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A B S T R A C T   

Developmental research using electroencephalography (EEG) offers valuable insights in brain processes early in 
life, but at the same time, applying this sensitive technique to young children who are often non-compliant and 
have short attention spans comes with practical limitations. It is thus of particular importance to optimally use 
the limited resources to advance our understanding of development through reproducible and replicable research 
practices. Here, we describe methodological approaches that help maximize the reproducibility of developmental 
EEG research. We discuss how to transform EEG data into the standardized Brain Imaging Data Structure (BIDS) 
which organizes data according to the FAIR data sharing principles. We provide a tutorial on how to use cluster- 
based permutation testing to analyze developmental EEG data. This versatile test statistic solves the multiple 
comparison problem omnipresent in EEG analysis and thereby substantially decreases the risk of reporting false 
discoveries. Finally, we describe how to quantify effect sizes, in particular of cluster-based permutation results. 
Reporting effect sizes conveys a finding’s impact and robustness which in turn informs future research. To 
demonstrate these methodological approaches to data organization, analysis and report, we use a publicly 
accessible infant EEG dataset and provide a complete copy of the analysis code.   

1. Introduction 

Electroencephalography (EEG) is a particularly useful and effective 
technique to assess brain activity in developmental populations. Other 
neuroimaging techniques, like fMRI, PET, TMS or MEG, typically require 
participants to keep still over a prolonged period of time, involve un-
pleasant procedures or are expensive. In contrast, EEG is a non-invasive, 
infant-friendly method to measure neural activity with high temporal 
resolution. As evident from the growing body of developmental research 
using EEG, valuable insights can be gained on the emergence of pro-
cesses in a multitude of domains including cognitive, social, and clinical 
domains (e.g., Bell and Cuevas, 2012; Bosl et al., 2011; Braithwaite 
et al., 2020; de Haan, 2013; Endedijk et al., 2017; Friederici, 2005; 
Marshall et al., 2004). At the same time, developmental research with 
EEG comes with substantial challenges, be it for research investigating 

event-related potentials (ERP) or frequency information (Bell and Cue-
vas, 2012; Hoehl and Wahl, 2012; van der Velde and Junge, 2020). For 
instance, the quality of developmental EEG data is limited because of 
short preparation and recording times due to short attention spans 
especially of infants. Less tolerance for wearing the EEG cap, excessive 
movement during recording, and higher drop-out rates in infants and 
young children compared to adult participants can also lead to poorer 
data quality. As such, developmental EEG data are both valuable and 
costly. To optimally use these limited resources and increase their 
impact for future research, properly applied and reported statistical 
methods are crucial (Klapwijk et al., 2020). Moreover, sharing data and 
analysis code with the scientific community further contributes to 
reproducible science. Here, we describe three methods for organizing, 
analyzing and reporting developmental EEG data to support reproduc-
ibility and replicability1 of developmental EEG research. In particular, 
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we show 1) how the Brain Imaging Data Structure (BIDS; Gorgolewski 
et al., 2016) can be used to organize developmental EEG data, 2) how 
cluster-based permutation testing can be implemented to analyze 
developmental EEG data (Maris and Oostenveld, 2007), and 3) how 
effect sizes for cluster-based permutation results can be calculated and 
reported in a meaningful way (Flournoy et al., 2020). 

1.1. Organizing developmental EEG data in BIDS 

Sharing developmental EEG data and the corresponding analysis 
code according to the FAIR data sharing principles (Wilkinson et al., 
2016) allows for better interoperability, reproducibility, and allows 
others to better evaluate the respective research (Peng, 2011). In addi-
tion, making developmental EEG data available for reuse ensures effi-
cient usage of the limited resources and stimulates novel data- and 
hypothesis-driven research. The potential of reusing data is hampered 
when data is shared in idiosyncratically organized formats, but for a 
long time, clear standards for data sharing have been missing. BIDS 
(Gorgolewski et al., 2016; https://bids.neuroimaging.io) is a standard-
ized format, widely used within the field of neuroscience and across 
multiple techniques, like MRI, PET, EEG, MEG and NIRS (e.g., Knudsen 
et al., 2020; Niso et al., 2018, Pernet et al., 2019), yet still only rarely 
used amongst developmental scientists. Organizing developmental EEG 
data in BIDS helps making data accessible for collaborating researchers 
within the same lab environment. When that data is furthermore pub-
licly shared it also enhances reuse of the data by researchers from other 
labs. It even solves the well-known problem of making sense of one’s 
own collected data after several years have passed after data collection. 
Here, we describe how to transform data from an infant EEG study into 
BIDS and which data to include in BIDS. For instance, BIDS contains raw 
data as well as metadata. Metadata, such as information on which EEG 
marker refers to which stimulus, makes the raw data interpretable. As 
described in detail in our Methods section, BIDS entails a clear folder 
hierarchy and specific naming conventions. Note that BIDS thus offers a 
way of organizing developmental EEG data which facilitates but does 
not dictate the sharing of data. 

