et al [59] theoretically studied stacking configura-
tions by the generic form of (M+N)-layers TBG,
where the N-layers graphene are stacked on top of
M-layers graphene at a small twist angle and explore
their electronic structures and topological properties.
Here twisted double bilayer graphene, as one of the
simplest example with M = 2,N = 2, has already
been reported in experiments [38–40]. In view of
TMDs, numerous stacking configurations with vari-
ous combination (i.e., twisted MoS2/MoS2 [60, 61],
WSe2/WSe2 [62, 63], WS2/WS2 [64], WS2/WSe2
[65], MoSe2/WSe2 [66–70], WS2/MoSe2 [71] etc)
are investigated. For instance, the 3D reconstructed
WSe2/WS2 MSL with strain are found with the moiré
flat bands by Crommie et al recently [72]. Further-
more, Wang et al reported a twisted bilayer WSe2
at a small twist angle, where low-energy flat bands
are observed and the correlated electronic phases are
investigated [62].

Except for the typicalmaterials of graphene-based
and TMDs, the twisted bilayer black phosphorus [73]
and grey antimonene [74] are also studied in struc-
tural and electronic properties respectively by Guo
et al. More recently, Liu et al investigated antiferro-
and ferroelectric bilayer In2Se3 with large twist-angles
[75] based on the first-principles calculations, where
low-energy extremely flat band is found. Moreover,
the studies of MSLs are further extended to the com-
plex magnetic materials [76–79]. Balents et al theor-
etically investigated the twisted bilayers of vdWmag-
nets in the structures and phases [77], while Tong
et al considered the twisted bilayer 2D magnets CrX3

(X=Br, I) from the magnetization textures aspect
[76]. Furthermore, other moiré dimensionalities are
also explored from quasi-one dimension [80] up to
three dimension [81–83], which greatly extends the
use of twistronic in multi-dimensional systems.

The highly tunable correlation and superconduct-
ivity properties of MSLs also make them appealing
for future technology applications. A couple of the
early attempts were made by Jarillo-Herrero et al and
Rickhaus et al who made use of the gate-tunable cor-
related and superconductivity phase of magic angel
TBG to fabricate Josephson junctions in single-crystal
nanostructures [84, 85]. Moreover, Jarillo-Herrero
et al showed signatures of unconventional ferroelec-
tricity in the bilayer graphene/boron nitride moiré
system, which may lead to ultrafast, programmable
and atomically thin carbon-based memory device
applications [86].

The studies of the MSLs have provided powerful
venue to explore the correlated physics and uncon-
ventional superconductivity [1, 87–89] as well as their
applications in future technology. In the meanwhile,
the emergence of thousands of new vdW layered
materials [90] gives access to tremendous oppor-
tunities for the research of different types of MSLs.

However, it remains unclear that whether moiré flat
bands are generally exist inMSLswhen the twist angle
is small enough or themoiré periodic is large enough.
Moreover, it is unclear what types of 2D materials
are more susceptible to the formation of moire flat
bands and how one could find moiré flat band sys-
tems with a relatively large twist angle or small sys-
tem size, which may potentially give rise to stronger
electron-electron correlation and/or higher transition
temperature for unconventional superconductivity.
To address these questions, we perform first-principle
calculations to study systematically 22 twisted homo-
bilayer superlattices constructed with 2D materials
that are accessible in experiments. We constraint our
calculations to systems with twist angles at 7.34◦ and
67.34◦ as we want to look for moiré flat-band sys-
tems with small system size. By analyzing the band
structures, we find bands with significantly reduced
bandwidths generally exist in these MSLs. Interest-
ingly, we do find a few MSLs that can host ultra-flat
bands with bandwidth less than 20meV even for such
a large twist angle and small system size. Together
with the relatively strong Hubbard interaction, these
systems are expected to host strong electron-electron
correlations, which is extremely appealing for further
experimental investigation. We further discuss the
band characters of the parent 2D materials that lead
to the formation of the ultra-flat bands and provide
guidance for future exploration of numerical exotic
strongly-correlated MSLs.

