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Selective overweighting of larger magnitudes 
during noisy numerical comparison
Bernhard Spitzer1,​2* , Leonhard Waschke3 and Christopher Summerfield1

Humans are often required to compare average magnitudes in 
numerical data; for example, when comparing product prices 
on two rival consumer websites. However, the neural and com-
putational mechanisms by which numbers are weighted, inte-
grated and compared during categorical decisions are largely 
unknown1–5. Here, we show a systematic deviation from ‘opti-
mality’ in both visual and auditory tasks requiring averaging 
of symbolic numbers. Participants comparing numbers drawn 
from two categories selectively overweighted larger numbers 
when making a decision, and larger numbers evoked dispro-
portionately stronger decision-related neural signals over the 
parietal cortex. A representational similarity analysis6 showed 
that neural (dis)similarity in patterns of electroencephalo-
gram activity reflected numerical distance, but that encod-
ing of number in neural data was systematically distorted in 
a way predicted by the behavioural weighting profiles, with 
greater neural distance between adjacent larger numbers. 
Finally, using a simple computational model, we show that 
although it is suboptimal for a lossless observer, this selective 
overweighting policy paradoxically maximizes expected accu-
racy by making decisions more robust to noise arising during 
approximate numerical integration2. In other words, although 
selective overweighting discards decision information, it can 
be beneficial for limited-capacity agents engaging in rapid 
numerical averaging.

Healthy humans (n  =​  24) viewed sequentially occurring sym-
bolic numbers (samples: n  =​  10; range: 1–6, uniformly sampled) 
drawn from two categories, and were asked to indicate with a key 
press which category had the larger average (Fig.  1a). Categories 
were distinguished by their font colour (red versus green; visual 
condition) or the voice in which they were spoken (male versus 
female; auditory condition). Fully informative performance feed-
back followed each response. Discrimination performance (visual: 
68.3 ±​ 0.9%; auditory: 69.8 ±​ 1.2%) did not differ between auditory 
and visual conditions (Wilcoxon signed-rank test: P =​ 0.17).

We used a simple psychophysical model to understand the ratio-
nal policy for performing noisy numerical averaging in our task (see 
Methods). Model input Xi was the number occurring on each sam-
ple, i, normalized (for convenience) within the range −​1 to 1. The 
model was parameterized to allow two potential sources of loss dur-
ing averaging. The first, kappa (k), encoded a potential compression 
of the number line, allowing numbers to carry different weights in 
the decision: each sample Xi was transformed to a momentary deci-
sion value via a sign-preserving exponential function of the form 
(X +​ b)k, where b is an additive offset parameter. When k <​ 1, the trans-
fer function has a sigmoidal form that compresses outlying values  

(Xi ≫​ 0 or Xi ≪​ 0) relative to inliers (Xi ≈​ 0; Fig. 1b, light grey lines). 
The converse is true when k >​ 1 (see Fig. 1b, dark grey lines). The 
second source of loss was assumed to occur after the processing of 
each sample; that is, during numerical averaging or at the response 
itself7,8. To generate simulated model choices, we passed the differ-
ence in cumulative decision values for each category through a sig-
moidal function with inverse slope sigma (s), where higher values 
of s (that is, low slopes) indicate more noise in neural computation.

We then used our simulations to explore how the accuracy- 
maximizing policy changes under different values of compression, k, 
and decision noise, s. In the absence of noise (for example, in perfect 
averaging), the optimal policy is to leave the numbers uncompressed 
(k =​ 1); other policies discard numerical information before averag-
ing (Fig. 1c, dark grey lines). However, as integration noise increases 
(s ≫​ 0), the accuracy-maximizing value of k increases (Fig. 1c, light 
grey lines); in other words, accuracy is maximized by giving more 
weight to outlying numbers (for example, 1 and 6) than inlying 
numbers (for example, 3 and 4), just as ‘selective integration’ has 
been shown to maximize accuracy in the presence of higher integra-
tion noise2. This was the case both under no bias (b =​ 0; Fig. 1c) and 
under a bias towards overweighting larger numbers (b >​ 0; Fig. 2). 
In the latter case, the accuracy-maximizing policy gives especially 
high weight to large outlying numbers (for example, 6; right panel 
in Fig.  1b). In both cases, during noisy numerical averaging (for 
example, when capacity is limited and integration is leaky or imper-
fect), the best policy is to base choices principally on more extreme 
(outlying) values in the numerical sequence (that is, k >​ 1).

