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Empirical orthogonal eigenfunctions are extracted from biomechanical simulations of normal 
and chaotic vocal fold oscillations. For normal phonation, two dominant empirical 
eigenfunctions capture the vibration patterns of the folds and exhibit a 1:1 entrainment. The 
eigenfunctions show some correspondence to theoretical low-order normal modes of a 
simplified, three-dimensional elastic continuum, and to the normal modes of a linearized 
two-mass model. The eigenfunctions also facilitate a physical interpretation of energy transfer 
mechanisms in vocal fold dynamics. Subharmonic regimes and chaotic oscillations are observed 
during simulations of a lax cover, in which case at least three empirical eigenfunctions are 
necessary to capture the resulting vocal fold oscillations. These chaotic oscillations might be 
understood in terms of a desynchronization of a few of the low-order modes, and may be related 
to mechanisms of creaky voice or vocal fry. Furthermore, some of the empirical eigenfunctions 
captured during complex oscillations correspond to higher-order normal modes described in 
earlier theoretical work. The empirical eigenfunctions may also be useful in the design of 
lower-order models (valid over the range for which the empirical eigenfunctions remain more or 
less constant), and may help facilitate bifurcation analyses of the biomechanical simulation. 

PACS numbers: 43.70.Aj, 43.75.Rs 

INTRODUCTION 

With any model of a physical or physiological process, 
there is always a trade-off between simplicity and com- 
pleteness. The model should be simple enough to be useful 
in conceptualization and prediction, but also complete 
enough to represent the process accurately. 

This certainly applies to vocal fold models. Early one- 
mass and two-mass models (Flanagan and Landgraf, 1968; 
Ishizaka and Flanagan, 1972) were simple enough to be 
described in a few pages of print. They were elegant in that 
they helped conceptualize the interaction between airflow 
and tissue movement to produce self-oscillation. But there 
is considerable doubt that they represented the geometry 
and the viscoelastic properties of the vocal folds adequately 
for the study of voice disorders or special vocal qualities. 
More recent models by Titze and Talkin (1979), and A1- 
ipour and Titze (1985a) have enough biomechanical detail 
to model the three-dimensional layered structure of vocal 
fold tissue, but a heavy price is paid in terms of mathemat- 
ical complexity and speed of computation. Furthermore, 
interpreting the dynamics of such intensive descriptions of 
the vocal folds can be a formidable task, particularly if 

irregular, chaotic vibrations occur (Titze et al., 1993). 
One way to facilitate the physical interpretation of a 

vibrating structure is to calculate its principal modes of 
vibration. Sometimes, even complicated vibration patterns 
can be explained by a relatively small number of orthogo- 
nal modes. 

I. MODAL ANALYSIS OF THE VOCAL FOLDS 

Modal analysis is a basic technique used to analyze 
many vibrating structures. Traditionally, it refers to the 
process of determining the normal (natural) modes and 
frequencies of a linear (or linearized) system. It is a pow- 
erful technique because it provides a framework in which a 
system can be decomposed into a set of independent vibra- 
tion patterns, each with a characteristic (although not nec- 
essarily unique) frequency. Experimentally, these normal 
modes/frequencies can be observed immediately after a 
system is pulse excited, or during a forced, sinusoidal ex- 
citation (provided the driving frequency coincides closely 
enough with one of the systems' natural frequencies). One 
of the major limitations of this technique is that it is only 
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valid for linear systems. However, in practice many sys- 
tems are approximately linear for small-amplitude oscilla- 
tions. 

A. Theoretical normal modes 

The concept of normal modes and frequencies is not 
new to speech science. For example, formants are frequen- 
cies which correspond to the normal modes of the vocal 
tract. They have been discussed extensively in terms of 
vowel production. The same concepts have not been ex- 
ploited to the same degree for an understanding of vocal 
fold movement, although the study of normal modes in 
vocal fold tissues does have its beginnings. Almost two 
decades ago, Titze and Strong (1975) theoretically deter- 
mined normal modes of the vocal folds. By examining a 
single fold and treating it as a three-dimensional, elastic, 
compressible medium, and by assuming a rectangular par- 
allelepiped with simple boundary conditions (anterior, 
posterior, and lateral boundaries fixed; medial, superior, 
and inferior boundaries free), normal modes were ex- 
pressed in terms of elementary sines and cosines. For com- 
parison with empirical modes to be shown later, the theo- 
retical modes are r•viewed and briefly discussed. The 
lateral displacements • of the x modes are given by 

•(x,y,z,t) 

( 2nx-- 1 )rrx nyrry nzrrz 
=•4 exp iroxt cos 2D sin -•- cos •- ( 1 ) 

and the vertical displacements • of the z modes are given 
by 

•(x,y,z,t) = B exp iro•t cos 
( 2n•-- 1 )rrx . n•,rry nzrrZ 

sin cos • 
2D L T ' 

(2) 

where n•, ny, and nz are integers indicating the order of the 
modes; L, D, and T are the length, depth and thickness of 
the folds, respectively; •1 and B are arbitrary constants; and 
ro• and rOz are the radian frequencies of vibration. Any 
possible y displacements (anterior-posterior direction) are 
neglected. This is based on experimental evidence that the 
trajectories of vocal fold fleshpoints are mostly planar 
(Baer, 1981; Saito et al., 1981; Saito et al., 1985). 

