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A B S T R A C T

How will marine low-level cloudiness change in a warming climate? To answer this ques-
tion a better process understanding of low-level cloudiness is needed. This dissertation
uses a multitude of observations and large-eddy simulations to explore how meso-scale
patterns of shallow convection relate to this challenging question. This study focuses
on the downwind trades and its meso-scale patterns that only recently raised interest
based on the work of Stevens et al. (2020) who supplemented the traditional classes of
meso-scale patterns of the upstream trades. These new classes are named based on their
visual impression Sugar, Gravel, Flowers and Fish. Here they are further investigated in
terms of their climatic relevance, physical characteristics, atmospheric environment and
emergence.

The core of these investigations consists of deep neural networks that have been
trained to identify these patterns in satellite images. At the same time, the deep neural
networks proved to be a valuable tool to derive a common perception of subjectively
defined classes that do not have a ground truth. Although the crowd-sourced labels were
therefore very noisy, the neural networks ranked among the highest in inter-annotator
agreements.

The classification of the neural network reveals that the patterns are common to the
trades beyond the winter season in the western North Atlantic and can represent more
than 40 % of the observed variability depending on season and region. This variability
expresses itself not only in changes of the visual appearance but also physically in the
cloud cover. A linear relationship between the cloud cover and the cloud radiative effect
makes the processes leading to the patterns relevant for the climate.

The underlying physical processes of each meso-scale pattern are related to the air-
mass origin with an influence of diurnal variations that are potentially modulating the
large-scale factors. One large-scale factor that is most distinct among the patterns is wind
speed. Other factors are only related to a particular pattern but can be a necessity for the
pattern to form. Fish for example is associated with anomalously strong convergence.
Sugar favors warmer surface temperatures. Both the forcing of Fish and Sugar are related
to air-masses intruding from outside the trades, leaving Gravel and Flowers be the only
native trade-wind patterns.

Large-eddy simulations reveal that they are in general capable of replicating the
observed variability in meso-scale cloud patterns. However, they are unable to match
the observed vertical distribution of cloudiness in both their absolute values and their
variability in particular for Flowers and Fish. Nevertheless, the distribution of moisture
and the presence of meso-scale circulations indicates that the responsible processes for
the formation of the different patterns are captured and the simulations are a valuable
tool to complement the observations to gain a better process understanding.

Based on the relationships between large-scale forcing and mesoscale patterns found
in this dissertation, conditions preferred by patterns with higher cloud amount and
more negative cloud radiative effect are expected to occur less frequently in a warming
climate.
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Z U S A M M E N FA S S U N G

Wie wird sich die niedrige Bewölkung über den Meeren in einem sich erwärmenden
Klima verändern? Um diese Frage zu beantworten, ist ein besseres Verständnis der
flachen Bewölkung und dessen Prozesse erforderlich. In dieser Dissertation wird an-
hand einer Vielzahl von Beobachtungen und Grobstruktursimulationen untersucht, wie
mesoskalige Muster der flachen Konvektion mit dieser schwierigen Frage zusammenhän-
gen. Diese Studie konzentriert sich auf die mesoskaligen Muster die in den westlichen
Passatwindregionen aufkommen und erst kürzlich durch die Arbeit von Stevens u. a.
(2020) beschrieben wurden. Sie sind somit ergänzend zu den bisherigen Klassen der
mesoskaligen Muster die vorzüglich in den östlichen Passatwindregionen auftreten.
Diese neuen Klassen werden aufgrund ihres visuellen Eindrucks Sugar, Gravel, Flowers
und Fish genannt. Hier werden sie im Hinblick auf ihre klimatische Relevanz, ihre
physikalischen Eigenschaften, ihre atmosphärische Umgebung und ihre Entstehung
weiter untersucht.

Den Kern dieser Untersuchungen bilden tiefe neuronale Netze, die darauf trainiert
wurden, diese Muster in Satellitenbildern zu erkennen. Gleichzeitig erwiesen sich die
tiefen neuronalen Netze als wertvolles Instrument zur Ableitung eines gemeinsamen
Verständnisses von subjektiv definierten Klassen, für die es keine Grundwahrheit gibt.
Obwohl die von einer Vielzahl von Personen vergebenen Klassifizierungen sehr ver-
rauscht waren, erreichten die neuronalen Netze eine der höchsten Übereinstimmungen
zwischen den Beobachtern.

Die Klassifizierung des neuronalen Netzes zeigt, dass die Muster über die Winter-
saison hinaus im westlichen Nordatlantik verbreitet sind und je nach Jahreszeit und
Region mehr als 40% der beobachteten Variabilität ausmachen können. Diese Variabilität
äußert sich nicht nur in Veränderungen des visuellen Erscheinungsbildes, sondern auch
physikalisch unter anderem in der Wolkenbedeckung. Eine lineare Beziehung zwischen
der Wolkenbedeckung und der Strahlungswirkung der Wolken macht die Prozesse, die
zu den Mustern führen, für das Klima relevant.

Die den einzelnen mesoskaligen Mustern zugrundeliegenden physikalischen Prozesse
hängen mit dem Ursprung der Luftmasse zusammen, wobei tageszeitliche Schwankun-
gen eine Rolle spielen, die möglicherweise die großräumigen Einflussgrößen modulieren.
Eine großräumige Einflussgröße, die sich am deutlichsten von Muster zu Muster unter-
scheidet, ist die Windgeschwindigkeit. Andere Größen stehen nur mit einem bestimmten
Muster in Beziehung, können aber für dessen Entstehung notwendig sein. Fish zum
Beispiel ist mit einer anomal starken Konvergenz verbunden. Sugar bevorzugt wärmere
Oberflächentemperaturen. Sowohl Fish als auch Sugar werden von Luftmassen beein-
flusst, die von außerhalb der Passatwindregionen kommen, sodass Gravel und Flowers
die einzigen ursprünglichen Passatwindmuster sind.

Grobstruktursimulationen zeigen, dass sie im Allgemeinen in der Lage sind, die
beobachtete Variabilität in mesoskaligen Wolkenmustern zu replizieren. Sie sind jedoch
nicht in der Lage, die beobachtete vertikale Verteilung der Bewölkung sowohl in Bezug
auf die absoluten Werte als auch auf deren Variabilität, insbesondere für Flowers und Fish,

iv



nachzuahmen. Dennoch deuten die Verteilung der Feuchtigkeit und das Vorhandensein
von mesoskaligen Zirkulationen darauf hin, dass die für die Bildung der verschiedenen
Muster verantwortlichen Prozesse erfasst werden. Die Simulationen bilden somit ein
wertvolles Instrument zur Ergänzung der vorhandenen Beobachtungen, um ein besseres
Verständnis der Prozesse zu erlangen.

Auf der Grundlage der in dieser Dissertation gefundenen Beziehungen zwischen
großskaligem Antrieb und mesoskaligen Mustern wird erwartet, dass Bedingungen, die
von Mustern mit höherem Bedeckungsgrad und negativerem Wolkenstrahlungseffekt
bevorzugt werden, in einem sich erwärmenden Klima weniger häufig auftreten.
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Part I

U N I F Y I N G E S S AY





1
B A C K G R O U N D

In order to understand geometric shapes,
I believe that one must see them

— Benoit Mandelbrot (Mandelbrot, 2010)

1.1 importance of low-level clouds

Clouds are omnipresent and cover more than 70% of the earth at any time (Siebesma
et al., 2020). They occur at all latitudes and altitudes and play a primary role in the
planet’s radiative energy budget. On the annual average, they reduce the absorbed
energy by about −18 W m−2 at the top of the atmosphere (TOA) in the current climate
(Loeb et al., 2018). Depending on factors like the cloud type and latitude of occurrence
this so called Cloud Radiative Effect (CRE) differs. High, thin clouds for example are
less efficient in reflecting sunlight than low, in particular optically thick clouds. In fact,
thin high clouds trap more energy than they reflect, causing a positive CRE. In contrast,
the shortwave cloud radiative effect - the ability to reflect solar radiation - surpasses the
longwave cloud radiative effect - the ability to trap outgoing longwave radiation - for
low clouds. This negative CRE paired with the sheer abundance of this cloud type make
them largely contributing to the current climates’ net CRE and important for future
climate scenarios.

In particular over the oceans, marine low-level clouds contribute largely to a mean
cooling effect of clouds. How this low-level cloudiness changes in a warming climate
is however one of the leading questions in climate science. The uncertainty in tropical
low-cloud feedback to a doubling of CO2 largely contributes to the uncertainty of the
estimated equilibrium climate sensitivity (ECS; the equilibrium surface temperature
response to a doubling of atmospheric CO2) (Vial et al., 2013). Meehl et al. (2020)
emphasized that Earth system model experiments alone are not sufficient to reduce
the uncertainty in ECS as their estimates have stagnated over the last three decades.
Sherwood et al. (2020) show that additional lines of evidence are needed to reduce the
uncertainty by e.g. paleoclimate evidence and process understanding. With the low-level
clouds carrying most of this uncertainty, its processes need to be better understood.

A process that has attracted little attention in the past is the meso-scale patterning of
shallow convection into clusters, in particular in the downwind trades.

1.2 meso-scale patterns of shallow convection in the trades

The mesoscale and trade-wind convection share a common issue. They were both for a
long time hardly investigated. It wasn’t until Ligda (1951), who studied precipitating
echoes in radar observations that he could neither attribute to the micro-scale nor to the
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4 background

synoptic scale, coined the term "meso-scale". Just two years earlier, Joanne Simpson, who
did pioneering work on trade-wind convection, was derided about studying trade-wind
convection in general due to its assumed pettiness by senior researchers (Fleming, 2020).
She thankfully continued her pioneering work and among other insights recognized the
structure present in tropical clouds despite being limited to aircraft observations that
provide far less of an overview on the cloud patterning than satellite images enabled
later (Malkus and Riehl, 1964).

With the advent of the satellite era the patterning of clouds on many different scales
became visible. Especially, the dominant widespread stratiform layers in the upstream
trades at the western coasts of the continents attracted considerable attention (e.g. Agee
(1987)). Because these stratiform clouds have a strong negative net radiative effect which
is sensitive to slight changes in their characteristics (Wood, 2012), these clouds and their
patterning are still a very active field of research. However, the traditional classes of
this patterning, namely open and closed mesoscale cellular convection, are occurring
predominately in the mid-latitudes over cold ocean water upwelling at the western sides
of the continents (Muhlbauer et al., 2014).

Recently, Stevens et al. (2020) tied up to this history in an attempt to close a long
standing gap: do recognisable meso-scale patterns exists besides the ones in the upwind
trades, also in the downwind trades? The curiosity was led by the question regarding
whether shallow convection can alter the net energy balance at the TOA by means
of organization forms, like in the case of deep convection (Tobin et al., 2012). While
Stevens et al. (2020) did not answer this question, they did identify and agreed upon
four patterns of shallow convection that seem to be reoccurring in the western North
Atlantic winter trades. Fig. 1.1 shows an example cloud scene for each of the identified
patterns.

These patterns were chosen subjectively purely by their appearance and named
accordingly: Sugar, Gravel, Fish, Flowers.

• Sugar is named after the very fine dusting of cloud patches that are often arranged
by the large-scale flow.

• Gravel describes a cloud field that is characterised by cloud patches arranged
along arc-like or hexagonal structures at the meso-β scale (20 km to 100 km) whose
enclosures are often cloud free.

• Fish is the pattern containing the largest cloud patches and its organization looks
similar to a skeleton of a Fish. It is organized on the meso-α scale (200 km to
2000 km) as per Orlanski (1975). Its longitudinal cloud patch and the large clear-
sky areas enclosing it are both characteristic.

• Flowers are describing a collection of rather circular cloud patches on the meso-β
scale (20 km to 200 km) which are quasi-regularly distributed and well separated
from each other by clear-sky regions.

The proof that patterns of shallow convection exist in the downwind trades, in
particular in the North Atlantic trades, has been made by Stevens et al. (2020). Because
their patterns were purely based on the visual impression these cloud scenes made to
the 12 authors studying them, the following questions arise naturally:
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Sugar

Gravel

Fish

Flowers
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Figure 1.1: Meso-scale patterns of shallow convection in the trades as defined by Stevens et al.
(2020) and observed in Moderate Resolution Imaging Spectroradiometer images of
true color channel composite. Green overlay indicates landmasses with Barbados in
the western part of the image.

1. Are these meso-scale patterns of shallow convection important for the climate
system?

2. Are the patterns besides their visual appearance also physically distinct?

3. How do the patterns relate to cloud-scale and large-scale forcing?

4. Can large-eddy simulations help to gain a process understanding of the pattern
morphology?

This dissertation will address these questions by means of observations and large-eddy
simulations. First of all, the question of whether these patterns can even be efficiently
detected will be answered in the next section.





2
I D E N T I F I C AT I O N

To study the newly defined patterns of meso-scale organization of Stevens et al. (2020), a
method to detect these patterns consistently and quickly, preferably on global scale was
needed. The subjective definition of these patterns can be described quite well to other
humans during a training session with visuals, but is hard to formulate. Supervised
neural network architectures can directly infer the rules from human visual classifications
themselves without any abstraction. They are in this case advantageous to a traditional
rule-based algorithms. It should be noted though that several rule-based algorithms
have been developed to identify organization also in the field of meteorology (Beucler
et al., 2020; Tobin et al., 2012; Tompkins and Semie, 2017). However, they are often
oversimplifying and are dependent on cloud size, cloud number or specific to a certain
application. The struggle to find a rule-based algorithm that separates cloud scenes is
also reflected in Janssens et al. (2021), where 21 metrics have been tested to separate the
observed variance of shallow cloud patterns in the trades.

Study B also relies on two of these metrics, the mean object size and the organization
index (Iorg) to identify the different patterns. Although this combination describes well
the variability of shallow convection, it is not able to cover the different scales of patterns
noted in Sec. 1. It is restricted to the description of a fixed domain that might however
contain different forms of meso-scale patterns. For brevity this classification approach is
not further described here, but the reader is pointed to B.2.1. Here the focus is on an
object detection algorithm, which is able to classify subsections of a domain.

Image recognition with the help of deep neural networks (in the following just neural
networks) has developed quickly in recent years, but usage in geophysics was however
still limited. Study A show-cases how such an algorithm can be applied to spatial
geophysical problems that are often connected with visual classifications of e.g. extreme
weather patterns or land-use detection (Reichstein et al., 2019). It also lays out how the
workflow including the creation of labels can look like. In particular, it shows how to
detect the subjectively chosen patterns of shallow convection in the trades. Here the
main concepts are outlined.

2.1 design/workflow

Study A presents two deep neural networks: one object detection algorithm and one
segmentation algorithm. Here, the focus is on the object detection algorithm as its
classification format is closest to the human classifications that are explained in the
following section and is also used in some variant in the following physical analysis
studies C, D and E.

For the training of a supervised neural network, classifications of the subjects are
needed. Because the task to classify these particular cloud patterns was new, only the
classifications from Stevens et al. (2020) existed. However, one of the conclusions of
Stevens et al. (2020) is that the defined meso-scale patterns have different characteristic
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8 identification

Figure 2.1: Overview of domains used in this work and Stevens et al. (2020). MODIS image from
20th January 2020 in the background overlaid with elevation map of landmasses.

area-fractions. Gravel was found most often dominating the study area, while Sugar
has been noted by the authors to occur frequently but often did not dominate in the
10 deg x 10 deg domain they studied. It was therefore less often classified as they
only classified entire satellite images. To better reflect the variability of patterns in the
classifications, smaller sub-regions need to be classified. The example satellite image in
Fig. 2.1 illustrates how this rather small domain of Stevens et al. (2020) can contain several
meso-scale patterns. While the northern part would be labeled as Fish, the southern part
contains cloud patches that can be attributed to Sugar.

To consider these findings and increase the amount of labels to sufficiently train a
neural network, especially in case of noisy classes, a new workflow has been designed.

2.1.1 Labels

While Stevens et al. (2020) have classified an entire domain of 10 deg x 10 deg (see Fig.
2.1), study A increases the domain size to 21 deg x 14 deg and allows to classify sub-
regions. These labels were created in form of rectengular bounding boxes. In two internal
crowd-sourcing events at the Max-Planck-Institut für Meteorologie and the Laboratoire
de Météorologie Dynamique with a total of 67 participating scientists, almost 50.000 of
such labels were created based on 10.000 satellite images. They were captured by the
MODIS instrument aboard the satellites AQUA and TERRA. This quick growth in labels
was possible thanks to the scientists taught to identify the cloud patterns, who were
highly motivated as their own interest was often linked to clouds in the trades. For many
this was also a great opportunity to get a better feeling for these clouds as they normally
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focus on model simulations. Second, besides the region-season used in Stevens et al.
(2020) additional regions and seasons were added based on their similarity to the first.
For the similarity analysis large-scale cloud controlling factors were used and increased
the chance that images would contain the patterns. This analysis is further described in
A.11.1. Third, an online platform common for crowd-sourcing labels enabled a straight
forward classification. The participants were automatically served a random cloud scene
and were asked to draw bounding boxes around the patterns. An example of these
bounding boxes can be seen in Fig. A.3. Last, the bounding boxes approach allowed to
increase the domain size to 21x14 deg as shown by the dashed orange rectangle in Fig.
2.1 and the marking of several classes at one sight. Bounding boxes were chosen over
precise outlines to optimize for labeling speed rather than precision which in any case is
hard to achieve for these patterns with undefined boundaries.

2.1.2 Neural network

The deep neural networks used in studies A,C, D and E are Convolutional Neural
Network (CNN) RetinaNets. They are used with the ResNet-50 backbone that has been
pre-trained with a variety of different images and classes (Lin et al., 2018) making the
training process for the classification of new classes, here the classes of meso-scale
patterns of shallow convection, computationally less expensive. General features that
are useful for many object detection tasks like edge detection are already learned in a
pre-trained model and will only adjust slightly to the new task. In addition, the Keras
implementation enables an easy integration into the python framework many scientists
are familiar with.

While the neural network trained in study A is based on the visible images that
have been labeled, a second neural network is trained with the same labels but with
infrared images as input. These infrared images are captured by MODIS simultaneously
to the visual ones such that they cover the identical cloud scene. This infrared neural
network (NN) extends the application to night time images and also makes it rather
independent of the solar cycle and satellite viewing angle. The neural network trained
with infrared images could therefore be applied to a different imager, the Advanced
Baseline Imager (ABI) installed on Geostationary Operational Environmental Satellite
(GOES)-16. Because GOES-16 is a geostationary satellite, its sensors capture the research
area at a higher temporal resolution as compared to the MODIS imager flown on the
satellites AQUA and TERRA, which are polar-orbiting and capturing the area only
twice a day each. The comparison of the different NNs and image sources show a good
agreement to each other (C.9.1).