Turning to the human data, we examined choice probabili-
ties to estimate the influence of each sample (numbers 1–6) on 
the decision (Fig.  1d). In terms of absolute decision weight,  
in both the auditory and visual tasks, participants overweighted 
the higher numbers, 5 (relative to 2; Wilcoxon signed-rank tests: 
both P <​ 0.001) and 6 (relative to 1; both P <​ 0.001), when making 
their choices. Furthermore, the weight functions deviated signifi-
cantly from linearity (visual: F5,115 =​ 16.60; auditory: F5,115 =​ 17.35; 
both P <​  0.001). This behaviour was captured by fitting the psy-
chophysical model to the human data, maximizing the likelihood 
of choices at the single-trial level (purple dots). Estimated values  
of s (integration noise) averaged about 1.8 (see below), a value at 
which values of k >​ 1 maximize accuracy (Fig. 1c; see Fig. 2a for 
detailed simulations). Consistent with this policy, the obtained best-
fitting values of k (Supplementary Fig. 1a) significantly exceeded 1 
(visual: k =​ 1.95 ±​ 0.19; auditory: k =​ 1.91 ±​ 0.18; Wilcoxon signed-
rank tests: both P <​ 0.001; difference between conditions: P =​ 0.80), 
indicating an overweighting of outliers with a positive offset  
bias (visual: b =​ 0.44 ±​ 0.07, P <​ 0.001; auditory: b =​ 0.27 ±​ 0.06, 
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P  <​  0.001), which was slightly greater in the visual condition 
(P =​ 0.013), confirming the preference for large numbers (for exam-
ple, 6) over small ones (for example, 1). Note that ‘anti-compression’ 
for large numbers is the opposite of what would be expected from 
scalar variability; that is, if numbers were weighted according to 
Weber’s law9–12.

For comparison, the weights from an equivalent simulated 
observer with k =​ 1 (no compression) are shown in blue (Fig. 1d, 
dashed lines). A quantitative model comparison indicated that 

this model fit the data more poorly (Wilcoxon signed-rank test 
on Akaike information criterion (AIC) values: visual, P  =​  0.002; 
auditory, P =​ 0.004). Quantitative analysis also ruled out a model 
in which participants simply ‘counted’ the larger numbers (see 
Supplementary Information and Supplementary Fig. 1c). The intro-
duction of one further parameter encoding a leak in the integration 
process allowed the psychophysical model to capture the full pat-
tern of decision weighting as a function of sample position (1–10) 
and numerical value (1–6) (that is, 60 data points with 5 parameters;  
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Figure 1 | Task, model simulations and human behaviour. a, Example trial sequence from the visual task. Ten numbers appeared in red or green font 
separated by 350 ms. The task was to report whether the average (μ) of the red or green numbers was higher (see right). In the auditory task, participants 
compared the average of numbers spoken in a male or female voice. b, Function mapping of sensory inputs, X, onto a decision value, DV =​ (X +​ b)k for 
different values of k (light grey lines, k <​ 1; dark grey lines, k >​ 1) and b =​ 0 (left panel) or b =​ 0.2 (right panel). c, Predicted accuracy under different values 
of k (x axis) and integration noise, s (lines), where the light grey lines correspond to larger values of s (that is, noisier decisions; greyscale: s is increased 
monotonically from 0.2 to 4). Simulations are shown for b =​ 0 (see Fig. 2 for simulations with b >​ 0). The orange line indicates the values of k that lead to 
maximum accuracy given noise level s (max/s). d, Left panel: decision weights for numbers 1–6 in the visual task. The black line shows human data (n =​ 24) 
and the purple dots show the predictions of the best-fitting model with k =​ 1.95 and s =​ 1.75 (mean estimates over subjects). The blue dashed line shows 
the fitted model predictions for k =​ 1. The decision weight (left y axis) is expressed as ‘choice probability – 0.5’. Choice probabilities (right y axis) are 
inferred from the relative frequency of the samples’ category (red/green) being chosen at the end of the trial. The error bars show s.e.m. Right panel: same 
as the left, but for the auditory condition.
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Supplementary Fig. 1b). Inclusion of the leak both reliably  
improved the overall fits (Wilcoxon signed-rank tests on AIC val-
ues: both P  <​  0.001) and reduced the best-fitting estimates of s 
(visual: 1.11 ±​ 0.08 versus 1.75 ±​ 0.12; auditory: 1.29 ±​ 0.09 versus 
1.85 ±​ 0.12; Wilcoxon signed rank tests: both P <​ 0.001), suggesting 
that imperfect memory is itself a contributor to the cost of integra-
tion. Statistical tests with model and human as fixed factors showed 
no overall differences or interactions with experimental factors (all 
F <​ 3, all P >​ 0.05, corrected), confirming the ability of the model to 
capture human performance.

