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a b s t r a c t 

The striatum is a major subcortical connection hub that has been heavily implicated in a wide array of motor and 

cognitive functions. Here, we developed a normative multimodal, data-driven microstructural parcellation of the 

striatum using non-negative matrix factorization (NMF) based on multiple magnetic resonance imaging-based 

metrics (mean diffusivity, fractional anisotropy, and the ratio between T1- and T2-weighted structural scans) 

from the Human Connectome Project Young Adult dataset ( n = 329 unrelated participants, age range: 22–35, 

F/M: 185/144). We further explored the biological and functional relationships of this parcellation by relating 

our findings to motor and cognitive performance in tasks known to involve the striatum as well as demographics. 

We identified 5 spatially distinct striatal components for each hemisphere. We also show the gain in component 

stability when using multimodal versus unimodal metrics. Our findings suggest distinct microstructural patterns 

in the human striatum that are largely symmetric and that relate mostly to age and sex. Our work also highlights 

the putative functional relevance of these striatal components to different designations based on a Neurosynth 

meta-analysis. 
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. Introduction 

The striatum is a deep grey matter nucleus known to be impli-

ated in motor control ( Rolls, 1994 ) and various executive and cogni-

ive functions,including: goal-directed decision making ( Haber et al.,

006a; Stott and Redish, 2014 ), reward and motivation ( van den Bos

t al., 2014; Haber et al., 2006a; Jung et al., 2014; Pauli et al., 2016 ),

abitual motor learning ( Graybiel and Grafton, 2015 ) and emotional

egulation ( Hare et al., 2005 ). Variation in striatal structure and func-

ion have been implicated in various brain disorders including Parkin-

on’s disease ( Albin et al., 1989; Hacker et al., 2012 ), Huntington’s

isease( Rosenblatt and Leroi, 2000 ), addiction ( Graybiel and Grafton,

015; Li et al., 2015; Yager et al., 2015 ), obsessive-compulsive disorders

 Graybiel and Rauch, 2000; Milad and Rauch, 2012; Shaw et al., 2015 ),

utism spectrum disorder ( Schuetze et al., 2016 ), and schizophrenia

 Chakravarty et al., 2015 ). Thus, the spatial subdivision of the striatum

nto regions informed by neuroanatomy is essential to relating striatal
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natomy to function and behaviour. Previous parcellations of this impor-

ant structure have leveraged magnetic resonance imaging (MRI) data

sing a combination of heuristic and contrast-based definitions ( Burrer

t al., 2020; Caravaggio et al., 2018; Leh et al., 2007; Lehéricy et al.,

004 ). To overcome limitations inherent to these subjective definitions,

ata-driven parcellations based on structural connectivity ( Draganski

t al., 2008; Parkes et al., 2017; Tziortzi et al., 2014 ), resting-state func-

ional connectivity, ( Choi et al., 2012; Janssen et al., 2015; Jung et al.,

014; Marquand et al., 2017 ) and task-based functional connectivity

 Pauli et al., 2016 ) have been proposed. However, the existing parcella-

ions have failed to characterize the tissue microstructure that necessar-

ly constrains the organization and functional variation of the striatum.

In previous work, microstructural aspects of brain organization have

een captured using structural and diffusion metrics derived from mag-

etic resonance imaging (MRI). Such microstructural metrics included

he ratio between T1-weighted and T2-weighted images (T1w/T2w)

 Glasser et al., 2016; Glasser and Van Essen, 2011; Patel et al., 2020;

ardif et al., 2016; Tullo et al., 2019 ), fractional anisotropy (FA)
(M.M. Chakravarty). 
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f  
 Alexander et al., 2007; Lebel et al., 2008; Patel et al., 2020; Tardif

t al., 2016 ) and mean diffusivity (MD) ( Lebel et al., 2008; Patel et al.,

020; Tardif et al., 2016 ). Typically these indices are used in isolation.

he main goal of this study is to develop a data-driven microstruc-

ural parcellation of the striatum using a combination of T1w/T2w,

A and MD, and to link inter-individual variations in the obtained mi-

rostructural pattern to behaviour and demographics. We will be us-

ng a framework previously developed and thoroughly investigated in

atel et al. (2020) that used a similar approach to develop a multimodal

arcellation of the human hippocampus using non-negative matrix fac-

orization (NMF). The uncovered spatially distinct hippocampal parcels

ere found to be microstructurally distinct and stable across subjects. 

We hypothesize that the decomposition of the covariance between

he T1w/T2w, FA and MD metrics should yield parcels of the striatum

hat are more stable across our subjects relative to a decomposition

ased on a single metric. ( Patel et al., 2020; Sotiras et al., 2015 ). Finally,

e aim to relate group-level microstructural patterns of the striatum to

rain function through a functional MRI (fMRI) based platform called

eurosynth ( Yarkoni et al., 2011 ). 

. Methods and materials 

.1. Overview 

A schematic illustration of the methods of analyses used in the

resent study can be found in Fig. 1 . We used structural and dif-

usion MRI data from the Human Connectome Project ( Section 2.2 ).

he striatum segmentations were generated automatically using the

ultiple Automatically Generated Templates (MAGeT) Brain algo-

ithm ( Section 2.2.3 ). A population average constructed using the T1w

nd T2w images of each subjects was also generated to provide a

ommon space for the microstructural metrics used in our analyses

 Section 2.2.4 ). The obtained striatal labels, T1w/T2w, FA and MD maps

o this common space to construct the input matrices that then under-

ent NMF decomposition ( Section 2.3.1, Fig. 1 A–C). A stability analysis

as performed to find the optimal number of components ( Section 2.4 )

nd the final solution was compared to unimodal solutions. The final

ulti-modal NMF solution was used to generate neuroanatomically dis-

inct clusters that are used to describe the microstructural anatomy of

he striatum ( Section 2.3, Fig. 1 D). Then, we use the inter-indiviudal

ariability in the striatal components, characterized by the NMF subject-

evel weights ( Section 2.3, Fig. 1 E) to understand how patterns of co-

ariance may relate to behaviour and demographics using Partial Least

quares correlation analysis ( Section 2.5, Fig. 1 G). Finally, to ascertain

heir putative functional relevance, these clusters were used as input to

eurosynth meta-analytical decoder to compare them to meta-analyzed

MRI findings ( Section 2.7, Fig. 1 F). 

.2. Data 

We used multimodal MRI along with behavioural and demographic

ata from the Human Connectome Project (HCP) Young Adult dataset.

e selected structural and diffusion MRI data from 333 unrelated sub-

ects (from a cohort of 1086 twin and non-twin siblings) with age rang-

ng from 22 to 35 years ( Van Essen et al., 2013 ). Most of the participants

ere individuals born in Minnesota and participants were excluded for

evere neurodevelopmental, neuropsychiatric or neurologic disorders

 Van Essen et al., 2013 ). All structural and diffusion MRI data were ac-

uired on a customized Siemens 3T Skyra scanner with a 100 mT/m

radient ( Van Essen et al., 2013 ). 

.2.1. T1w/T2w images 

We used preprocessed T1 (T1w)- and T2-weighted (T2w) images

rom the HCP database (0.7 mm isotropic images) ( Van Essen et al.,

013 ). T1w images were further preprocessed using the minc-bpipe li-

rary minc-bpipe library to perform intensity non-uniformity correction,
2 
ropping of the neck region and brain mask generation. T1w images

ere used to derive a minimally-biased group template (as described

elow) and the T1w/T2w images were used as a putative measure of

oxel-wise myelin content ( Glasser and Van Essen, 2011; Tullo et al.,

019 ). Detailed preprocessing of the HCP data is described in detail

lsewhere ( Glasser et al., 2013; Van Essen et al., 2013 ). 