In order to distinguish the modes, the order indices 
(n•, n•, and nz) must be specified and the modes need to 
be identified as either x or z modes (the assumption of 
compressible tissue allows the decoupling of such modes). 
In practice, the nx index is usually not specified because the 
standing wave pattern governed by n• (the first cosine 
term) is assumed to be constant (e.g., the likelihood of 
reflections from the fixed lateral boundary is small because 
of high attenuation in the thyroarytenoid muscle). Thus, 
following nomenclature introduced previously (Titze and 
Strong, 1975; Titze, 1976,1988), the modes are designated 
as either x-nynz or z-nyn• modes. Conceptually, the ny and 
n• indices indicate how many half-wavelengths occur along 
the longitudinal and vertical dimensions, respectively. 

A few of the lower-order modes are shown in Fig. 1. 
Figure 1 (a) shows a superior view (upper) and coronal 

SUPERIOR VIEW SUPERIOR VIEW SUPERIOR VIEW MID-SAGGITAL VIEW 

CORONAL VIEW CORONAL VIEW CORONAL VIEW CORONAL VIEW 

x-10 x-11 x-21 z-10 

(a) (b) (c) (d) 

FIG. 1. A few of the low-order, theoretical, normal modes are shown 
from superior and coronal views: (a) x-10, (b) x-11, (c) x-21. A saggital 
and coronal view is shown for (d) z- 10. An artificial separation of left and 
fight folds is used in order to display the true theoretical modes without 
deformation from collision. 

view (lower) of the x- 10 mode. From the superior view, 
the commonly observed oval glottis is displayed. From the 
coronal view, all the lateral tissue displacements are in 
phase along the vertical dimension. An x-11 mode is dis- 
played in Fig. 1 (b). In the coronal view, the tissue at the 
top of the folds is 180 deg out of phase with the tissue at 
the bottom of the folds. Variations of these lowest-order x 

modes describe some of the most commonly observed vocal 
fold vibration patterns (Moore and Von Leden, 1958; 
Hirano, 1975). Indeed, an appropriate combination of 
these modes is known to be essential for self-oscillation of 

the folds (Titze, 1988). An x-21 mode is illustrated in Fig. 
1 (c), and a z- 10 mode in Fig. 1 (d) (sagittal view on top). 
These modes are not as easily observed because (1) the 
superior aspect, which is almost always used in high-speed 
films and videostroboscopy, is not ideal for viewing z 
modes (saggital or coronal views would be better), and (2) 
higher-order modes (such as the x-21 mode) usually have 
smaller vibrational amplitudes and are often not excited. 

B. Normal modes in low-order models 

Not long after these normal modes were introduced, 
Titze (1976) claimed that (1) self-oscillation of the vocal 
folds consists of "approximately linear combinations of the 
normal modes," and (2) that "self-oscillation... occurs at... 
one of the natural frequencies of oscillation, usually the 
lowest." Titze demonstrated the plausibility of these con- 
cepts through an analysis of the two-mass model (Ishizaka 
and Flanagan, 1972). The normal modes of the two-mass 
model were shown to be analogous to the lowest order x 
modes of the simplified elastic continuum; that is, the mode 
where the two masses are in phase is similar to the x-10 
mode, and the mode where the two masses are 180 deg out 
of phase is similar to the x-11 mode. The ability of the 
two-mass model to self-oscillate can be explained, in large 
measure, by the existence of these two modes, which facil- 
itate energy transfer from the airflow to the tissue (Stevens, 
1977; Broad, 1979; Titze, 1988). For "typical" Ishizaka 
and Flanagan (1972) parameters, the natural frequencies 
of the normal modes are 120 and 201 Hz, respectively 
(Titze, 1976). 

Self-oscillation during normal phonation also involves 
a 1:1 "entrainment" of the modes. Entrainment is a phe- 
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nomenon in which a nonlinear coupling of system variables 
causes the natural frequencies of the system to shift so as to 
be related by an integer ratio. For example, a 1:1 entrain- 
ment in the two-mass model means that both modes oscil- 

late at the same frequency. Such an entrainment has been 
observed over a wide range of parameters in the two-mass 
model (Herzel et al., 1991 ). As predicted by Titze (1976), 
this entrainment occurs at a frequency very close to the 
natural frequency of the lowest-order mode. Over a certain 
range of parameters (e.g., those corresponding to low stiff- 
ness of the upper mass and weak coupling of the masses), 
the breakdown or desynchronization of this 1:1 entrain- 
ment has also been observed in the two-mass model (Her- 
zel et al., 1991 ). In such parameter regions, various non- 
linear phenomena have been observed including 
subharmonic regimes, beating-like toroidal oscillations 
(i.e., low-frequency modulations), and chaotic motion 
(Herzel et al., 1991 ). 