2.2 evaluation

The challenge of the development of an algorithm that should detect subjective classes
compared to those where consent exists is the lack of a ground-truth. The perception of
what a human or a car defines are universal and the quality of labels can be validated
against a ground-truth. In case of patterns of meso-scale shallow convection however,
even trained scientists might disagree on classifications as there are no clear boundaries
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of the patterns and nature’s variability is much larger than the canonical examples shown
in Fig. 1.1.

The NN in this case is rather trained to detect the joint consent of the scientific
community and as a consequence produces less noisy labels. This reduction of noise
becomes evident in the inter-comparison of the labels created by the NN and humans.
The NN ranks at the top with one of the largest agreements among all participants.

The neural network has therefore proven to have learned the skills to detect the newly
defined patterns of shallow convection in the trades and built a community consent.



3
I M P O RTA N C E O F M E S O - S C A L E S H A L L O W C O N V E C T I O N I N T H E
T R A D E S

The patterns were chosen purely subjectively by the visual impression they left on
trained scientists who defined the most recognizable ones in an effort described in
Stevens et al. (2020). This appearance based approach has been used already by Howard
(1803) and led to the distinctions of cloud types as seen from the ground and known to
people also outside the field. We know today that these visual distinctions have also a
physical meaning and are tightly connected to weather conditions. Whether the defined
patterns of shallow convection are meaningful as well and relevant to the trade-wind
region are valid questions. In this section they are addressed by answering the following
subquestions:

1. Do the patterns occur beyond the original study area and season and can they be
generalized to the broader global trade-wind regimes?

2. Do the patterns represent the variability in the trades or are they a marginal
phenomenon?

3. Is the variability in visual manifestations based on physical differences?

3.1 temporal and spatial distribution

Stevens et al. (2020) focused on a 10deg x 10deg region just east of Barbados in the
western North Atlantic trade-wind regime (Fig. 2.1). With their approach they attributed
about 37% of the cloud scenes in the winter time to one of the patterns. This can however
be seen as a lower bound, because their classification technique was very conservative
and only allowed clear and widespread patterns. Study C derives a similar percentage
of about 40%, but also quantifies that an additional 36% can be attributed to days with a
mixture of patterns. Only 20% could not be attributed to any of the four classes. (Tab.
C.2)

While 37% of occurrence already state the local importance of these patterns for the
northern hemispheric winter, the question remains, whether these patterns also describe
large parts of the variability in cloudiness in other regions of the globe, specifically other
maritime trade-wind regions. The manual classifications used for the training of the NNs
give already a hint that other regions with a similar atmospheric environment enclose
these patterns as well (not shown).

However, the trained neural network is able to extend these classifications to the global
scale. As Fig. 3.1 reveals, the four patterns are indeed present in all major ocean basins,
in particular in the respective trade-wind regimes. Individual patterns can dominate
the cloud structures with a frequency of occurrence of up to 50% and highlight the
importance they might have.

11
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Figure 3.1: Global distribution of meso-scale shallow convection patterns in 2017 based on the
neural network classifications

The patterns are not equally distributed and favour different geographical locations
which hint that different atmospheric environments might be necessary to cause these
patterns. This hypothesis is further strengthened by analysing the seasonal dependence
of these patterns. Fig. 3.2 shows this dependence for the North Atlantic.

During the winter season (DJF) initially chosen by Stevens et al. (2020) all patterns
are present with similar frequencies of occurrences albeit with slight differences in their
geographical distribution. Gravel and Fish are mostly confined to the downwind trades
and mainly occur only in the winter season. Sugar is showing no preferred season, but
is enframing the Inter-Tropical Convergence Zone (ITCZ) and is following its seasonal
migration. By contrast, Flowers expose a strong seasonal cycle with a peak in spring in
the upstream trades, which is traditionally associated with stratiform cloudiness.

3.2 physical impact

The frequency of occurrence alone however does not make the patterns relevant for the
climate system. A measure that is commonly used to identify the importance of clouds
is the CRE. It is a measure of how clouds affect the radiative energy budget at the TOA
and estimated by comparing the TOA-fluxes of clear-sky regions (Fnet,clear) to all regions
(Fnet,allsky).

CRE = Fnet,clear − Fnet,allsky (3.1)

From a negative CRE follows that cloudy regions have a cooling effect on the planet
relative to clear-sky regions. In contrast, a positive CRE would describe situations when
clouds warm the planet compared to clear-sky regions.

Study B presents such an investigation. Based on satellite products captured by the
satellite-born instruments MODIS and CERES (Clouds and the Earth’s Radiant Energy
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Figure 3.2: Seasonal distribution of meso-scale shallow convection patterns in the North Atlantic
in the (December-January-February [DJF]), transitional- (April-May-June [AMJ]) and
wet- (August-September-October [ASO]) season

System) the low cloud amount and the net CRE have been estimated. Grouped by the
detected patterns1 distinct CRE become visible (Fig. 3.3b).

Depending on the pattern, the net CRE differs. While it is negative for all patterns,
Flowers and Fish are able to reflect more sunlight than Sugar and Gravel. This is primarily
caused by the strong dependence of CRE on marine low-level cloud amount. Both
quantities have a linear relationship as seen in Fig. 3.3a. Flowers with their highest cloud
amount compared to the other patterns have also the highest cooling effect, while Sugar
is only half effective.

As a consequence, this investigation of the CRE reveals that these patterns of shallow
convection indeed matter for the Earth’s system energy balance. The CRE alone says
however little about the impacts of these cloud patterns in a changing climate. The
frequency of occurrence, the area covered and finally the characteristics of the patterns
themselves might change. A thorough understanding of the mechanisms that lead to one
pattern or the other is therefore important to gain. The following chapter will build the
basis for this understanding by characterising the patterns from a physical perspective
that will help to judge in Chapter 5 whether simulations capture the characteristics and
can be used to gain further process understanding.

1 Please note, the patterns are in this case distinguished by the metrics Iorg and mean object size (S). More
details can be found in study B.2.1
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Figure 3.3: Low cloud cover and net CRE for the different cloud patterns: Flowers (FL), Fish (FI),
Gravel (GR) and Sugar (SU)



4
O B S E RV E D C H A R A C T E R I S T I C S O F M E S O - S C A L E C L O U D
PAT T E R N S

4.1 cloudiness

The characterization of cloudiness follows naturally from the visual definition of the
patterns. The highly reflective cloud patches above the dark ocean surface attract the
viewer’s attention. The investigation of cloudiness beyond the spatial distribution of
cloud patches larger than a few kilometers is however challenging from space. Clouds
in the trades are often smaller than the resolution of satellite imagers and cannot be
resolved. Study C combines the satellite classification of the meso-scale patterns with
ground-based measurements from the Barbados Cloud Observatory (BCO) that are able
to resolve individual clouds but also their environment to overcome this challenge. With
profiling instruments like lidar and radar it is further possible to capture thermo-dynamic
profiles including the vertical cloud distribution with great detail.

The BCO (Stevens et al., 2016) is located at the most windward tip of the Caribbean
island Barbados (Fig. 2.1), capturing the undisturbed maritime trade-winds during the
northern hemispheric winter. It is equipped besides standard meteorological sensors
for pressure, temperature, humidity and wind among others with a microwave rain
radar and a cloud radar that are used extensively in this chapter. Additional radiosonde
launches to the ones at the nearby airport are done during site visits or field campaigns
(e.g. study F). The technical details of the instrument-specific analysis are left out for
brevity, but the interested reader is pointed to the respective section in study C.

The meso-scale contextualisation is common to all measurements. With the help
of the satellite observations the measurements from BCO are put into the meso-scale
context. Differences between the spatial and temporal perspective that the combination
of satellite observations with observations from a fixed ground-based station implies, are
solved in three steps. First, the neural network is applied to infrared images captured
by the ABI-instrument onboard the geo-stationary satellite GOES-16. This enables the
identification of patterns every ten minutes both day and night. Second, the classifications
are evaluated at the point of interest e.g. the BCO. Last the ground-based observations
are attributed to the most dominant meso-scale pattern within a given time window
(study C) or the closest classification (study D).

The satellite measured cloud cover in Fig. 3.3a can now be decomposed into its vertical
distribution. Two characteristics become visible. First, as Fig. 4.1 reveals the bimodality
of the echo fraction. One mode is observed at the Lifting Condensation Level (LCL) at
about 800 m while the other one is closer to 2 km just below the typical trade-inversion
height.

The cloudiness at the LCL is fairly constant and differences can be attributed to
precipitation that is included in the measure of echo fraction. The differences in cloud
cover that are observed in Fig. 3.3a are therefore primarily caused by the cloudiness
aloft. This is in agreement with Nuijens et al., 2015 who found that the variability in
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16 physical characterization

total echo fraction / %

Figure 4.1: Echo fraction measured at the BCO grouped by the four meso-scale patterns of
shallow convection. The wintertime (DJF) mean is included for comparison.

trade-wind cloudiness is not caused by cloudiness at the LCL but by cloudiness aloft.
Now, this variability can be attributed to different meso-scale patterns.

Besides the fairly constant cloud fraction of cumulus humilis across patterns, also
cloud geometries like cloud base height and cloud top height of traditional cloud types
did not show a relationship to the apparent meso-scale pattern. A stratiform cloud for
instance had the same cloud thickness when observed during Flowers or Fish. Only the
cloud length of stratiform layers increased from Sugar via Gravel to Fish and Flowers.
Although in case of Sugar and Gravel stratiform clouds are very rarely observed.

The intra-pattern variability found between 1.5 km and 2.5 km is the reason for the
differences in overall cloud cover and therefore the differences in CRE.

4.2 cloud-scale and large-scale drivers

Precipitation is one process that can play a major role in organizing convection through
the creation of cold pools. Although each individual precipitation event is rather local, in
bulk they are able to alter the form of organization as they actively force new convection
when the cold pools spread and eventually collide. In the most idealized case hexagonal
structures build up very similar to those seen in open mesoscale cellular convection
and Gravel. The meso-scale appearance can therefore be affected by cloud-scale events
but also by the large-scale through e.g. changes of the large-scale environment. These
influences manifest themselves in the inversion strength, the subsidence rate or in
averaged quantities of wind speed, temperature and pressure measured at the surface.

A quantification of these properties is therefore very valuable to further understand
the differences across patterns and also to provide guidance to evaluate and eventually
improve climate simulations.
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Study C examines these properties by the means of observational data from the BCO
as outlined in the previous section and ECMWF Reanalysis v5 (ERA5) reanalysis data.
While the examination of each individual property is left for the reader to read up in
study C the synergy is illustrated in Fig. 4.2.
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Figure 4.2: Schematic of the four meso-scale cloud patterns with their associated large-scale
forcing (right; determined by subsidence ω, horizontal wind u, sea surface tempera-
ture SST) and the thermodynamic profiles (left; characterized by specific humidity q
and potential temperature Θ). Vertical lines indicate the contrasting positions of the
thermodynamic profiles, purple being in the moist part and orange in the dry area.
Profiles origin from EUREC4A soundings (study F)

The large-scale forcing has been studied in both studies C and B. Despite the different
approaches, study B relying on ECMWF Reanalysis Interim (ERA-Interim) output and C
primarily on in-situ measurements, wind speed has been identified to separate best the
different patterns. The correlation of other large-scale factors peaks only for individual
patterns. Flowers are observed during high lower tropospheric stability (LTS), Gravel
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occurs during strong subsidence, Sugar is identified when surface temperatures are
higher than average and Fish occurs during cases of strong convergence.

4.2.1 Evolution of air masses

Understanding the large-scale environment and its evolution plays an important part in
understanding the processes leading to the cloud patterns but even more so in estimating
how the occurrence of patterns might change in a warming climate depending on
changing large-scale environments.

The evolution of air masses and their origin are addressed in study C by calculating
the back-trajectories for all patterns identified in the downstream North Atlantic trades.
The trajectories show that on average, the air masses have different geographical origins.
Despite the identification of Fish and Sugar in the downwind trades, their air masses
origin outside the trades. Only Gravel and Flowers are actually patterns that are native
to the trades, while the others are caused by intruding air masses. Fish originates from
dissipating cold fronts that intrude as shear lines into the trades from the north and give
the Fish pattern its characteristic latitudinal band-like structure. In contrast, Sugar air
masses have a southern origin, which is consistent with the earlier finding that Sugar
preferably occurs in the vicinity of the ITCZ.

4.2.2 Diurnal cycle

Besides the advection of air masses, the diurnal cycle modulates parts of the large-scale
forcing contributing to a detectable diurnal cycle in the pattern frequency and cloudiness
as highlighted by Fig. 4.3. The change in pattern-cloud fraction - the characteristic cloud
fraction of a particular pattern over the course of a day - only plays a minor role.
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Figure 4.3: Daily cycle of total cloud cover measured at the BCO (black line) and its breakdown
by the four patterns and an additional "NO" clear pattern category (colored bars).
Stacked bars exceed the total cloud cover because overlaps of NN-classifications are
counted towards each classification.
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It becomes visible again that Fish is a constantly forced pattern as it shows only a very
muted diurnal cycle. Sugar, Gravel and Flowers are much more distributed in time. Their
peak in cloud cover contribution shifts from Sugar around sunset, to Gravel at midnight
and Flowers at dawn.

The strong relationship of patterns with wind speed as seen in the previous section
holds also on the hourly timescale. During comparably calm conditions Sugar peaks in
its relative contribution to total cloud cover. When the wind increases after sunset, so
does the occurrence of Gravel. The Flowers peak when the wind drops again.

This small excerpt of study D underpins which significance the sub-daily and therefore
the meso-scale in its temporal sense has. Hence, processes on this scale need to be
understood and represented in simulations along with those on the cloud- and large-
scale.

These relations between the air mass origin, the large-scale forcing and the patterns
let the patterns with the larger cloud amounts, Flowers and Fish, become less likely to
occur. The widening of the tropics (Seidel et al., 2008) and the poleward shift of the
extra-tropical storm tracks (Ulbrich et al., 2008; Yin, 2005) in a warming climate would
reduce the conditions favoured by them and consequently reduce the average cloud
radiative effect observed in the downwind trades.
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T O WA R D S A P R O C E S S U N D E R S TA N D I N G W I T H L A R G E - E D D Y
S I M U L AT I O N S

The previous sections have shown how distinct the patterns on the meso-scale are besides
their visual impression. They have also shown how manifold these differences are and
that distinctions are observed across several scales, namely the large-scale, the meso-scale
and the cloud-scale.

The precise processes that lead to the different patterns are not yet well understood. A
field campaign that is helping to reveal and study these processes is the EUREC4A field
campaign because of its sampling strategy to measure the atmosphere across different
scales and because it was conducted in the region where the meso-scale patterns have
been observed for the first time: the downwind North Atlantic trades close to Barbados
(Stevens et al., 2021). However, even such a dense network of measurement platforms
can profit from additional simulations that can fill gaps and as such can help to gain an
understanding of the processes that lead to the different cloud formations.

Study E investigates if Large Eddy Simulations (LESs) are able to capture the meso-
scale variability and hence can serve as a tool to study the physical mechanisms behind
them. LESs are currently the best compromise in terms of domain size and the resolution
for a problem of meso-scale extent. With a horizontal grid-spacing of only a few hundred
meters and a domain size of over (500 km)2 they resolve most of the scales that have
shown to relate with the meso-scale patterns of shallow convection.

Whether simulations consequently replicate these patterns and are able to mimic
the observed variability is evaluated by means of the quantification done in the earlier
sections. For this purpose, study E conducted one continuous LES run with a grid-
spacing of 624 m (ICON-624m) and two additional nests with grid-spacings of 312 m
(ICON-312m) and 156 m (ICON-156m) covering 37 days in January-February 2020. ICON-
312m is however only run for a short amount of time as a proof of concept for future
investigations.

A general indicator of whether the patterns are represented or not is the visual
inspection of the spatial distribution of cloud patches, just like done in the earlier cloud
classifications. In this case, the cloud scenes are however not captured by an actual
satellite sensor but are simulated from the model output by a satellite forward operator.

This forward operation is shown for the infrared in Fig. 5.1. It depicts the synthetic
satellite images for the dates of the canonical pattern examples of Fig. 1.1. Indeed, the
visualization demonstrates that most of the scenes match the principle structure of the
patterns. This is further confirmed by the classifications of the neural network that has
been run for comparison on both the actual satellite images and the synthetic ones of
the simulations for the studied period.

It is however noticeable that the simulation tends to produce more Sugar- and Gravel-
like cloud patches at the cost of Fish and especially Flowers. In Fig. 5.1 Flowers are hardly
distinguishable from the Sugar scene independent of the LES’s resolution (see Fig. E.14

for comparison).
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Figure 5.1: Overview of simulated satellite images of ICON625 matching the cloud scenes shown
in Fig. 1.1. Different to Fig. 1.1 the infrared channel of ABI is shown. Cross-sections
along the black line are shown in Fig. 5.3.
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Figure 5.2: Cloud fraction variability grouped by meso-scale pattern identified in study G.

Looking at the vertical distribution of cloudiness, differences between Sugar and
Flowers do become visible mainly due to different amounts of cloudiness aloft the
lifting condensation level. Compared to the observations, the variability of the vertical
cloud distribution is however substantially reduced throughout the cloud layer for all
patterns. Especially the variability of cloudiness above the lifting condensation level is
not captured (Fig. 5.2). The Flowers with their characteristic stratiform layers are therefore
less well represented.

The large deviations in the echo fraction profile shown for the Fish are caused by two
superimposed factors. First, the Fish is not sustained in the simulations for the three
days it is continuously seen in the observations. While the pattern is passing over the
site in both cases as seen in the supplemental animation (10.5281/zenodo.5553825), the
Fish in the simulations get suppressed and eventually gives rise to Sugar and Gravel
which have much smaller cloud fractions. The second reason for the disagreement is the
difference in the vertical extend. The Fish pattern is much shallower in the simulations
and is capped at about 3 km while in the observations cloudiness is present up to 5 km.

https://www.doi.org/10.5281/zenodo.5553825
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In agreement with the simulated suppression, the inversion strength is much stronger
in the simulations hindering the convection to grow deeper. As a consequence less
precipitation is formed.