.2.2. DWI scalars 

The preprocessed diffusion weighted imaging data (1.25 mm

sotropic voxel dimensions) were also downloaded via the HCP online

ortal. The processing pipeline applied to the diffusion data by the HCP

s described in Glasser et al. (2013) . The diffusion data were further

rocessed by R.P. in another study from our group ( Patel et al., 2020 )

ith MRtrix ( Tournier et al., 2012 ) to estimate MD and FA maps for

ach subject. To do so, single shell ( 𝑏 = 1000 ) data was used to con-

truct the tensor with weighted least-squares ( Basser et al., 1994a ) and

terated least-squares ( Veraart et al., 2013 ) using the dwi2tensor com-

and. Then, the MD and FA maps were estimated from the tensor using

he tensor2metric command ( Basser et al., 1994b; Westin et al., 1997 ).

ote that the structural and diffusion data was already in the T1W space

s per the HCP processing pipeline ( Glasser et al., 2013 ). 

.2.3. Automatic striatum segmentation 

The striatum was segmented in each subject’s T1w image using the

ublicly available MAGeT brain algorithm ( Chakravarty et al., 2013 ).

e used 5 high-resolution manually segmented subcortical atlases based

n the reconstruction of serial histological data ( Chakravarty et al.,

006; Tullo et al., 2018 ). All registrations in this section and the next

ection were performed using the Automatic Normalization Registration

ools (ANTs) ( Avants et al., 2010 ). Two runs of MAGeT brain were per-

ormed by N. B. on the entire HCP cohort ( 𝑁 = 1086 ): manual quality

ontrol of the outputs from the first run allowed for the selection of the

1 subjects with the best segmentations; these subjects were then used

s templates for the second and final run. This allowed for more subjects

o obtain a perfect score of 1 for the MAGeT’s generated labels and thus

ass manual quality control for output quality (see the guide). MAGeT

rain was run separately for each hemisphere by isolating the left and

ight striatum labels in the 5 subcortical atlases to account for anatomi-

al asymmetries and to improve segmentation accuracy a strategy which

s been successfully used elsewhere ( Chakravarty et al., 2008 ). 

.2.4. Population average 

A population average was used to obtain a voxel-wise correspon-

ence between our 333 subjects and was computed by R.P. in another

tudy from our group ( Patel et al., 2020 ). We used the transformation

les from the T1w images to the common space to warp each sub-

ect’s striatum segmentation and applied the same transformation to

1w/T2w, FA and MD images to the common space using the antsAp-

lyTransforms command. All the images warped to the common space

ad 1.2 mm isotropic voxel dimensions. T1w/T2w images were filtered

sing a Gaussian weighted average to remove any outlier values ( Glasser

nd Van Essen, 2011; Patel et al., 2020 ). 

Striatum labels that passed quality control (left, 𝑛 = 252 ; right, 𝑛 =
89 ) were transformed to the common space and a unified label was

enerated by voxel-wise majority vote. The final labels were adjusted

or over-segmentation in areas such as the lateral ventricle or the inter-

al capsule (see examples here) to minimize partial voluming effects of

entricles. Although some subjects failed the striatum segmentation, all

articipants in this study passed the manual QC of the registration of

ur subjects to the population average. All the following analyses were

erformed in the common space using the unified labels. See the sup-

lement for more information on the majority voted striatum labels. 

.3. Non-negative matrix factorization 

We used an orthonormal projective variant of non-negative matrix

actorization (OPNMF). This method provides a part-based decompo-
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Fig. 1. Workflow A) We used the chosen microstructural met- 

rics in automatically segmentated striatum labels (obtained 

with the MAGeT Brain algorithm) of our subjects in the a con- 

structed common space B) We concatenated the striatal vox- 

els in column vectors of all our subjects to build an input 

matrix. The left and right input matrix were build indepen- 

dently. C) We extracted spatially distinct components repre- 

senting patterns of covariance in microstructure across sub- 

jects using orthogonal projective non-negative matrix factor- 

ization (OPNMF). OPNMF decomposes an input matrix into 

a component matrix W and a weight matrix H. As OPNMF 

extracts a predefined number of component k, we performed 

a stability analysis to assess the accuracy and spatial stabil- 

ity at each granularity from 2 to 10 (see Fig. 2 A). D) The 

component matrix W describes how much each voxel weight 

into a specific component providing spatial information about 

the clusters. F) We related each component to functional MRI 

findings by using the Neurosynth reverse-inference framework 

that meta-analytically relates striatal components to psycho- 

logical states. E) The weight matrix H contains the weight of 

each subject’s metrics onto each component, describing mi- 

crostructural variation in the metrics found in the input ma- 

trix (T1w/T2w, FA, MD) between subjects. G) We used Par- 

tial Least Squares (PLS) analysis to identify patterns of covari- 

ance between the striatal components T1w/T2w, FA and MD 

proportions with behavioural and demographic data. PLS is a 

multivariate technique that analyses the association between 

our component-metric pairs (leftmost top) and selected be- 

haviour/demographics (leftmost bottom) variables resulting in 

a set of LVs. The significance of the covariance patterns uncov- 

ered by the LVs was assessed using permutation testing while 

the reliability of each brain specific weight was assessed using 

bootstrap sampling. 
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ition of the input variables while prioritizing sparsity in the solution

 Sotiras et al., 2015; Yang and Oja, 2010 ). OPNMF has already been

roven effective in estimating covariance patterns in neuroimaging data

hile providing an easier interpretation of the results than other matrix

ecomposition techniques such as principal component analysis (PCA)

r independent component analysis (ICA) ( Sotiras et al., 2015 ). Briefly,

MF decomposes an input matrix ( 𝑚 × 𝑛 ) into two matrices; a compo-

ent matrix 𝑊 ( 𝑚 × 𝑘 ) and a weight matrix 𝐻 ( 𝑘 × 𝑛 ) where k is the

umber of components that needs to be specified by the user, m is the
3 
umber of striatal voxels and n is the number of subjects (329) for the

nimodal implementation and the number of subject-metric pairs (329

3) for the multimodal implementation. Here we use the same nomen-

lature as in Patel et al. (2020) . As we are using OPNMF, our decompo-

ition identifies k spatially distinct patterns of covariance across voxels

found in W ) and across subjects and metrics (found in H ). We describe

elow how we implemented OPNMF as well as how we interpreted the

ecomposition results. More theoretical concepts about OPNMF and its

mplementation can be found in the supplements. We examined each
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Fig. 2. Stability analyses results A) Stability score and gradient reconstruction error when performing NMF using 2 to 10 clusters. As we want to maximize the 

stability while minimizing the reconstruction error, we chose to use 5 components for the rest of the analysis. B) Comparison of the stability score of NMF on 

multimodal data (a combination of T1w/T2w, FA and MD (red)) versus unimodal data (either only T1w/T2w (green), only FA (black) or only MD (blue)) using 2 to 

10 clusters. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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icrostructural measure (T1w/T2w, FA and MD) separately through a

nimodal implementation of OPNMF and simultaneously through a mul-

imodal implementation of OPNMF. More details on the implementation

f the unimodal and multimodal OPNMF analyses are described below.