1.2. Analyzing, reporting and interpreting developmental EEG data 

EEG data consist of a high-dimensional representation of brain ac-
tivity. Therefore, statistical testing for effects between experimental 
conditions at multiple channels, latencies, and frequencies often results 
in a multiple comparisons problem. When the large number of statistical 
comparisons is not explicitly dealt with, this dramatically increases the 
probability of false positives. This probability is also called family-wise 
error rate (FWER). Previous developmental EEG studies have often 
addressed this issue by reducing the dimensions of the data based on a 
priori assumptions. For instance, the mean amplitude of a signal from 
pre-selected channels, time points and frequencies has been statistically 
compared using univariate statistics like F- or t-tests (e.g. Hoehl and 
Wahl., 2012). However, reducing the data in such a way is not always 
possible due to a lack of a priori information, in particular in develop-
mental populations in which the topography, latency, and spectral dis-
tribution can differ strongly from adult populations and across differen 
age groups (see e.g., Meyer et al., 2016). Moreover, such a procedure 
artificially reduces the richness of high-dimensional EEG data. One so-
lution for the multiple comparison problem, while preserving the high 
dimensionality of the EEG data, is to use cluster-based permutation tests 
(Maris and Oostenveld, 2007). Initially, such an approach was used in 
MRI research with adults where it is known as cluster mass test (Bull-
more et al., 1999). This by now well-established method for fMRI, MEG, 
and EEG analysis of adult data (e.g., Pernet et al., 2015) is still used 
seldom for developmental EEG (but see e.g., Meyer et al., 2020; Meyer 
and Hunnius, 2021; Sommer et al., 2021). The cluster-based permuta-
tion test not only corrects for the multiple comparison problem and 
thereby reduces false positive results, it also reduces the potential for 

false negative effects. Especially for developmental EEG data that has 
limitations in data quality and number of participants, a sensitive sta-
tistical test balancing false positive and false negative results can help 
maximize power do detect true effects and in turn enhance 
reproducibility. 

1.2.1. Cluster-based permutation test 
The basic idea of the cluster-based permutation test consists of using 

a permutation or randomization test to approximate the probability 
distribution of a nonparametric statistic (Maris and Oostenveld, 2007). 
It involves 1) reassigning the trials of different conditions in a random 
manner, 2) calculating a test statistic, 3) repeating these computations to 
create a permutation distribution, and 4) determining where in this 
distribution the statistic falls for the observed data under the original 
conditions. Since the number of possible permutations is often larger 
than computationally tractable, it is common to use a Monte Carlo es-
timate of the permutation distribution by randomly sampling a subset of 
all possible permutations. Importantly, in the cluster-based permutation 
test comparable effects over temporally, spatially and spectrally adja-
cent samples are clustered (Maris and Oostenveld, 2007). A clear 
advantage of using nonparametric tests, like the cluster-based permu-
tation test, is that any test statistic can be used to investigate the dif-
ference between different conditions or the relationship between data 
and an independent variable. Thereby the statistical sensitivity is 
increased while also mitigating the risks of multiple comparisons and 
minimizing false negatives (Maris and Oostenveld, 2007). Moreover, 
parametric tests often require normally distributed error terms. In 
contrast to this, nonparametric tests do not rely on this assumption and 
are therefore more universally applicable. 

1.2.2. Effect sizes 
Effect sizes are a quantification of how large an observed effect is. As 

such, effect sizes speak to the robustness of a finding and are important 
input, for instance to inform future research through power analysis. 
While the importance of reporting effect sizes is increasingly acknowl-
edged in the field of developmental cognitive neuroscience (Flournoy 
et al., 2020; Klapwijk et al., 2020), both for hypothesis-driven and 
exploratory data analysis, it is less obvious how to actually quantify and 
report an effect size, particularly for results of nonparametric tests like 
the cluster-based permutation test (Computing and reporting the effect 
size, 2021). One of the effect sizes often used and reported is Cohen’s d, 
which quantifies the standardized difference between means. Yet, the 
cluster-based permutation test is nonparametric and computes the 
probability of exchangeability under the null hypothesis that the data in 
the two conditions comes from the same distribution; it does not 
compute the probability of a specific parameter, such as the mean over 
subjects, being the same. Consequently, if following the rejection of the 
null hypothesis we want to quantify the effect size using the mean, it is 
not directly obvious which data to include in the computation of that 
mean, i.e., whether to compute the average effect size over the cluster, 
or the effect size over the average of the cluster, or whether to report the 
maximum effect size within a cluster for a specific channel, time, and 
frequency combination. Here, we demonstrate and discuss the different 
approaches to compute and report effect sizes. 

1.3. The current paper 

The purpose of this paper is to offer concrete examples on how to 
organize and analyze developmental EEG data, and how to report results 
from developmental EEG data, with focus on maximizing reproduc-
ibility and value for future research (see Fig. 1, for an overview). More 
specifically, we provide a tutorial on how to 1) transfer an example raw 
infant EEG dataset into BIDS, 2) use cluster-based permutation testing to 
compare infant EEG data across different conditions, and 3) calculate 
and report effect sizes, particularly for cluster-based permutation tests. 
For this purpose, we make use of an event-related EEG dataset that was 
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collected from 9-month-old infants (Kayhan et al., 2019). The analyses 
focus on ERPs and we assume for the analyses presented here that there 
were no a priori hypotheses on where and when to expect an effect. 
While we focus on ERPs here, the approach outlined in this paper is 
equally applicable to developmental research examining the EEG in the 
spectral domain, or conducting time-frequency analysis. Here, we 
consider clusters based on channels and time, but when studying power 
spectra one could also form clusters over channels and frequencies, or 
clusters over channels, time, and frequencies with time-frequency 
analysis (e.g., wavelets). Both a static copy of the analysis code and 
the example infant EEG data are made available at https://doi. 
org/10.34973/gvr3–6g88 and https://doi.org/10.34973/g4we-5v66. 
Furthermore, the analysis code is maintained on GitHub (https://github. 
com/Donders-Institute/infant-cluster-effectsize). 