Subharmonics, low-frequency modulations, and chaos 
are also commonly observed in patients with vocal disor- 
ders (Herzel and Wendler, 1991; Baken, 1991; Herzel 
et al., in press) and during infant cries (Mende et al., 
1990). Consequently, this desynchronization of the modes 
is believed to be an essential mechanism of many vocal 
disorders (Titze et al., 1993; Herzel et al., in press). 

C. Experimental studies of normal modes 

To date, most of the discussion of normal modes in 
vocal fold tissues has been in a theoretical sense. Direct 

measurement of the modes has proven problematic, par- 
tially because of the small dimensions of the vocal folds 
(on the order of 1 cm). Traditional modal analysis in 
which accelerometers are used to trace trajectories at var- 
ious locations on a structure would undoubtedly yield un- 
satisfactory results. The number of accelerometers that 
could be placed on the folds would be limited, the weight of 
accelerometers might alter the modes significantly, and the 
ability to firmly attach a device to the elastic tissue of the 
folds would be limited. 

Until direct measurement of the modes becomes more 

feasible, there are additional theoretical approaches that 
can be used to investigate the modes, particularly with the 
help of a biomechanical simulation of vocal fold movement 
(Alipour and Titze, 1985a). The simulation uses a finite 
element approach to the solution of viscoelastic waves in a 
continuum (Titze and Talkin, 1979). A series of experi- 
mental studies have been performed to quantify the elastic 
properties of vocal fold tissues (Alipour and Titze, 1985b), 
and more work in this area is in progress. Indeed, the 
development of this simulation has been an effort to inte- 
grate many independent measurements and theoretical 
considerations into one coherent "picture" of vocal fold 
vibration. 

As pointed out earlier, traditional modal analysis is 
limited by the fact that it is only valid for linear systems. 
However, there are many nonlinearities associated with the 
vocal folds. One of these is the nonlinear stress-strain curve 

of vocal fold tissues. Another is the nonlinear pressure-flow 
relation in the glottis. A third is the nonlinearity associated 

with vocal fold collision. While for small transient oscilla- 

tions these nonlinearities might be neglected, self-sustained 
oscillation depends critically on at least one nonlinear con- 
stitutive equation. Indeed, for many vocal fold configura- 
tions linear dynamics is not even approximately true. 

However, the method of empirical orthogonal eigen- 
functions (Lorenz, 1956) has been used for many years to 
extract physically meaningful structures from nonlinear 
systems. For example, Lumley (1967) advocated the tech- 
nique as a way to extract "coherent structures" from a 
turbulent flow. In recent years, the method has become a 
popular technique in a variety of problems in fluid dynam- 
ics (Sirovich, 1987; Aubry et al., 1991; Deane et al., 1991; 
Armbruster et al., 1992). The method is an application of 
a general technique familiar to many disciplines, and has 
also been referred to as the singular value decomposition 
(Golub and Van Loan, 1983), singular spectrum analysis 
(Vautard et al., 1992), principal-components analysis (Za- 
horian and Rothenberg, 1981), principal factor analysis 
(Johnson and Wichern, 1982), the Karhunen-Lo•ve ex- 
pansion (Fukunaga, 1972), the proper orthogonal decom- 
position (Lumley, 1967), and the biorthogonal decompo- 
sition (Aubry et al., 1991 ). 

Furthermore, Breuer and Sirovich (1991) have re- 
cently shown that, for a general class of linear systems, the 
empirical eigenfunctions actually reduce to the linear nor- 
mal modes. The ability to extract physically meaningful 
structures from both linear and nonlinear systems makes 
the method of empirical orthogonal eigenfunctions a par- 
ticularly useful tool for analyzing vocal fold movement. In 
the case of small-amplitude vibrations for which the tissue 
stress-strain curves are approximately linear, the empirical 
eigenfunctions should be related to the normal modes of 
vocal fold tissues. For larger amplitude vibrations for 
which tissue nonlinearities become important, the eigen- 
functions should appear as distortions of the normal 
modes, i.e., a reflection of the new nonlinear phenomena 
(Breuer and Sirovich, 1991 ). 

Moreover, the statistical nature of this technique 
makes it well-suited for the present investigation. In a 
sense, the method is "blind" to all the complexities of the 
biomechanical simulation (e.g., nonlinearities in stress- 
strain curves, complex geometry of the folds, layered tissue 
structure, tissue incompressibility which induces a cou- 
pling between lateral and vertical modes, aerodynamic 
forces, collision forces, viscous losses). Such complexities 
forbid an analytical solution of the modes, but present no 
difficulties for the method of empirical eigenfunctions. 