.3.1. Implementation 

Input matrices We used the fused left and right average striatum la-

els ( Section 2.2.4 ) to perform a ROI-based extraction for the T1w/T2w,

A and MD metrics using the TractREC package. For each subject, the

oxels of the striatum labels were extracted and stacked into a column

ector of size (# striatal voxels × 1 subject). Therefore, we obtained

oxel-wise column vectors for each subject and each of the microstruc-

ural metric (T1w/T2w, FA and MD). Hence, we obtained 3 metric vec-

ors per hemisphere for every subject, resulting in 6 column vectors per

ubject. As OPNMF was applied on the two hemispheres separately, the

eft and right input matrices for the unimodal and multimodal OPNMF

ere constructed independently. 

For the unimodal input matrices, we concatenated the 329 corre-

ponding column vectors to obtain 6 (# striatal voxels × 329 subjects)

atrices (per hemisphere and metric). The unimodal matrices were nor-

alized using a standard z -score and shifted by the minimum value to

btain non-negativity. 

For the multimodal matrices, we concatenated the unimodal matri-

es that were normalized to account for different scales of magnitude,

esulting in one (# striatal voxels × 3 × 329) matrix per hemisphere.

e then shifted all the values in our multimodal input matrices by the

inimum value. 

Once the input matrices were constructed, we applied the OPNMF

lgorithm on the left and right striatum separately. We used MatLab

2016a and some OPNMF matlab functions ( Boutsidis and Gallopou-

os, 2008; Halko et al., 2011; Sotiras et al., 2015; Yang and Oja, 2010 ).
4 
he OPNMF algorithm was initialized using non-negative double singu-

ar value decomposition (SVD) and the following hyperparameters: max

terations = 100,000 and tolerance = 0.00001 as in ( Patel et al., 2020 ).

.3.2. Interpretability 

OPNMF outputs a component matrix 𝑊 and a weight matrix 𝐻 . The

# striatal voxels × 𝑘 ) component matrix 𝑊 describes how much each

oxel contribute to a specific component. The ( 𝑘 × ( 3 × 329 subjects))

eight matrix 𝐻 presents the loading of each subject’s metrics onto

ach component, describing microstructural variation in T1w/T2w, FA

nd MD between subjects. 

The properties of OPNMF enable us to cluster voxels via a winner

akes all approach of each voxels component scores, such that each voxel

as assigned to a single cluster for which it had the highest component

core. Therefore, 𝑊 provides spatial information about the striatal com-

onents. 

For the weight matrix 𝐻 , we have the subject-metric pairs as

olumns, component as rows and every entry represents the propor-

ion of the metric-subject pair that contributes to each component. For

 given component, the weight of a microstructural metric should be

imilar across subjects with some variability. Hence, 𝐻 describes the

mportance of each component to the reconstruction of each subjects

nd metric, and thus tells us how T1/T2, FA,MD varies across subjects

ithin each component. 

.4. Stability analysis 

To select the optimal number of components, a stability analysis was

un to assess the accuracy and spatial stability at each granularity from

 to 10 ( Patel et al., 2020 ). The stability analyses for the left and right

triatum were performed independently. 
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z  
We split our 329 subjects into two groups (a and b) of size na = 164

nd nb = 165. We used stratrified random sampling by age and sex

o avoid disproportionate subgroups in the previously mentioned de-

ographic variables. We repeated this procedure to create 10 different

plits, to obtain 10 × 2 = 20 groups for each hemisphere. For each

plit we created multimodal input matrices 𝑋 𝑎 and 𝑋 𝑏 as described in

ection 2.3.1 and ran OPNMF on each split independently (resulting in

0 splits × 2 hemispheres × 9 granularities = 360 runs). For each split and

ranularity we obtained two-component matrices 𝑊 𝑎 and 𝑊 𝑏 which are

f dimension (#striatal voxels × granularity) and two weight matrices

 𝑎 and 𝐻 𝑏 of dimensions (granularity × ( 𝑛 𝑎 or 𝑛 𝑏 )). The reconstruction

rror for each split was computed as follows: 

econstruction error A = ‖𝑋 𝑎 − 𝑊 𝑎 𝐻 𝑎 ‖
2 
𝐹 

and 

econstruction error B = ‖𝑋 𝑏 − 𝑊 𝑏 𝐻 𝑏 ‖
2 
𝐹 

(1) 

here 𝑋 𝑎 and 𝑋 𝑏 are the input matrices of two respective groups in a

plit. We reported the gradient reconstruction error that corresponds to

he change in the reconstruction error from a granularity 𝑘 to the gran-

larity 𝑘 + 1 . Hence, the gradient reconstruction error was computed by

ubtracting reconstruction error matrix of the granularity 𝑘 + 1 with the

econstruction error matrix of the granularity 𝑘 and then averaging all

he differences. Then we average over all splits to get reconstruction

rror average and standard deviation for every granularity. 

The accuracy is computed for each split by first taking two similar-

ties matrix 𝐶𝑊 𝑎 and 𝐶𝑊 𝑏 of dimensions (# striatal voxels × # striatal

oxels). 𝐶𝑊 𝑖𝑗 contains the cosine similarity between the components

cores of voxel 𝑖 and voxel 𝑗. If cosine similarity is high, it means that

oxels 𝑖 and 𝑗 have similar component scores and that they are likely in

he same cluster ( Patel et al., 2020 ). Hence, a row 𝑖 in the matrix 𝐶𝑊 𝑎 

epresents the similarity of the voxel 𝑖 with all the other voxels for the

roup a. This is the same for the matrix 𝐶𝑊 𝑏 . Then, we computed the

orrelation between corresponding rows of 𝐶𝑊 𝑎 and 𝐶𝑊 𝑏 , to know if a

ertain voxel 𝑖 is similar to the same group of voxels when OPNMF is

pplied on another group ( Patel et al., 2020 ). If the correlation between

orresponding rows of voxels was high, we conclude that the stability

as high for this voxel (stability coefficient close to 1). On the other

and, instability (stability coefficient close to − 1) was implied by a low

orrelation between corresponding rows of voxels. Finally, we took the

verage for all voxels and we repeated this procedure for each split to

et the average and standard deviation stability coefficient for every

ranularity. 

To assess the benefit of using multimodal data versus unimodal data,

e carried out a unimodal stability analysis for the T1w/T2w, FA and

D metrics separately. As for the multimodal stability analyses, the left

nd right unimodal stability analyses were conducted separately, for a

otal of 6 unimodal stability analyses. 

.5. Microstructure-behaviour relationships 

To link inter-individual variation in striatal OPNMF components to

ehaviour and demographics, we sought to examine their relationship

o a set of behaviours and demographics available from the HCP by us-

ng subject-level weights as a measure of their specific microstructural

oadings (in matrix 𝐻 for each component, see Section 2.3.1 ). We con-

idered all the motor-related behaviours available in the HCP test bat-

ery, as the relationship between the striatum and motor function is well

nown ( Delong et al., 1983; Mink, 1996 ). This included endurance (NIH

oolbox 2-minute Walk Endurance Test), locomotion (NIH Toolbox 4-

eter Walk Gait Speed Test), dexterity (NIH Toolbox 9-hole Pegboard

exterity Test) and strength (NIH Toolbox Grip Strength Test). We also

onsidered cognitive tests related to impulsivity ( Buckholtz et al., 2010;

alley et al., 2008; Hariri et al., 2006 ), motor inhibition and cognitive

ontrol ( Schouppe et al., 2014; Vink et al., 2005 ). Impulsivity was as-

essed using the delay-discount task (DD) ( Estle et al., 2006; Green et al.,

007 ) with the area under the curve (AUC) of DD as a summary mea-

ure. Low values for the AUC suggests delayed rewards are less valuable
5 
o the subject and vice versa ( Myerson et al., 2001 ). Motor inhibition

nd cognitive control were measured by the HCP using the Flanker task

rom the NIH toolbox ( Schouppe et al., 2014 ). We also considered age

n years, years of education and gender as demographic measures. 