2. Methods 

2.1. Example infant EEG dataset 

The infant EEG dataset used here was collected to investigate infants’ 
evoked responses to different types of violations in a predictable 
sequence of stimuli (Kayhan et al., 2019). For the current purpose, we 
focus on a simple comparison of repeated stimuli in a sequence versus 
stimuli violating that audio-visual regularity. Stimuli which draw in-
fants’ attention, for instance by violating their expectation, elicit a 
negative ERP potential over fronto-central channels, called negative 
central (Nc; e.g., Jeste et al., 2015; Webb et al., 2005). Since we did not 
have a sufficiently specific a priori hypothesis on precisely where and 
when to expect a difference between experimental conditions (for var-
iations in latency and amplitude see e.g., Köster et al., 2021; Richards 
et al., 2010; Stets and Reids, 2011; van Hoogmoed et al., 2013; Webb 
et al., 2005), we tested all channels and latencies and deal with the 
multiple comparison problem by making use of the cluster-based per-
mutation test. We demonstrate in the following how to organize infant 
EEG data in BIDS, allowing a variety of research questions to be 

addressed from this standard data representation, and we take this 
classic comparison to exemplify how to perform a cluster-based per-
mutation test for ERPs, and how to quantify and report effect sizes for 
the results. The anonymized infant EEG dataset used as example for this 
tutorial is available from the Donders Repository together with a static 
copy of the analysis code (https://doi.org/10.34973/gvr3–6g88 and 
https://doi.org/10.34973/g4we-5v66). Moreover, the analysis code is 
maintained on GitHub (https://github.com/Donders-Institute/infant 
-cluster-effectsize). 

2.1.1. Participants 
The dataset comprises EEG recordings of 59 infants who were at 9- 

months of age (M = 272.78 days, range: 251–289 days, 31 girls). Due 
to insufficient artifact-free trials 11 participants had to be excluded such 
that 48 participants were included in the final analysis (see Analyzing 
developmental EEG data in the Methods section for more details). Par-
ticipants were recruited from a database of families living in and around 
a middle-sized city in the Netherlands. All infants were born full-term 
and had no indications of atypical development. For their participa-
tion, families received a children’s book or 20 euros. The study was 
approved by the regional ethics board (CMO 2012/012- 
NL39352.091.12). 

2.1.2. Stimuli and study design 
In the study, the infants’ neural response to audio-visual stimuli was 

measured. Stimuli consisted of simple sounds and cartoon images of bees 
of different colors, and two shape images: a triangle and a circle. All 
image and audio files are available in the data repository. The bee im-
ages were presented at one of eight locations positioned on a circle 
around the center of the screen. The shape stimuli and fixation cross 
images were presented at the center of the screen. For the purpose of the 
current tutorial, we focus on the contrast between the repeated bee 
stimuli (in the following referred to as standard stimuli) and the two 
shape stimuli that interrupted the sequence of bees (in the following 
referred to as oddball stimuli). For more details on the procedure see 

Fig. 1. Schematic overview showing the analysis workflow (left) that first loops over N participants in single subject pre-processing steps and concludes with a group 
analysis; the elements of a specific developmental EEG study (middle); and the information that can be shared from a developmental EEG study to inform future 
research and foster reproducibility (right). Asterisks indicate the topics discussed in this paper. 
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Kayhan et al. (2019). In total, standard stimuli were presented 90 times 
and oddball stimuli 50 times. Each image was accompanied by a unique 
sound, and image-sound associations were counterbalanced across 
participants. 

The stimuli were presented by means of Presentation Software 
(Neurobehavioral Systems, Inc., Albany, CA) as follows. After a 500 ms 
grey screen, a fixation cross was presented for 1000 ms. At the start of a 
sequence, a standard stimulus was presented for 1500 ms. The same 
standard stimulus (with matching position and color) was then pre-
sented multiple times, interleaved with a grey screen and the fixation 
cross image until the sequence was interrupted with an oddball stimulus 
(presented for 1500 ms). After presentation of the oddball stimulus the 
same sequence of standard stimuli was either continued (50% of the 
time) or a new sequence was initiated with a standard stimulus of a 
different color, position and sound. Together, stimulus presentation took 
maximally 9 min. 

2.1.3. EEG recordings 
Infants’ EEG was recorded from 32 active electrodes arranged in the 

standard 10–20 layout using an infant-sized actiCap (actiCap, Brain 
Products GmbH, Gilching, Germany). The signal was digitized at 
500 Hz, using a BrainAmp DC EEG amplifier and a band-pass filter (low 
cut-off at 0.1 Hz and high cut-off at 200 Hz). The left mastoid was used 
as online reference, with AFz as ground. During the recording, infants 
sat on their parent’s lap in an electrically shielded testing room. Parents 
were instructed to keep any interaction with their child to a minimum. 
Additionally, the sessions were video-recorded. Note that identifiable 
data such as video recordings are not part of the accessible data 
collection for privacy reasons. 