S N

Fish

S N

Flowers

S N

Sugar

S N

Gravel

Figure 5.3: Boundary-layer circulations inferred from anomalous wind speeds along the cross-
sections indicated in Fig. 5.1. The cross-sections are illustrated from south to north.
Arrows indicate circulations. Note the different scales of the colorbar.

Despite these differences, the main processes leading to the different patterns seem
to be captured. Fig. 5.3 shows that along the cross-sections marked in Fig. 5.1 a meso-
scale circulation is present in Fish and Flowers. This strengthens the hypothesis that
analog to the organization of deep convection a shallow circulation is also evident in
patterns of shallow convection. This circulation transports moisture upgradient and
increasingly suppresses convection in the expanding dry regions (Bretherton C. S. and
Blossey P. N., 2018). It should be noted that these circulations are evident without the
correct representation of the stratiform cloudiness. The cloud-top cooling is therefore an
unlikely driver of the circulation. The efficient cooling in the dry regions seems more
likely to play a role and is the subject of a future study.

Sugar and Gravel do not show a circulation on the same scale. This is expected because
Sugar does not show any signs of self-organization and Gravel has much finer granularity
than Fish and Flowers. However, Gravel, which visually reminds of colliding cold pools,
frequently reveals those in the simulation emphasizing their probable importance.

All in all, it can be concluded that the LESs are a promising tool to investigate the
physical processes leading to meso-scale patterns of shallow convection in further detail.
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C O N C L U S I O N

For the first time characteristic meso-scale patterns of shallow convection of the down-
wind trades are systematically studied. This dissertation bases its investigation on the
recently observed and defined patterns by Stevens et al. (2020). Because these patterns
were solely defined by their visual impression and their usefulness was unknown, this
work starts with automatizing the classification of these patterns and continues with
subsequent studies on their importance and physical characteristics. Finally, it is evalu-
ated whether large-eddy simulations can be used to fill in observations and gain insights
into the processes at play.

The key findings to the overarching questions posed in the introduction are summa-
rized as follows:

0. Can subjectively defined cloud patterns be efficiently detected?
The trained deep neural network is able to condense the noisy labels made by
humans to a common perception and can successfully be applied to satellite images
in a fraction of the time a human would need. The temporal and spatial coverage
of the analysis could therefore be extended.

1. Are the four meso-scale patterns of shallow convection important for the cli-
mate system?
The patterns of shallow convection observed in the downwind North Atlantic
winter trades are generic to all global oceanic trade-wind regimes and can reflect
more than 40% of the observed variability in cloudiness depending on the location
and season. In particular cases, a single pattern can occur up to 50% of the time
in a season. Their widespread occurrence paired with their different CRE makes
them an important phenomenon that is able to influence the earth’s energy budget.

2. Are the patterns besides their visual appearance also physically distinct?
The most dominant physical characteristic that separates the patterns from each
other is their stratiform cloud amount. The differences observed in CRE can be to
first-order attributed to their variability. Geometric cloud properties of cloud genes
were independent of the meso-scale context and did not change across patterns
with the exception of cloud size that is increased for Flowers and Fish.

3. How do the patterns relate to cloud-scale and large-scale forcing?
Precipitation may play a role in triggering new convection through cold-pools in all
meso-scale contexts except for Sugar. Changes in the large-scale forcing are playing
a major role on the meso-scale both in terms of daily variations, but also on sub-
daily timescales. Especially the average wind speed shows the highest correlation
with patterns across analyses. Other factors stand out only for particular patterns:
divergence in case of Fish, subsidence for Gravel, surface temperature for Sugar
and LTS in case of Flowers. With the knowledge gained above and the anticipated
widening of the tropics (Seidel et al., 2008) and poleward shift of the extra-tropical
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storm tracks in a warming climate (Ulbrich et al., 2008; Yin, 2005), the patterns with
higher cloud fractions will occur less often with reduced cloud radiative effects.

4. Can large-eddy simulations help to gain a process understanding of the pattern
morphology?
Large-eddy simulations are presented as a valuable tool to fill in observations
and to study the processes that lead to the different meso-scale cloud patterns.
However, even at horizontal grid-spacings of about 300 m the meso-scale structure
is not matched in all cases. In particular the Flowers and their associated variability
in stratiform cloudiness are hardly captured. Nevertheless, the distribution of
moisture and the presence of meso-scale circulations hint that most of the processes
that lead to the patterns are represented. In case of Flowers a higher vertical
resolution in particular at the inversion strength is hypothesized to result in
the characteristic stratiform layers. All in all, the LESs present themselves as a
promising additional tool to gain further process understanding of the meso-scale
patterning of shallow convection and hence may help to narrow down the tropical
low-level cloud feedback to a warming climate.

The answers to these questions wouldn’t have been possible without the efforts made
in collecting the data. While most of the data is described in the respective data section
of the studies and is left out here for brevity, two studies should explicitly be mentioned
here because the comprehensiveness of their data collection and processing justified
individual manuscripts. First, the radiosonde data used in study C partly originates from
the soundings launched during EUREC4A. Its measurement strategy, launch procedures
and quality control are elaborated in study F. Second, pattern classifications covering the
EUREC4A period have been in high demand by the scientific community to investigate
the manifold observations in the meso-scale context. The manual classifications made
during an online event are described in study G and used in E.
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O U T L O O K

This unifying essay illustrates the whole process of detecting meso-scale cloud patterns
in the trades, identifying their importance, characterizing them and their air masses
and finally point out the potential processes that might form and maintain them. The
peculiarity of the four classes is their ability to break down nature’s complexity into
separate - physically distinct, as shown in this work - categories, giving us the chance
to focus on the processes individually. Detailed studies can now investigate further
processes based on these classifications, for example Vogel et al. (2021) focus on the
characterization of cold pools that seem to play an important role in organizing at least
one of the patterns, Gravel, as shown by the conducted simulations.

This study focuses on the current climate. The large-scale forcing and air mass trajec-
tories might however change in a warming climate leading to different distributions of
these patterns. Changes might also occur on the meso-scale itself.

Because the simulations are able to reproduce the large-scale forcing as shown in this
dissertation, the model might be useful to study how the large-scale forcing changes in
response to a doubling of CO2, but also how changes in the occurrence of meso-scale
patterns might influence the larger scales. Fermepin and Bony (2014) show for example
that a change in tropical low clouds CRE affects the atmospheric overturning circulation
and also reinforces precipitation and surface wind speed, all factors that influence the
meso-scale patterns.

The meso-scale patterns themselves might also react to a warming and change their
characteristics. At least for the patterns Sugar, Gravel and Fish this might be tested by
rerunning the simulations of study E with an increased SST and analyse the intra-pattern
effects. Will the spacing between single cloud patches change because the strength of the
meso-scale circulations alters? Vogel et al. (2020) report that with increased sea surface
temperature (SST) the cloudiness will deepen, precipitate more and result in a reduction
of the inversion strength. Consequently the pattern type could be altered locally without
changes to the large-scale circulation.

The question of how these patterns relate to each other and whether they are partly a
continuation of the upstream studied forms of meso-scale organization, mainly open
and closed mesoscale cellular convection, is currently investigated by combining the
different datasets and classification methods.

This particular dataset and especially the manual classifications that made the de-
velopment of the neural networks possible can also spark new ideas and foster re-
search in other fields like computer vision. How can subjective classes without a
ground-truth be best utilized? An online hosted competition on the platform kag-
gle (https://www.kaggle.com/c/understanding_cloud_organization) to find the most
precise neural network raised large interest in the neural network community. With over
1500 teams participating, it shows the large potential that inter-disciplinary research
offers. The winning solutions were all based on ensembles of neural networks which

27

https://www.kaggle.com/c/understanding_cloud_organization


28 outlook

made the use for the studies presented unpractical due to the larger computational
efforts.

Future will tell, if Sugar, Gravel, Flowers and Fish will become similarly known as
the cloud classifications by Howard (1803) that are now known beyond the scientific
community. As shown here, they have their physical justification. In addition, they eased
the communication during the EUREC4A field campaign tremendously by allowing to
describe very complex cloud systems by a single word.

Any intelligent fool can make things bigger, more complex, and more violent.
It takes a touch of genius — and a lot of courage to move in the opposite direction.

— Ernst F. Schumacher (Schumacher, 1973)
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C O M B I N I N G C R O W D S O U R C I N G A N D D E E P L E A R N I N G T O
E X P L O R E T H E M E S O S C A L E O R G A N I Z AT I O N O F S H A L L O W
C O N V E C T I O N

The work in this appendix has been published as:

Rasp, Stephan, Schulz, Hauke, Bony, Sandrine, and Stevens, Bjorn (Nov. 2020). Com-
bining Crowdsourcing and Deep Learning to Explore the Mesoscale Organization of
Shallow Convection. Bulletin of the American Meteorological Society 101.11, E1980–E1995.
doi: 10.1175/BAMS-D-19-0324.1

The contributions of the authors to this publication are as follows:

SR and HS designed the data collection experiment and analysed the data. SB and BS
supervised the study and made the data collection an institute wide event. SR drafted the
manuscript with contributions of all co-authors. All authors proof-read several iterations
and accepted the final manuscript.
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Combining crowd-sourcing and deep learning to explore the
meso-scale organization of shallow convection

Stephan Rasp 1, Hauke Schulz2, Sandrine Bony3, Bjorn Stevens2

1Department of Informatics, Technical University of Munich
2Max Planck Institute for Meteorology

3Sorbonne Université, LMD/IPSL, CNRS

abstract

Humans excel at detecting interesting patterns in images, for example those taken from
satellites. This kind of anecdotal evidence can lead to the discovery of new phenomena.
However, it is often difficult to gather enough data of subjective features for significant
analysis. This paper presents an example of how two tools that have recently become
accessible to a wide range of researchers, crowd-sourcing and deep learning, can be com-
bined to explore satellite imagery at scale. In particular, the focus is on the organization
of shallow cumulus convection in the trade wind regions. Shallow clouds play a large
role in the Earth’s radiation balance yet are poorly represented in climate models. For
this project four subjective patterns of organization were defined: Sugar, Flower, Fish and
Gravel. On cloud labeling days at two institutes, 67 scientists screened 10,000 satellite
images on a crowd-sourcing platform and classified almost 50,000 mesoscale cloud
clusters. This dataset is then used as a training dataset for deep learning algorithms that
make it possible to automate the pattern detection and create global climatologies of the
four patterns. Analysis of the geographical distribution and large-scale environmental
conditions indicates that the four patterns have some overlap with established modes of
organization, such as open and closed cellular convection, but also differ in important
ways. The results and dataset from this project suggests promising research questions.
Further, this study illustrates that crowd-sourcing and deep learning complement each
other well for the exploration of image datasets. (Capsule Summary) Crowd-sourcing
and deep learning are combined to explore the meso-scale organization of shallow clouds
in the subtropics.

a.1 introduction

A quick glance at an image, be it taken from a satellite or produced from model output, is
often sufficient for a scientist to identify features of interest. Similarly arranged features
across many images form the basis for identifying patterns. This human ability to identify
patterns holds true also in situations where the features, let alone the patterns they
build, are difficult to describe objectively—a situation which frustrates the development
of explicit and objective methods of pattern identification. In these situations, machine
learning techniques, particularly deep learning (see Sidebar 1), have demonstrated their
ability to mimic the human capacity for identifying patterns, also from satellite cloud
imagery (e.g., Wood and Hartmann, 2006). However, the application and assessment
of such techniques is often limited by the tedious task of obtaining sufficient training
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data, so much so that (in cloud studies at least) these approaches have not been widely
adopted, let alone assessed.

Recently, Stevens et al., 2020 described a collective cloud classification activity by a
team of 13 scientists supported by the International Space Science Institute (ISSI). This
ISSI team aimed to identify mesoscale cloud patterns in visible satellite imagery taken
over a trade-wind region east of Barbados. Organization, or clustering, of clouds has
been shown to have important implications for climate in the case of deep convection
(Tobin et al., 2012), which raises the question to what extent this is the case in shallow
clouds. The ISSI-team’s hand-labeling effort resulted in around 900 subjectively classified
images. An initial application of machine learning to these images (by the first author)
proved promising but also highlighted the need for more training data in order to obtain
robust and interpretable results.

Based on these first insights the authors organized a crowd-sourced project (see Sidebar
2) that would allow us to collect a substantially larger set of labeled images. This activity
was designed to provide a better foundation for the application of machine learning
to the classification of patterns of shallow clouds, as well as to explore methodological
questions raised when attempting to marry crowd-sourcing with machine learning to
address problems in climate and atmospheric science. Specifically we sought to answer
four questions:

q1 How should a community-driven labeling exercise be set up to ensure a) a good
user experience for participants and b) the usefulness of the gathered data for
subsequent analysis?

q2 Can a diverse set of scientist identify the subjective modes of cloud organization es-
tablished by the ISSI team with satisfactory agreement to warrant further scientific
analysis?

q3 Can a deep learning algorithm learn to classify images as well as trained scientists?

q4 To the extent that a machine can be trained to classify large numbers of images, what
can be learned from applying this algorithm to global data?

In this paper, we present our findings. They suggest that, for suitable problems,
the combination of crowd-sourcing and deep learning allow scientists to analyze data
on a scale beyond what would be possible with traditional methods. Though our
main findings will be of particular interest to researchers interested in the mesoscale
organization of shallow clouds, the methods used to obtain them may be of more general
interest, and are presented with this in mind.

We begin by describing how the cloud patterns (or classes) we sought to classify were
defined, followed by a summary of the crowd-sourcing project. Then the results from
the human data is presented before we explain how deep learning is used to extend the
analysis. Finally, we summarize our findings as pertains to the above stated research
questions, from which inferences of potential relevance to future studies are drawn.

a.2 sugar , flowers , fish and gravel

Mesoscale patterning of shallow cumulus is a common feature in satellite imagery.
However, organization on these scales is largely ignored in modeling studies of clouds
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and climate. This applies to process studies with large-eddy simulations e.g., Bretherton,
2015; Rieck et al., 2012 as well as general circulation models, be it in traditional or
super-parameterizations (Arakawa and Schubert, 1974; Parishani et al., 2018).

Figure A.1: Canonical examples of the four cloud organization patterns as selected by the ISSI
team.

The prevalence of mesoscale patterning in satellite cloud imagery led the ISSI team
(Stevens et al., 2020) to identify four cloud patterns that frequent the lower trades of the
North Atlantic. They named these patterns Sugar, Flower, Fish and Gravel (Fig. A.1). The
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choice of new and evocative names was motivated by the judgement that the patterns
were different than those that have been previously described, for instance in studies of
stratocumulus or cold-air outbreaks. Support for this judgement is provided by an appli-
cation of the neural network from Wood and Hartmann, 2006 and Muhlbauer et al., 2014,
which was trained to distinguish between “No Mesoscale Cellular Convection (MCC)”,
“Closed MCC”, “Open MCC” and “Cellular, but disorganized”. When applied to the
scenes classified by the ISSI team the algorithm mostly resulted in the “disorganized”
classification (Personal communication with I. L. McCoy). Despite the lack of a simple
link between the patterns classified by the ISSI team and patterns previously described
in the literature, below we point out previously identified patterns that may be related
to the four patterns used here.

“Sugar” describes wide-spread areas of very fine cumulus clouds. Overall these fields
are not very reflective, do not have large pockets of cloud-free regions and, ideally,
exhibit little evidence of meso-scale organization. Often, though, they are embedded
within the larger-scale flow which gives them some structure. In strong flow, Sugar
can form thin "veins", or feathers, which have previously described as dendritic clouds
(Nicholls and Young, 2007).

“Flowers” are areas with isotropic cloud structures, each ranging from 50 to 200 km in
diameter, with similarly wide cloud-free regions in-between. This pattern overlaps to
some degree with canonical closed-cell MCC. Flowers, however, are often less densely
packed than typical closed cells, which only have narrow cloud-free regions at the edges,
and they are identified well outside of regions where stratocumulus are found (Norris,
1998). One hypothesis is that they are successors of more closely packed closed-cell MCC
which are in the process of breaking up.

“Fish” are elongated, skeletal structures that sometimes span up to 1,000 km, mostly
longitudinally. As noted by Stevens et al., 2020, these features appear similar to what
Garay et al., 2004 called actinoform clouds. They presented examples of these particularly
well structured cloud forms taken from all ocean basins, near but typically downwind of
regions where stratocumulus maximize. To the extent Fish are variants of the actinoform
clouds found by Garay et al., they may be more common than previously thought.

Finally, “Gravel” describes fields of granular features marked by arcs or rings. The
typical scale of these arcs is around 20 km. We suspect that these patterns are driven by
cold pools caused by raining cumulus clouds (Rauber et al., 2007). In this regard, Gravel
is fundamentally different from open-cell MCC, which has larger cells that are driven
by overturning circulations in the boundary layer. However, the line between these two
mechanisms can blur at times.

It is also interesting to compare our subjectively chosen labels to those of Denby, 2020

who used an unsupervised learning algorithm to automatically detect different types of
cloud organization (their Fig. 2). Some of their patterns bear resemblance to our classes,
e.g. "Sugar" seems to most closely correspond to their patterns A and B, "Gravel" to G
and H. However, their automatically detected classes appear less striking to the human
eye.
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a.3 crowd-sourced labels

To obtain a large pool of labeled images from the community, an accessible user interface
is needed. Zooniverse1 is an open web platform that enables researchers to organize and
present research questions in ways that enable contributions from the broader public
(see also Sidebar 2). Its flexibility in serving and presenting images, choosing between
different labeling tasks and its ability to monitor and organize the information associated
with the labeling activities made Zooniverse very well suited for our task.

Figure A.2: World map showing the three regions selected for the Zooniverse project. Bar charts
are showing which fraction of the image area was classified into one of the four
regions by the human labelers. Note that the areas do not add up to one. The
remaining fraction was not classified.

For our project we downloaded roughly 10 000 14°× 21° (lat-lon) Terra and Aqua
MODIS visible images from NASA Worldview. To select the regions and seasons, we
started with the Boreal winter (DJF) east of Barbados as a reference. Barbados is home to
the Barbados Cloud Observatory (Stevens et al., 2016). The clouds in its vicinity were
not only the focus of the ISSI-teams study, but have more generally come to serve as a
laboratory for studies of shallow clouds and climate (Bony et al., 2017; Medeiros and
Nuijens, 2016; Stevens et al., 2020, 2016). To obtain more images and sample a greater
diversity of clouds we subsequently added images from two further regions in the Pacific,
which were chosen based on their climatological similarity to the original study region
upwind of Barbados (Fig. A.2; see Supplement for details). Images were downloaded for
an eleven year period from 2007 to 2017.