The method of empirical orthogonal eigenfunctions 
differs from a traditional normal mode analysis in that it 
does not determine "modes" directly from the equations of 
motion. Rather, "modes" are determined by statistical cor- 
relations of the output variables, i.e., a covariance matrix is 
generated and eigenvectors are computed. The eigenvec- 
tors are orthogonal and are guaranteed to be optimal in the 
sense that they regenerate the output data with minimum 
least-square error (for any arbitrary number of eigenvec- 
tors). Unlike a normal mode analysis, the method of em- 
pirical eigenfunctions does not calculate all the possible 
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FIG. 2. A view of the biomechanical simulation immediately before glot- 
tal closure is shown, with the posterior edge of the folds in the foreground. 
There are nine layers positioned along the anterior-posterior length. 

modes of a system. Rather, it only extracts those "modes" 
which are excited. For the present investigation, the ex- 
cited "modes" are the focus of interest, and are used as a 
tool for interpreting vocal fold dynamics during self- 
oscillation. 

II. PROCEDURES 

A. Trajectories from the simulation 

Empirical eigenfunctions were calculated based on the 
output of a biomechanical simulation of vocal fold move- 
ment (Alipour and Titze, 1985a). The simulation was run 
as part of a complete speech synthesis system, including 
sub- and supraglottal systems. The biomechanical model of 
the folds consists of nine longitudinal layers as shown in 
Fig. 2, where the posterior edge of the folds is in the fore- 
ground. Anterior and posterior boundaries are fixed. Each 
layer consists of 32 finite elements (triangles) or 26 nodes 
(fleshpoints), as shown on the left side of Fig. 3. The ele- 
ments which correspond to the body (or muscle) are 
marked "B," the elements which correspond to the liga- 
ment are marked "L," and the elements which correspond 
to the cover (or mucosa) are marked "C." Each of these 
regions possesses distinct elastic properties. Three nodes 

FIG. 3. A coronal view of the fifth longitudinal layer. On the left side of 
the figure, the 32 elements/layer are displayed and distinguished as cor- 
responding to the body ("B"), the cover ("C"), or the ligament ("L"). 
On the right side of the figure, trajectories of vocal fold fleshpoints are 
shown for parameters corresponding to normal phonation. 

per layer are placed on a fixed lateral boundary. Thus, 
there are 207 nodes per fold (9 layers X 23 nodes/layer) 
which are free to oscillate. As in earlier investigations, lat- 
eral and vertical motions are allowed, but no movement 
along the anterior-posterior direction. With two degrees of 
freedom per node, there are 414 total degrees of freedom if 
left and fight folds are symmetric, and 828 if asymmetric. 
Although the simulation is equipped to handle asymmetric 
folds, all the runs for this analysis employed left-right sym- 
metry. 

Nodal trajectories for parameters corresponding to 
normal phonation are shown on the right side of Fig. 3. 
The trajectories are taken from the fifth longitudinal layer 
(the layer midway between anterior-posterior bound- 
aries), which is the layer with the most lateral movement. 
Qualitative similarities exist between these trajectories and 
fleshpoint trajectories observed experimentally (Baer, 
1981; Saito et al., 1981; Saito et al., 1985). The x and z 
coordinates from the trajectories of each of the 207 nodes 
were used as the input for calculating the covariance ma- 
trix, and the resulting eigenfunctions. Although the simu- 
lation was run at a sampling rate of 20 kHz, the nodal 
coordinates were only saved at a rate of 5 kHz, which was 
found to be sufficient. Frequencies above about 1 kHz were 
essentially nonexistent in the trajectories (measured on a 
power spectrum, they were at least 40 dB below the stron- 
gest frequency). 

B. Calculation of empirical eigenfunctions 

First, the nodal coordinates R i were separated into 
mean and oscillatory components: 

Ri(t)=Ri-i-ri(t), i=1,2,...,414, (3) 

where the bar denotes a mean value. The mean represents 
the dynamic equilibrium of the system, and the remaining 
oscillatory component represents the time-varying dis- 
placements about this equilibrium. A covariance matrix 
was generated using the time-varying displacements: 

N 

Sij=• • ri(tk)rj(tk), i,j=1,2,...,414, (4) k=l 

where tk are the discrete times at which the coordinates are 
sampled, and N is the total number of time samples. The 
eigenvectors of the covariance matrix correspond to the 
empirical eigenfunctions. At any time t•, the nodal dis- 
placements may be expressed as a linear combination of the 
empirical eigenfunctions •j (Deane et al., 1991 ): 

414 

ri(tk)= • aj(tk)qbj(i), i=1,2,...,414, (5) 
j=l 

where r)j(i) is the ith component of the jth eigenfunction 
and aj(t k) is the temporal coefficient of the jth eigenfunc- 
tion at time t•. The temporal coefficients aj may be com- 
puted by projecting the eigenfunctions •bj onto the time- 
varying displacements: 