2.2. Organizing developmental EEG data in BIDS 

We used the Brain Imaging Data Structure (BIDS, Pernet et al., 2019) 
to organize the raw infant EEG data for maximal interoperability and 
reuse according to FAIR principles (Wilkinson et al., 2016). The con-
version of the original “source data” into the BIDS format was done using 
MATLAB (version R2019a, Mathworks, Inc.) and the open-source 
FieldTrip toolbox (Oostenveld et al., 2011). In the following, we high-
light several aspects of BIDS relevant to developmental EEG. The full 
specification of the BIDS standard is available online (https://bids. 
neuroimaging.io). 

2.2.1. Data and metadata 
Depending on the specifics of the study and the data that were 

recorded in addition to EEG (e.g., eye-tracking, video, questionnaires 
etc.), several files must be included in BIDS, while others are optional 
additions to the data collection. For a detailed description, see https 
://bids-specification.readthedocs.io. Raw EEG data must be stored in 
an open file format. Metadata that accompany the raw data provide the 
required information to interpret and reuse the EEG data. For example, 
this includes information about the EEG acquisition system and settings, 
the time and interpretation of markers that describe stimuli and events 
that were recorded synchronously with the EEG, and the age and gender 
of each participant. Metadata that are represented in a tabular form are 
stored using Tab Separated Values (.tsv) files and metadata that are 
structured otherwise are stored in JavaScript Object Notation (.json) 
files. For all tabular information it is possible to include a data dictionary 
that further explains the data. For instance, the column “age” in the 
participant table (participants.tsv) is complemented in the data dictio-
nary with the information that its unit of measurement is in “days”. It is 
advised to test whether the required data and metadata are present and 
formatted properly using the BIDS validator (https://github.com/bid 
s-standard/bids-validator/), which allows checking the BIDS represen-
tation in a web browser without uploading any data. 

BIDS distinguishes between source data, raw data and derivatives. 
The source data are the non-standardized data prior to converting: the 

EEG data, the video data, but also the logfiles from the Presentation 
Software, lab notes, or an Excel spreadsheet with information about the 
participants. It is possible to share (part of) the source data, but not 
required. The raw data according to BIDS is the data in a standardized 
format without any processing. To maximise the potential for data reuse, 
the task description and stimulus events are given such that analyses 
that are different from the original research questions can also be 
addressed. Derivatives are the results of processing the raw data, such as 
the filtered, segmented, and cleaned data, but also simple tabular files 
containing information about the channels and trials that were excluded 
from further EEG processing. Derivative data represent the efforts and 
the choices made by the researcher who has analyzed the data and can 
be shared with a BIDS data collection. The derivative data needs to be 
kept separate from the non-processed raw data. Since for the analysis of 
the original study specific and possibly subjective choices may have 
been made (e.g., selection of trials) derivatives might not be appropriate 
for a secondary analysis. For instance, for a researcher wanting to reuse 
shared data to analyze the neural signature of blinks in developmental 
EEG data it would be impossible to extract that information if only 
processed and artifact-corrected EEG data were shared. 

2.2.2. Folder hierarchy 
Generally, data in BIDS are arranged in a folder hierarchy (project / 

subject / session / datatype) starting with a project level that contains 
information about the entire project. In this case, for instance, an 
overview of the participants is included, as well as a folder with the 
stimulus material. Below the project level is the subject level, which 
contains information specific to each participant such as any measure-
ments pertaining to this specific participant. This is optionally followed 
by the session level separating data from multiple sessions attended by 
the participant (if applicable). This is particularly important in longi-
tudinal research. Since in the current infant EEG dataset all participants 
underwent only a single testing session, we omitted this level. The last 
level specifies the datatype. In our case, this only entails EEG, but other 
measures such as behavioral measures or eye-tracking data can be 
added, as well as other recordings of brain data, such as MEG, 
anatomical or functional MRI, and so forth. Fig. 2 illustrates the BIDS 
folder hierarchy used in the current infant EEG example dataset. 

2.2.3. Naming conventions 
BIDS adheres to specific file naming conventions. For instance, the 

data files of each participant always start with ‘sub-’ followed by a 
unique identifier, for example ‘sub-02′. If there are multiple sessions, the 
file of each participant and session must also contain ‘ses-’ followed by 
the session number. In event-related EEG recordings, one has to addi-
tionally specify ‘task-’ followed by a short description of the task. In our 
event-related infant EEG study, the file of one infant’s EEG data was thus 
called ‘sub-K0109_task-audiovisual_eeg’. 