.6. Partial least squares 

To associate the selected behaviours to the subjects’ metric-wise

omponent weightings, we used Partial Least Squares Correlation

PLSC). PLSC is a multivariate statistical technique that analyses the

ssociation between two sets of high-dimensional variables( Krishnan

t al., 2011; McIntosh and Lobaugh, 2004; Patel et al., 2020; Zeighami

t al., 2019 ). 

In the context of the current study, we related the set of individual

omponent weightings obtained from the H matrix in OPNMF (brain

ata denoted 𝑋) to the set of behavioural/demographics variables men-

ioned above (behaviour data denoted 𝑌 ). Both 𝑋 and 𝑌 have the sub-

ects as rows and they are organized such that the rows are correspond-

ng. For instance, the first row in 𝑌 contains the behavioural information

f the subject in the first row of 𝑋. Our two initial sets 𝑋 and 𝑌 are nor-

alized using a mean-center z -score resulting in 𝑍 𝑋 and 𝑍 𝑌 . Then, we

ompute the correlation matrix 𝑅 such that 𝑅 = 𝑍 𝑋 𝑍 

𝑇 
𝑌 

. Then, 𝑅 is de-

omposed using SVD which results in a set of weighted brain saliences

 𝑈), a set of singular value and a set of weighted behavioural saliences

 𝑉 ) ( Krishnan et al., 2011; Zeighami et al., 2019 ). 𝑈 and 𝑉 are pro-

ected back onto the normalized brain and behavioural sets 𝑍 𝑋 and 𝑍 𝑌 

hich yields a set of uncorrelated latent variables (LVs) ( Zeighami et al.,

019 ). Each LVs is composed of a vector of behavioural scores, a vector

f brain scores and a singular value. The behavioural and brain scores

ontain the weights such that the original brain and behavioural vari-

ble maximally covary and the singular value represents the proportion

f the covariance captured by this LV ( Krishnan et al., 2011; Zeighami

t al., 2019 ). 

The significance of the patterns of covariance uncovered by the LVs

an be assessed using permutation testing. Permutation testing involves

andomly shuffling without replacement the rows of the brain variables

atrix 𝑋 to destroy its associations with the behavioural variables in

 ( McIntosh and Lobaugh, 2004; Patel et al., 2020; Zeighami et al.,

019 ). PLSC is applied to each shuffled brain-derived matrix with the

nchanged behavioural variables as described above. The singular val-

es obtained from every permutation form a null distribution to which

he original LVs’ singular values can be compared and assign a non-

arametric P -value ( Krishnan et al., 2011; McIntosh et al., 1996; McIn-

osh and Lobaugh, 2004; Patel et al., 2020; Zeighami et al., 2019 ). 

The stability, reliability of specific brain scores elements or weight

re assessed using bootstrap sampling ( Krishnan et al., 2011; McIntosh

nd Lobaugh, 2004; Zeighami et al., 2019 ). In bootstrap sampling, the

ows of both 𝑋 and 𝑌 are randomly shuffled with replacement to create

 bootstrap sample ( Efron and Tibshirani, 1986; McIntosh and Lobaugh,

004 ). PLSC is then applied on every bootstrap sample to obtain a set

f brain saliences as well as behaviour saliences vectors for every la-

ent variable ( Patel et al., 2020 ). We divide the brain and behavioural

aliences of the original unshuffled LVs by the standard error of the boot-

trap samples’ saliences to obtain a bootstrap ratio (BSR). The BSR is

hen used to assess the significance of specific brain saliences ( Krishnan

t al., 2011; McIntosh and Lobaugh, 2004; Patel et al., 2020; Zeighami

t al., 2019 ). 

.6.1. Implementation 

Here, the brain matrix had dimensions (329 subjects × 3 metrics

𝑘 components) with one row for each subject and one column for

ach component-metric pair. The behavioural variables were stored in

 329 × 10 matrix, with the subjects as rows and the performance of se-

ected behavioural tests along with age, sex (coded as 0/1 for M/F) and

ears of education as columns. Both the brain and behavioural data were

 -scored manually before running PLSC. Our PLSC outputs represent a
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Table 1 

Participants demographics. MMSE: score on 30 of the Mini-mental state examination. 

Sex Number Mean age (years) Mean handedness Mean overall cognition (MMSE) 

Females 185 29 . 01 ± 3 . 63 66 . 59 ± 47 . 31 29 . 18 ± 0 . 97 
Males 144 27 . 71 ± 3 . 68 59 . 69 ± 44 . 20 29 . 01 ± 1 . 08 
Overall 329 28 . 44 ± 3 . 70 63 . 57 ± 46 . 04 29 . 11 ± 1 . 02 
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O  
attern of covariance between the selected behaviours and component-

ise microstructural data. For the permutation testing, we computed

0,000 permuted brain matrices to construct a null distribution of sin-

ular values. We considered a threshold of 𝑃 < 0 . 05 to be significant, as

t corresponds to a 95% confidence that the singular value of the origi-

al LV is higher than the singular value of the permuted LV ( Patel et al.,

020 ). As for the bootstrap sampling, we generated 1000 bootstrap sam-

les and considered a brain salience weight with BSR > 2 . 58 to be sig-

ificant as it corresponds to 𝑃 < 0 . 01 (99% confidence) ( Krishnan et al.,

011; McIntosh and Lobaugh, 2004; Patel et al., 2020 ). 

.7. Neurosynth image decoder 

We related each component to functional MRI findings by using the

eurosynth association test framework that meta-analytically relates

triatal components to brain function ( Yarkoni et al., 2011 ). The Neu-

osynth database is comprised of meta-analytic functional maps for 1335

erms automatically generated from 14,371 studies. Through the Neu-

osynth Image Decoder, it is possible to compare any brain map to the

ntire Neurosynth database and thus quantitatively infer cognitive states

or each uploaded map ( Chang et al., 2012; Yarkoni et al., 2011 ). More

pecifically, provides posterior probability maps associated with a given

erm representing the likelihood that this term is being used in a study if

ctivation is observed in the striatal voxels that we provided (see associ-

tion test). As our striatal components were in the previously computed

ommon space (Population average), we warped the components to MNI

pace before uploading them one by one to NeuroVault as ROI-based

IFTI images. Our MNI space striatal components are publicly avail-

ble and can be used for further analysis. From the posterior probability

aps provided by Neurosynth, we excluded maps with anatomical key-

ords to focus on cognition related terms. We also excluded maps with

eywords that were either unspecific, such as “life ”, or redundant like

loss ” and “losses ”. 

. Results 

.1. Data 

The final sample size included 329 subjects from the Human Connec-

ome Project Young Adult dataset as four subjects were excluded due to

he lack of cognitive data. The demographic information of our partici-

ants is displayed in Table 1 . We note that there is a significant differ-

nce in the mean age between males and females ( t (327) = 3.1, 𝑝 < 0 . 05 ),
nd there is no significant difference between males and females in

andedness ( t (327) = 1.4, 𝑝 > 0 . 1 ) and overall cognition ( t (327) = 1.4,

 > 0 . 1 ). 