2. Model and computational approaches

The present calculations are done within density
functional theory using the Vienna ab initio software
package [91]. For these configurations of 2D twisted
superlattice, the exchange correlation functionals of
Perdew Burke and Ernzerhof (PBE) [92] are used, in
conjunction with Tkatchenko-Scheffler (TS) [93, 94]
vdW corrections, which has been shown to give res-
ults well consistent with the experimental observa-
tions in our previouswork onTMD-basedMSLs [62].
An energy cutoff of 400 eV for the plane wave basis
sets and the Γ-centered k-meshes of 1×1×1 are used
for geometry optimization and electronic structure
calculations (a 18 × 18 × 1 k-grid is used for 1 ×
1 unit cell). A vacuum thickness larger than 15 Å is
used to avoid artificial interactions between periodic
slab images. All atoms are fully relaxed with residual
force per atom less than 0.01 eV Å−1. Considering the
computational cost of superlattice calculations, while
the internal atomic positions are fully optimized, the
lattice constant for moiré supercells is fixed to a value
such that it corresponds to the experimental lattice
constant for a 1×1 unit cell (see table I for supercell
lattice parameter for each MSL). For all calculations,
due to the relativistic effect in heavy elements existing
in most systems of twisted bilayer hexagonal materi-
als (TBHMs), the spin–orbit coupling (SOC) effect is
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Figure 1. (a) The composition and crystal structures of parent 3D vdWmaterials including two-atom-thick rhombohedral
layered configuration (with the symmetry P63/mmc): As and Sb; three-atom-thick octahedral layered configuration (with the
symmetry P-3m): PtX2, PdX2, HfX2, ZrX2 and SnX2, or trigonal prismatic coordination (with the symmetry P63/mmc): MoX2

and WX2; four-atom-thick layers (with the symmetry R-3mH): GaS, GaSe and InSe; five-atom-thick layers (with the symmetry
R-3mH): Bi2Se3, Bi2Te3, In2Se3 and Sb2Se3. (b) Distribution map of the TBHMs onto the variables of the on-site Hubbard
interaction energy U vs bandwidthW with the scales of no more than 100 meV in VBM and CBM. The various twisted materials
are marked. The color gradient from the top left (pink) to the bottom right (yellow) of the figure represents that effect of strong
correlation varies from strong to weak.

considered while results without SOC are also calcu-
lated for comparison to estimate the effect of the SOC
on the moiré flat bands.

For a wide variety of 2D materials, we concen-
trate on 22 types that are relatively easy to be syn-
thesized andmanipulated in experiments to construct
twisted bilayer MSL. The composition and crystal
structures for the corresponding bulk materials are
shown in figure 1. These 2D materials range from
two-atom-thick rhombohedral (grey) layered arsenic
(As) and antimony (Sb) with spacegroup P63/mmc,
three-atom-thick layers with octahedral (PtX2, PdX2,
HfX2, ZrX2, SnX2) with spacegroup P-3m1 or tri-
gonal prismatic coordination (MoX2, WX2) with
spacegroup P63/mmc, four-atom-thick layers (GaS,
GaSe, InSe) with space group R-3mH to five-atom-
thick layers (Bi2Se3, Bi2Te3, In2Se3, Sb2Se3) with
spacegroup R-3mH (The details of structural data are
presented in table 1). MSL are obtained by rotating
two identical layers from these parent 2D materials
at a small angle. We consider TBHM models that
have a moiré wavelength λ(θm) = a/(2sin(θm/2))
[95, 96]. For every commensurate twist angle θm,
the supercell basis vectors are given by t1 =ma1 +
(m+ 1)a2 and t2 =−(m+ 1)a1 +(2m+ 1)a2, where
a1,2 = (±1/2,

√
3/2)a0 are the lattice vectors for the

primitive cell of the untwisted system, a0 is experi-
mental lattice constant, and cos(θm) = (3m2 + 3m+
1/2)/(3m2 + 3m+ 1) with m being an integer. We
study TBHM with twist angles at 7.34◦ and 67.34◦

that correspond to two distinct configurations when
m= 4. The largest system we study here has a total

number of 610 atoms. A series of optimized twisted
configurations can be seen in figures 2(a), 3(a) and
(e), 4(a) and (e), 5(a) and (d) and figures S1–S22(a)
and (b) in the supporting information (SI) (available
online at stacks.iop.org/2DM/9/014005/mmedia).