2.2.4. Example infant EEG BIDS dataset 
In our example Script Section 1 (corresponding to file ‘do_convert_-

data_to_BIDS.m’), we demonstrate how to convert the original source 
data from an infant EEG dataset to the raw representation according to 
BIDS. Note that the original source data on which the conversion to BIDS 
format is based contains identifiable information and therefore cannot 
be shared publicly. For this reason, this script cannot be executed on the 
original, identifiable data by the reader. Still, it exemplifies the impor-
tant steps for data curation and converting developmental EEG data to 
BIDS. The result of the BIDS transformation is shared in the Donders 
Repository (https://doi.org/10.34973/gvr3–6g88) and contains all data 
and metadata required for the analysis. By navigating through this 
dataset, the folder structure, naming conventions and file types used for 
a typical event-related developmental EEG study can be explored. Based 
on this dataset, all scripts containing pre-processing and analysis (i.e. 
Script Sections 2 and 3) can be run and tested by the reader. 
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2.3. Analyzing developmental EEG data 

2.3.1. Preprocessing single subject EEG data 
The analysis code regarding the preprocessing of single subject EEG 

data is reflected in Script Section 1.1, corresponding to file ‘do_single-
subject_analysis.m’. The EEG data were segmented into 1500 ms trial 
epochs, time-locked to the onset of the standard and oddball stimuli, 
with a 500 ms pre- and 1000 ms post-stimulus period (Script Section 
1.2). To include only the repeated standard stimuli, the first standard 
stimulus of a sequence and the stimulus immediately following the 
oddball stimulus were excluded from the analysis. Consistent with 
Kayhan et al. (2019), the trial epochs were band-pass filtered between 1 
and 30 Hz (with 5-sec padding) and baseline correction was applied on 
the entire epoch window (Script Section 1.3). Subsequently, artifact 
rejection was conducted in three steps, blind to condition (Script Section 
2.3). In a first step, all trials and channels were inspected visually to 
manually exclude those trials and channels that contained large arti-
facts. In a second step, independent component analysis (ICA) was 
performed to detect and correct for artifacts, for instance caused by 
eye-movements or heartbeat. The independent components were then 
visually inspected and those containing artifacts rejected from the data. 
In a third step, another pass of visual artifact rejection was performed to 
discard any remaining trials or channels with artifacts. Rejected bad 
channels were then interpolated. After artifact rejection, the cleaned 
EEG data were re-referenced to linked mastoids and the event-related 
trials were averaged per condition for each participant (Script Section 
2.4 and 2.5). It should be noted that it is beyond the scope of this paper 
to provide a standard for pre-processing pipelines of developmental EEG 

data. Examples of pre-processing pipelines for developmental EEG data 
are available elsewhere (e.g., Debnath et al., 2020; Gabard-Durnam 
et al., 2018). 

2.3.2. Analyzing group data 
The analysis code on analyzing group data is reflected in Script 

Section 2, corresponding to file ‘do_group_analysis.m′. Before running 
statistical analyses on the pre-processed data, any participant for whom 
more than 70% of the trials were rejected was excluded from the anal-
ysis (Script Section 2.1). This was based on the rationale that with the 
removal of 70% of the trials (i.e. a reduction to 0.3 times N) the expected 
standard error of the mean (SEM) in this within-subject design is 
approximately 2 times larger than the SEM over the full N. As a result, 11 
participants were excluded from further analysis, leaving 48 partici-
pants for the group analysis. The remaining participants had on average 
45 standard (range 11–78 trials) and 24 oddball trials (range 
2–43 trials) left in the analysis. We then visualized the ERP data across 
participants for the different conditions by averaging data to a grand 
average ERP separately per condition (standard, oddball; Script Section 
2.2). To statistically test condition differences while preserving temporal 
and spatial information of the data, we conducted a cluster-based per-
mutation test (see TEXT Box 1) including all channels and time points 
(Script Section 2.3). In general, if there is prior information as to when 
and where to expect an effect this may inform a selection of channels and 
time points to include in a cluster-based permutation test. 

Cluster-based permutation testing relies on the underlying structure 
in the EEG data in which – with sufficiently dense spatial and temporal 
sampling – neural sources are visible on multiple channels and the 

Fig. 2. Example BIDS folder structure and metadata information for the example infant EEG dataset.  
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Box 1 
Cluster-based permutation test.  

• Massive-univariate statistic: In our example, we compare ERPs over two within-subjects conditions, standard and oddball, and therefore chose a 
dependent samples t-test as statistic of interest. The statistic can be chosen by the researcher, making the cluster-based permutation test 
versatile and usable for different types of comparisons. For instance, two between-subjects conditions could be compared using an inde-
pendent samples t-test. Alternatively, one might want to test for a (linear) effect, like in the current dataset one might want to investigate 
whether the number of stimulus repetitions in a sequence had a linear effect on the neural signal. In this case, dependent samples regression 
coefficients can be used. The FieldTrip toolbox implements several test statics. For an overview, see functions starting with the name 
‘ft_statfun’ (https://github.com/fieldtrip/fieldtrip/tree/master/statfun). However, researchers are not limited by this selection but can 
implement any statistic that may be relevant for their own research.  

• Cluster threshold: The cluster threshold specifies which data points to select for forming a cluster. Here, we use the dependent samples t-values 
exceeding the typically critical value. Note that the choice of the threshold determines how many data points are included in a cluster: A low 
threshold will yield larger clusters, while a high threshold will yield smaller clusters. Since this holds true for both the observed and randomly 
shuffled data the threshold does not influence the validity of the cluster-based permutation test (Maris and Oostenveld, 2007). The specific 
threshold might, however, make the test less sensitive in specific cases. For instance, when using a high threshold, effects that are small in 
amplitude but extend over multiple channels and a longer period might remain undetected. To circumvent this problem of having to specify an 
optimal but also rather arbitrary threshold, threshold-free cluster enhancement can be used (TFCE, Smith and Nichols, 2009).  