.2. Stability analysis 

The results of the stability analysis are shown in Fig. 2 . In Fig. 2 A,

he stability coefficient (red) of the multimodal OPNMF decomposition

s displayed for the left and right striatum, as well as the gradient of

he reconstruction error (blue) for all chosen granularities. In the right

triatum, there is a net drop in the stability of the OPNMF clusters at

 = 4 , while the stability of the left OPNMF clusters slightly decay for

 ≥ 3 . 
The gradient reconstruction error increases as the granularity in-

reases for both hemispheres. The gradient reconstruction error going
6 
rom 𝑘 = 3 to 𝑘 = 4 increases dramatically for both the left and right

triatum, suggesting that there is more gain from going to 𝑘 = 2 to 𝑘 = 3
omponents than from 𝑘 = 3 to 𝑘 = 4 components. However, the gain

n the reconstruction error of the left striatum is better than expected

hen going from 𝑘 = 4 to 𝑘 = 5 . The plateau in the reconstruction error

or 𝑘 ≥ 6 in both hemispheres suggests that major patterns of covariance

ave been captured. Hence, 𝑘 = 5 was chosen as the optimal number of

omponents for the left and right striatum as it is the granularity that

rovides the best balance between the stability coefficient and the re-

onstruction error (accuracy) of the OPNMF multimodal decomposition.

The results of the stability analysis comparing the multimodal ver-

us the unimodal OPNMF decomposition with k ranging from 2 to 10

re shown in Fig. 2 B. The stability coefficient of the unimodal metrics

1w/T2w (green), FA (black) and an MD (blue) is lower than the sta-

ility achieved with the multimodal decomposition (red) for both hemi-

pheres. Due to the gain in stability of the multimodal decomposition,

e decided to only conserve the 5-component multimodal solution for

urther analysis. 

.3. Striatal components 

Fig. 3 A shows a 3D representation of the left and right striatal com-

onents, while Fig. 3 B displays selected labelled and unlabelled coronal

lices. The weight matrix in Fig. 3 C shows the metrics proportion in each

omponent. We only show the left weight matrix as it is almost identical

o the right weight matrix. The weight matrix was divided by the mean

ithin rows to offer better visualization of within component variation

n the microstructural metrics. 

• Component 1 (lilac in Fig. 3 A and B) is characterized by higher val-

ues of T1w/T2w compared to MD and FA with slighty lower values

of FA compared to the previous metrics (first row from the bottom

in Fig. 3 C). Component 1 includes the dorsal putamen as well as the

dorsolateral caudate nucleus. 
• Component 2 (dark magenta in Fig. 3 A and B) is characterized by

a high proportion of FA, followed by T1w/T2w and MD (second

row from the bottom in Fig. 3 C). Component 2 forms a thin cap-

sule around the dorsal putamen and also includes the exterior lateral

caudate next to the internal capsule. 
• Component 3 (light mint in Fig. 3 A and B) is characterized by high

MD metrics compared to the proportion of T1w/T2w and FA (third

row from the bottom in Fig. 3 C). Component 3 is a thin cluster in-

cluding the anterior and posterior medial caudate nucleus along the

anterior horn of the lateral ventricle. 
• Component 4 (orange in Fig. 3 A and B) is characterized by lower

T1w/T2w values compared to FA and MD (fourth row from the bot-

tom in Fig. 3 C). Both FA and MD in component 4 are slightly above

average. This component includes the nucleus accumbens and a part

of the outer ventrolateral putamen. 
• Component 5 (dark green in Fig. 3 A and B) is characterized by lower

values of FA compared to the values of T1w/T2w and MD in this

component (last row from the bottom in Fig. 3 C). Component 5 in-

cludes the inner anterior ventral caudate, the medial caudate body

and some part of the ventral putamen. 

.4. Partial least square analysis 

To relate individuals subject’s weighting from the weight matrix of

PNMF to selected behaviours and demographics, we used Partial Least
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Fig. 3. Identified striatum components A) 3D rendering of the 5 components solution (A: anterior, P: posterior, S: superior, I: inferior, R: right, L: left). B) Coronal 

slices showing the labelled and unlabelled (side-by-side columns) left and right striatum. C) Weight matrix output from NMF of the left striatum, showing how the 

microstructural metrics weight into each component (the right weight matrix is almost identical). For the normalization, we divided each component (row in the 

matrix) by the mean value in that specific component to show within component variation in the microstructural metrics. 
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quare correlation analysis on the left and right hemisphere indepen-

ently. Using permutation testing, we identified four significant latent

ariables, two for the left striatum ( 𝑝 < 0 . 05 ) and two for the right stria-

um ( 𝑝 < 0 . 05 ) shown in Fig. 4 . Fig. 4 A shows the behavioural patterns

ssociated with the LV where the y -axis shows the behaviour and de-

ographic measures and the x -axis shows the correlation of that be-

aviour/demographic and the LV. Fig. 4 B shows the microstructual pat-

erns associated with the LV where the y -axis shows the component-

etric pairs and the x-axis denotes the BSR. 

The first left LV (left LV1; Fig. 4 A top row) explains 57% of

he covariance between our two initial sets and was associated with

oung age ( 𝑅 = −0 . 383 , 95% C . I . = [−0 . 467 , −0 . 300] ), male sex ( 𝑅 =
0 . 232 , 95% C . I . = [−0 . 330 , −0 . 150] ), increased average performance

n the Flanker task ( 𝑅 = 0 . 107 , 95% C . I . = [0 . 018 , 0 . 199] ), increased
7 
trength ( 𝑅 = 0 . 125 , 95% C . I . = [0 . 030 , 0 . 261] ) and decreased dexter-

ty ( 𝑅 = −0 . 097 ,95% C . I . = [−0 . 185 , −0 . 013] ). The correlated microstruc-

ural features include increased MD across all 5 components, decreased

A in components 1,2 and 4 and decreased T1w/T2w in component1. 

Left LV2 ( Fig. 4 A bottom row) explains 29% of the covariance and is

ssociated with lower age ( 𝑅 = −0 . 213 , 95% C . I . = [−0 . 350 , −0 . 035] ), fe-

ale sex ( 𝑅 = 0 . 186 , 95% C . I . = [0 . 097 , 0 . 314] ), decreased strength ( 𝑅 =
0 . 190 , 95% C . I . = [−0 . 308 , −0 . 124] ) and endurance ( 𝑅 = −0 . 136 , 95%

 . I . = [−0 . 230 , −0 . 058] ). The correlated microstructural features include

ecreased FA in components 1, 3, 5 and decreased T1w/T2w across all

omponents. 