Stevens et al., 2020 speculated that their protocol of assigning a single label to the
entire 10°× 10° image resulted in considerable ambiguity and disagreement between
labelers. In an attempt to minimize this issue we presented participants with slightly
larger images and experimented with ways to allow the labeling of multiple, and possibly
overlapping sub-regions. This was accomplished by allowing users to draw rectangles

1 https://www.zooniverse.org/projects/raspstephan/sugar-flower-fish-or-gravel

https://www.zooniverse.org/projects/raspstephan/sugar-flower-fish-or-gravel
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Figure A.3: Six example images showing annotations drawn by human labelers. Different line
styles correspond to different users. In addition the IoU values for each image and
class are shown in the table.

around regions where they judged one of the four cloud patterns to dominate (see
Fig. A.3 for examples). Participants had the possibility to draw any number of boxes,
including none, with the caveat that the box would cover at least 10% of the image. We
arrived at this setup after experimenting with other options, such as labeling subsections
of a predefined grid, or allowing users to label regions that they defined using polygons
with an arbitrary number of sides. We opted for the rectangles to increase labeling
speed and improve the user experience. Our thinking was that it would be better to
have less accurate but more plentiful data, and that given the vague boundaries of the
cloud structures, it was anyway doubtful that a more accurate labeling tool would add
much information. As we will show later, this thinking paid off for the machine learning
models we trained.
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The Zooniverse interface was further configured to serve participants an image ran-
domly drawn from our library of 10 000 images. After being classified by four different
users, images were retired, i.e. removed from the image library. In addition, no user was
shown the same image twice. With the interface in place, cloud classification days were
set up at the Max Planck Institute for Meteorology in Hamburg, Germany on Nov 2nd
and at the Laboratoire de Météorologie Dynamique in Paris, France on Nov 29th, 2018.
After a brief instruction at the start of the day and a warm-up on the training dataset,
67 participants, most of them researchers, from the two institutes, labeled images for
an entire day. The activity yielded roughly 30 000 classified images, i.e., each image
was classified about three times on average. Because an image could have sub-regions
with different classifications, the number of labels was somewhat larger with 49 000. On
average, participants needed around 30 s to classify one image, amounting to approxi-
mately 250 h of concentrated human labor. There was however considerable differences
among users, as the interquartile range in classification times ranged from 20 s to 38 s.
Overall, the four patterns occupied similarly large areas but notable differences occurred
depending on the geographic region and season (Fig. A.2).

a.4 inferences from human labels

Given the subjective nature of labels assigned by visual inspection, our first research
question was to what extent the human labelers agreed with each other. In the initial
classification exercise of 900 images reported in Stevens et al., 2019 a majority of scientists
agreed on one pattern in 37 % of the cases, significantly more than random. In this project,
in addition to choosing the category of the clouds, participants also had to choose the
location. To explore the agreement we started by looking at many examples, six of which
are reproduced in Fig. A.3. Many more can be found at Rasp, 2020b. The most notable
conclusions from this visual inspection are that users agreed to a high degree on features
that closely resemble the canonical examples of the four classes but also that there was a
lot of disagreement otherwise. Take Fig. A.3a where two out of three participant agreed
on the presence of Fish in the top half of the image; or Fig. A.3b where three out of
four participants recognized a region of Flowers. On the other hand Fig. A.3d shows an
example of an image with plenty of ambiguity. Also note that users applied different
methodologies when labelling, some labeling a single large region, other many small
regions. Overall, we came to the conclusions that, while certainly noisy, clear examples
of what was defined as Sugar, Flower, Fish and Gravel could be robustly detected.

Next, we aimed to quantify the agreement. To our knowledge there is no standard
way of evaluating subjective labels from multiple users. The most commonly used metric
for comparing a label prediction with a ground truth is the Intersect over Union (IoU)
score, also called the Jaccard index. Given two sets, A and B, it is defined as the ratio
of their intersection to their union, i.e., I = A ∩ B divided by U = A ∪ B. An IoU score
of one indicates perfect overlap, while zero indicates no overlap. We adapted the IoU
score to this task by first iterating over every image and then computing the intersect
Iimage and union Uimage for every user-user combination for this image. To compute the
final "Mean IoU between humans" we computed the sum of the intersect and union over
all images: I = ∑image Iimage and U = ∑image Uimage. This was done for each cloud class
separately. We also computed an IoU score for the "Not classified" area. Finally, the "All
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Figure A.4: (a) Mean IoU between humans. Dashed line represents random IoU; see text for de-
tails. (b) Mean IoU for each human participant and the two deep learning algorithms
for a validation dataset.

classes" IoU was computed by additionally taking the sum of I and U over all classes.
The results for the inter-human mean IoU are shown in Fig. A.4a.

At first glance, IoU values of around 0.2 seem low. In classical computer vision tasks
such values would certainly indicate low agreement. However, as mentioned above, this
dataset is different from classical object detection tasks in that there are more than two
labelers for most images and there are many cases in which one or more participants
did not label an image. In fact, the primary reason for the low mean IoU score are
zero values, which arise from some users detecting a feature while others did not. Take
Fig. A.3b as an example. Here, three of four users agreed to a high degree of accuracy
on the location of Flowers but the last user did not submit a label. This results in three
"no label"-"label" comparisons and three "label"-"label" comparisons. Even with perfect
agreement between the three Flower labelers, the mean IoU would only be 0.5. In reality
it is 0.44 for this example. These "no label"-"label" pairs with IoU = 0 make up 63% of all
user-user comparisons (see Supplement Fig. S2). Omitting these gives a mean IoU of 0.43.
To get a feel for what this value means consider the two Sugar rectangles in Fig A.3d,
which have an IoU of 0.46. The table at the bottom of Fig. A.3 shows the mean IoU values
for each of the example images. These numbers suggest that even for images where one
would visually detect a high degree of agreement between the users, the IoU numbers
are quite low. For this reason, the actual values should not be compared to other tasks
where the IoU is used. Rather, for this paper they simply serve the purpose of comparing
different classes and methods. To further illustrate this point we computed the IoU score
for many randomly drawn labels from the same number and size distribution as the
human labels, which gives an IoU of only 0.04. What the numbers do show is that there
are noticeable differences between the four patters. People agreed most on Flowers while
Fish proved more controversial. With regards to Q2, we came to the conclusion that,
despite the noise in the labels, there was sufficient consensus between the participants
on clear features to warrant further analysis, especially since as we will see the noise
will largely disappear in the statistical average.

Another question that the new methodology of labeling allows us to answer is whether
or not the patterns tend to span larger or smaller areas. Based on the Zooniverse labels,
Flower boxes tended to be largest, covering around 25 % (around 900,000 km2) of the
image. Fish and Gravel were somewhat smaller with a box size of around 20 % (around
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720,000 km2). Sugar spanned regions smaller yet with boxes only taking up 15 % (around
540,000 km2) of the image on average. Because the initial classification by Stevens et al.,
2020 required labelers to identify the entire scene, the relative infrequency with which
they detected Sugar is likely due in part to the infrequency with which it covers large
areas.

Figure A.5: Median of large-scale environmental conditions corresponding to the four patterns
as identified by the human labelers. Figures show deviations of (a) temperature,
(b) specific humidity and (c) vertical velocity (shown in ω = dp/dt) relative to the
climatological mean which is shown in the figure insets. The shading about the
lines shows the standard error, and hence the statistical difference between the mean
conditions associated with any particular pattern. The bar at the base of the figure
shows the average inter-quartile spread (for the level where this spread maximizes,
around 800 hPa) in the thermodynamic state associated with each pattern, indicating
that the conditions associated with any given pattern can vary considerably.

Further we can ask whether the four patterns, which were purely chosen based on their
visual appearance on satellite imagery, actually correspond to physically meaningful
cloud regimes. To investigate this, we created composites of the large-scale conditions
from ERA-Interim reanalyses2 corresponding to each pattern (Fig. A.5). To the extent
the ERA-Interim accurately represents the meteorological conditions in the region, the
composites suggest that Sugar, Flower, Fish and Gravel appear in climatologically distinct
environments. This is supported by the standard error being smaller than the difference
between the patterns. The standard error is a measure for how well the mean conditions
of a given pattern can be estimated and is defined as σ/

√
N, where σ is the standard

deviation and N is the sample size. At the same time, there is variability between
individual profiles within a composite, as shown by the inter-quartile range. Hence,
while the compositing suggests that the occurrence of a particular pattern is associated
with significant changes in the large-scale environmental conditions, this is clearly not
the only factor at play, and things like airmass history are likely also important.

Flowers tend to be associated with a relatively dry and cold boundary layer with a
very strong inversion (note that Fig. A.5 shows deviations from the climatological mean).
Sugar on the other hand appears in warm and humid boundary layers with strong
downward motion maximizing near the cloud base. For Fish and particularly Gravel,
on the other hand, the inversion and downward motion is rather weak. The fact that
Flowers and Gravel are essentially opposites in terms of their environmental profiles

2 https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
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suggests that they are not simply manifestations of closed and open-cellular convection,
which often transition smoothly into one another in similar large-scale environments
(Muhlbauer et al., 2014).

a.5 application of deep learning

While the 10 000 images labeled on Zooniverse already provide a useful dataset for
further analysis, they only cover a small fraction of the globe for a small fraction of time.
Only 0.6 % of the data available during the selected eleven year period were labeled. In
this section, we explore whether deep learning (see Sidebar 1) can help to automate the
detection of the four organization patterns and if so what can be learned from it.

Figure A.6: Human and machine learning predictions for four images from the validation set.
Note that images a) and b) are also shown in Fig. A.3.

The pattern recognition task can be framed as one of two machine learning problems:
object detection and semantic segmentation. Object detection algorithms draw boxes
around features of interest, essentially mirroring what the human labelers were doing.
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In contrast, segmentation algorithms classify every pixel of the image. Fig. A.6 shows
examples of these two approaches for images from a validation dataset that was not
used during training (see Rasp, 2020a for more, randomly chosen examples). Details
about the neural network architectures and preprocessing steps can be found in the
Supplement. Both types of algorithm accurately detect the most obvious patterns in the
image and agree well with human labels. Neither algorithm is perfect, however. The
object detection algorithm sometimes misses features, as is visible in Fig. A.6d. The
segmentation algorithm, on the other hand tends to produce relatively small patches
(Fig. A.6c and d) because, other than humans and the object detection algorithm, in
which the range of possible box sizes is an adjustable parameter, it has not been given
instructions to only label larger patches. An interesting and advantageous feature of the
segmentation algorithm is that, despite all training labels being rectangular, it appears to
focus on the actual, underlying shape of the patterns, as visible by the rounded outlines
of the predicted shapes. This suggests that despite the uncertainty in the human dataset,
the deep learning algorithms are able to filter out a significant portion of this noise and
manage to distill the underlying human consensus.

To quantitatively compare the deep learning algorithms against the human labelers,
we compute the mean IoU for each human individually as well as for the two algorithms
(Fig. A.4b). Both algorithms show a large agreement with the human labels for a random
validation dataset. The fact that the scores are higher than the mean inter-human IoU
directly reflects the fact that the algorithms tend to produce less noisy predictions.
Further analysis shows that the algorithms inherit some biases from the human training
labels. The frequency and accuracy of the predicted labels is higher for patterns with a
higher inter-human agreement, most notably flowers (Supplemental Fig. 3), which could
slightly bias the deep learning predictions.

The main advantage of deep learning algorithms is that they are very fast at inference,
one second per image compared to the 30 seconds a human needed on average, and they
are more scalable. This allows us to apply the algorithm to the entire globe (Fig. A.7a;
see Supplement for details). A healthy skepticism is warranted when applying machine
learning algorithms outside of their training regime (Rasp et al., 2018; Scher and Messori,
2019). A visual inspection of the global maps (see Rasp, 2020c for more examples),
however, suggests that the algorithm’s predictions are reasonable and physically inter-
pretable as discussed below. Naturally, over land the predictions have to be assessed
with greater care because no land was present in the training dataset. Nevertheless,
Fig. A.7a suggests that the algorithm even appears to correctly identify shallow cumuli
over the tropical landmasses as sugar.

To obtain global climatologies of Sugar, Flower, Fish and Gravel we ran the algorithm
on daily global images for the entire year of 2017 (Fig. A.7b–e). The resulting heatmaps
reveal coherent hotspots for the four cloud patterns. The spatial distribution of these
hotspots helps answer some further questions raised by the ISSI team’s study. For
instance, the heat maps indicate that organization is most common over the ocean.
Only Sugar – the one pattern characterized by its lack of mesoscale organization – was
identified over land (but keeping in mind the potential bias of the algorithm). Our results
also indicate that Sugar, followed by Flower, are the most common forms of organization
globally. This indicates a bias arising from the ISSI team’s focus on a single study region,
as large areas of Sugar are relatively rare near Barbados. A prevalence of Sugar in the
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Figure A.7: (a) Global predictions of the image segmentation algorithm for May 1 2017. The
colors are the same as in the previous figures. See Rasp, 2020c for more examples.
(b–e) Heatmaps of the four patterns for the year 2017.

trades adjacent to the deep tropics, and regions such as the Arabian sea, is consistent
with its coincidence in association with strong low-level subsidence and a somewhat
drier cloud layer (as seen by the large-scale composites, Fig. A.5) indicating that it might
be most favored in regions where convection is suppressed by strong subsidence from
neighboring regions of active convection, or strong-land sea circulations.

Flowers prevail slightly downstream of the main stratocumulus regions. Composites
of the environmental conditions in which they form show them to be, on average,
associated with large scale environmental conditions characterized by more pronounced
lower tropospheric stability, and a somewhat drier free troposphere (Fig. A.5). This
lends credence to the idea that they are manifestations of closed-cell MCCs. Whereas
the climatology of closed-cell MCC by Muhlbauer et al., 2014, their Fig. 5 shows similar
hotspots in the subtropics, it also has strong maxima across the mid and high-latitude
oceans. The absence of such hotspots in our classification of Flowers could indicate a bias
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of our algorithm towards the regions it was trained on. However, it could also suggest
that “Flowers” differ from typical closed-cellular convection in their scale and spacing.

Further downstream in the trade regions, Flowers make way to Gravel and Fish.
These two patterns are more geographically intertwined, which is in agreement with
the similarity of the environmental profiles in Fig. A.6. Interestingly, Gravel seems to
be relatively confined to the Barbados region, the west of Hawaii, and the southern
tropical Pacific near regions – like the South Pacific Convergence Zone – of climatological
convergence (Fig. A.2). Hence the prevalence of Gravel in the more limited classification
activity of Stevens et al., 2020, is not representative of the trade-wind regions more
broadly. There is also some coincidence of Gravel hot-spots with regions of open-cell
MCC regions as highlighted by the classification by Muhlbauer et al., 2014, specifically
around Hawaii and in the Southern sub-tropical Atlantic, but as with Flowers their
MCC algorithm picks up many more open cells in higher latitudes. This, again, suggests
that there may be a fundamental difference between the classes, something we already
suspected based on their physical driving mechanisms, i.e. cold pools versus boundary
layer circulations. Fish, appears linked to stronger synoptic upward motion (Fig. A.5c),
which the image snapshot from 1 May 2017 (Fig. A.6a) suggests is associated with
synoptic convergence lines, often connected to trailing mid-latitude fronts.

Globally, the patterns are coherent, with hot-spots for a given pattern appearing in
a few spatially extensive and plausibly similar meteorological regimes. This coherence
supports the hypothesis that the subjective patterns are associated with meaningful and
distinct physical processes. Though the combination of crowd-sourced labels and deep
learning helped answering many of the questions raised at the outset of this study it
also raises some new ones, for instance whether important cloud regimes are missing
from our classification. Unsupervised classification algorithms like the one deployed by
Denby, 2020 can be a good starting point to explore this question.

a.6 the four questions

In this paper, we described a project to combine crowd-sourcing, to detect and label
four subjectively defined patterns of mesoscale shallow cloud organization from satellite
images, with deep learning. The design and execution of the project raised a number of
questions, four of which have been highlighted in this paper, and the answers to which
we present as follows.

The first question (Q1) was concerned with how best to configure a crowd-sourcing
activity. We found that speed and ease of use for the participants is paramount. Drawing
crude rectangles on the screen only took tens of seconds for each image, whereas more
detailed shapes such as polygons would have taken significantly longer. Further, the
quickness of drawing boxes on an image meant that less of an attention span was
required from the participants. (Some even reported to have had fun.) For our task,
which involves judgements with inherent uncertainty, the added noise introduced by
crude labels turned out to be insignificant in the statistical average, as shown by the
“consensus" found by the deep learning algorithm. Based on our experience, quantity
trumps quality. This might, of course, be different for tasks where object boundaries are
more clearly defined.
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Our second question, Q2, asked whether sufficient agreement exists between the
human labelers to warrant scientific use of the labels. We believe that this is indeed
the case. As discussed in the section titled "Inferences from human labels" there is a
significant amount of disagreement between the participants, particularly because many
cloud formations did not fit one of the four classes exactly. However, more importantly
there was significant agreement on patterns that closely matched the canonical examples
of “Sugar”, “Flower”, “Fish” and “Gravel”. Taking a statistical average – training a deep
learning model can be viewed as doing just that – removes some of the ambiguity from
the labels and crystallizes the human consensus. Of course, the four classes chosen are
not a complete description of all modes of organization, and others could have been
defined. But the fact that the results are compatible with physical understanding suggest
that the four classes do indeed capture important modes of cloud organization in the
sub-tropics.

Q3 asked whether deep learning can be used to build an automated labeling system.
The answer is a resounding yes. Both deep learning algorithms used in this paper, show
high agreement scores. Further, visual analysis of the deep learning predictions suggest
that these are less noisy than the human predictions. In other words, the deep learning
models have learned to disregard the noise of the human labels and instead extract the
common underlying pattern behind points of agreement, i.e., the essence of the proposed
patterns. In addition, the deep learning models are both many orders of magnitude
faster than humans at labeling images, and less costly and difficult to maintain.