• Quantifying a cluster: There are multiple ways by which clusters can be quantified, for instance, by the sum of values within the cluster or by 
combining cluster size and intensity in the weighted cluster mass measure. We chose the sum of t-values in the cluster as the quantification as 
suggested by Maris and Oostenveld (2007). When the sum of t-values in a cluster is positive, we will refer to it as a positive cluster, and idem 
for negative clusters.  

• Comparing clusters: To compare clusters, the largest cluster in the observed data and the largest cluster in each random shuffle are selected. 
Next, the proportion of times is determined for which the sum of t-values of the largest cluster of our observed data is larger than the sums from 
the randomly shuffled data. If this proportion falls below a critical level (typically.05), the null-hypothesis of exchangeability of the data over 
the two conditions is very unlikely and rejected, hence the test result is significant. Consequently, we conclude that the data in the two 
conditions is different. Note that this holds for the largest negative and largest positive cluster, respectively (see also Positive and negative 
clusters). Focusing on the largest cluster as determined by the maximum sum over the cluster may limit the detection of smaller effects in EEG 
data. Importantly, however, it ensures that the effects detected by the test are corrected for the FWER and therefore reduces the chance of false 
discoveries.  

• Positive and negative clusters: When determining where the derived test statistic of the observed data falls in the permutation distribution, one 
might want to test one tail or both tails of the distribution. If there is no a priori hypothesis specifying the direction of the effect, two-tailed 
testing is most appropriate. In that case, both the largest positive cluster and the largest negative cluster are compared to the permutation 
distributions of the largest positive and negative clusters, respectively. Since this involves two tests, we correct for multiple comparison using 
Bonferroni correction, either by dividing alpha by two or by multiplying the estimated Monte Carlo p-values by two. Here, we corrected the 
Monte Carlo p-values.  

• Number of randomizations: The number of Monte Carlo randomizations determines the accuracy and resolution of the permutation distribution 
(Maris and Oostenveld, 2007). Therefore, the larger the number of randomizations, the better. In principle, this number is limited only by the 
number of unique permutations in the experimental design and the number of participants, but in practice it also depends on the computing 
power, number of channels and timepoints, and time available for the analysis. In a within-subjects design with two conditions, for instance, 
there are 2 n unique permutations, with n being the number of participants. For 10 participants that results in 1024 unique permutations, and 
for 16 participants this number rises to 65536. Since the processing time scales with the number of randomizations, it is possible to estimate 
the maximal number for which the computations are still feasible. For this, we first execute the test – without looking at the resulting p-value – 
with a relatively small number of randomizations (e.g., 1000). The time this takes can then be used to estimate a number of permutations that 
is practically feasible. Note that when making use of such a procedure to estimate the processing time, it is important not to inspect the test 
results each time, as one might be tempted to stop at a moment when it were significant, which would constitute p-hacking (Nuzzo, 2014). As a 
rule of thumb, we suggest not to specify less than 1000 randomizations.  

Box 2 
Potential factors that influence the formation of clusters.  

• Temporal and spectral smoothing: Steps during pre-processing that smoothen the developmental EEG data, like low-pass filters to remove high 
frequencies from the signal, can affect the test sensitivity. The more smoothened the signal is, the more likely will adjacent data points be 
detected as part of the same cluster. Thus, pre-processing steps, like filtering and interpolation of bad channels, can improve the sensitivity.  

• Specifying neighbors in channel layout: The electrode density and layout and the specifications of which channels are regarded as neighbors are 
essential. A channel with many neighbors is more likely to be included in a cluster, and hence the statistical sensitivity of a cluster-based test is 
not uniform over the scalp. Channels corresponding to electrodes at the edge of the EEG cap, like TP10, will in general have fewer neighbors 
than a channel in the center, like Cz, and hence on Cz (and its neighbors) an effect would show more easily than on TP10. To make the 
sensitivity as spatially homogenous as possible, a uniform and symmetric specification of neighbors is desired. Generally, the neighborhood is 
bidirectional, in other words, two channels are always regarded as neighbors of each other. Different standard neighborhood templates are 
provided for common EEG layouts. Also, several automatic strategies are available to define neighbors from scratch. For instance, by defining 
electrodes with a certain distance as neighbors, or by using triangulation, neighbors can be specified. Since there can be subtle differences 
between different recording setups, even when based on the same electrode placement scheme (e.g., 10–20), it is advisable to plot the selected 
neighbors to ensure that the definition of neighbors is accurate, symmetric, and homogenous for the specific electrode layout used in one’s 
study.  
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activity extends over multiple samples (milliseconds). Several parame-
ters can affect the formation of clusters, and hence, the sensitivity of the 
cluster-based permutation tests (TEXT Box 2). 

In our example analysis, the cluster-based permutation test detected 
two clusters in the data, one for which the quantification of the cluster (i. 
e. the sum of t-values) was positive (higher amplitude for the standard 
vs. oddball) and one for which it was negative (lower amplitude for the 
standard vs. oddball). Fig. 3 illustrates the spatial and temporal distri-
bution of the two clusters (Script Section 2.3.2). The largest positive and 
negative cluster both have a probability of p < .001, leading us to 
conclude that the null-hypothesis of exchangeability of the data over the 
two conditions is unlikely. Thus, we accept the alternative hypothesis 
that the data are different. See also Fig. 4 for a complementary illus-
tration of the ERP findings. 