These findings suggest that during numerical averaging, deci-
sion values are ‘anti-compressed’ in precisely a way that will com-
pensate for ‘late’ noise in the integration process and consequently  

maximise rewards (Fig. 2a). To directly test whether human deci-
sion policies adapt to the level of late noise in the task, we conducted 
a new experiment in which the cost of integration was manipu-
lated directly in two distinct conditions. A fresh cohort of partici-
pants (n =​ 21) viewed sequential number samples (Supplementary  
Fig. 2a; red and green digit or dot displays, n =​ 8 samples, range 1–9)  
with instructions to compare averages along a single axis (for exam-
ple, red versus green) or multiple axes (for example, both red versus 
green and digits versus dots; see Supplementary Information for 
details). Fitting these data with the psychophysical model described 
above indicated that ‘late’ noise was indeed lower in the single-
axis condition (the ‘standard’ task: s  =​  1.33  ±​  0.22) than in the  
multiple-axis condition (‘multi-choice’ task: s  =​  4.80  ±​  0.82)  
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Figure 2 | Overview of model results and simulations for each experiment and condition. Left panels illustrate best-fitting mapping function (x axis: 
sensory input, X; y axis: decision value, DV). Right panels show simulated model accuracy (same conventions as in Fig. 1c) under the best-fitting 
parametrization in humans. Human kappa (kest, dashed vertical) and noise level (sest, solid) for each condition are highlighted in purple. a, Main experiment 
(see Fig. 1a,d; n =​ 24). b, Supporting experiment (see Supplementary Fig. 2; n =​ 21). In all conditions, kest was increased (>​1) towards the maximum 
predicted accuracy under the estimated noise level (sest). Note that in cases where kest fell short of the theoretical maximum (dashed purple versus dashed 
orange), the associated differences in predicted accuracy were relatively minor (<​1%).
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with a significant difference between the two (Wilcoxon signed-
rank test: P <​ 0.001).

Replicating the finding of anti-compression in the presence 
of noise (s ≫​  0), we found the best-fitting estimates of k in both 
tasks to be larger than 1 (Fig. 2b; see Supplementary Information 
for details) for both sample formats (digits and dots: all k  >​  1.5, 
Wilcoxon signed-rank tests: all P  <​  0.05, uncorrected). More 
importantly, in the multi-choice task, the estimates of k were sig-
nificantly larger (mean: 3.40 ±​ 0.48) compared with the standard 
task (mean: 1.60 ±​ 0.20; 2 ×​ 2 repeated-measures analysis of vari-
ance: main effect of task F1,20 =​ 12.92, P =​ 0.002). In other words, as 
we increased integration noise, the observed anti-compression also 
increased. We also again found evidence for a positive offset bias 
(see Supplementary Information for details), indicating that partici-
pants especially overweighted larger numbers (Supplementary Fig. 
2b). Lastly, the analysis revealed no significant differences in any of 
the above effects between digits and dots displays (all F1,20 <​ 3.88, all 
P >​  0.05), confirming that selective number integration occurred 
independent of presentation format (symbolic versus non-symbolic, 
see above for similar results for visual versus auditory). Together, 
across all study conditions, humans adopted a non-linear sampling 
policy that drove accuracy near to the model-predicted maximum, 
given their estimated noise level and bias (Fig. 2a,b).

To explore these effects at the neural level, we recorded elec-
troencephalograms (EEG) while participants performed the first 
experiment (Fig.  1a). All sequential samples were fully statistically 
independent, allowing us to analyse neural responses evoked by 

individual numbers in the stream (see Methods). Consistent with 
previous research13,14, we observed differences in the centro-parietal 
positivity (CPP) response following the onset of each number in the 
periods 290–700 ms (visual) and 500–800 ms (auditory) post-onset 
(Fig. 3a; all time bins P <​ 0.01, false discovery rate corrected). In the 
visual modality (Fig. 3b, left panel), the CPP response was larger for 
number 6, reduced for sample 5 and smallest for all other numbers, 
as indicated by post hoc tests (Wilcoxon signed-rank tests: 6 versus 5, 
P =​ 0.008; 5 versus 4, P <​ 0.001; whereas 4 versus 3, 3 versus 2 and 2 
versus 1, all P >​ 0.70; Bonferroni corrected). The auditory condition 
followed a similar pattern (Fig. 3b, right panel), albeit with noisier 
and lower-amplitude CPP effects (6 versus 5, P =​  0.28; 5 versus 4, 
P =​ 0.004; 4 versus 3, 3 versus 2 and 2 versus 1, all P >​ 0.40; cor-
rected). We fitted the neural amplitude modulations with the absolute 
decision weights obtained from the non-linear model (purple dots in 
Fig. 1d), which provided a better fit than the linear model for both 
auditory and visual conditions (both P <​ 0.02, Wilcoxon signed-rank 
test on regression deviances). Expanding the CPP analysis to encom-
pass sample order, we observed no interactions between order and 
number (both F <​ 1.4, both P >​ 0.20), suggesting that the overweight-
ing of larger numbers was invariant across sample positions (1−​10).