Right LV1 ( Fig. 4 B top row) explains 58% of the covariance

nd was mainly driven by younger age ( 𝑅 = −0 . 227 , 95% C . I . =
−0 . 335 , −0 . 122] ), male sex ( 𝑅 = −0 . 329 , 95% C . I . = [−0 . 410 , −0 . 267] ), in-
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Fig. 4. Results of the PLS analysis, we show only the latent variables (LVs) that were significant ( 𝑝 < 0 . 05 ). The percentage next to the LV’s name corresponds 

to the covariance explained by this LV. A) Behavioural patterns of the left LV1 (first column), left LV2 (second column), right LV1 (third column) and right LV2 

(fourth column). The y -axis denotes the behavioural and demographics measures used in the analysis (DD AUC: Delay discounting area under the curve), while the 

x -axis corresponds to the correlation of the behaviours with the LV. B) Microstructural patterns associated with the four significant LVs identified. Here,the y -axis 

correspond to the component-metric pairs and the x -axis denotes the bootstrap ratio (BSR). The black line in the microstructural patterns graph represent a BSR of 

2.58 (equivalent to a 99% C.I.). The colours of the bars are associated with the component (see Fig. 3 C). 
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Fig. 5. Neurosynth results (Top) Left striatal components Neurosynth re- 

sults.(Bottom) Right striatal components Neurosynth results. Here, the colour 

of the words describe the components to which the posterior probability maps 

was related to (see Fig. 3 C). The font of the word represents the Pearson correla- 

tion strength between the map of the component and the keyword related map 

from Neurosynth. Notice that the keywords’ font were not normalized across 

components. Hence, the keyword with the biggest font represents the term with 

the biggest correlation in that component and not in all components. 
reased strength ( 𝑅 = 0 . 2737 , 95% C . I . = [0 . 213 , 0 . 362] ), decreased dex-

erity ( 𝑅 = −0 . 1571 , 95% C . I . = [−0 . 241 , −0 . 079] ) and AUC for both

elay discounting measures DD AUC 200$ ( 𝑅 = −0 . 1015 , 95% C . I . =
−0 . 191 , −0 . 013] ) and DD AUC 40 000$ ( 𝑅 = −0 . 0734 , 95% C . I . =
−0 . 160 , 0 . 019] ). The correlated microstructural features include in-

reased MD across all components. 

Right LV2 ( Fig. 4 B bottom row) explained 31% of the covariance

nd was associated with young age ( 𝑅 = 0 . 293 , 95% C . I . = [0 . 188 , 0 . 400] ),
ale sex ( 𝑅 = −0 . 09 , 95% C . I . = [−0 . 213 , 0 . 025] ), increased endurance

 𝑅 = 0 . 145 , 95% C . I . = [0 . 049 , 0 . 243] ) and below average performance in

he Flanker task ( 𝑅 = −0 . 090 , 95% C . I . = [−0 . 177 , −0 . 004] ). The corre-

ated microstructural features included increased FA across all compo-

ents, increased T1w/T2w in components 1 and 3 and decreased MD in

omponent 1. 

To show the strength of the maximized correlation between the brain

nd behavioural variables in each latent space, we plotted the individual

ubject’s brain PLS scores against the behavioural PLS scores for each

eft and right significant LV. See supplementary Fig. 4 . 

.5. Decoding with neurosynth 

The results of the association test performed by Neurosynth for the

eft and right striatal components are in Fig. 5 . Some posterior proba-

ility maps were unique for certain components. Posterior probability

aps with keywords related to motor function such as “motor control ”

nd “motor response ” were only associated with the first component of

he left and right striatum. The same result was found for maps related to

arkinson’s disease. The posterior probability map associated with the

eyword “age ” was only associated with the fifth right striatal compo-

ent. In general, the correlations obtained for right striatal components

ere smaller than the correlations obtained for the left striatal compo-

ents. There was also a lot of overlap within the set of posterior prob-

bility maps across components and hemispheres, but the correlation

alues associated with similar maps was different between components.

or instance, in Fig. 5 top, we can see that both the left component 3

light green) and the left component 4 (orange) are associated with the

reward ” posterior probability map. However, the left component 4 has

 bigger correlation with the “reward ” map then the left component 3.

he component-specific correlations values can be found in the supple-

ent section. 
8 
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. Discussion 

.1. Overview 

We identified 5 spatially distinct microstructural components for the

eft and right striatum using OPNMF. We also found an increase in clus-

er stability when performing a multimodal decomposition rather than

ecomposing T1w/T2w, FA and MD data independently. By using brain-

ehaviour PLSC, we found four significant latent variables (two for each

he left and right hemispheres) relating individual subject’s microstruc-

ural weightings in each component to behaviours and demographics.

inally, we also investigated how striatum clusters related to brain func-

ion using the Neurosynth database and ascertained some putative func-

ional relationship of the specific clusters that we describe. 

.2. Spatial striatal components and microstructure 

Compared to other recent parcellations of the striatum, we notice

hat our multimodal clusters segregate across both the caudate and the

utamen which have been observed in a recent ( Liu et al., 2020 ) multi-

odal parcellation of the striatum but not in other important data-

riven parcellations ( Janssen et al., 2015; Jung et al., 2014; Pauli et al.,

016 ). We also observe that the nucleus accumbens is encapsulated in

ts own cluster (component 4; orange) which is consistent with other

triatum decompositions mentioned above. 

Component 1 showed increased T1w/T2w in voxels corresponding

o the dorsal putamen as well as some part of the posteromedial cau-

ate. It has been observed that both FA and T1w/T2w are positively

orrelated with myelin density ( Uddin et al., 2019 ). However, FA was

hown to be a much stronger correlate of myelin content compared to

1w/T2w especially in subcortical grey matter structures ( Uddin et al.,

019 ). Hence, the higher proportion of T1w/T2w compared to FA in

omponent 1 might be attributed to another tissue microstructure prop-

rty, like iron concentration ( Péran et al., 2009; Tardif et al., 2016; Ud-

in et al., 2019 ). 

Component 2 describes high FA compared to other metrics in vox-

ls overlapping with a thin cluster along the anterior-posterior axis of

ateral caudate and putamen. High FA might suggest a preferred fi-

re orientation in this region and myelination, although FA is sensi-

ive to a wide range of cellular mechanism ( Tardif et al., 2016; Uddin

t al., 2019 ). High T1w/T2w signal also suggests increased myelina-

ion in this region ( Uddin et al., 2019 ), which combined with increased

A, could indicate the presence of fibre bundles. This may capture the

nterior-posterior fibre organization in the caudate nucleus and inferior-

uperior myelinated fibre bundles between the caudate nucleus and

lobus pallidus through the internal capsule, which has recently been

nvestigated using in vivo dMRI analyses and polarized light imaging in

otz et al. (2013) . 

Component 4 included voxels overlapping with the nucleus accum-

ens structure as defined in Haber et al. (1990) and a thin cluster around

he dorsal putamen. Component 4 describes increased FA and MD com-

ared to T1w/T2w. 

Component 5 is characterized by lower MD in some part of the in-

er anterior ventral caudate, the medial caudate body along the voxels

f component 3 and some part of the ventral putamen. Decreased MD

n these regions may suggest a denser tissue microstructure ( Beaulieu,

002; Sagi et al., 2012 ). 

The striatum has often been divided into functionally distinct re-

ions based on corticostriatal inputs as there are no clear cytoarchi-

ectonic parcellations of this structure. Tracing studies in non-human

rimates have identified a tripartite organization of the striatum based

n structural connectivity to the cortex into the limbic region (ventral

triatum), the association region (central striatum) and sensorimotor re-

ion (dorsolateral striatum) ( Haber et al., 1995; 1994 ). Similar findings

rom tractography studies using diffusion MRI in humans have been ob-

erved in Draganski et al. (2008) . The limbic region identified in ( Haber
9 
t al., 2006b; 1995; 1994 ) overlaps with our component 4 (orange in

ig. 3 ) that also segregates the nucleus accumbens from the rest of the

triatum. The association and sensorimotor regions from Haber et al.