3. Results and discussion

3.1. Flat bands and electronic correlation inMSLs
We calculate the band structures of the 22MSLs at the
PBE+TS level with and without SOC. The results are
summarized in table 1 and the detailed band struc-
tures can be found in the SI. Except for the two twis-
ted metallic systems (i.e. twisted bilayer PdTe2 and
PtTe2), we find bands with narrow bandwidths com-
monly appear at the band edges in these MSL systems
regardless of the variety of band structures in the ori-
ginal untwisted form. This suggests moiré engineer-
ing via creating MSL is quite effective in general in
creating flat or narrow bands in 2D semiconductor
systems. For the metallic system, the bands near the
Fermi level are highly entangled such that it is dif-
ficult to identify a well-defined flat band (see figure
S23). We list the bandwidth of the flat bands appear-
ing at the band edges in these systems in table 1.
Not all systems have a value there either because for
some systems the bands at the band edges are still
quite dispersive (bandwidth W >200meV) or there
is no well-defined isolated flat bands at the twist
angles we study in this work. Furthermore, we calcu-
late the unfolded band of PtSe2 to further elaborate
the moiré flat band. As shown in figure S25 of SI, the

3
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Figure 2.Moiré flat bands in twisted bilayer Bi2Se3 at 7.34◦. (a) Top view (upper panel) and side view (lower panel) of the atomic
structure. The purple and green atoms represent Bi and Se atoms, respectively. (b) Low energy band structure near the band
edges. (c) Low energy band structure with projection onto each atomic orbital. The size of the circle is proportional to the
projection value. (d), (e) Partial charge density distribution in real space for states at VBM (d) and CBM (e). Upper and lower
panel show the top and the side views, respectively. The moiré unit cell is indicated by black solid lines. The dashed-line circle in
the lower panel of (d) highlights the charge density localization region in Bi2Se3. The isosurface value is set to be 7×10−5 eÅ−3.

Figure 3. (a) Top view (upper panel) and side view (lower panel) of the atomic structure of twisted bilayer In2Se3 at 67.34◦.
(b), (c) Band structures for twisted bilayer without (b) and with (c) SOC. (d) Projected band structure for untwisted bilayer in
1×1 primitive cell without SOC. (e)–(h) The corresponding results for the GaSe systems.

unfolded band structure (figure S25(a)) in the twis-
ted bilayer is drastically different from its counterpart
(figure S25(b)) in the untwisted structure. In partic-
ular, one can visualize a section of isolated flat band

appearing at the valence bandmaximum (VBM) near
the Γ point in the Brillouin zone of the primitive cell.
This feature corresponds exactly to the flat bands that
we calculated in the supercell Brillouin zone. The
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Figure 4. (a) Top view (upper panel) and side view (lower panel) of the atomic structure of twisted bilayer PtS2 at 7.34◦. (b) Band
structures for twisted bilayer without SOC. (c), (d) Projected band structures for monolayer (c) and untwisted bilayer (d) in 1×1
primitive cell without SOC. The red arrows highlight the band splitting of the pz states in the bilayer. (e)–(h) The corresponding
results for the arsenene systems.

Figure 5. (a) Top view (upper panel) and side view (lower panel) of the atomic structure of twisted bilayer HfS2 at 7.34◦. (b) Band
structures for twisted bilayer without SOC. (c) Band structure for untwisted bilayer in 1×1 primitive cell without SOC. (d)–(f)
The corresponding results for the GaS systems.

unfolded band structure reveals that the flat bands
are originated from the linear recombination of the
VBM states near the Γ point. Similar features of
the flat bands have been observed in twisted bilayer
graphene [127, 128] andWS2/WSe2MSL [129]. From
table 1, it is clear that it is easier to find flat bands
at the VBM than at the conduction band minimum

(CBM). For the flat bands at the VBM (CBM), the
bandwidth ranges from 0.9 (42) meV to larger than
100 meV in our calculations with SOC. Neverthe-
less, it is surprising to find that the isolated band
at the band edges in some twisted bilayer systems
(such as twisted In2Se3, GaSe, GaS, InSe, PtS2) can
be so flat that its bandwidth is less than 20 meV,
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even the twist angles we study here are relatively
large.