Next, we employed a multivariate approach (representational 
similarity analysis (RSA))6,15 to probe the neural encoding of num-
bers in more detail and link the neural representations back to cate-
gorization behaviour. We computed for each post-sample time point 
the representational (dis)similarity in EEG signals for each number 
from 1 to 6 in each of the two categories (12 ×​ 12 representational  
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Figure 3 | CPP analysis. Left panels: visual; right panels: auditory. a, Mean-subtracted EEG signals (n =​ 24) evoked by numbers 1–6 over centro-parietal 
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dissimilarity matrix (RDM), based on the Mahalanobis distance; 
see Methods). We then compared this with predicted RDMs that 
were created under the assumption that neural distance depended 
on: (1) the physical properties of the digit, (2) category member-
ship (for example, red versus green font), (3) parity (odd versus 
even), (4) numerical distance (that is, the pairwise numerical dif-
ference between any two numbers, independent of category), and 
(5) category-dependent numerical distance (see Supplementary  
Fig. 3a for details). We used recursive orthogonalization (see 
Methods) to ensure that each model RDM explained unique vari-
ance in the observed neural RDM from human subjects.

Figure  4a shows a plot of the time course of correlations 
(Kendall’s tau) between the five model RDMs and the human RDM 
for each subject in the visual condition. The neural patterns were 
dominated by a category-independent numerical distance effect 
(Fig.  4a, purple) that was significant from approximately 200–
700 ms after sample onset (Pcluster <​ 0.001; cluster-based permutation 
test); this can also be seen in the grand mean EEG RDM (Fig. 4b). 
However, additional effects of category (font colour), parity and a 
category-specific numerical distance effect (distance ×​ category) 
were also observed (all Pcluster  <​  0.01), with the category-specific 
numerical distance effect peaking late (Fig.  4a, green), consistent 
with a response-mapped representation. To further visualize these 
effects, we reduced the dimensionality of the dissimilarity matrix 
via multidimensional scaling. Visualizing the first three dimensions 
showed clear effects of numerical distance (x dimension), category 
(z dimension) and parity (y dimension) (Fig. 4c). Visual inspection 
of the grand mean EEG RDM (Fig. 4b) may suggest that a numerical 
distance effect might have arisen mostly by dissimilarity of the num-
bers 6 and 5 compared with the remaining numbers (1–4; see also the 
CPP analysis, Fig. 3). Interestingly, however, we found a statistically 
significant effect even when restricting the analysis to numbers 1–4 
(324–574 ms, Pcluster <​ 0.001). In other words, multivariate RSA dis-
closed aspects of a number line representation that were invisible to 
conventional parietal evoked signals (Fig. 3; see also Supplementary 
Fig. 3c). However, we observed no systematic EEG−​RSA effects in 
the auditory condition (Supplementary Fig. 3b).

Having established a numerical distance effect in the multivariate 
EEG patterns, we investigated whether the neural data predicted the 
distortions in numerical coding observed in the behavioural weight-
ing profiles (Fig. 1d). To test this, we estimated the best-fitting ‘neu-
rometric’ mapping function predicted from the EEG−​RSA patterns 
by generating model RDMs from hypothetical mapping functions 
parameterized by k and b (Fig. 4d). We exhaustively searched over 
values of k (0.4 to 4) and b (−​1 to 1) and correlated the predicted 
model RDMs (both for distance and distance ×​ category effects) with 
the EEG−​RSA pattern in each participant. The best-fitting param-
etrizations (in terms of maximum mean Kendall’s tau correlation) 
were characterized by values of k >​ 1 (mean: 2.52 ±​ 0.20, Wilcoxon 
signed-rank test: P <​ 0.001) and b >​ 0 (mean: 0.15 ±​ 0.05, P =​ 0.005) 
(Fig. 4e). In other words, the neurometric number mapping inferred 
from the EEG−​RSA mirrored both key aspects of the psychomet-
ric mapping inferred from choice behaviour: (1) exponential over-
weighting of outlying samples (that is, anti-compression) and (2) an 
overall weighting bias towards large numbers. Together, these results 
show strong correspondence of model simulations, choice behaviour 
and sample-level neural representations in demonstrating ‘optimal 
irrationality’2 or ‘rational inattention’16 in the presence of noise dur-
ing sequential information integration.