414 

aj(tk)= • ri(t•)qbj(i), j=1,2,...,414. (6) 
i=1 
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TABLE I. Parameters used in the finite element simulation of "normal" 

phonation. 

lung pressure 
cricothyroid activity 
lateral cricoarytenoid activity 
thyroarytenoid activity 
transverse Young's modulus of the body 
transverse Young's modulus of the cover and 

ligament 
longitudinal shear modulus of the body 
longitudinal shear modulus of the cover 
longitudinal shear modulus of the ligament 
viscosity of the body, cover & ligament 

0.8 kPa 

10% 

95% 

5O% 

4 kPa 

2 kPa 

12 kPa 

10 kPa 

40 kPa 

6 poise 

The temporal coefficients themselves may be thought 
of as temporal eigenfunctions, and correspond to the eigen- 
vectors of a temporal correlation matrix which may also be 
generated from the original data (Sirovich, 1987). The set 
of temporal eigenfunctions is orthogonal, as is the corre- 
sponding set of spatial eigenfunctions. Both sets reveal dis- 
tinct features of the dynamics of the system. The spatial 
eigenfunctions (sometimes referred to as "topos," Aubry 
et al., 1991 ) reveal topological patterns in the data and are 
analogous to the normal modes of linear systems. The tem- 
poral eigenfunctions (sometimes referred to as "chronos," 
Aubry et al., 1991) reveal information about possible en- 
trainment of the modes, and capture the frequencies at 
which the modes oscillate. 

Each pair of spado-temporal eigenfunctions has a cor- 
responding eigenvalue, which quantifies the degree to 
which the eigenfunctions can regenerate the nodal trajec- 
tories (in terms of variance). Often just a few eigenfunc- 
tion pairs capture the essential dynamics of a system 
(Deane et al., 1991), which facilitates a reduction of the 
system as well as a physical interpretation of the dynamics. 

All the covariance matrices calculated in this study 
were generated with one second of stationary output (5000 
time frames). Initial transients and other nonstationary 
segments were not used in calculating the covariance ma- 
trices and resulting empirical eigenfunctions. The domi- 
nant vibration frequencies of these modes ranged between 
80 and 160 Hz, so 80 to 160 cycles were used in calculating 
the modes. 

III. RESULTS AND DISCUSSION 

A. Normal phonation 

First of all, we consider the results of the analysis for 
typical parameters corresponding to "normal" phonation 

TABLE II. Normalized eigenvalues/variances corresponding to the 
eigenfunctions of "normal" phonation. 

Eigenfunction Cumulative sum 
number it i ( % ) of it i ( % ) 

1 72.5 72.5 

2 25.2 97.7 

3 1.5 99.2 

4 0.5 99.7 

(a) 

(b) 

FIG. 4. A coronal view of the two strongest spatial eigenfunctions for 
normal phonation. The first eigenfunction is shown in (a) and the second 
eigenfunction is shown in (b). In both cases, frame 1 corresponds to a 
maximum excursion of the eigenfunction, and frame 2 corresponds to a 
minimum excursion. 

(e.g., see Table I). The normalized eigenvalues computed 
at these parameter values are shown in Table II, in de- 
scending order. The far right column shows a cumulative 
sum of the eigenvalues. From this table, we see that the 
first eigenfunction explains about 72% of the variance of 
the nodal trajectories, and the second eigenfunction about 
26% of the variance. Together the first two eigenfunctions 
explain approximately 98% of the variance, suggesting the 
dominance of just a few primary modes. These results were 
consistent over a range of subglottal pressures (0.2-1.2 
kPa) and elastic constants (0.6 to 2 kPa for the Young's 
modulus of the cover). 

A coronal view of the first eigenfunction is shown in 
Fig. 4(a). Frames 1 and 2 display maximum and minimum 
excursions of the eigenfunction, respectively (solid lines). 
The dotted lines show the mean coordinate values. By ex- 
amining the motion of the folds near the top of the glottal 
air passage (e.g., see the top five medial nodes which are 
indicated on either side), one can note the correspondence 
of this eigenfunction with the x-11 mode. That is, there is 
a higher and lower portion of the folds which are 180 deg 
out of phase. Consequently, this eigenfunction is largely 
responsible for alternately shaping a divergent (frame 1) 
and convergent (frame 2) glottis. In addition, there is con- 
siderable vertical motion similar to the z-10 mode. This 

coupling of x and z modes is not surprising given the in- 
compressibility of the tissue (Titze, 1976). Tissue incom- 
pressibility implies that the overall tissue volume does not 
change, so if the folds are compressed laterally, they must 
bulge out vertically, and vice versa. 