The application of deep learning enabled us to classify a significantly larger geograph-
ical and temporal set of data. This allowed us to look at global patterns of “Sugar”,
“Flower”, “Fish” and “Gravel” thereby addressing our fourth research question (Q4).
Here our main finding is that heat-maps of pattern occurrence are distributed in a
geographically coherent way across all the major ocean basins, and sample significantly
different meteorological conditions. Heat maps for two of the patterns (Flower and
Gravel) show some overlap with closed-cell mesoscale cellular convection, but only
over portions of the sub-tropics. As a rule the regions where patterns are identified
(particularly for Fish and Flower) are not in regions familiar from past work on cloud
classification.

a.7 inferences and outlook

The coherence of the heat maps for individual patterns suggests the presence of physical
drivers underpinning their occurrence; drivers that may change as the climate changes.
Using the same classification categories but a different way of classifying the images,
Bony et al., 2020 showed that differences in cloud radiative properties are associated with
different forms of organization. Our study thus lends weight to the idea that quantifying
the radiative effects of shallow convection, and potential changes with warming, may
require an understanding of, or at least ability to represent, the processes responsible for
the mesoscale organization of fields of shallow clouds. This might seem to be a daunting
task. However, if the occurrence of different modes of organization can be reliably linked
to large-scale conditions, reanalysis data or historical climate model simulations could
help reconstruct cloud fields. This could offer clues as to how meso-scale organization,
and hence cloudiness, has changed in the past, and may change in the future.
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This example helps highlight how crowd-sourced and deep-learned data-sets create
new ways to study factors influencing shallow clouds and their radiative properties, and
hopefully stimulates ideas for adapting the approach to other problems. The growing
accessibility of these new research methodologies makes their application all the more
attractive. Platforms like Zooniverse make it easy to set up a labeling interface free of
charge. Plus, even if we did not do so, it is also possible to make the interface open to
the public. Deep learning has also become much more accessible. Easy-to-use Python
libraries3 with pre-trained models for many applications in computer vision as well as
accessible online courses4 make it possible even for non-computer scientists to apply
state-of-the art deep learning techniques.

Our study also illustrates how crowd-sourcing and deep-learning effectively com-
plement one another, also for problems in climate science. Deep learning algorithms
typically need thousands of samples for training. These are not readily available for
most problems in the geosciences. A key lesson from our project is that, even for the am-
biguously defined images that characterize many problems in atmospheric and climate
science, it is feasible to create sufficient training data with a moderate amount of effort.
We found that 5000 labels (i.e. a 6th of what was collected here) were enough to obtain
similarly good results to the ones shown here. This translates to a day of labeling for
around 15 people.

This means that combining crowd-sourcing and deep learning is a promising ap-
proach for many questions in atmospheric science where features are easily – albeit not
unambiguously – detectable by eye but hard to quantify using traditional algorithms.
In our case, the combination of the two tools allowed us to generate global heatmaps,
something that would have been impossible with traditional methods. Potential exam-
ples of similarly suited problems in the geosciences are detecting atmospheric rivers
and tropical cyclones in satellite and model output5, classifying ice and snow particles
images obtained from cloud probe imagery, or even large-scale weather regimes.

data and code availability. All data and code are available at https://github.
com/raspstephan/sugar-flower-fish-or-gravel.
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https://www.nersc.gov/research-and-development/data-analytics/big-data-center/climatenet/
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Union’s Horizon 2020 Research and Innovation Programme and by the Max Planck
Society. We acknowledge the use of imagery from NASA Worldview, part of the NASA
Earth Observing System Data and Information System (EOSDIS).

a.9 sidebar 1 : crowd-sourcing

Crowd-sourcing describes projects where a task is collaboratively solved by a group of
people. This can be a small research group or a large group of internet users. One of the
first examples of crowd-sourcing in the natural sciences is Galaxy Zoo6, a project that
has citizen scientists classify different galaxy types and has produced 60 peer-reviewed
publications so far. An early meteorological example focused on estimating hurricane
intensity (Hennon et al., 2015). Recent climate projects on the crowd-sourcing platform
Zooniverse 7 8 asked volunteers to transcribe old, hand-written weather records. Thanks
to the collaboration of many individuals such projects produce a wealth of data that
would be unattainable for a single scientist. Note that for this paper we understand the
term crowd-sourcing to indicate active labor by the participants rather than providing
data through personal sensors or cameras. For a broader review of citizen science and
crowd-sourcing studies in the geosciences, see Zheng et al., 2018.

a.10 sidebar 2 : deep learning for vision tasks in the geosciences

Deep learning describes a branch of artificial intelligence based on multi-layered arti-
ficial neural networks (Nielsen, 2015). In recent years, this data-driven approach has
revolutionized the field of computer vision which up to 2012 was to a large extent
based on hard-coded feature engineering (LeCun et al., 2015). More specifically, the
success of deep learning in vision tasks is based on convolutional neural networks which
exploit the translational invariance of natural images (i.e. a dog is a dog whether it is
in the top right or bottom left of the image) to greatly reduce the number of unknown
parameters to be fitted. Deep neural networks also have many potential applications in
the Earth sciences, particularly where already existing deep learning techniques can be
transferred to geoscientific problems (Reichstein et al., 2019). A perfect example of this
is the detection of features in images, the topic of this study. One obstacle is that deep
learning requires a large number, typically several thousands, of hand-labeled training
samples. For Earth science problems, these are usually not available. For this reason,
previous studies that used deep neural networks to detect atmospheric features relied on
training data created by traditional, rule-based algorithms (Hong et al., 2017; Kurth et al.,
2018; Liu et al., 2016; Mudigonda et al., 2017; Racah et al., 2016). A notable exception
is the aforementioned study by Wood and Hartmann, 2006. They hand-labeled 1000

images of shallow clouds and used a neural network to classify them into four cloud
types, making it a predecessor to our study.

6 https://www.zooniverse.org/projects/zookeeper/galaxy-zoo

7 https://www.zooniverse.org/projects/edh/weather-rescue

8 https://www.zooniverse.org/projects/drewdeepsouth/southern-weather-discovery

https://www.zooniverse.org/projects/zookeeper/galaxy-zoo
https://www.zooniverse.org/projects/edh/weather-rescue
https://www.zooniverse.org/projects/drewdeepsouth/southern-weather-discovery
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a.11 supplemental material

a.11.1 Region selection criteria

The regions were selected ahead of the classification days according to a similarity
analysis of atmospheric conditions that resemble the conditions encountered during the
DJF season east of Barbados where these patterns were first found (Stevens et al., 2020).

Because the mesoscale organization of shallow cumulus is a relatively new research
topic, the meteorological conditions influencing it are primarily an educated guess.
Lower tropospheric stability (LTS), surface wind speed (FF) and total integrated column
water vapour (TCWV) are three parameters one could naively imagine to describe the
meteorological setting to a sufficient degree. Starting with the inter-annual seasonal
mean of these atmospheric properties at the region east of Barbados, we searched for
climatologically similar regions and seasons within a 120

◦-wide latitudinal belt (60
◦N

to 60
◦S) around the globe. We used a k-means clustering with eight clusters to find

similar patterns within our search perimeter. As input to the algorithms we used the
climatological means of LTS, FF10 and TCWV for each of the four seasons. The eight
clusters explain more than 90% of the variance in the dataset and provide large enough
regions to fit 21

◦ longitude by 14
◦ latitude boxes reasonably well.

1 2 3 4 5 6 7 8

a b

c d

Figure A.8: Cluster analysis of LTS, FF10, TCWV separated by season (DJF, MAM, JJA, SON).
The colors identify the 8 clusters as a result of the k-means algorithm. For a better
visual impression the clusters are sorted by cluster mean column integrated moisture
with cluster 1 being the driest. Black boxes indicate regions chosen for human-
classifications.

Fig. A.8 shows the clusters for the four seasons. Our analysis indicates that the
meteorological conditions over the Northwestern Atlantic change with season. This is
not surprising due to the migration of the ITCZ, but it illustrates that we shouldn’t
expect to see the same cloud patterns or at least the same distribution throughout the
year. The final choice of seasons and regions was made to match the climate of region 1

in DJF (Table A.1)
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Table A.1: Selected domains used for human-classification of cloud patterns.

Domain Bounds Seasons used

1 -61
◦E -40

◦E; 10
◦N 24

◦N DJF, MAM

2 159
◦E 180

◦E; 8
◦N 22

◦N DJF

3 -135
◦E -114

◦E; -1◦N -15
◦N DJF, SON

a.11.2 Deep learning models

Two deep learning models are used, one for object detection and one for semantic
segmentation. For object detection, an algorithm called Retinanet (Lin et al., 2018) is
used. Here we used the following implementation in Keras (Chollet and Others, 2015):
https://github.com/fizyr/keras-retinanet, which uses a Resnet50 (He et al., 2015)
backbone. The original images had a resolution of 2100 by 1400 pixels. For Retinanet the
images were downscaled to 1050 by 700 pixels. This is necessary to fit the batch (batch
size = 4) into GPU RAM.

For semantic segmentation, we first converted each human classification, i.e. all boxes
by one user for an image, to a mask. Sometimes boxes for different patterns overlap.
In this case, the mask is chosen to represent the value of the smaller box. Overall, the
amount of overlapping boxes is small, however, so that the resulting error is most likely
negligible. To create a segmentation model, we used the fastai Python library v1

9. The
network architecture has a U-Net (Ronneberger et al., 2015) structure with a Resnet50

backbone. For the segmentation model the images were downscaled to 700 by 466 pixels
(batch size = 6).

To create the prediction masks, first a Gaussian filter with a half-width of 10 pixels
was applied to smooth the predicted field. Then, for each pixel the highest probability
for each of the four patterns was used, if this probability exceeded 30%. This last step
counteracts the tendency to predict background, which is by far the most common class
in the training set.

a.11.3 Global heatmaps

To create the heatmaps, the segmentation algorithms was used. Predictions were created
for a 21

◦ longitude by 14
◦ latitude region at a time, with a windows sliding in 10.5◦ and

7
◦ increments over the globe. The highest pattern probability for the overlapping images

was then taken to create the global mask. This was necessary because the algorithm tends
to predict background at the edges of the image, a consequence of the human labelers
not drawing boxes that extend all the way to the edge of the image. The climatology was
created from one year of MODIS-AQUA data.

9 https://docs.fast.ai/

https://github.com/fizyr/keras-retinanet
https://docs.fast.ai/
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Figure A.9: Histogram of IoU values for each user-user comparison for each class. Zero values
mostly indicate cases where one user labeled a feature of a given class and the other
user did not.
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Figure A.10: (Top row) Total size of classifications for the two deep learning algorithms for a
random validation dataset. (Bottom row) Mean pixel accuracy (= mean IoU) for the
two algorithms stratified by pattern, also for a random validation set.
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Sugar, Gravel, Fish and Flowers:
Dependence of Mesoscale Patterns of Trade-wind Clouds on

Environmental Conditions

Sandrine Bony1, Hauke Schulz2, Jessica Vial1and Bjorn Stevens2

1LMD/IPSL, CNRS, Sorbonne University, Paris, France
2Max Planck Institute for Meteorology, Hamburg, Germany

abstract

Trade-wind clouds exhibit a large diversity of spatial organizations at the mesoscale.
Over the tropical western Atlantic, a recent study has visually identified four prominent
mesoscale patterns of shallow convection, referred to as Flowers, Fish, Gravel and Sugar.
We show that these four patterns can be identified objectively from satellite observations
by analyzing the spatial distribution of infrared brightness temperatures. By applying
this analysis to 19 years of data, we examine relationships between cloud patterns
and large-scale environmental conditions. This investigation reveals that on daily and
interannual timescales, the near-surface wind speed and the strength of the lower-
tropospheric stability discriminate the occurrence of the different organization patterns.
These results, combined with the tight relationship between cloud patterns, low-level
cloud amount and cloud-radiative effects, suggest that the mesoscale organization of
shallow clouds might change under global warming. The role of shallow convective
organization in determining low-cloud feedback should thus be investigated.

plain language summary

Satellite imagery shows that clouds in the trade-wind regions exhibit a large diversity of
patterns. Over the tropical Atlantic close to Barbados, the population of low-level clouds
can organize in different ways, adopting patterns evocatively referred to as: ’flowers’,
’fish’, ’gravel’, ’sugar’. This study shows that these different patterns, originally identified
subjectively, can be recognized more objectively from space measurements of infrared
radiation. It also shows that the relative occurrence of these different patterns relates
to the strength of the trade winds near the ocean surface, and to the stability of the
lower atmosphere. Finally, it shows that each pattern is associated with a different cloud
amount, and thus impacts the radiative cooling of the Earth differently. These results
suggest that under global warming, the change in environmental conditions might
perturb the frequency of different patterns, which might affect the Earth’s radiative
response to warming in a way that has not been previously considered.

b.1 introduction

Shallow cumuli are ubiquitous over the World Ocean, and therefore their sensitivity
to a change in environmental conditions has the potential to greatly influence Earth’s
radiation balance and climate sensitivity. Actually, the response of trade-wind cumuli to
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warming constitutes a primary source of uncertainty in climate model estimates of cloud
feedbacks (Bony and Dufresne, 2005; Medeiros et al., 2015; Vial et al., 2013). During the
last decade, much progress has been made in understanding the mechanisms through
which trade-wind cumuli could respond to warming (Bretherton, 2015; Klein et al., 2017;
Rieck et al., 2012; Vogel et al., 2016). However, despite having long recognized that
shallow convective clouds are patterned – or organized – on the mesoscale in many
different ways (Agee, 1987; Malkus and Riehl, 1964), the role that this organization might
play in cloud feedbacks remains largely unexplored (Nuijens and Siebesma, 2019; Vial et
al., 2017). Thus it remains an open question as to whether the mesoscale organization of
clouds, which is left out of most parameterizations and the many large-eddy simulations
over small domains, influences how shallow convective clouds respond to warming.

To help answer this question, here we first explore whether the observed organization
of shallow convection can be linked to variability in large-scale environmental conditions,
and whether the different patterns of organization imprint themselves differently on
the radiation budget. We do so by using observations over a region of the North-
Atlantic trades (windward of Barbados) where the shallow clouds are known to be
representative of the broader trades (Medeiros and Nuijens, 2016), and where the
mesoscale organization of shallow clouds has been well characterized (Stevens et al.,
2020). During boreal winter, this region is associated with sea surface temperatures
(SSTs) of 26 °C to 28 °C, a moderate large-scale subsidence in the free troposphere (about
25 hPa d−1 to 30 hPa d−1), and a predominance of shallow clouds (Stevens et al., 2016).
In this region, the prominent patterns of organization do not correspond to the classical
and well-characterized open and closed patterns of mesoscale cellular convection found
over colder oceans (McCoy et al., 2017; Wood and Hartmann, 2006). Rather, shallow
clouds in the trades appear organized in a less regular fashion, on scales ranging from
20 km to 2000 km. By inspecting ten years of satellite imagery, Stevens et al. (2020)
identified four recurrent patterns that they labeled ’Flowers’, ’Fish’, ’Gravel’ and ’Sugar’.
In their classification, Sugar consists of a dusting of very fine scale clouds with small
vertical extension, Gravel, of clouds organized along lines or arcs defining cells with
intermediate granularity, sometimes looking like cold pools. Fish, were so named due to
the appearance of a fishbone-like skeletal network of clouds separated by well defined
cloud-free areas, and Flowers denoted the presence of larger, seemingly more stratiform,
cloud structures in the form of very large but dispersed closed cells. Examples of these
four patterns are provided in Figure B.1a.

Considerable daily and interannual variability in the appearance of the patterning
(Stevens et al., 2020) offers an opportunity to investigate its co-variability with large-scale
meteorological conditions. Even so, the relatively weak variability of the large-scale
environment (e.g., 90% of SST variations are weaker than 2 K), requires a record longer
than then ten winter seasons already classified. To access a longer record, we first
attempt to identify the mesoscale patterns using an objective methodology, and use this
for exploring the co-variability amongst patterns, their radiative effects, and the large-
scale environment in which they form. We do so by first demonstrating (section B.2) that
the four prominent patterns of cloud mesoscale organization pointed out by Stevens et al.
(2020) project well onto a simple characterization of the spatial variability of infrared
brightness temperatures measured from satellite. Then, in section B.3, we investigate
relationships between the four cloud patterns and the large-scale environment in which
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they form. Finally, a summary of the main findings, and a discussion of their implications
for understanding low-cloud feedbacks, are presented in section B.4.

b.2 classification of mesoscale organization patterns

We follow Stevens et al. (2020) by analyzing shallow clouds over the tropical Atlantic
ocean East of Barbados (48W-58W, 10N-20N) during the boreal winter (DJF, 1 Dec. to
28 Feb.), for the period from Dec. 2000 through Feb. 2019. Our analysis is, however,
based on 3-hourly infrared (11 µm) brightness temperature (Tb), gridded (0.07°) data
from the GridSat-B1 dataset (Knapp et al., 2011). The calibration uncertainty of Tb is
less than 0.5 K and its stability better than 0.1 K/decade. To avoid situations obscured
by occasional cirrus associated with deep convection over South America or within the
ITCZ, we restrict our analysis to images for which the 25

th percentile of Tb is higher
than 285 K. Pixels for which 280 K ≤ Tb ≤ 290 K are associated with the presence of
marine low-cloud objects. This definition is purposefully conservative to exclude some
of the thinnest cloud features that may correspond to evaporating cloud fragments. The
threshold of 290 K corresponds to the temperature of cloud tops around 1 km, near the
penetration depth of the most buoyant surface parcels (Stull, 1988; Vogel et al., 2019),
and somewhat above the hazy layer of cumulus debris near cloud base. Finally, cloudy
areas (or cloud objects) are defined through a nearest neighbor segmentation (e.g. Tobin
et al. (2012). Each object is subsequently identified by its centroid, and area.

b.2.1 Organization metrics

The population of cloud objects within the 10°× 10° area is characterized through a few
metrics. Those include the total number of cloud objects N within the domain, the total
fractional area A of the domain covered by shallow clouds, and a clustering measure,
Iorg, defined by Tompkins and Semie (2017) based on earlier work by Weger et al. (1992).
Iorg compares the distribution of the nearest-neighbor distances among the centroids of
objects to that expected for a random distribution of objects. Iorg = 0.5 corresponds to
randomly distributed centroids, while Iorg values significantly lower than 0.5 correspond
to regular distributions, values higher than 0.5 correspond to ’clustered’ or ’organized’
distributions (Figure S1). These metrics are calculated for each 3-hourly satellite image,
and then daily-mean values are computed.