The present findings build on recent work in which participants 
compared the average magnitude in two streams of visual items 
occurring in parallel (for example, side by side on a screen). In 
this setting, they tend to ignore or downweight the locally weaker 
of the two simultaneously occurring samples1 and this behaviour 
can similarly be accounted for with a selective weighting policy that  
systematically discards decision information. Given a selective 

weighting policy, it is possible to construct equally valued streams 
A, B and C such that participants will systematically choose A >​ B, 
B >​ C and C >​ A; that is, they will show a classic violation of the 
rational axiom of transitivity2. Nevertheless, in both the present 
study and the aforementioned one, selective weighting maximized 
accuracy—that is, it was rational—if one assumes that noise cor-
rupts information integration2. We note that the selective weight-
ing policy observed in our experiments tended to overweight larger 
numbers (for example, 6) rather than all outliers (for example, 1 and 
6), as would be predicted by the rational policy under late noise. We 
leave it to future research to determine whether the offset bias that 
was observed in both experiments (although not in multi-choice 
conditions) depends in part on the framing of the task. Finally, 
recent work has used the selective weighting framework to provide 
a normative account of the ‘robust averaging’ (that is, downweight-
ing of outliers, not inliers) of decision information that occurs when 
stimulus feature values are distributed in an approximately Gaussian 
fashion across the experiment17. In all of these cases, humans seem 
to have evolved policies that discard information to increase the 
robustness of decisions in the face of noise corrupting the neural 
computations associated with information integration.

Behavioural signatures of decision weighting were also reflected 
in neural signals. The CPP response is an evoked centro-parietal 
potential that has previously been shown to build up during infor-
mation integration with an amplitude that reflects the strength of 
the available decision information13,14. Here, we observed a relatively 
larger CPP response for numbers 5 and 6 in both the auditory and 
visual domains. The CPP response is most likely related to the well-
described P300 potential18–20 and it may relate here to the detection 
of the information that is being used to form a decision21 or to evalu-
ation processes that unfold at the level of each individual sample19. 
The effects were discernable, but considerably more noisy, in the 
auditory domain compared with the visual domain. This was prob-
ably related to unavoidable time-varying differences in the specific 
physical input associated with each speech sample. Together, these 
findings offer independent corroborating evidence for the strategy of 
selective overweighting that we observed in participants’ behaviour.

The RSA results revealed a neural representation of an ordered 
‘number line’ for numeric visual symbols. Similar representations 
of numerical magnitude have previously been reported for non- 
symbolic numbers; for example, dot displays22–24, but not for number 
symbols and digits22–26. It is striking that neural patterns recorded 
at the scalp encode numerical magnitude even when other poten-
tially correlated factors have been accounted for (for example, visual 
similarity in digits themselves), and future researchers may wish to 
harness this finding to reveal other aspects of human numerical 
cognition. Here, however, we emphasize that in the visual domain, 
the neural representation of the number line was distorted in exactly 
the way predicted by behavioural data. Interestingly, although it is 
theoretically possible that the CPP response could account for the 
pattern similarity effects revealed with RSA, it seems unlikely that 
this is the case in our data. For example, we found that participants’ 
‘number line’ in decision weighting explained RSA variance not 
accounted for by the CPP response (Supplementary Fig. 3c). In addi-
tion, we observed no RSA effects for the auditory condition despite 
statistically reliable differences in the CPP response. The reasons for 
this discrepancy are unclear. It could be related to the difficulty in 
establishing high-precision neural patterns in time-locked data for 
time-varying speech items, or it might reflect computational differ-
ences in the processing of auditory stimuli.