A coronal view of the second eigenfunction is shown in 
Fig. 4(b). Again frames 1 and 2 show maximum and min- 
imum excursions of this eigenfunction. Again, note that 
near the top of the folds (the region that might approxi- 
mate a rectangular parallelepiped), this eigenfunction is 
qualitatively similar to the x- 10 mode [Fig. 1 (a) ], and is 
largely responsible for the net lateral movement of the 
folds in this region. 

Figure 5 shows the temporal coefficients associated 
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FIG. 5. The two dominant temporal eigenfunctions for parameters cor- 
responding to normal phonation. The solid line corresponds to eigenfunc- 
tion 1 and the dotted line corresponds to eigenfunction 2. 

with each of these eigenfunctions; the solid line displays 
the temporal coefficients for the first eigenfunction and the 
dotted line illustrates the time coefficients for the second 

eigenfunction. The temporal coefficients for both eigen- 
functions are nearly sinusoidal with a sine/cosine relation- 
ship (mode 1 lags mode 2 by about 90 deg). A simple 
analysis shows that the modes are synchronized in such a 
way that energy transfer may occur from the airflow to the 
tissue, enabling self-oscillation. Specifically, note that the 
solid line can be expressed as sin(t). A maximum in this 
line occurs for a divergent glottis [see Fig. 4(a), frame 1], 
and a minimum in the solid line occurs for a convergent 
glottis [see Fig. 4(a), frame 2]. If Bernoulli's law is taken 
as approximately valid, then the intraglottal pressure will 
be relatively low for a divergent glottis and relatively high 
for a convergent glottis (Titze, 1988). As a first-order ap- 
proximation, one might say that the intraglottal pressure is 
in phase with --sin(t). 

The dotted line can be expressed as cos(t). A maxi- 
mum in this line occurs when the folds are most open [Fig. 
4(b), frame 1], and a minimum occurs when the folds are 
closed [Fig. 4(b), frame 2]. Because this mode roughly 
corresponds to the net lateral displacement of the tissue, a 
rough estimate of the net lateral velocity of the tissue is 
given by the time derivative of cos(t), or --sin(t). Thus an 
examination of the two dominant spatiotemporal eigen- 
functions of the biomechanical simulation reveals an in- 

phase relationship between the intraglottal pressure and 
the net tissue velocity, which allows energy transfer from 
the airflow to the tissue. 

It is already well known that this condition must be 
satisfied if self-oscillation of the folds is to occur in the 

presence of dissipation. However, the important point is 
that this method of analysis reduced several hundred tra- 
jectories of the biomechanical simulation to essentially two 
modes of vibration. With this reduction, the dynamics of a 
biomechanical model with many degrees of freedom could 
be discussed and interpreted as easily as the dynamics of a 
much more constrained, low-order model. The ability to 
reduce large amounts of data to essential dynamics will be 

crucial for understanding more complex output from the 
biomechanical simulation. 

As a word of caution, it should be noted that because 
the biomechanical simulation was reduced to essentially 
two modes of vibration for parameters corresponding to 
normal phonation, the biomechanical model was in no way 
reduced to a two-mass model. Even for normal phonation, 
the most dominant mode of the biomechanical simulation 

was not simply a lower-order x mode such as might be 
captured by a two-mass model, but an x mode coupled 
with a z mode. Furthermore, although the modes of a two- 
mass model may be qualitatively similar to the lower-order 
modes of a simplified elastic continuum, it is questionable 
whether two bar-shaped masses can adequately capture the 
smoothly varying shape of the glottis. The discontinuities 
introduced by such gross spatial discretization would likely 
have an adverse effect on synthesis. 

Moreover, the biomechanical simulation has hundreds 
of degrees of freedom which allow it to be excited into 
many modes of vibration not possible for the two-mass 
model. The fact that just a few of the lower-order modes 
are excited for a range of parameters corresponding to nor- 
mal phonation is to be expected and might even be viewed 
as one validation of the biomechanical simulation. For 

other parameter configurations, additional modes are ex- 
cited in the simulation. The study of these modes may yield 
additional insights into vocal fold dynamics, and may have 
relevance for an understanding of voice disorders. 

B. Chaotic oscillations 

Next, empirical eigenfunctions are calculated when the 
transverse Young's modulus of the cover (E c) is decreased 
in the biomechanical simulation. This parameter change 
simulates a lax cover, and may have physiological rele- 
vance to vocal fry or creaky voice (Scherer, 1989). As a 
preliminary analysis, the acoustic output of the simulation 
was observed as E c was gradually lowered from its initial 
value of 2 kPa. No unusual behavior was noticed until E c 
reached values below 0.6 kPa, at which point the signal 
became irregular, and perceptually rough. At 0.4 kPa, the 
signal became regular again, but with a doubling of the 
original period (an "octave jump"), which appeared as 
alternating high and low amplitudes in the acoustic output. 
Such phenomena (e.g., irregular oscillations, low frequen- 
cies, and alternating high/low amplitudes) are character- 
istic of the acoustic output of creaky voice (Hollien and 
Michel, 1968). Listening to the acoustic output also gave 
the perception of creaky voice. 