The visual inspection of the day-to-day variability of cloud organizations suggests that
at first order, the diversity of patterns can be characterized by only two metrics: the mean
object size, S = A

N × 104, which distinguishes patterns associated with a predominance
of small or large cloud objects, and Iorg. Over the period 2000-2019, S and Iorg exhibit a
large variability with fairly continuous distributions (Figure B.1b). By selecting situations
that fall in the upper or lower terciles of both the S and Iorg distributions, we define four
classes, or quadrants, that we refer to as A, B, C, and D, and which, as we show below,
match well with the four cloud patterns identified by Stevens et al. (2020).
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Figure B.1: (a) Illustration of the four prominent cloud patterns of shallow convective organization
pointed out by Stevens et al. (2020) over the tropical western Atlantic near Barbados.
The four satellite images (48W-58W;10N-20N) are derived from MODIS imagery. (b)
Characterization of the shallow convective organization using infrared geostationary
satellite data through two metrics: a convective organization index (Iorg) and the
mean object size (S). The lower and upper terciles of Iorg and S define four classes
of mesoscale organization (quadrants A, B, C and D). (c) Relative occurrence of the
four cloud patterns defined by Stevens et al. (2020) in each quadrant of the (S, Iorg)
distribution.
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b.2.2 Cloud patterns

Of the 900 images considered by Stevens et al. (2020), 815 were classified by at least one
person as being dominated by one of the four patterns, and 337 were classified robustly
(consistent classification by at least four people). To show that the cloud patterns are well
delineated in the (S, Iorg) space, we consider all the robustly classified images falling into
one of the four A-B-C-D quadrants (154 images), and ask how frequently each pattern
(Flowers, Fish, Gravel and Sugar) fall into each quadrant. Figure B.1c shows that the
four quadrants of (S, Iorg) discriminate among the patterns reasonably well. ’Flowers’
occurs predominantly in quadrant A, ’Fish’ in B, ’Gravel’ in C, and ’Sugar’ in quadrant
D. This is consistent with the visual impression that the Sugar and Gravel patterns are
mostly associated with small-scale cloud features while the Flowers and Fish patterns
are associated with more extended cloud features. According to the Iorg index, Flowers
and Gravel patterns are associated with a close-to-random distribution of cloud features,
while the Fish and Sugar patterns are associated with more clustered cloud objects.

The way in which the patterns distribute themselves in the (S, Iorg) space is largely
intuitive, the one exception being the association of Sugar with large values of Iorg.
As explained above, the cloud objects selected by the chosen brightness temperature
thresholds do not correspond to the entire cloud population that exceeds the lifting
condensation level, but only to the population of clouds whose top reaches the 290 K
isotherm (about 1 km altitude). Sugar situations are characterized by the predominance
of very fine scale clouds of very small vertical extent (Stevens et al., 2020). The rare
active clouds that reach the 290 K isotherm often appear as isolated, so that their spatial
distribution within the 10°× 10° area is characterized by a large Iorg. Whereas Flower
and Sugar are clearly separated classes, Fish and Gravel patterns show some overlap
with Flowers and Sugar respectively, an ambiguity that Stevens et al. (2020) also found
in the visual classification.

Given the satisfactory correspondence between the visually identified patterns and
the four (S, Iorg) quadrants, in the following we use the objective labeling to associate
scenes distributed in quadrants A, B, C, D with ’Flowers’, ’Fish’, ’Gravel’ and ’Sugar’,
respectively. Adopting this methodology allows us to use the full GridSat-B1 record to
diagnose the daily occurrence of the four cloud patterns and their co-variability with
environmental conditions.

b.2.3 Robustness of the classification

We test the robustness of the classification by repeating it using higher resolution MODIS
(1 km) channel 31, and GOES-16 (2 km) channel 13 brightness temperatures (Tables S1

and S2, Figures S2 and S3). MODIS provides twice daily data for the 2000-2019 period.
From GOES-16, we use 3-hourly data for the last two winter seasons. The higher-
resolution data changes the number of cloud objects, the mean cloud object size, and
the absolute value of Iorg (Figure S4). However, the day-to-day variability of the Iorg, A
and S metrics correlates well among the different datasets (Table S3). Despite their very
different spatial resolution (8 km vs 2 km), GridSat and GOES-16 classifications correlate
best. For the case of Iorg, the geostationary data (GOES, GridSat) correlate less well with
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MODIS, suggesting that Iorg may vary more with temporal sampling than it does with
resolution.

The daily time series of mesoscale patterns (A, B, C, D labels) determined from
the upper and lower terciles of the MODIS data (Figure S2) correlate well with those
identified using GridSat data (Table S3). The robustness of the classification provides
further justification for our association of the upper and lower terciles of the (S, Iorg)
distributions (the four quadrants) with ’Flowers’, ’Fish’, ’Gravel’ and ’Sugar’.

b.3 dependence of patterns on the large-scale environment

To explore how large-scale environmental conditions vary among the quadrants (pat-
terns), we use 6-hourly reanalyses of meteorological data as provided by the ERA-interim
product (Dee et al., 2011) for each DJF season from 2000 to 2019 and for several envi-
ronmental variables: the SST, the near-surface wind speed Vs, the zonal and meridional
components of the surface wind us and vs, the zonal wind shear between 700 hPa and
the surface, the large-scale vertical velocity at 700 hPa, the Lower Tropospheric Stability
(LTS, defined as θ700 − θ1000, where θ is the potential temperature, Klein and Hartmann
(1993)), and the Estimated Inversion Strength (EIS, Wood and Bretherton (2006)), defined
as EIS = LTS− Γ850

m (z700−LCL) where Γ850
m is the moist-adiabatic potential temperature

gradient at 850 hPa, z700 is the height of the 700 hPa level, and LCL is the height of
the Lifting Condensation Level assuming a surface relative humidity of 80%. We also
use layered free tropospheric relative humidity data from the Megha-Tropiques satellite
(Sivira et al., 2015). Each of these variables is computed as a daily-mean average over the
domain.

b.3.1 Day-to-day variability

To test whether different environmental conditions are associated with different patterns,
a quadrant composite of each daily-mean environmental variable is constructed. Most
of the environmental variables considered do not differ significantly, or differ only
marginaly, from one pattern to another (Figure S5). However a few variables, namely
Vs and EIS (equivalently LTS which correlates nearly perfectly (0.99) with EIS, but we
adopt EIS because it generalizes to warmer climates more readily), were discriminating
(Figure B.2).

The analysis shows that ’Flowers’ are associated with relatively cold SSTs, strong
surface winds and greater stability. ’Fish’ pattern were found over more moderate SSTs,
weaker winds and strong stability. ’Gravel’ was likewise associated with moderate SSTs
but strong surface winds and low stability. ’Sugar’ prevailed over the warmest SSTs,
when surface winds were weak and stability was low. It thus appears that EIS (or LTS,
Figure S6) best discriminates the patterns with small vs large S: the patterns associated
with large cloud objects (Flowers and Fish) predominantly occur in situations with
a more stable lower troposphere. This is consistent with the expectation that larger
stratiform cloud fields are to be expected in situations with enhanced stability (Klein and
Hartmann, 1993; Wood and Bretherton, 2006). Vs best discriminates the type of convective
organization (Iorg): random to more regular organizations of cloud centroids (Flowers
and Gravel, both associated with low Iorg values) tend to occur when the trade-winds
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Figure B.2: Large-scale environmental conditions (daily-mean SST, Vs and EIS) composited over
the 2000-2019 period as a function of the mesoscale cloud patterns (FL=Flowers;
FI=Fish; GR=Gravel; SU=Sugar) inferred from GridSat data. Black markers indicate
the mean of the distribution, thin vertical bars the range between the 25

th and 75
th

percentile values, and thick lines ± the standard error on the mean.

are strong (Vs ≥ 8 m s−1), while the more ’organized’ distributions (Sugar and Fish)
tend to occur when the trades are weaker. Overall, the cloud patterns that correspond
to the most contrasted S and Iorg metrics, namely the Flowers and Sugar patterns, are
those that occur in the most contrasted environments. Repeating this analysis using the
MODIS classification (Figure B.3) leads to similar conclusions.

b.3.2 Interannual variability

The analysis of daily variability was extended to explore interannual variability by com-
paring year-to-year variations of DJF means, each DJF mean being computed by filtering
out the days obscured by upper-level clouds or without cloud pattern classification.
Once again, the variability of Iorg and S derived from GridSat-B1 and MODIS datasets
are consistent with each other (Figures B.4a-b). The interannual relationships between
these metrics and environmental conditions are also consistent with those found at the
daily timescale: Iorg anomalies exhibit a negative correlation with Vs anomalies, and S
anomalies exhibit a positive correlation with EIS anomalies (Figures B.4c-d, Table S4).
On the other hand, the correlation between these metrics and SST (whose time evolution
is shown in Figure S7) is not significant at the interannual timescale.

For each season, the relative prominence of the four patterns is consistent with the
Vs and stability anomalies of that season (Figure B.4e). For instance, the 2009-2010

DJF season which was characterized by an anomalously weak Vs (Figure B.4c) and
an anomalously strong stability (Figure B.4d) was associated with a predominance of
‘Fish’. In contrast, the 2013-2014 DJF was associated with a very strong surface wind
and a predominance of ‘Gravel’ and ‘ Flowers’ patterns, while the 2017-2018 DJF was
associated with weak stability and was mostly associated with ‘Gravel’ and ‘Sugar’.
The association between cloud patterns and large-scale environmental conditions (as
characterized by Vs and EIS) pointed out at the daily timescale is thus able to also explain
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Patterns derived from GridSat−B1
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Figure B.3: Scatter plot of daily-mean values of EIS and near-surface wind Vs over 2000-2019.
The mesoscale cloud patterns classified as Flowers, Fish, Gravel or Sugar using (left)
GridSat or (right) MODIS observations are indicated in colors. Also reported is the
mean (EIS,Vs) value computed over the whole period for each cloud pattern. Thin
bars indicate the 25

th and 75
th percentiles of the distributions, and thick bars indicate

± the standard error on the mean.

the year-to-year variations of the spatial organization metrics and the predominance of a
specific mesoscale cloud pattern (Figure S8).

b.4 summary and discussion

Stevens et al. (2020) showed, based on a visual and thus subjective classification, that
the tropical western Atlantic during boreal winter is associated with four prominent
mesoscale patterns of shallow convection. The present study shows that these patterns
can be objectively identified based on the size and degree of clustering of segmented
cloud objects as identified from infrared brightness temperatures. The classification is
largely insensitive to the spatial resolution of the brightness temperature data: GridSat
data with a resolution of 8 km and MODIS data with a resolution of 1 km lead to very
similar classifications.

The analysis of daily and interannual variations shows that the relative occurrence
of the different cloud patterns correlates strongly with two environmental factors: the
strength of the near-surface wind speed and the strength of the lower-tropospheric
stability (Figures B.3 and S2). Flowers tend to occur in windy (Vs > 8 m.s−1) and
stable environments (EIS > 0.5 K), while Sugar tends to occur in calm (Vs < 8 m.s−1)
and unstable environments (EIS < 0.5 K). Fish appears to prefer calm and stable
environments, while Gravel tends to occur in windy and unstable environments. These
relationships beg a physical explanation. For this purpose, data from the forthcoming
2020 EUREC4A (Elucidating the role of cloud-circulation coupling in climate) field campaign
should be well suited (Bony et al., 2017). With its large complement of air and sea-going
vessels in the same study region as examined here, EUREC4A will not only quantify the
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Flowers Fish Gravel Sugar

(a) (b)

(d)(c)

(e)

Figure B.4: Interannual anomalies of (a) the organization index (Iorg) and (b) the mean cloud
object size S computed from GridSat or MODIS observations over the period 2000-
2019 during DJF (the correlation between GridSat and MODIS timeseries is 0.90 for
Iorg and 0.78 for S). Interannual evolution of (c) Vs and (d) EIS derived from ERA
interim for the same period. Note that in (a-d), the year is defined by the Jan-Feb
months of the DJF season (e.g. 2010 corresponds to Dec 2009 - Feb 2010). The shading
represents ± one standard deviation of daily-mean values around the DJF mean. (e)
Examples, for a few DJF seasons, of the daily cloud patterns identified from GridSat
data represented as a function of the daily (EIS, Vs) conditions of that season (the
grey lines are just visual guides).
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Figure B.5: (a) and (b) Same as Figure B.2 but for the low-cloud amount derived from MODIS
cloud products and the NET cloud-radiative effect derived from CERES observations.
(c) Same as Figure B.3 but for daily-mean values of NET CRE and low-level cloud
amount.

relationship between cloud patterns and large-scale variables, but also the circulation
systems that connect the two. These measurements should thus also help determine how
much the mesoscale organization of shallow convection has to be considered if one wants
to understand and predict the response of shallow clouds to changes in environmental
conditions.

A closely related question is whether the mesoscale organization of shallow convection
matters for cloud-radiative effects. To shed light on this issue, we used daily estimates of
top-of-atmosphere radiative fluxes and cloud products from the CERES (Clouds and the
Earth’s Radiant Energy System) geostationary enhanced temporally interpolated dataset
(Wielicki et al., 1996), along with low-cloud amount retrievals provided as part of the
same data set for the period 2001-2017. Low-level cloud amount varies by a factor of
two across the different patterns, and the net CRE associated with ‘Flowers’ is about
double that of the Sugar pattern (Figure B.5). At first order, the CRE (dominated by its
shortwave component) varies linearly with the low-cloud amount (Klein and Hartmann,
1993), so that radiative differences across the patterns are related to differences in the
low-cloud amount. However, unlike what has been found for other types of mesoscale
organizations of marine low-clouds (McCoy et al., 2017), for a given low-cloud amount we
do not notice significant radiative difference among patterns. It suggests that over the
western tropical Atlantic, changes in the mesoscale organization of trade-wind cumuli
primarily affect the top-of-atmosphere radiation budget through associated changes in
the low-level cloud amount.

Could this tight relationship between convective organization and low-cloud amount,
or CRE, imply that changes in cloud organization have the potential to influence cloud-
radiative feedbacks? The large-scale environment in which the trade-wind cumuli form
might change under global warming. Climate models predict EIS increases over the
western tropical Atlantic as the planet warms (Qu et al., 2015). On the other hand,
the change in Vs remains uncertain, partly because the geographical pattern of surface
warming can act against the anticipated slow-down of the large-scale circulation (Ma
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et al., 2016). Indeed, in climate change experiments run with the IPSL climate model
(Dufresne et al., 2013), EIS always increases with global warming over the tropical
western Atlantic (by 0.1 to 0.7 K K−1 depending on the type of experiment and model
version), whereas, Vs does not change in a robust fashion. Assuming that Vs and EIS
remain the main controlling factors of the mesoscale organization of shallow clouds
in a perturbed climate, these projections would suggest a more frequent occurrence
of Fish or Flower at the expense of Sugar or Gravel with global warming, and thus
a larger cloud fraction. This is in conflict with the prevailing idea, based on models
which do not account for mesoscale organization, that low-cloud amount will reduce in
response to rising SST (Klein et al., 2017). In our analysis, SST does not appear to be a
strong controlling factor of the cloud mesoscale organization on daily and interannual
timescales (Table S2), but it remains an open question whether it could play a bigger role
in climate change. In either case, better understanding the extent to which the mesoscale
patterning of clouds affects their response to warming appears relevant to establishing
confidence in how clouds respond to warming as a whole.

Future investigations of this issue using numerical models that predict explicitly these
different cloud patterns and are able to reproduce the relationships discussed in this
paper should help determine how much the cloud organization is sensitive to SST, and
how much it could affect the magnitude and even maybe the sign of the change in
low-cloud amount. This should fill an important gap in our understanding and our
assessment of low-cloud feedbacks under climate change.
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abstract

Four previously identified patterns of meso-scale cloud organization in the trades – called
Sugar, Gravel, Flowers and Fish– are studied using long-term records of ground-based
measurements, satellite observations and reanalyses. A deep neural network trained to
detect these patterns is applied to satellite imagery to identify periods during which
a particular pattern is observed over the Barbados Cloud Observatory. Surface-based
remote sensing at the observatory is composited and shows that the patterns can be
distinguished by differences in cloud geometry. Variations in total cloudiness among the
patterns are dominated by variations in cloud-top cloudiness. Cloud amount near cloud
base varies little. Each pattern is associated with a distinct atmospheric environment
whose characteristics are traced back to origins that are not solely within the trades.
Sugar air-masses are characterized by weak winds and of tropical origin. Fish are driven
by convergence lines originating from synoptical disturbances. Gravel and Flowers are
most native to the trades, but distinguish themselves with slightly stronger winds and
stronger subsidence in the first case and greater stability in the latter. The patterns with
the higher cloud amounts and more negative cloud-radiative effects, Flowers and Fish,
are selected by conditions expected to occur less frequently with greenhouse warming.

c.1 introduction

The organization of deep convection has long been recognized to influence the global
distribution of moisture and, as a consequence, the climate. Shallow convection, as
is common in the trades, is usually not thought of as being organized. Rather, in the
mind’s eye of many researchers, trade-wind clouds are randomly distributed, have
little vertical development and have generally been assumed to play little role in the
climate system. Over the past twenty years however, the out-sized role of maritime
shallow clouds on Earth’s radiation budget – and discrepancies in how models predict
their changes with warming (Bony and Dufresne, 2005) – have made a determination
of processes controlling their coverage a central focus of climate science. During this
period, observational studies such as RICO (Rauber et al., 2007) and the emergence of
satellite imagery with spatial resolution on the hectometer scale began emphasizing how
shallow clouds in the trades adopt different forms of organization, often in association
with precipitation development and the formation of cold pools (Seifert and Heus, 2013;
Seifert et al., 2015; Zuidema et al., 2011). More recently, several approaches to characterize
these forms of organizations have been developed (Denby, 2020; Janssens et al., 2021;
Stevens et al., 2020). Stevens et al. (2020) identified that most of the large-scale patterns
of shallow convection can be categorized into four categories, which they called Sugar,
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Gravel, Flowers and Fish. Although based solely on the subjective visual inspection of
visible satellite imagery in the vicinity of the Barbados Cloud Observatory, these patterns
have varied net cloud radiative effects and thus may influence Earth’s climate sensitivity
(Bony et al., 2020).

In contrast to Denby (2020) and Janssens et al. (2021) who retrieve a continuum of
classes, the limitation to the few categories of Stevens et al. (2020) helps to break down
natures’ complexity into manageable pieces, arguably the building blocks of shallow
convection in the downstream trades. Understanding what factors help select these
patterns may help understand factors controlling cloudiness as a whole.