Methods
Participants.. Healthy volunteers (n =​ 24; 12 females and 12 males; age: 26.6 ±​ 2.8) 
participated in the experiment after providing written informed consent.  
The study was approved by the ethics commission of the Free University Berlin 
and was conducted in accordance with the Human Subjects Guidelines of the 
Declaration of Helsinki.

http://dx.doi.org/10.1038/s41562-017-0145
http://www.nature.com/nhumbehav


6

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE HUMAN BEHAVIOUR 1, 0145 (2017) | DOI: 10.1038/s41562-017-0145 | www.nature.com/nhumbehav

LETTERS NATURE HUMAN BEHAVIOUR

Stimuli, task and procedure. On each trial, ten numbers (‘samples’) were 
presented in sequence at a rate of 350 ms (Fig. 1a). In the visual condition, digits 
(font: Arial, approximate visual angle: 1.8°) were presented at fixation in either 
a green or red font for 280 ms, followed by a 70 ms blank period. In the auditory 
condition, German number words were played with either a female or male voice. 
Speech samples were taken from a public repository (http://www.freesound.org), 
time-compressed to a common length of 350 ms (using the PSOLA algorithm 
in Adobe Audition CC; http://www.adobe.com) and loudness normalized. Each 
sample was independently and randomly drawn with uniform probability from 
a pool of 12 possible items consisting of the numbers 1−​6 in each of the two 
categories (that is, the number of samples drawn from each category was fully 
randomized). Following the offset of the final item in the sequence, participants 
were given 2 s to indicate by key press (left or right hand, counter-balanced 
between participants) which of the two sample categories contained the higher 
average numerical value. Median response times averaged 487 ms (visual) and 
484 ms (auditory). After 100 ms, correct responses were rewarded with a bell 
(‘bling’) sound, whereas errors were fed back by a ‘buzz’ sound. After a brief wait 
period (500–1500 ms, randomly varied), the next trial started. The onset of a trial 
(500 ms before sequence onset), as well as the response periods (350 ms after the 
onset of the last item in a sequence), were signalled by a small central fixation point 

briefly changing in colour (between grey and white). Participants were instructed 
to maintain fixation throughout all trials (including the auditory condition), and 
this was aided by a head support (SR Research) to avoid movements. After several 
practice runs, each participant performed six blocks of 100 trials (three in each 
modality condition, in alternating order), providing 3,000 sample presentations per 
modality and participant.

Psychophysical model. In our simulations, for convenience, we defined X as 
ranging between −​1 and 1 in six equidistant steps, corresponding to the six 
numerical magnitudes (1−​6) used in the experiment. We characterized the 
mapping of sample information X onto a subjective decision value (dv) as a family 
of (sign-preserving) exponential functions:

= +
| + |

× | + |dv X b
X b

X b (1)k

where k <​ 1 implies a relative downweighting and k >​ 1 a relative upweighting of 
outlying samples (Fig. 1b, left panel). The special case where k =​ 1 corresponds to 
a linear mapping; that is, dv =​ X. Parameter b accounts for a potential asymmetric 
weighting bias, in terms of an offset of the mapping function relative to its 
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Figure 4 | Representational similarity analysis. a, Time course of correlations (Kendall’s tau) between orthogonalized model RDMs for different sample 
features (see Supplementary Fig. 3a) and the observed EEG−​RSA patterns following each sample in the visual condition (n =​ 24). The coloured shaded 
regions show s.e.m. The marker lines on the bottom indicate significant differences from zero. For the auditory results, see Supplementary Fig. 3b. b, 
Grand-mean EEG−​RDM for a representative time window (200–600 ms) in the visual condition. c, Three-dimensional illustration of the first three 
dimensions (plotted on the x, y and z axes) of a multidimensional scaling of the EEG−​RDM shown in b. Red and green denote the sample colours (see 
Fig. 1a). d,e, Neurometric mapping functions estimated from EEG−​RSA. d, Middle and right: unidimensional model RDMs predicted under different 
parametrizations of hypothetical neurometric mapping functions (illustrated in left; y axis: hypothetical weight in neural encoding (a.u.)). e, Grand mean 
correlations (collapsed over distance and distance ×​ category RDMs from d) between model RDMs and observed EEG−​RDMs over values of kappa k and 
bias b. The dashed grey lines delineate the parameter space for b =​ 0 (symmetric mapping) and k =​ 1 (linear mapping). Maximum mean correlations were 
observed for values of b >​ 0 and k >​ 1 (see Results). The transparent mask highlights the parameter space of significant positive correlation with both the 
distance and the distance ×​ category RDM from d (Wilcoxon signed-rank tests; all pixels Pconjunction <​ 0.001, uncorrected and exceeding the symmetric 
linear model). The dots show the maximum mean tau for each participant (some dots are covered by others).
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indifference point (dv =​ 0). A value of b =​ 0 corresponds to a point symmetric 
mapping, whereas b ≠​ 0 implies an up- or downward-shifted asymmetric function 
(Fig. 1b, right panel).