A spectral bifurcation diagram (e.g., Lauterborn, 
1986) is shown in Fig. 6, where E c is slowly varied from 
0.35 to 0.65 kPa. From left to right, one views transitions 
from a subharmonic regime to chaos to the periodic regime 
characteristic of normal phonation. This figure shows 
striking similarities to spectrograms of newborn cries 
(Mende et al., 1990) and to acoustic cavitation experi- 
ments (Lauterborn, 1986). A more complete bifurcation 
analysis of this region will be treated in a forthcoming 
paper. 
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FIG. 6. A spectral bifurcation diagram as Ec is slowly varied from 0.35 to 
0.65 kPa, in increments of 0.01 kPa every 400 ms. Transitions from a 
subharmonic regime to chaos to periodic motion are displayed. 

It should be noted that, so far, none of the standard 
routes to chaos (period doublings, intermittency, 'second- 
ary Hopf bifurcations, etc.) have been observed in this 
model. Rather, we have observed abrupt transitions (and 
hysteresis) which are based on global bifurcations rather 
than local bifurcations. Further studies with additional pa- 
rameter variations will show whether some of the more 

traditional routes to chaos can be identified. 

In the present investigation, empirical eigenfunctions 
are determined at Ec=0.4 kPa and Ec=0.5 kPa. Table III 
shows the eigenvalues for both parameter configurations. 
At Ec=0.4 kPa, four eigenfunctions are needed to describe 
the nodal trajectories in as much detail (in terms of vari- 
ance) as the first two eigenfunctions at Ec=2 kPa (see 
Table II). At Ec=0.5 kPa, additional eigenfunctions are 
needed. However, even for the complicated, nonperiodic 
behavior at Ec=0.5 kPa, relatively few eigenfunctions are 
needed to capture most of the variance of vocal fold dy- 
namics. Out of 414 possible eigenfunctions, only six are 
needed to describe the motion in considerable detail. 

Moreover, the first three spatial eigenfunctions at 
Ec=0.5 kPa are essentially equivalent to the first three 
spatial eigenfunctions at Ec=0.4 kPa. This can be observed 
by taking the dot product of the first three spatial eigen- 
functions from each parameter configuration, as shown in 
Table IV. This illustrates that the oscillations from both 

configurations can be described as superpositions of nearly 

TABLE III. Normalized eigenvalues/variances corresponding to eigen- 
functions calculated for Ec=0.4 kPa and 0.5 kPa. 

Ec=0.4 kPa Ec=0.5 kPa 

Eigenfunction Cumulative sum Cumulative sum 
number it i ( % ) of it i ( % ) it i ( % ) of it i ( % ) 

1 43.9 43.9 45.6 45.6 

2 30.9 74.8 27.0 72.6 

3 16.1 91.0 12.5 85.1 

4 7.1 98.1 5.2 90.3 

5 0.7 98.8 3.1 93.4 

6 0.5 99.3 1.6 95.0 

TABLE IV. Dot product of first three spatial eigenfunctions of Ec=0.4 
and 0.5 kPa. 

Eigenfunction 
number ( •i, EC=O.41•i, EC=0.5) 

1 0.913 

2 0.883 

3 0.901 

the same underlying spatial eigenfunctions, even though 
the overall vibration patterns are quite distinct. Indeed, 
across the range of E c where these bifurcations occur (0.3 
kPa < Ec < 0.57 kPa), the first three spatial eigenfunctions 
remain nearly constant. 

The essential difference in the system at Ec=0.4 kPa 
and Ec=0.5 kPa is revealed by the temporal eigenfunc- 
tions, as illustrated in Fig. 7. The temporal eigenfunctions 
of Ec=0.4 kPa are entrained and nearly periodic, while the 
temporal eigenfunctions of Ec=0.5 kPa are nonperiodic 
and not entrained. Because the spatial eigenfunctions of the 
two configurations are nearly the same, it suggests that the 
essential difference between the two configurations is a de- 
synchronization of the "modes." Thus in some cases, it is 
possible that the origin of chaos in vocal fold vibrations 
may be related to a desynchronization of a few of the low- 
order "modes" of vibration. Although this hypothesis 
needs further substantiation, it suggests an analogy to cou- 
pled oscillators (or circle maps), which are known to ex- 
hibit coexistence of limit cycles (and chaos) and, hence, 
sudden jumps and hysteresis. Such analogies to the theory 
of coupled oscillators merit further studies. 