The existence of flat bands in theseMSLs indicates
the kinetic energy scale of the electron states in these
bands is significantly quenched and the electron-
electron interaction and correlation may become
important. To further evaluate the correlation effects,
we estimate the on-site coulomb repulsion energy U
in these system as e2/(4πϵϵ0a), where e is electron
charge, ε0 is the vacuum permittivity, ε is relative per-
mittivity and a is the effective linear dimension of
each site (here we take the length scale of the moiré
pattern). Though a combination of relative permit-
tivity ε from the data of other literature and the lat-
tice parameter of the moiré unite cell a, we estim-
ate U and the values are depicted in table 1. Then,
we compare the energy scale of the bandwidths W
in VBM/CBM and estimated Hubbard U of differ-
ent MSLs by plotting them in figure 1(b) (for MSLs
with the same materials, only the smallest value of
bandwidth is shown). In the region on the top left of
figure 1(b) (colored in pink), the Hubbard U is lar-
ger than the bandwidth W, which indicates correla-
tion effects will be important; while in bottom right
region, the bandwidth W is larger and the electron
correlation effect will be weak. Figure 1(b) shows that
the twisted compounds of GaS, GaSe, InSe, In2Se3,
PtS2 all have narrow bandwidths and relative strong
Hubbard interactions and they are expected to host
strong electron correlations even at such a large twist
angle of 7.34◦. It is noteworthy that twisted arsenene
should have aU value near that of antimonene, com-
parable or even more larger to its relatively small
bandwidth of 24 meV, although we could not find
the value of its ε in literature and did not list it in
the figure. The other systems near the diagonal line,
such as VBM of PtSe2, Bi2Se3, Sb2Te3 and MoSe2 and
CBM of GaS, ZrS2, HfS2, SnS2 and SnSe2, show com-
parable U andW values, indicating electron correla-
tions are also important in these systems. For those
systems locate at the lower right region in the dia-
gram, such as MoTe2 and ZrS2, the electron correla-
tionmay be less important.We need point out that we
only compare the relevant energy scale for twisted sys-
tems at a relative large twist angle here, the locations
of data points in this diagram (i.e. figure 1(b)) will
change as the twist angle decreases. The twisted sys-
tems appear to have weaker electron correlations here
could become strongly correlated systems at smaller
angles.

3.2. Characters of the flat bands inMSLs
To better understand the formation of flat bands in
2DMSLs, we further analysis the characters of the flat
bands. To this end, we conduct the calculation of the
projected band structures and the results are shown in
figures S1–S22 in the SI and the major orbital com-
ponents for the states in the flat bands are summar-
ized in table 1. The results reveal that for the flat band

systems with smaller dispersion in VBM including
the twistedmaterials of Bi2Se3, In2Se3, Sb2Te3, Bi2Te3,
GaS, GaSe, InSe, PtS2 and PtSe2, the valence band
edges are associated with the pz orbital of the chalco-
gen atom predominantly. Apart from these materials,
the characters are also predominantly pz orbitals for
both of the twisted arsenene and antimonene inVBM.
This is not surprising as we only study MSLs with a
relatively large twist angle in this work, the atomic
reconstruction has aminor effect. Themoirémodula-
tion of the band structure is dominated by the mod-
ulation of interlayer coupling, instead of the atomic
reconstruction as reported in the work by Crommie
and others [72] for MSLs with a much larger sys-
tem size. Under such circumstance, as the electronic
states with pz orbital are very sensitive to the inter-
layer coupling, they can be significantly modified by
the moiré potentials created by the modulated inter-
layer coupling and turned into flat-band states.