2.3.3. Calculating effect sizes 
Next, we estimated the size of the observed effects. Hypothesis- 

driven research using pre-defined statistical testing on an average over 
a pre-defined channel, time-window and frequency band may estimate 
an effect size like Cohen’s d for this pre-defined set of parameters. Here, 
we did not have a specific a priori hypothesis and therefore made use of 
the cluster-based permutation test. For the results of the cluster-based 
permutation test, however, there is no such clear-cut effect size mea-
sure, since several different measures could be considered useful and 
informative (Computing and reporting the effect size, 2021). To illus-
trate which effect size measures entail what type of information, we 
calculated several measures of interest (Script Section 2.4). More pre-
cisely, we calculated three effect size measures, each based on slightly 
different parts of the data, and thereby differing in their information 
content. For all three options, we used Cohen’s d as estimate separately 
computed for the positive and negative clusters in our infant EEG data. 

2.3.3.1. Option 1. Effect size: average over cluster (Script Section 3.4.1). 
The first option is to calculate an effect size based on the average data 

over the largest (positive/negative) cluster. This can be done by aver-
aging the ERP data (per infant and condition) over the channels and time 
points that comprise the cluster. For the current infant EEG data, 
Cohen’s d for the average over the positive cluster is 1.057 and Cohen’s 
d for the average over the negative cluster is − 0.911. This effect size for 
the average over the cluster best suits the rationale of the cluster-based 
permutation test. Yet, since clusters do not have an easily defined shape 
in space and time (see Fig. 3 and Fig. 4), they can be difficult to report 
comprehensibly which makes it difficult to use this information to 
inform subsequent studies. Furthermore, whereas we generally expect 
the observed effect to replicate, we do not necessarily expect to find the 
exact same cluster shape in space and time. Consequently, an effect size 
based on the precise cluster might be of limited use for future research. 

2.3.3.2. Option 2. Effect size: maximum effect within cluster (Script Section 
3.4.2). A second option is to determine the maximum effect size within 
the cluster. In other words, we can calculate Cohen’s d for each channel 
and time point in the cluster and select the largest one. For the current 
infant EEG dataset, the maximum effect for the positive cluster is 1.064 
observed at channel Fp1 at 452 ms and for the negative cluster − 1.063 
at channel FC5 at 592 ms. The top panel of Fig. 4 shows the spatial 
distribution of the effect size for all data points. The advantage of the 
maximum effect size is that it is precisely determined and easy to report. 
However, due to random variance in the data, the effect size will fluc-
tuate and the peak effect size will have a positive bias, potentially 
overestimating the real effect. Consequently, this estimate reflects an 
upper bound. Moreover, the estimation of where (in space and time) the 
effect is may be unstable and can be influenced by pre-processing steps 
such as filtering. 

2.3.3.3. Option 3. Effect size: rectangular shape circumscribing the cluster 
(Script Section 3.4.3). A third option is to approximate or outline the 
cluster with a well-defined shape, such as a rectangle, and to calculate 
the effect size (here Cohen’s d) of the averaged data in this shape. A 

Fig. 3. Illustration of the results of the cluster- 
based permutation test for the example infant 
EEG data. Top panel: largest positive and 
negative clusters represented in space (chan-
nels) and time (seconds). Middle panel: t-values 
of the dependent samples t-test represented as a 
function of space (channels) and time (sec-
onds). Topographic distributions are repre-
sented for three time windows including a 
baseline window (− 0.2 s to − 0.15 s), the posi-
tive cluster (around 0.45–0.5 s) and the nega-
tive cluster (around 0.6–0.65 s) with white stars 
reflecting channels that fall into the cluster.   
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Fig. 4. Illustration of effect size. Top: Topographic distribution of Cohen’s d across time. Shaded areas represent data points that fall into the negative or positive 
cluster. Bottom: Event-related potentials of standard (blue) and oddball (red) conditions at the channel with the maximum effect size of the positive (left) and 
negative (right) cluster. The grey shaded areas reflect the time window falling into the positive (left) and negative (right) cluster. Shaded areas around the ERPs 
represent + /- one standard error of the mean. 
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rectangular shape that fits tightly around a cluster (circumscribed at 
outside), or a rectangular shape that fits exactly inside the cluster (cir-
cumscribed at inside), allows for reporting the corresponding channels 
and time points precisely. For the current infant EEG data, Cohen’s d for 
the data averaged over the rectangular shape fitted around the positive 
cluster (from 338 ms to 594 ms, including channels Fp1, Fp2, F7, F3, Fz, 
F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8, FCz, CP5, CP1, CP2, CP6, 
TP10, P3, Pz, P4, P8, O1, Oz, O2, PO10, TP9) is 0.557 and − 0.730 for 
the negative cluster (from 544 ms to 704 ms and including channels 
Fp1, Fp2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8, FCz, 
CP5, CP1, CP2, CP6, TP10, P3, Pz, P4, P8, O1, Oz, O2, PO10, TP9). In 
this example, the rectangular shape happens to encompass many chan-
nels and is identical for both clusters, while for other effects cluster re-
sults may be more spatially confined. It should be noted that by 
including data from channels and time points just outside the edges of 
the original cluster, the effect size estimate might have a slightly smaller 
value. In contrast to choosing the peak effect in the cluster (Option 2), 
this estimate provides a lower bound. We elaborate in the section on 
Reporting example infant EEG which effect sizes we consider most useful 
to report. Note, however, that any of these options, as long as they are 
transparently communicated, are valid and useful estimates of the 
observed effect. 