Furthermore, the fact that this simulation of partial 
differential equations (PDE's) can be projected onto just a 
few eigenfunctions is reminiscent of the findings of Saltz- 
man (1962) and Lorenz (1963) in relation to Bernard 
convection. In their studies, it was found that close to the 
onset of convection there were only a few dominant mod•s, 
which led to the derivation of the celebrated Lorenz equa- 
tions (1963). Whereas Lorenz employed a trigonometric 
expansion, in this study empirical eigenfunctions might be 
appropriate to reduce the original PDE's to a small. set of 
ordinary differential equations (ODE's). Admittedly, such 
a reduction cannot be done in general because the' spatial 
eigenfunctions may vary as parameter values are changed. 
However, over limited parameter regions where the spatial 
eigenfunctions remain more or less constant (such as in the 
example given above), a reduction is at least representative 
of the original PDE's. Such reductions may be useful for 
the design of lower-order models (which can nevertheless 
simulate various vocal qualities), and may help facilitate 
bifurcation analyses over specific parameter regions of the 
model (Deane et al., 1991 ). 

The first three spatial eigenfunctions of Ec=0.5 kPa 
are shown in Fig. 8. In this case, it may not be possible to 
claim a definite relationship between the empirical eigen- 
functions and the normal modes of the simplified folds. 
Indeed, many factors (e.g., tissue incompressibility, com- 
plex geometry, nonlinearities) may cause significant defor- 
mations in the modes of vibrations. Nevertheless, the 
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FIG. 7. The first three temporal eigenfunctions for Ec=0.4 kPa (a) and Ec=0.5 kPa (b). 
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eigenfunctions appear to be manifestations of simple, low- 
order modes. For example, the first eigenfunction [Fig. 
8 (a) ] shows some resemblance to a z- 10 mode, the second 
eigenfunction [Fig. 8(b)] to an x-11 mode, and the third 
eigenfunction [Fig. 8 (c) ] to an x- 10 mode. 

In addition, the sixth eigenfunction for Ec=0.5 kPa is 
analogous to a higher-order normal mode (e.g., the x-21 
mode). Although not as commonly observed, these higher- 
order modes have been viewed occasionally with high- 
speed cinematography (Rubin and Hirt, 1960). Figure 9 
shows a superior view of this eigenfunction. This eigen- 
function did not appear, at least as clearly, in the more 
stable oscillations corresponding to Ec=0.4 kPa and Ec= 2 
kPa. This may be related to the fact that this is an unstable 
eigenfunction, and is thus usually only excited during more 
unstable, nonperiodic vibrations. Even in the complex os- 
cillations from which this eigenfunction was extracted, the 
higher-order eigenfunction was so weak that it could not be 
visually detected in the overall vibration pattern. 

FIG. 8. Coronal views of the first three spatial eigenfunctions at E c=0.5 
kPa. Eigenfunction 1 shows some resemblance to a z- 10 mode, eigenfunc- 
tion 2 to an x-11 mode, and eigenfunction 3 to an x-10 mode. Coronal 
views are shown as in Fig. 4. 

FIG. 9. A superior view of the sixth spatial eigenfunction for Ec=0.5 
kPa. This eigenfunction is similar to an x-21 mode. To illustrate this 
eigenfunction, a series of five sequential snapshots are shown from left to 
right. 
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IV. CONCLUSIONS 

As is well known from high-speed films, stroboscopy, 
and sophisticated models, vocal fold vibrations exhibit 
complex three-dimensional patterns. However, normal 
phonation produces fairly periodic acoustic output. These 
observations may be explained by the fact that only a few 
modes are excited and all the modes are entrained. This 

concept has been substantiated through examining the em- 
pirical eigenfunctions of a biomechanical simulation of vo- 
cal fold vibrations during self-oscillation. Even though 
hundreds of degrees of freedom exist, two eigenfunctions 
explain 98% of the variance of the nodal trajectories. By 
viewing the finite element simulation as a superposition of 
just two dominant eigenfunctions, an interpretation of the 
mechanism of self-oscillation of the folds is facilitated. Fur- 

thermore, the calculated eigenfunctions are qualitatively 
similar to low-order normal modes predicted in earlier the- 
oretical work. 

The technique of empirical eigenfunctions is also use- 
ful for describing irregular oscillations related to rough 
voice. Changing parameters of the biomechanical model 
leads to subharmonic regimes and chaos. However, despite 
complex motion, a relatively small number of eigenfunc- 
tions captures the essential dynamics of the folds. In addi- 
tion, some of the more subtle dynamics captured by 
"weaker" eigenfunctions correspond with higher-order 
normal modes. 

Over a specified parameter region (related to a lax 
cover), the spatial eigenfunctions remained nearly con- 
stant, while the presence of chaos was manifested by a 
desynchronization of the temporal eigenfunctions, suggest- 
ing that in some instances the appearance of chaos in vocal 
fold oscillations may be related to the desynchronization of 
a few of the low-order "modes" of vibration. Although not 
fully substantiated, this hypothesis suggests another anal- 
ogy between vocal fold vibrations and coupled oscillators 
which merits further investigation. 

In general, the method of empirical eigenfunctions en- 
hances the study of vocal fold dynamics by allowing the 
principal modes of vibration to be extracted during self- 
oscillation, despite inherent nonlinearities. 
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