2006b, 1995, 1994) do not overlap as clearly with other components

s our parcellation of the limbic region and component 4. However, we

till see similarities between the association striatal regions and our fifth

triatal component (dark green in Fig. 3 ), where both overlap with some

art of the anterior caudate and anterior putamen. The somatosensory

triatal region in Haber et al. (2006b, 1995) corresponds the most to our

omponent 1 (light purple in Fig. 3 ), comprised of the posterior putamen

nd posteromedial caudate. 

Although our map does not exactly recapitulate this tripartite organi-

ation, we do see some similarities. This might suggest that some extrin-

ic structural connectivity properties of the striatum might be captured

y the combination of intrinsic measures we used for our parcellation. 

It is also known that the striatum contains two histochemically dis-

nct compartments; the striosomes and matrix compartment ( Flaherty

nd Graybiel, 1994; Graybiel and Ragsdale, 1978; Holt et al., 1997 ), that

lso differ in their input-output organization ( Eblen and Graybiel, 1995;

imenez-Amaya and Graybiel, 1991 ). As the striosomes patches make

p only 15% ( Brimblecombe and Cragg, 2017 ) of the adult striatum

nd that these patches seems to be broadly distributed in the caudate

nd putamen ( Mikula et al., 2009 ), it is not clear how this binary com-

artmentalization would affect our decomposition. Furthermore, cur-

ent MRI protocols do not allow for the direct distinction between the

triosome and matrix compartment ( Blood et al., 2018 ) and it has yet

een shown if and how the striosomes and matrix compartment affect

he microstructural metrics derived from MRI that we used here. 

.3. Individual-level variation in microstructure & behaviour 

Microstructural components were also investigated at the individual

evel, where we assessed the relation between single-subject microstruc-

ure and behaviour. Using PLSC analysis, we identified two significant

Vs for each the left and right striatum. Left LV1 and right LV1 displayed

 similar pattern of increased MD across the left and right striatum corre-

ated with young age, male sex and some measure of motor performance

increased strength and endurance and decreased dexterity). The neg-

tive covariance between MD and age in the pattern uncovered by the

eft and right LV1 is consistent with evidence of decreased MD in early

dulthood in deep grey matter structures ( Lebel et al., 2008 ). The posi-

ive relationship between age and FA which is observed in left LV1 has

lso been established in Lebel et al. (2008) , although here, this pattern

s only observed in the left striatum. As for the behaviours, we note in-

reased strength and decreased dexterity as well as an above-average

erformance of the Flanker task in both left and right LV1. The motor

ehaviour covariance pattern in the left and right LV1 is consistent with

he sex effect observed in those LVs. Indeed, increased strength and en-

urance as well as decreased dexterity in males have been observed in

hose tasks before ( Bohannon et al., 2015; Hanten et al., 1999; Peters

nd Campagnaro, 1996 ) 

Left LV2 described a covariance mostly related to age and sex where

oung females exhibited a decrease in T1w/T2w across the left striatum

nd a decrease in FA in the putamen and the caudate nucleus (excluding

he NA and the ‘outer rim’ of the putamen). The positive relationship

etween FA and age has been observed in previous studies ( Lebel et al.,

008 ). Recent work has also identified a positive correlation between

1w/T2w and age during early adulthood, where a bilateral increase

f T1w/T2w was observed in the striatum until a peak and subsequent

ecline at around 50 years old ( Tullo et al., 2019 ). The left LV2 also

isplayed decreased strength and endurance. As for in the left and right

V1, we note that the motor pattern in left LV2 is also consistent with

he sex effect in that LV. 

The right LV2 displayed an inverse age-related pattern to the left

V2, where age positively covarried with FA in the entire striatum.

ge also positively covarried with T1w/T2w in the putamen and me-
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h  
ial caudate along the ventricle, while a negative covariance was ob-

erved between age and MD in the putamen. The positive relationship

etween age and FA in the right LV2 is consistent with findings in

ebel et al. (2008) .The pattern of older age and increased T1w/T2w

as also been observed in Tullo et al. (2019) . In terms of behaviour and

ther demographics, this LV correlated with male sex, below-average

erformance in the Flanker task as well as increased strength and en-

urance. 

As the female sample in this study has a slightly higher mean

ge than the males (mean female age = 29 . 01 ± 3 . 62 , mean male age =
7 . 71 ± 3 . 67 ), the correlation patterns between the significant LVs with

ge and sex might be affected. For instance, a true correlation between

n LV with age might also drive a correlation between the LV and sex or

ice versa due to the previously noted bias in the sample. To investigate

urther the effect of sex in our LVs, we performed the same OPNMF fol-

owed by PLS on males and females independently. We found that for

he left hemishpere, there was no significant difference between males

nd females in the striatum parcellation. Hence, we ran the PLS analysis

or the left hemisphere without the sex as a variable and obtained similar

Vs were the left LV1 mostly shows an effect of age and left LV2 shows

n effect of the motor behaviours as seen in Fig. 4 . As the right stria-

um parcellation was slightly different between males and females, we

onducted the PLS analysis independently between males and females.

e found that the microstructural partterns uncovered by the right LVs

ere different between males and females, probably due to the differ-

nce in the parcellation. However, the behavioural patterns were highly

imilar between the two groups. Indeed, the right LV1 for males and fe-

ales shows mostly an effect of age and motor related behaviours while

he right LV2 shows a stronger effect of impulsivity related behaviours,

imilar to what we show in Fig. 4 where the males and females were

ombined. More details on the sex specific analysis can be found in the

upplement. 

Moreover, relationships between brain structure and psychological

raits using mass univariate approaches have been shown to have low

eplicability while there exist robust associations between brain struc-

ure and non-psychological traits such as age ( Masouleh et al., 2019 ).

his previously observed robust relationship between brain structure

nd age paired with the low variability in the HCP behavioural data

ight explain why we see such a strong effect of age and sex on our

Vs compared to the other striatal related behaviours. In sum, we also

ote that the directionality of our PLSC results were as expected and we

bserved no laterality effects. 

As discussed in another study from our group ( Patel et al., 2020 ), the

ombination of OPNMF and PLS reduces the potential for false-positive

s we are analyzing spatial components of voxels rather than perform-

ng univariate testing on every voxel. PLS is a multivariate technique

hat relates multiple variables simultaneously as opposed to multivari-

te testing, thus accounting for some difficulties encountered in univari-

te testing.There are several multivariate techniques that we could have

sed to relate microstructural information to behaviours. Canonical Cor-

elation Analysis (CCA) is of particular note given its recent popularity

n the literature. CCA is similar to PLS as it also seeks to find a relation-

hip between two sets of variables by maximising the correlation be-

ween the two sets while PLS maximises the covariance ( Helmer et al.,

020 ). PLS has been used consistently to relate neuroimaging measures

o behaviour in studies relating morphometric similarity to networks

efined nodal similarity to individual differences in IQ ( Seidlitz et al.,

018 ), voxel-wise measures of atrophy to clinical measures to identify

 clinical-anatomical signature of Parkinson’s Disease ( Zeighami et al.,

019 ), age dependent patterns of grey matter volume covariance across

he lifespan ( DuPre and Spreng, 2017 ), and differing structural covari-

nce patterns between the anterior and posterior hippocampus that re-

ate to associative memory performance ( Nordin et al., 2018 ). Thus, we

elieve our use of PLS to investigate brain behaviour relationships is jus-

ifiable, and is in line with previous literature. Nonetheless, we note that

lthough the LVs uncovered by PLS represent maximally covarying pat-
10 
ern between the brain and behaviour variables into the latent space

 Krishnan et al., 2011; McIntosh and Lobaugh, 2004; McIntosh and

i š i ć, 2013 ) and not only brain-latent variable (LV) and behavioural-LV

elationship, the relationship between the brain and behavioural vari-

ble is still indirect and that the use of other multivariate techniques

o define brain-behaviour dimensions should be considered in future re-

earch. 