We take the twisted Bi2Se3 at 7.34◦ (figure 2(a)) as
a typical example to further elaborate the role of dif-
ferent atomic orbitals in the formation of flat bands.
The calculated band structure and the corresponding
projected band structure of twisted Bi2Se3 are given
in figures 2(b) and (c). From these figures, it is clear
that the states at the valence band edges are associ-
ated with Se pz and a fraction of Bi s states. Whereas,
the states at the conduction band edges are predom-
inantly Bi pz states. As the Se pz orbitals are located
at the outermost Se atomic layer, with charge dens-
ity extended towards the stacking interface (See lower
panels figure 2(d)), they are sensitive to the modu-
lation of the interlayer coupling. Thus those states at
theVBM,with relatively large contribution fromSe pz
orbitals, are significantly altered by moiré interlayer
potentials, forming a flat band with a small band-
width of 21 meV. The charge density distribution of
the states in this flat bands is very localized in the real
space as shown in figure 1(d). On the other hand, the
Bi pz orbitals locate at the inner atomic layers and
their wavefunction barely extend towards to inter-
face region (see lower panel of figure 2(e)). There-
fore, those states at the conduction band edge mainly
contributed by the Bi pz orbitals are much less sensit-
ive to the modulation of interlayer couplings and the
bands at the CBM are still very dispersive. The cor-
responding charge density distribution of those states
is delocalized over the whole moiré cell as shown in
figure 2(e).

Next, we look at those systems that host flat bands
with extremely small bandwidths even at a relatively
large twist angle. Here, we investigate twisted bilayer
In2Se3 and GaSe at 67.34◦ as two typical examples. As
shown in figures 3(b) and (f), the flat bands appear
at the VBM with a extremely narrow bandwidth W
of 0.8 and 5 meV for twisted bilayer In2Se3 and GaSe
at 67.34◦, respectively, in the calculations without
SOC. When including SOC, the band structures of
both systems have significant modifications: for the
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In2Se3 system, the band gap between the top and the
lower flat bands increases and additional flat bands
appear at higher energies; for the GaSe system, a
Rashba type of splitting is introduced in the top flat
band. Nevertheless, the bandwidths in both systems
remain small after including SOC (0.9 meV for the
In2Se3 system and 6 meV for the GaSe system). Sim-
ilar to what we discussed above for the case of twisted
Bi2Se3, these ultra-flat bands states aremainly derived
from the pz orbital of the atoms in the outermost
atomic layer (i.e. Se atoms in these cases), as shown
in figure S24. Moreover, although the chemical com-
position and atomic structures are different, both sys-
tems share similar features in the band structure of the
untwisted 1×1 form: that is, a relatively flat plateau
at the VBM. This is also the case for the other ultra-
flat band systems such as GaS and InSe. Such band
plateau, when folded in the moiré supercell, natur-
ally appears as flat bands. The moiré potential due
to the modulated interlayer coupling further intro-
duces band gaps between these flat bands at the super-
cell Bouillon Zone (BZ) boundary and confines those
electronic states, leading to isolated ultra-flat bands.
This is actually similar to the trilayer graphene/hBN
MSL system [36, 37], where the states at the band
plateau at the VBM are confined by the moiré poten-
tial formed by the graphene/hBN superlattice. As the
band plateau region is more extended in the BZ in
these systems, a much smaller moiré length scale is
sufficient for the formation of ultra-flat bands. It is
expected that the moiré heterostructures of these 2D
layers could also host flat bands at the VBM.