Motivated by the potential impact on climate sensitivity and the striking differences
in the visual appearance of the four patterns identified by Stevens et al. (2020), we are
interested in better understanding the basic features of these four patterns, and the
factors that influence their emergence. Specifically:

1. How do the four patterns differ in terms of the observed cloud geometry e.g.,
cloud fraction, cloud size and cloud base height?

2. Are the different patterns associated with different large-scale environments?

3. To what extent are these large-scale differences reflective of different air mass
origins?

To answer these questions we collocate the four cloud patterns of meso-scale organiza-
tion as automatically detected in satellite measurements with observations made at the
Barbados Cloud Observatory. This contextualization of the high-resolution ground-based
cloud measurements within the meso-scale patterning enables deeper insights about
their characteristics than possible using satellite measurements alone.

The methods adopted and the data used are described in Section C.2. A characteriza-
tion of the cloud patterns, with a focus on the cloud-geometric properties and how they
fit with our preconceptions as derived from the satellite images is given in Section C.3.
In Section C.4 we analyze the meteorological conditions under which the patterns occur
and the extent to which they can be distinguished. The effects of air-mass origin are
analyzed with the aid of back-trajectories in Section C.5. We conclude with Section C.6.

c.2 data and methods

This study uses several data sources as shown in Tab. C.1.

c.2.1 Pattern detection of shallow convection

To detect the four patterns of shallow convection, we use the Keras RetinaNet (Gaiser
et al., 2018). We trained this deep neural network (in the following just neural network),
as described in Rasp et al. (2020) with only a difference in the input datas’ radiance.
While we used the same 49 000 manually created labels that were performed based on
10 years of visible imagery captured by the Moderate Resolution Imaging Spectrora-
diometer (MODIS) instruments aboard the satellites AQUA and TERRA, here we use
the simultaneously captured brightness temperatures.



66 characterization and evolution

Table
C

.
1:Prim

ary
data

Platform
Instrum

ent
V

ariables
Location

Sam
pling

G
O

ES-
1
6

A
BI

brightness
tem

perature
(channel

1
3)

1
0 ◦N

-
2
4 ◦N

;
6
1 ◦W

-
4
0 ◦W

2km
;

3
0m

in

A
Q

U
A

M
O

D
IS

-
brightness

tem
perature

(ch.
3
1)

-
corrected

reflectance
(ch.

1,
3,

4)

1
0 ◦S-

5
5 ◦N

;
1
0
0 ◦W

-
1
0 ◦E

daily
(daytim

e
overpass)

ER
A

5
n/a

ω
,div,T,u,v,SST

0 ◦N
-
6
0 ◦N

;
7
0 ◦W

-
1
0 ◦E

0.25°
x

0.25°;
3h

BC
O

-
K

a-Band
radar

-
R

am
an

lidar

-
M

R
R

-
w

eather
sensor

-
m

icrow
ave

radiom
eter

-
reflectivity

profile
-

m
ixing

ratio
profile

(only
Fig.C

.
2)

-
rain

rate
-

surface
p,T,R

H
,u,v

-
LW

P,IW
V

1
3.

1
6 ◦N

;
5
9.

4
3 ◦W

-
1
0s;

3
0m

-
1
2
0s;

6
0m

-
6
0s

-
1
0s

-
1s

G
randley

A
dam

s
A

irport
-

soundings
-

p,T,R
H

,u,v
1
3.

0
7 ◦N

;
5
9.

5
0 ◦W

1
2h-

2
4h



C.2 data and methods 67

To capture the inter-pattern variability at a fixed site, like the Barbados Cloud Obser-
vatory, it needs to be assumed, that the patterns persist for at least the time it takes to
advect over the site. In case of the patterns studied here, the characteristic length scale of
a typical pattern can easily exceed 90 km, or about 3 h, for an advection speed of 8 m s−1.
However, 3 h is about the time between AQUA and TERRA overpasses, where we have
noticed differences in the distribution of pattern types. Using infrared data allows us
to overcome this issue by also retrieving useful classifications at night and increasing
the number of classifications per day, even more so by applying the neural network to
infrared satellite imagery taken by the Advanced Baseline Imager (ABI) aboard GOES-16.
Although the training of a separate neural network directly on the ABI data would
have been preferred, it was not possible due to missing overlap with the manual classi-
fications. Nevertheless, the channels of MODIS (channel 31; 10.78 µm to 11.28 µm) and
ABI (channel 13; 10.18 µm to 10.48 µm) used here are relatively close to each other and
in a wavelength range where absorption due to water vapor is relatively constant and
overall minor. Differences are therefore expected to be minimal. A comparison of the
overall performance of the visual classifications used in Rasp et al. (2020) to the infrared
classifications used in this study is given in the supplemental material.

While the GOES-16 Advanced Baseline Imager can capture images every minute for
pre-selected regions, here we extract the region of interest (10N,24N; -61E,-40E) from
the full-disk scenes and restrict ourselves to a temporal resolution of 30 min and the
nominal spatial resolution of 2 km. Because the GOES-16 satellite only recently started
its operation, we restrict our analysis to the three boreal winter seasons 2017/2018 (JFM),
2018/2019 (NDJFM) and 2019/2020 (NDJFM).

To attribute one of the four patterns to the observations made at the Barbados Cloud
Observatory, each classification of the neural network is evaluated at the location of the
observatory. Because the RetinaNet is an object-detection algorithm, classifications can
overlap or contain cloud formations that are less characteristic of the main identified
pattern. As we wish to include only clear and long-lasting patterns, while still remaining
a statistically robust sample size, the complete time-series is split into 6 h time windows
which are associated with a specific pattern in cases where a pattern dominates this time
window e.g., is detected for at least half of the time (3 h). This results in 42 % of the 6 h
windows being associated with one of the four patterns, while another 37 % could not
be attributed clearly to any category, only in 21 % of the cases was no pattern detected
for 3 h. Because the patterns are not equally likely to occur, the number of detected cases
differs as indicated in Tab. C.2. Time windows that do not contain a long-lasting pattern
were grouped together as Others.

Table C.2: Number of time windows that contain robustly identified patterns in the boreal winters
of 2017/2018 (JFM), 2018/2019 (NDJFM) and 2019/2020 (NDJFM)
pattern # of 6h windows % of total % of robust patterns
Sugar 145 9 22

Gravel 305 19 46

Flowers 77 5 12

Fish 141 9 21

Others
mixed
no pattern

846

567
337

58

36
21

N/A
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For the detection of the seasonal cycle of the patterns and the trajectory analysis we
do not need to have high temporal sampling. Hence, we use the daytime MODIS AQUA
overpass to identify pattern which allows us to extend the record to 11 years (2010-2020).

c.2.2 Back-trajectories

To analyze the origin of the patterns and the evolution of the air mass in which they are
found, we calculate back-trajectories following the framework of Eastman and Wood
(2016). Vertical winds are assumed to be negligible compared to the horizontal compo-
nents, such that the trajectories are followed near the top of the sub-cloud (boundary)
layer and kept constant at the initial height of 925 hPa. These boundary-layer trajectories
are calculated using winds from the 5th European Center Reanalysis of meteorological
observations (ERA5) (Hersbach et al., 2020) on a 6-hourly time step.

The back-trajectories are initialized at the center of each classification within the
domain 10°N-24°N and 61°W-40°W and most closely to the AQUA overpass time. The
analysis covers the winter months (November through March) of 2010-2020. Trajectories
are calculated for an 84 h period and atmospheric properties along the trajectory are
extracted at each 12-hour time-step coinciding with an AQUA overpass. Reanalysis
variables are taken from a 1x1 degree latitude-longitude grid, with averages produced
for all boxes with centers that fall within 100 km of trajectory sampling points.

c.2.3 Ground-based measurements

We use surface observations from the Barbados Cloud Observatory (BCO). The only
long-term cloud observatory in the broader trades.

c.2.3.1 Instrumentation

The BCO uses advanced remote sensing instrumentation to measure the undisturbed
marine subtropical atmosphere (Medeiros and Nuijens, 2016; Stevens et al., 2016). In this
study, we use simultaneous measurements from the CORAL Ka-band cloud radar and
Raman lidar to characterize clouds and their thermodynamic environment, especially
the surrounding humidity structure of the clouds. These advanced remote-sensing
measurements are complemented by 752 soundings of the nearby Grantley-Adams
airport to improve the statistics above clouds, which can quickly attenuate the lidar signal
and make a retrieval inside and above clouds impossible. Radiosondes are launched
once or twice a day, usually an hour or so before their 0 UTC and 12 UTC report times.
The closest of these soundings has been attributed to each of the 6 h time windows.

To detect only hydro-meteors with the cloud radar and no sea-salt aerosols, we apply
a threshold of −50 dBZ as used in Klingebiel et al. (2019).

Integral measurements of liquid water path (LWP) and total integrated water vapor
(IWV) are retrieved from microwave radiometer measurements following Löhnert and
Crewell (2003) and Steinke et al. (2015).

In addition to the standard surface meteorological measurements from a Vaisala
WXT-520, we use the rain rate measurements from a micro-rain radar (MRR). Due to its
larger sampling area compared to the also available acoustic rain sensor, it detects more
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reliable light (O0.01 mm h−1 (Peters et al., 2002)) and/or short rain events. However, this
comes at the cost of measuring the rain rate above the surface (325 m) rather than at the
surface – which will be larger than at the surface, disproportionately so for light rain.

These datasets are available for 90 % of the 6 h time windows and are equally dis-
tributed among the patterns. The only exception is the radiometer data with only about
60 % availability.

c.2.3.2 Cloud entity classification

The identifications of meso-scale patterns of shallow convection are supplemented with
cloud-type classifications derived from the BCO measurements.

Cloud-geometric properties of single cloud entities are retrieved based on the segmen-
tation of the radar reflectivity. Individual clouds are identified by testing the connectivity
of radar retrievals in height and time. Since a main part of this study focuses on strati-
form layers, we use a running window of 100 s in time and only direct connections in
the vertical to account for the fact that the stratiform layers can be so thin that they are
not continuously detected by the radar.

Similar to Lamer et al. (2015) we classify individual clouds by their cloud-base heights
(CBH). Stratiform layers are defined as clouds that have a frequent CBH above 1 km
up to 2.5 km. As shall be seen later (Fig. C.3) the echo fraction minimizes at 1 km and
therefore a threshold of 1 km separates best the stratiform cloudiness from the cloud
layer below. This layer of clouds with CBHs below 1 km we classified as originating
from the cumulus gene. An example of the radar reflectivity and the derived cloud-type
classifications is shown in Fig. C.1. It illustrates that also a mixture of cumulus with an
attached stratiform layer may exist. These cases are actually classified as “StSc+Cu" in
the case the stratiform layer lasts for at least 20 % of the time it takes for the cumulus
cloud-entity to pass over the observatory.

Based on the single cloud entities, geometric properties like stratiform extent and
mean thickness of stratiform layers are calculated and associated with each entity.

c.3 surface based characterization of cloudiness and precipitation

The four patterns identified by Stevens et al. (2020) – Sugar, Gravel, Flowers, Fish– are
purely defined by their visual impression from space, predominantly the spatial dis-
tribution of cloudiness. The cloudiness is therefore the physical quantity closest to the
definition of these patterns. Among the physical differences that may accompany these
patterns, aspects of cloudiness that go beyond the spatial arrangement of reflectivity as
seen from above will be important to characterize, especially in so far as it influences the
cloud radiative effect.

An overview of these patterns and the ground-based observations linked to them
is shown in Fig. C.2. Differences in cloudiness are readily apparent, and conform to
what has been previously noted in the literature. Sugar is identified with a fine dusting
of clouds, Gravel with cloud features arranged around arc-like structures. Flowers and
Fish are composed of elements that are yet larger in scale and show a clearer separation
between cloudy and clear-sky areas. For Flowers the clouds show a more isotropic
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Figure C.1: Example of cloud-type classification based on radar reflectivity

distribution, while they are usually elongated – roughly West to East – in the case of
Fish.

From these illustrations, which add to the examples shown in Stevens et al. (2020), it is
natural to develop preconceptions about differences in the three-dimensional structure of
the boundary layer associated with the patterns. For example, Gravel is generally thought
to be associated with precipitation due to the visible cold-pool signature in the cloud
field, and Flowers are thought to be composed of stratiform clouds with suppressed
convection around them. Assessing whether such preconceptions are supported by the
data, is one of the goals of this section.

We first focus on the characteristics of the cloudiness in terms of their geometric
properties. Thereafter we analyze the precipitation signatures of the patterns, as they
might help to gain a process understanding on how these different patterns form.

c.3.1 Cloudiness

The cloud cover at the Barbados Cloud Observatory is shaped by the ubiquitous ap-
pearance of cumulus humilis – i.e., cumulus clouds of very limited vertical extent.
Cumulus humilis are not the only cloud type measured at the site. Even in the northern
hemispheric winter, when the Intertropical Convergence Zone is furthest away from Bar-
bados and the region experiences strong subsidence, the measured cloud fraction is not
solely caused by non-precipitating cumulus humilis (Riehl, 1954). This is demonstrated
by an analysis of the mean radar echo fraction profile (a combination of cloud- and
rain-fraction) shown in Fig. C.3. Echoes are detected extending to depths above 3 km.

Looking at the mean echo fraction profiles of Sugar, Gravel, Flowers and Fish and also
the overall wintertime mean echo fraction, suggests that all but Fish are some form of
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Figure C.2: Time-series of each cloud pattern as identified by scientists participating in the
EUREC4A campaign (top to bottom: Sugar, Gravel, Flowers, Fish). Water vapor mea-
surements from the Raman lidar overlayed by radar reflectivity shown in upper
panels, while rain rates measured at 325 m are shown in the lower panels. The ac-
cording MODIS images from the TERRA satellite overpass are shown on the right.
Missing values are colored grey.
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total echo fraction / %

Figure C.3: Echo-fraction measured at the BCO and grouped by detected pattern indicating the
combination of cloud- and rain-fraction (upper panel). The height integral, total echo
fraction, is shown in the bottom panel. The overall mean of the analyzed winter
seasons is shown in grey with the height of maximum echo fraction shown as
horizontal line. Shading and whiskers indicate standard error of mean.

shallow convection, with very small echo fractions (less than 3 % at 4 km) extending
much above 2.5 km.

The largest inter-pattern variability in echo fraction is found in the layer between
1.5 km to 2.5 km. At 1.7 km echo fractions vary between 5 % to 20 % and explain a large
part of the differences that give rise to the differences seen in the satellite imagery (e.g.,
Fig. C.2). For instance Flowers, with its cloudy patches of high reflectivity paired with
the sheet-like structure anticipate a strong stratiform component in the cloud fraction
compared to Sugar and Gravel, as is evident in the echo-fraction profiles. The overall
echo fraction of Flowers (0.47) is therefore much more influenced by the stratiform cloud
component as compared to Sugar (0.24) and Gravel (0.34). Fish has high echo-fractions
throughout the cloud layer, but are less obviously dominated by a stratiform component
as compared to simply more cloudiness, which often extends much more deeply through
the lower troposphere.

Common to all patterns is the similarity in difference between the echo fraction at the
surface and 700 m, which we interpret as the cloud base cloud fraction. The inter-pattern
variations in echo-fraction at 700 m that do exist in Fig. C.3 can largely be attributed
to rain events, i.e., differences below 500 m – which are a signature of precipitation –
are similar to those at 700 m. The lack of variability of cloud amount at the cloud-base
height was emphasized by Nuijens et al. (2014). That Flowers would have a similar echo
fraction at cloud-base as Sugar when neglecting the rain contribution to the echo fraction
was not something we would have guessed from the satellite imagery. It shows that an
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abundance of clouds near cloud-base under the cloud shield compensates for an absence
of shallow-cloudiness in the cloud-free part of the Flowers pattern.

Looking at the cloudiness of the patterns as a whole, we recognize that the echo
fraction of Gravel has the strongest similarity to the seasonal mean echo fraction, which
is the average of all 6 h windows independent of any pattern. This is consistent with
Gravel being the most common pattern detected in this study (about 19 % of all regarded
time windows and 45 % of the windows with any dominant pattern). Further, it also
suggests that a large portion of the more uncertain and mixed time-windows contains
cloudiness similar to the Gravel pattern. Sugar, in contrast, occurs rather seldom with
9 %. This might seem to contradict Rasp et al. (2020) who found that Sugar is actually
more often identified than Gravel. However, similar to Stevens et al. (2020), who were
looking for dominating patterns on a fixed domain, we look for dominating patterns
within a fixed time-period. Both methods register only patterns that are persistent for a
long time or cover a large area, both of which de-emphasize Sugar. The cloud pattern
with randomly distributed clouds of little vertical extent occurs frequently, but is often
not dominant and thus not picked out by our analysis.

Fig. C.4 confirms that the differences in echo fraction at the lifting condensation
level and below are indeed caused by different contributions at the higher end of the
reflectivity spectrum (> 0 dBZ) which is indicative of precipitating hydro-meteors. Much
more similar across patterns is that the vast majority of hydro-meteors are found at
the lower end of the reflectivity spectrum. While the reflectivities below −50 dBZ close
to the surface are characteristic for hygroscopically grown sea-salt particles Klingebiel
et al. (2019), with increasing height and reflectivity (towards −15 dBZ) at about 2 km)
the imprint of non-precipitating cumulus humilis (Lonitz et al., 2015) is found.

Figure C.4: Contoured frequency by altitude diagram (CFAD) for the four patterns of shallow
convection and less clear patterns gathered in the group Others. The colors indicate
the frequency of occurrence of a reflectivity-height tuple within a specific pattern.
The tuples explaining 50% of all values are contoured in black. Hydrometeor-free
profiles are excluded.

Despite a similar cloud cover for both Flowers and Fish of about 0.5, Fig. C.4 indicates
different relationships between the cumulus and the stratiform cloud layer. Whereas
Flowers show a second distinct reflectivity maximum at about 2.2 km and near −5 dBZ,
the distribution is more monomodal for Fish. This two-layer structure suggests that
Flowers are only sporadically connected by higher cumulus convection whereas for Fish,
clouds aloft appear to be deeper and as a more continuous extension of clouds near
cloud base. More like the more active and deeper distribution of Gravel. The deeper
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echoes for Fish are also evident in a stronger precipitation feature (i.e., 25 dBZ near
surface mode).