Our initial goal was to evaluate model performance across different values 
of k and b. Here, it is important to consider that different parameterizations of 
the mapping function in equation (1) differ in the absolute decision value that is 
obtained by transformation of perceptual inputs, X. This absolute decision value is, 
in turn, related to the probability of a correct choice being made (see equation (4)).  
Assuming that decisional gain is a limited cognitive resource (that is, a quantity 
that should not change between the models we test; for example, reflecting an 
upper limit on the number of spikes produced by the relevant neurons), we 
computed for each transformation (equation (1)) its multiplicative gain factor, g:

=
∑ | + |

∑ | |
g

f b
f

(2)
k

which quantifies the extent to which a feature space, f (here, the six equiprobable 
values of X), is transformed into a dv space whose absolute values are larger  
(or smaller) than the absolute values in f. Using g as a normalization factor, the 
trial-level decision value, DV, is given by the sum over the 10 samples of each 
sequence (Fig. 1a):

∑= ×

=

dv c
g

DV (3a)
i 1

10
i i

where ci is a dummy variable that encodes the category of a sample (for example, 
cred =​ 1; cgreen =​ −​1). To additionally model a potential leak, l, of decision value over 
time (Supplementary Fig. 1b), we extended equation (3a) by a simple exponential 
function over samples, i (ref. 27):

∑= × ×
=

−dv c
g

lDV (3b)
i 1

10
i i 10 i

Lastly, the trial-level DV was transformed into a choice probability, CP, using a 
logistic choice function with noise term sigma (s):

=
+ −e

CP 1
1

(4)
s

DV

We refer to s as ‘late’ or integration noise, denoting noise that occurs at 
processing stages downstream from perceptual sample encoding. Such noise could 
arise during integration or at the response itself, but we note that the compact 
parametrization of late noise in equation (4) is equivalent to adding a (constant) 
noise term to each dvi.

To simulate model accuracy (Fig. 1c), model choices were generated by 
randomly drawing from a binomial distribution with a binomial probability, p, 
equal to CP, where CP was computed trial by trial according to equations (1–4). 
When fitting human choice data, we included a constant term to account for 
potential motor biases (for example, towards left versus right responses). To 
avoid parameter instabilities, we fitted the model without gain normalization and 
rescaled s by dividing it by g, which warrants formal equivalence to equations  
(1–4). Parameter estimates were obtained by minimizing the negative log-
likelihood of the model given each participant’s single-trial responses across 
values of k (0.1 to 10), b (−​1 to 1), s (0.01 to 8, unnormalized) and (in models with 
leakage) l (0 to 1). In two participants in the visual condition, the model without 
leakage (equation (3a)) yielded exceedingly large raw estimates of s. However, 
the group-level results were robust to either inclusion or exclusion of these 
participants. Quantitative model comparisons (for example, between exponential 
and linear models) were corrected for model complexity based on the AIC. To 
evaluate model performance against human choice behaviour, we again generated 
binomial model choices (simulations), but this time using the individual best-
fitting model parametrizations and the same sample sequences as those presented 
in the human experiment. We then compared the choice data of human and model 
observers using conventional statistical analyses. Choice probabilities associated 
with each sample number (1−​6) were inferred from the relative frequency of 
choosing a sample’s category (that is, its colour or speaker) at the end of a trial and 
were transformed into estimates of (signed) decision weight with an indifference 
point at zero (that is, decision weight =​ choice probability −​ 0.5; Fig. 1d, dual y 
axes). Evaluation against model predictions was complemented by model-free tests 
for symmetry (comparing the absolute decision weights of 1 versus 6, 2 versus 5 
and 3 versus 4) and linearity (an omnibus test of linear regression residuals across 
numbers 1−​6) of the human weighting functions.

EEG recording and analysis. We recorded 64-channel EEGs (BioSemi ActiveTwo) 
configured according to the extended 10–20 system. Ocular activity was recorded 
via adhesive electrodes placed in bipolar montages around the eyes (horizontal 
and vertical) and was additionally monitored using an EyeLink 1000 camera 
(SR Research). EEG signals were digitized at 2,048 Hz, off-line referenced to 

common average, filtered (0.5–45 Hz) and down-sampled to 256 Hz. The EEGs 
were corrected for eye blinks using adaptive spatial filtering28 and epoched around 
each individual sample (−​100 to 900 ms relative to sample onset). Bad channels 
were identified by visual inspection. Residual artefacts were rejected by excluding 
epochs with amplitudes of greater than 80 μ​V from the analysis. The artefact-free 
epochs were baseline subtracted (−​100 to 0 ms) and smoothed with a sliding 50 ms 
Gaussian kernel. EEG analyses were performed in MATLAB (R2016a; MathWorks) 
using functions from SPM12 (build 6470) for M/EEG (www.fil.ion.ucl.ac.uk/
spm/), including, FieldTrip (http://www.ru.nl/neuroimaging/fieldtrip) and custom 
MATLAB code.