Twisted bilayer PtS2 is also an interest system. Dif-
ferent from the systems discussed above, although
untwisted prinstine bilayer PtS2 does not has a flat
band plateau at the band edges, its twisted form at
7.34◦ also host a ultra-flat band with a bandwidth
of 15 meV in the calculation without SOC as shown
figure 4(b). The band structure does not change
much when including SOC (see figure S16 in SI).
Although the bandwidth is larger than the cases dis-
cussed above, it is still considerable small and com-
parable to the bandwidth of twist bilayer graphene at
the magic angle of 1.05◦, even at such a large twist
angle. A noticeable feature in this twisted system is
that the separation between flat bands is relatively
large, indicating the strength of the interlayer moiré
potential is relatively large. The relatively large moiré
potential is likely to be related to the relatively strong
interlayer hybridization of the S pz states. As shown in
figures 4(c) and (d), the S pz states near the VBM in
the untwisted bilayer have a considerable large energy
splitting of about 1.5 eV compared with those in the
monolayer, which even shifts the VBM from the S px-
py states in the monolayer to the S pz states in the
untwisted bilayer. Another system that hosts relat-
ively strong moiré potential is twisted bilayer buckled
arsenene. As shown in figures 4(g) and (h), the As pz
states near the VBM in the untwisted bilayer arsenene

also have a relatively large energy splitting of about
1.0 eV, shifting the VBM from the As px–py states
to the As pz states. The twisted bilayer arsenene also
hosts a large band gap between flat bands as shown in
figure 4(f).

Finally, we discuss the flat bands occurred at the
CBM. Generally it is much harder to form flat bands
at the CBM. Nevertheless, we found a few excep-
tions, such as twisted bilayer GaS, 1T-ZrS2, HfS2
and SnS2. The band structures of twisted bilayer 1T-
HfS2 and GaS at 7.34◦ without including SOC effect
are shown in figures 5(b) and (e), respectively. The
figures clearly show that isolated flat bands with sim-
ilar shape appear at the bottom of the conduction
bands in the two systems, with a bandwidth of 55 (52)
meV for 1T-HfS2 (GaS). The flat bands do not change
muchwhen the SOC effect is included (see figures S18
and S5 in the SI). A similar feature for these systems
is that the bottom of the conduction bands of the
pristine 1×1 bilayer locates at the M point in the BZ
(see figures 5(c) and (f)). So the flat bands at the CBM
of these systems are formed by the M point states. On
the other hand, when the bottom of the conduction
bands locate at the Gamma point, the bands at the
CBM remain highly dispersive at large twist angles
(see the previously discussed twisted bilayer Bi2Se3
and GaSe for example).

4. Conclusions

To summarize, we report a systematic investigation
of band structures to explore flat bands in a series
of 2D TBHMs with vdW beyond TBG using first-
principles methods. Two configurations ofMSL shar-
ing supercells with the same size at twisted angles
of 7.34◦ and 67.34◦ are considered. Our calculations
show that the twisted compounds of Bi2Se3, In2Se3,
Sb2Te3, Bi2Te3, GaS, GaSe, InSe, PtS2, PtSe2, arsenene
and antimonene host flat bands at the VBM with the
small bandwidths (less than 100 meV). Meanwhile,
flat bands also emerge at the CBM for the twisted
bilayer materials of GaS, HfS2, HfSe2, ZrS2, SnS2 and
SnSe2. Those systems that host flat bands at relatively
large twist angles generally have the following charac-
ters: (1) The states at the band edges are mainly con-
tributed by the outermost atoms of the layeredmater-
ials and from those atomic orbitals where the charge
density extends towards the stacking interface, such as
pz and dz2 orbitals; (2) the band curvatures at around
the band edges are relatively large or even relatively
flat band plateaus appearing at the band edge in the
Brillouin zone of the primitive cell. Then, by estimat-
ing the Hubbard interaction U, we find that the twis-
ted compounds of Bi2Se3, In2Se3, GaS, GaSe, InSe
and PtS2 exhibit large Hubbard U over bandwidth
W ratios, indicating electron correlation may be rel-
atively strong in those systems. Note that our study
is limited to the systems with relatively large twist
angles. When the twist angle further decreases and
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the system size becomes larger, flat bands may also
appear in other systems, although for those systems
the bands at the band edges are still quite dispersive at
the angles we studied here. Nevertheless, the ultra-flat
band systems we discuss here provide ideal candid-
ates for the study of strong correlation effects at large
twist angles. Finally, we discuss the characters of sys-
tems that host flat bands at large angles and provide
a guideline for future exploration of novel 2D MSLs
that host flat bands and potential strong electron cor-
relations.
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