2.4. Reporting and interpreting developmental EEG data 

To support reproducible and replicable developmental EEG research, 
transparent reporting of details is pivotal. While this is relevant for all 
aspects of the research, i.e., acquisition, analysis and results, we high-
light here what to pay attention to when reporting results of a cluster- 
based permutation test and how to report effect sizes. 

2.4.1. Reporting and interpreting cluster-based permutation tests 
For reporting the results of the cluster-based permutation test, one 

needs to consider that the null hypothesis under which the probability is 
evaluated states that the data from the different conditions come from 
the same distribution, and thus is exchangeable. Consequently, a sig-
nificant result entails that data in different conditions are not 
exchangeable. A valid interpretation of the test for exchangability can 
therefore be described as “there is a significant difference between 
condition A and B” (see How NOT to interpret results from a 
cluster-based permutation test, 2020). In our example of the infant EEG 
data, we find significant differences between the standard and oddball 
condition. In contrast, a statement like “We found a significant cluster in 
area X, between time point A and B” is not correct and should be avoided 
when reporting results of this nonparametric test, since the cluster is not 
an explicit part of the tested hypothesis. Cluster-based permutation re-
sults themselves do not allow for an inference on precisely where in 
space, time or frequency an effect occurs (Sassenhagen and Draschkow, 
2019). The precise shape of a cluster, and thus its temporal, spatial or 
spectral extent can differ, depending not only on the data but also on 
multiple computational parameters (for examples see the section on 
Potential factors that influence the formation of clusters). 

However, following the conclusion that the data are different, it is 
informative to provide a quantitative description of the observed dif-
ference. For instance, in our current example the ERP shows a more 
positive amplitude for oddball stimuli compared to standard stimuli 
around 400–500 ms after stimulus onset, followed by a more negative 
amplitude around 550–650 ms at fronto-central channels. Illustrations 
of the ERPs highlighting the largest cluster(s) can also be very infor-
mative, particularly given that clusters typically have a jagged shape 
(see the top panel in Fig. 3 and Fig. 4 as examples). Providing infor-
mation on the topographic, temporal, or spectral extent of the cluster, 
either in the text or by means of illustrations, will help evaluate the 
outcomes (Sassenhagen and Draschkow, 2019). The current infant EEG 
results offer a good example of the relevance of interpreting the data 
rather than the clusters. While two effects were observed (first a 

positive, followed by a negative condition difference), a more succinct 
interpretation of the data is not that there were two separate amplitude 
effects, but rather one latency effect. In other words, the difference in the 
data suggests that the oddball stimuli elicited a faster negative ERP peak 
than standard stimuli, suggesting faster processing of the oddball 
compared to the standard stimuli in 9-month-old infants. Having 
established that there is a significant difference in the conditions, one 
might in this case consider to follow up on the interpretation of the 
difference by explicitly testing for peak latency differences. 

2.4.2. Reporting and interpreting effect sizes 
As we discussed above, for EEG data comprising many channels and 

time points, multiple quantifications of the effect size are possible. We 
argue that reporting both the maximum effect within a cluster (Option 
2) and the effect size of the average over the rectangular shape sur-
rounding a cluster (Option 3) contribute most efficiently to advance 
future research. There are two reasons for this. First, together these 
describe an upper and lower bound of the effect size estimate. Second, 
both can be reported precisely and in a comprehensible manner, by 
listing exactly which channels and time points they are based on. The 
range of the estimated effect size, the peak, and the spatial and temporal 
extent provide optimal prerequisites to guide the study and analysis 
designs for follow-up research. 

In addition to reporting detailed outcomes of a developmental EEG 
study in a publication, providing material, such as the EEG data in BIDS 
format, the code used for analysis, and also the stimulus material, 
further fosters informed follow-up research (see Fig. 1). This contributes 
to hypotheses formation and properly powered designs for new data 
collection. It also allows for learning from existing analysis code and 
reducing the number of analysis choices to be considered for future 
analysis, and for re-analyzing existing EEG datasets to address new 
research questions. 

3. Conclusion 

Being able to evaluate the quality of developmental EEG research 
and estimate how robust and large an observed effect in developmental 
EEG data is, builds the foundation for further advances in developmental 
cognitive neuroscience research. Given how costly data collection with 
developmental populations is, basing subsequent research on false dis-
coveries means unnecessary waste of substantial resources. In this paper, 
we highlighted how using the cluster-based permutation test, and esti-
mating and reporting effects sizes can contribute to more reproducible 
research. We also described how infant EEG data can be transformed 
into BIDS format, following FAIR data sharing principles. To make these 
approaches more accessible to the developmental cognitive neurosci-
ence community, we provide example analysis code and an infant EEG 
dataset which are made publicly available. We hope to thereby 
contribute to the joint effort of the developmental cognitive neurosci-
ence community (e.g., Klapwijk et al., 2020) in maximizing the quality 
and information gain of developmental EEG research. 
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(https://github.com/Donders-Institute/infant-cluster-effectsize). Inter-
mediate and final results of the analysis are also shared in the Donders 
Repository (https://doi.org/10.34973/g4we-5v66), including a copy of 
the code as used for this manuscript. 
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