CPP responses. All EEG analyses were performed on the individual sample level. 
In each participant and modality condition, the mean waveform (averaged over all 
samples) was subtracted from each individual epoch, effectively eliminating the 
stimulus-onset response to the current and subsequent samples (note that epochs 
overlapped with up to two subsequent sample onsets; Fig. 1a). Epochs of the same 
sample type were averaged and subjected to conventional statistical analysis. Based 
on previous CPP response findings14,20,29, signals were pooled over centro-parietal 
channels (CP1, P1, POz, Pz, CPz, CP2 and P2). Time windows for CPP analysis 
were identified using a leave-one-out procedure to preclude circular inference. For 
each participant, CPP amplitudes were averaged over the adjacent significant time 
bins (P <​ 0.01, false discovery rate corrected) that exhibited the strongest overall 
amplitude modulations in the remaining 23 participants based on non-parametric 
omnibus tests over sample types.

Representational similarity analysis. The pre-processed channel data were 
projected onto principal components retaining 99% of the variance30. Multivariate 
(dis)similarity was assessed in terms of the pairwise Mahalanobis distance between 
the mean-subtracted component patterns associated with each sample type 
(numbers 1−​6 per sample category, yielding a 12 ×​ 12 RDM at each time point), 
using the residual single-trial variance at each time point for noise normalization31.

To test the extent to which sample information was encoded in the time-
course of the EEG−​RDM, we created hypothetical model RDMs for the following 
features of interest (Supplementary Fig. 3a): (1) physical number, with minimum 
dissimilarity between identical numbers and maximum dissimilarity between all 
other pairs, regardless of sample category; (2) sample category, with minimum 
and maximum dissimilarity between same and different category samples; (3) 
numerical parity, with minimum and maximum dissimilarity between numbers 
of the same and different parity (even or uneven); (4) numerical distance, with 
dissimilarity linearly increasing as a function of the numerical difference between 
any two numbers, independent of sample category; and (5) category-dependent 
numerical distance, where the encoding of numerical distance within each sample 
category is the same as in (4), but is inverted between the two categories (in terms of 
a numerical distance ×​ category interaction—that is, a 6 in one category is predicted 
to be similar to a 1 in the other category). The latter is expected to occur if numerical 
value representations were response mapped; that is, if they systematically differed in 
driving left (for example, ‘red’) versus right (for example, ‘green’) key choices.

Each model RDM was recursively orthogonalized with respect to all other 
model RDMs using the Gram−​Schmidt process (Supplementary Fig. 3a). Then, 
each model RDM was correlated with the EEG−​RDM at each peri-sample time 
point using Kendall’s tau correlation coefficient. All correlations were computed 
over the upper RDM triangle, excluding all redundant elements and the diagonal. 
Significant correlations were identified using cluster-based permutation tests32 over 
time points (1,000 iterations, cluster-defining threshold P <​ 0.01, Wilcoxon signed-
rank tests, uncorrected). Subsequent analyses were performed on the mean EEG−​
RDM in a representative time window (200–600 ms). For dimensionality-reduced 
visualization, we used classical multidimensional scaling as implemented in 
MATLAB, selecting the dimensions with the largest three eigenvalues in explaining 
the grand mean RDM.

Supporting experiment. Methods and additional analyses for the supporting 
experiment are presented in the Supplementary Information.

Statistical analyses. Behavioural and modelling results were analysed using non-
parametric tests (two-sided) as detailed in the Methods and Results. Time windows 
of significant effects in neural data were identified using leave-one-out and 
permutation procedures, as explained in the Methods (CPP and RSA analyses). 
Complementary analysis of variance results were based on Greenhouse−​Geisser 
corrected degrees of freedom where appropriate.

Code availability. Custom code used in the analysis has been made available at 
https://github.com/summerfieldlab/Spitzer_etal_2017.

Data availability. The data that support the findings of this study are available at 
https://github.com/summerfieldlab/Spitzer_etal_2017. Raw EEG files are available 
from the corresponding author on request.
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