.4. Correlation with fMRI maps 

The Neurosynth reverse-inference framework found multiple cor-

elations between output components and posterior predictive maps

ssociated with reward, incentive and decision-making related map,

hich are functions that have been attributed to the striatum in pre-

ious studies ( van den Bos et al., 2014; Haber et al., 2006a; 2006a;

ung et al., 2014; Pauli et al., 2016; Stott and Redish, 2014 ). Corre-

ations with motor-related maps were stronger with putamen-related

lusters (component 1, light purple), which is consistent with previous

ndings associating the putamen to somatosensory processes ( Arsalidou

t al., 2013; Pauli et al., 2016 ). We found the strongest correlation with

eward-related words in the bilateral component 4, which mostly over-

aps with the nucleus accumbens. This is consistent with a recent finding

 Pauli et al., 2016 ). However, the small size of our other components

component 2, 3 and 5) resulted in a major overlap between the compo-

ents and the Neurosynth maps. Although all of the words are related to

reviously reported striatal fucntions, the component-map correlations

re not particularly specific in components 2, 3 and 5. 

We also note that the correlations uncovered by the Neurosynth

ramework are influenced by confirmation bias. For instance, studies

hat looked at reward or addiction related behaviours are more likely to

ention the striatum or vice-versa as it has long been thought that such

ssociations exists. 

.5. Choice of parcellation 

.5.1. Striatal clustering 

Previous parcellations of the striatum have used a combination of

euristic and contrast-based definitions. In recent years, the increased

uantity and quality of available MRI data have allowed for data-driven

arcellations that rely on no a priori assumptions on striatal organi-

ation, overcoming the limitations of past parcellation schemes. To

dentify spatial striatal components, previous studies have used cluster-

ng techniques such as K-means clustering ( Jung et al., 2014; Parkes

t al., 2017; Pauli et al., 2016 ), and decomposition techniques such

s PCA, ICA and probabilistic modelling, such as Gaussian mixture

odel ( Janssen et al., 2015 ). Amongst the variety of possible parcel-

ation schemes, one has to be careful in the selection of a cluster-

ng/decomposition algorithm as it depends heavily on the type of data

nd the aims of the study. 

Although OPNMF has been shown to be mathematically equivalent

o the K-means algorithm ( Ding et al., 2005 ), OPNMF was a suitable

ethod for this study as we aimed to investigate inter-individual vari-

bility in the subjects’ weightings. Sotiras et al. (2015) showed that

ompared to other decomposition techniques (PCA and ICA), compo-

ents captured by NMF seemed to reflect relevant biological processes

elated to age and were less prone to overfitting. The advantages of OP-

MF interpretability have already been noted in previous studies ( Patel

t al., 2020; Sotiras et al., 2015; Varikuti et al., 2018 ). Here, we took

dvantage of the flexibility of NMF decomposition while capitalizing on

 part-based representation of the striatum by adding the orthogonality

onstraint to NMF. We also note the data-driven symmetry between the

omponents obtained in the left and right striatum. 

.5.2. Multimodal vs. unimodal 

Although T1w/T2w, FA and MD are typically used in isolation, we

ypothesized that since each of these measures has differential sensi-
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ivity to the underlying cellular anatomy but still some overlap in their

ange of sensitivities (i.e they are all sensitive to myelin) ( Glasser and

an Essen, 2011; Tardif et al., 2016; Tullo et al., 2019 ), combining them

ould yield more robust parcels. Here, we note that the stability of the

ultimodal OPNMF decomposition was notably higher than the stability

f the unimodal decomposition, which provides evidence for the benefit

f integrating multiple metrics to construct a parcellation. 

There are multiple ways to obtain multimodal maps, however this

s not a method typically employed in the literature. One way to obtain

ulti-modal maps is to superimpose all the parcellation schemes de-

ived from one modality ( Eickhoff et al., 2018 ). In this method, the final

ultimodal parcellation is based on the overlap of the voxels that had

 similar cluster assignment in all the unimodal parcellation schemes

 Eickhoff et al., 2018; Wang et al., 2015; Xia et al., 2017 ). Although

uch parcellation schemes provide useful confirmatory information, the

oxels with ambiguous overlap between the distinct unimodal parcella-

ion schemes were not necessarily included in the final map, which can

ead to fragmented final multimodal parcellations ( Eickhoff et al., 2018;

ang et al., 2015 ). 

OPNMF and other similar methods, such as PCA and ICA, try to over-

ome this limitation by integrating multiple modalities into the parcel-

ation, making use of the confirmatory and complementary information

rovided by the multiple metrics. 

.6. Limitations 

An inherent limitation in this study is the lack of specificity regard-

ng the underlying mechanism of structural and diffusion MRI derived

etrics that we used. It is still not clear how specific aspects of tissue

icrostructure influence T1w/T2w, FA and MD. Other than myelin, the

1w and T2w signals are sensitive to the presence of macromolecules

nd iron concentration( Tardif et al., 2016; Uddin et al., 2019 ). FA and

D are also sensitive to a wide range of additional cellular proper-

ies including axonal density and orientation, water in the tissue and

he presence of different cell types ( Jones et al., 2013; Tardif et al.,

016 ). Although the combination of those microstructural metrics pro-

ides complementary and confirmatory information, it is still unclear

hat the underlying microstructure looks like in our identified striatal

lusters. As with most non-invasive imaging studies, the resolution used

n this study is subject to partial volume effects. Partial volume effects

ay affect metrics proportion in our striatal components, especially in

omponents 2, 4 that are adjacent to major white matter tracts which

ight be contributing to the increase of FA. Partial volume effects may

lso play a role in the high proportion of MD in component 3 as it is

djacent to the anterior horn of the lateral ventricle. Finally, due to the

ature of this research, image quality is an inherent limitation. Although

anual quality control was performed at every processing and registra-

ion step of this study, we acknowledge that image quality impacts our

ultimodal decomposition as well as the following multivariate analysis

elating microstructure to behaviours. 

. Conclusion 

In this work, we used a combination of three microstructural met-

ics to construct a part-based decomposition of the human striatum in

 healthy population using non-negative matrix factorization. By using

he stability and accuracy of OPNMF decomposition, we identified 5

patially distinct microstructural patterns for the left and right striatum

eparately. Then, we used partial least squares correlation to link inter-

ndividual variation in the striatal components to selected behaviours

nd demographics. Our findings suggest distinct microstructural pat-

erns in the human striatum that relate mostly to demographics. Our

ork also highlights the gain in clusters’ stability when using multi-

odal versus unimodal metrics. We note that the identified striatal com-

onents are associated with complex patterns of microstructure and be-
11 
avioural variation. Further, the striatal components appear to be func-

ionally relevant. 

This work can serve as a template for examining how one can investi-

ate subject-level variation that links brain and behaviour across numer-

us brain imaging measures. This may, in turn, allow for more specific

nterpretations of brain imaging findings that improve our mechanis-

ic insights on brain-behaviour relationships. Further, this work could

e applied in future studies of brain development and in the context of

europsychiatric disorders to parse heterogeneity. 
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