Looking at single entities of the clouds detected within the classified 6 h analysis
periods as described in Sec. C.2.3.2, we found no evidence that these different cou-
plings of the stratiform cloud layer to the underlying cumulus convection influences
the geometric properties of these layers. Independent of the meso-scale organization,
cumulus coupled stratiform layers (StSc+Cu) have a CBH between 980 m and 1050 m
and a cloud top height between 1240 m to 1370 m. More broadly, any of the individual
cloud components differentiated here: stratus (StSc), cumulus (Cu) and the connection
of both/stratocumulus cumulogenitus (StSc+Cu) show similar geometric properties
independent of the pattern.

The cloud base height (CBH) of cumulus, which to a first approximation is the same
as the lifting condensation level of near surface air, is at about 650 m to 700 m with cloud
tops about 160 m higher. Stratus are about 130 m thick on average, with an average CBH
between 1600 m to 1850 m, which is somewhat higher than for stratiform layers that are
connected to a convective core during the time of observation.

The only differences that do exist, are the lack of stratiform layers in case of Sugar
and the increase in size of the stratiform components (StSc;StSc+Cu) from Sugar (3 km;
10 km) via Gravel (5 km; 27 km) to Fish (7 km; 63 km) and Flowers (11 km; 55 km). The 95th
percentile is given in brackets as this can be assumed to better capture the characteristic
length of the stratiform cloud decks by excluding very small entities and entities whose
path length is much smaller than the actual characteristic length as the observatory
rarely samples the clouds at their characteristic cross section. The translation from cloud
entity length in time to space has been done by using the wind speed at cloud height
measured by the nearest sounding.

c.3.2 Rainfall

To assess, how important precipitation might be for different patterns, we characterize its
frequency and strength in the following. From the example time-series shown in Fig. C.2
and the results from the previous section, we expect a clear separation of the precipitation
characteristics among the patterns: from the lack of rain during the occurrence of Sugar,
to frequent showers in the case of Gravel, to yet stronger rain events for Fish.

To test this expectation, we analyze at the precipitation measurements from the BCO
within the same 6-hour time windows used in the section above. First, we quantify how
many analysis windows contain any rain event. With the exception of Sugar, in more
than 50 % of the identified cases, rain is present. For Sugar precipitation can be detected
in only 35 % of the cases.

This absence of rain events in case of Sugar is even more evident in the quantification
of the mean near-surface rainfall (Fig. C.5a). Rain amounts are similar for Flowers and
Gravel, consistent with the frequency of near surface echoes evident in Figs. C.3 and C.4,
nearly twice as large for Fish. We also quantify rain intensity by averaging the maximum
rain-rates within each analysis window for each of the patterns. Among the precipitating
patterns rain intensities do not differ as substantially. In all of these cases the precipitation
is intense (approach 10 cm a day), and well above the threshold (1 mm h−1 to 2 mm h−1)
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a b

Figure C.5: Rain statistics of each pattern averaged over a 6-hour period. The average rain amount
(left) and the average maximum rain rate of each window (right) are shown with
their standard error.

that past studies have associated with the formation of cold-pools (Barnes and Garstang,
1982; Drager and Heever, 2017).

By applying the threshold of 1 mm h−1 to the maximum rain events, the number of
cases with significant rainfall decreases to 12 % in case of Sugar and about 35 % for the
other patterns. 35 % might not seem to be a lot, but it has to be kept in mind that these
patterns are of meso-scale extent and even a 6 h-period cannot capture the complete
variability. This is especially the case for the Fish pattern, where a 6 h-period might only
capture the clear-sky part of the Fish and therefore the importance of precipitation may
be underestimated.

Our data do not contain sufficient samples to evaluate to what extent the spatio-
temporal characteristics of precipitation differs among the patterns. However, by analyz-
ing the precipitation signature in all 138 6-hourly windows of Fish, there is evidence of a
bimodal distribution of rain events, with a second mode consisting of extended periods
of precipitation (like the one shown in Fig. C.2) that is not evident for either the case of
Flowers or Gravel.

Overall, precipitation events of significant strength occur during Gravel, Flowers and
Fish periods and suggest that precipitation plays a role in the patterning process, or at
least in the persistence of these patterns. There is no hint that precipitation is important
for Sugar.

c.4 meteorological environment

In the previous section we characterized similarities and differences in cloud- and
precipitation-signatures among the four patterns. To the extent the patterns are forced,
this forcing might be evident in the local meteorological setting. In this section, we
address this possibility and investigate the meteorological settings, first at the surface
and then within the free troposphere, for the different patterns.
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c.4.1 Surface measurements

Near surface (5 m and 25 m above mean sea level) meteorological measurements at
the BCO are composited by pattern in Fig. C.6. Common to all variables shown is a
distinguished value for at least one of the patterns.

Figure C.6: Surface meteorology measured at the BCO during the observation of the four patterns.
The seasonal mean of the observed time-period independent of any pattern is drawn
as grey line.

Sugar distinguishes itself from other patterns by virtue of its mean temperature and
low wind-speed. Given that annual cycle of surface temperatures is just over 2 K this
0.6 K difference is large. While Sugar is associated with unseasonably warm conditions,
the contrast with the other patterns is due in equal part to them being unseasonally cool,
which is consistent with Sugar arising during periods with little northerly contribution
to the mean flow. Gravel is distinguished by the surface winds being unseasonally strong
and northerly. Flowers are found on the days that are coolest, when surface winds are
strong, but not so strong as for Gravel, and when the surface pressure is unseasonally high
(1013.3 hPa). In contrast Fish which are also associated with extensive cloud coverage
(Fig. C.3) are found on days with unseasonally low pressure (1011.8 hPa), high humidity
and relatively low but quite variable (in terms of direction) winds, consistent with more
disturbed conditions and extended periods of precipitation.

Amongst all analyzed surface observations, wind speed is the best proxy for a specific
pattern. The lowest mean wind is measured during Sugar situations with 5 m s−1. For the
other patterns the mean wind speed increases by an increment of 0.5 m s−1 from Fish to
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Flowers to Gravel. The finding that Flowers and Gravel occur in conditions of higher winds
is consistent with what was found by Bony et al. (2020), but further discriminates among
all patterns rather than two groupings (e.g., Flowers and Gravel as high wind-speed and
Sugar and Fish as low wind-speed patterns). This suggests that there may be processes
that are not captured by the reanalysis, especially so as we gain similar results to Bony
et al. (2020) when compositing the ERA5 surface data (Fig. C.18)

c.4.2 Vertical structure

The previous analysis is extended in the vertical through a composite analysis of the
Grantley Adams radiosonde data. The pattern mean-soundings, and their associated
uncertainty estimates, are presented in Fig. C.7. Composites are made of the equivalent
potential temperature, potential temperature difference (Θ−Θ, where Θ is the mean
sounding across all patterns), relative humidity and wind speed.

Figure C.7: Average profiles of equivalent potential temperature, potential temperature difference
to the overall pattern mean, relative humidity and wind speed from soundings at the
Grantley Adams Airport (standard error is shaded).

Surface temperature differences measured at the BCO are also evident in the sound-
ings, and extend through the depth of the moist (lower 3 km) layer. Flowers distinguish
themselves not only by lower surface temperatures, but also by a much stronger stratifi-
cation atop the humid layer, showing a strong inversion at about 2.5 km. Sugar appears
associated with a much shallower cloud layer, also capped by an inversion. The apparent
instability (decrease in Θ−Θ with height) for the other patterns simply indicates that
they are less stable on average. The lower-tropospheric stability (LTS) is 16.2± 0.3K in
case of Flowers and nearly 2 K lower for Fish (14.7± 0.2K), Sugar (14.4± 0.2K) and Gravel
(14.1± 0.1K). However, in case of Sugar, the value of Θ at 700 hPa (which is used to
construct LTS) may miss the shallow stable layer that appears to cap the convective
development of this pattern.

The relative humidity profile is strongly coupled to the convective activity and hence
the echo fraction (e.g., Fig. C.3) As we have shown in the last section, Sugar is mostly
characterized by cloudiness at cloud-base height with few clouds reaching up to 1.8 km.
In agreement, the according moisture profile shows a shallower layer compared to the
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other patterns that more regularly reach the inversion height and distribute moisture.
Likewise Fish, with echos reaching more deeply through the lower troposphere is also
considerably moister than the other patterns above 3 km. These humidity profiles also
help explain differences in θe, particularly in the upper cloud layer and lower free-
troposphere. For example as seen by contrasting Fish and Gravel.

Based on measurements made during RICO, Nuijens et al. (2009) analyzed differences
in θe similar to those shown in Fig. C.7. Consistent with their findings these profiles seem
to co-vary consistently with surface wind speeds. Stronger surface winds for Gravel and
Flowers are mostly confined to the moist layer for Gravel, but extend through the lower
troposphere for Flowers. These winds are one component of what is often thought of as
an externally imposed large-scale forcing, to which the boundary layer thermodynamic
profiles relatively quickly equilibrate.

c.4.3 Large-scale forcing

We use ERA5 data in a 20°× 20° domain centered around each ABI classification to
examine how the large-scale subsidence (ω500) varies as a function of pattern. Those
domains are afterwards averaged to one composite that shows the strength of subsidence
at the center of each pattern, but also in its surrounding.

Figure C.8: Distribution of subsidence strength ω500 relative to identified pattern centers com-
posited by 20x20 degree domains around each identified pattern. Pattern centers are
marked with a cross.

Fig. C.8 reveals that all patterns occur during times of subsidence and that this
subsidence is in most cases also similar to the typical subsidence rate of 0.05 hPa s−1 in
the Atlantic trade-wind regime (Holland and Rasmusson, 1973). However, it also shows
that some variability in the large-scale forcing exists and stronger subsidence is, contrary
to expectation, not occurring during Sugar and Flowers cases, but rather during Gravel
cases (Tab. C.3).

Table C.3: Large-scale forcing averaged by pattern from fixed-location sounding data (snd) and
ERA5 data from pattern center

Pattern LTSsnd LTSERA5 ω500,ERA5 freq. of convergence
Sugar 14.3 K 14.8 K 0.046 Pa s−1

28%
Gravel 14.0 K 14.4 K 0.072 Pa s−1

38%
Flowers 16.2 K 16.6 K 0.046 Pa s−1

34%
Fish 14.6 K 16.0 K 0.048 Pa s−1

59%
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In the subtropics, particularly in association with stratocumulus, subsidence co-varies
positively with LTS. On shorter time scales and deeper in the tropics, other factors may
play a role. In particular the temperatures above the cloud layer are tightly coupled to
moisture, so as to homogenize the density temperature on isobaric surfaces. This partly
explains the stronger temperature inversion for Flowers. It also means that boundary
layer variability may play a more important role in determining the LTS, consistent with
near-surface temperature differences as illustrated in Fig. C.6.

c.5 are the four patterns indicative of specific air masses?

Rasp et al. (2020) showed that globally, the four patterns predominate in the dry tropics,
regions often associated with the trade winds. The analysis in the previous section
identified subtle differences in the environments in which the four patterns form. This
raises the question as to the origin of these environmental differences, i.e., to what extent
they arise from subtle variations within the trades, or what one might alternatively
think of as disturbances to or departures from canonical trade-wind conditions. We
explore this question by analyzing the seasonal cycle of the four patterns within our
North Atlantic study region as well as the air-mass histories of the different patterns by
compositing reanalysis data along back-trajectories constructed from that same data.

c.5.1 Seasonality

Considering just the region of the downstream trades, taken to be the tropical North
Atlantic west of 45°W, most patterns predominate in the boreal winter trades as shown
by Fig. C.9. Fish and Gravel seem only to occur in this region in conditions (DJF) when
the trades are well developed. Flowers are also present in boreal spring and early summer
(AMJ). Sugar shows very little seasonality. Rather, and consistent with the analysis by
Rasp et al. (2020), it appears associated with suppressed conditions bordering the ITCZ
whose seasonal migration it follows. Based on this we hesitate to call Sugar a trade-wind
cloud pattern.

Flowers are even more common in the ‘upper’ trades (east of 45°W), even more so in
the April-June period, (e.g., Fig. C.9). Such a distribution is consistent with an affinity for
conditions that favor stratocumulus. This distribution is in agreement with the analysis
in the previous section, which showed that Flowers favor conditions of higher lower
tropospheric stability, and lower surface temperatures, as compared to the other patterns.
This supports the idea that Flowers are the downstream manifestation of the familiar, but
much smaller, closed cellular stratocumulus (Stevens et al., 2020); alternatively, it may be
indicative of a failing of the neural network in the upper trades because it has not been
trained to distinguish between the very similar looking Flowers and closed-cells.

c.5.2 Lagrangian evolution of air masses by meso-scale organization

Here we use the back-trajectories, initialized at the center of the MODIS AQUA classifi-
cations following the boundary layer winds at 925 hPa for 84 h, to investigate possible
reasons for the environmental differences associated with each pattern as described in
Section C.2.
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Figure C.9: Seasonal distribution of patterns in the North Atlantic in the dry- (DJF), transitional-
(AMJ) and wet- (ASO) season (top to bottom) detected in infrared imagery (AQUA
MODIS 2010-2020).

Fig. C.10 shows that the back-trajectories are consistent with the steadiness that
characterizes the winter trades, with the trajectories aligning well along the general flow
of the trades as they come to their point of initialization. They do however differentiate
themselves as one follows their history back in time. Most notably Fish which originates
far to the west of the other trajectories. A more tropical influence on Sugar is also
consistent with its back-trajectories which start furthest south.

Figure C.10: Mean back-trajectories for the different patterns initialized at the center of individual
classifications within the indicated black box at 925 hPa and calculated for 84 h.

Compositing the large-scale conditions on the trajectories shows that many of the
environmental differences previously documented are apparent well in advance (and
upstream) of where the pattern was eventually identified (Fig. C.11). Sugar has warmer
sea-surface temperatures, weaker winds and a relatively moist free-troposphere along its
entire back-trajectory, consistent with a more tropical influence. Flowers evolve over cold
ocean temperatures throughout the trajectory paired with persistently high LTS (despite
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Figure C.11: Environmental conditions along the back-trajectory of air-masses before time of
pattern detection. All values are ERA5 reanalysis properties, except the cloud top
height estimate where the cloud top temperature (CTT) is sourced from MODIS
AQUA observations. Shading indicates standard error.

rising SSTs), a dry free troposphere and stronger low-level winds. And differences in
LTS among the patterns are robust and in place already 48 h earlier.

The time-evolution of different fields is also indicative of dynamic influences. For
instance, for Flowers an acceleration of the low-level winds between −24 h to −84 h
may be driving the strong subsidence at 700 hPa, which in turn would support the
already anomalously dry free-troposphere to dry further and increase the LTS. This
pattern preceding process may drive the differences between Flowers from Gravel with
the slight slackening of the winds and the decrease of the subsidence nearer the time
and place where the pattern is identified, playing less of a role. In contrast, for Fish
a strong temporal evolution within the last 24 h, as manifest through a moistening of
the lower troposphere, might be indicative of a dynamic disturbance. Sugar seems less
representative of a sudden stilling in the winds in association with local suppression, if
anything recovering from more suppressed conditions and weaker winds upstream.

The time-evolution of cloud top height, estimated as the difference between the ERA5

sea surface temperature and the mean cloud top temperature sourced from MODIS
within 100 km around the trajectory sampling point, can further be an indication of
different lifetimes of the patterns. Sugar and Gravel seem to set up only shortly before the
detection (-36h) when the cloud top height dropped quickly, which would be indicative
of a shorter lifetime. In contrast, Flowers and Fish might have persisted longer because
the cloud top height evolves only little. It has to be kept in mind that this estimation of
cloud depth is sensitive to high clouds that are filtered by the nature of the classification
at the time of detection, but likely influence the CTTs further upstream. The changes of
cloud depth might therefore appear magnified.

The diurnality that is pronounced in a number of fields (wind speed, ω700, SST-CTT)
is explored in more depth by Vial et al. (2021).
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c.5.3 Extra-tropical disturbances

Although we focus on the northern hemispheric winter season where the trades are
well formed, disturbances to the trade-wind mean flow are well documented (Bunker
et al., 1949; Riehl, 1945). The earlier literature identifies two types of disturbances, one
associated with anomalously deep easterlies (which might be associated with active deep
convection), the other associated with extra-tropical intrusions in the form of trailing
cold-fronts from extra-tropical cyclones.

The older literature conceptualized the later (extra-tropical intrusions) as tropical
incursions of the ‘polar front’. Especially in the boreal winter, when the Intertropical
Convergence Zone is further south and the Azores high is less well established, frontal
disturbances can extend equator-ward. By the time they reach the subtropics, their
temperature signature is muted and they become most pronounced in the form of a
shear line that separates the light easterlies from the stronger north-easterlies (Riehl,
1945).

Such a frontal passage can be seen in the surface analysis charts e.g., in association
with a deepening cyclone over the mid-Atlantic (near 45°N and 45°W) on 25th December
2018. Through the course of six days the cold front, initially supported by the outflow of
cold-continental air (a cold air outbreak) from the east-coast of North-America, occludes
upon reaching the tropics as far south as Barbados (see Fig. C.12).

25/12/2018

29/12/2018

27/12/2018

31/12/2018

Figure C.12: Cold air outbreak between 25th of December 2018 and 31th December 2018. Surface
analysis charts from the National Hurricane Center are adapted and overlaid on
Terra MODIS images

By comparing the surface analysis chart with the satellite image, we recognise that the
front is visible as a band of convection that we would classify as Fish. In the former cold
sector, just north of the front, one can also notice on the 29th December cloud structures
north of the front similar to Flowers (more pronounced to the west) or perhaps Gravel.
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We repeat our composite analyses done to create Fig. C.8 with surface convergence
to test, whether the frontal character is typical for Fish and whether other patterns can
be related to the fronts as well. We find a signal of strong convergence (> 1× 10−6 s−1)
connected with Fish about 60 % of the identified cases (Fig. C.13). A clear signature for
the other patterns is less pronounced, although the absence of convergence for Sugar is
consistent with it being more locally suppressed. For Fish, the pattern of convergence
extends zonally in a way that supports the hypothesis of Fish arising in association
with disturbances associated with trailing cold-fronts or shear-lines from extra-tropical
intrusions.

Figure C.13: Distribution of divergence at 950 hPa relative to identified pattern centers compos-
ited by 20x20 degree domains around each identified pattern. Contours indicate
frequency of events with convergence larger 1× 10−6 s−1 (30%: dotted, 45%: dashed,
60%: solid). Pattern centers are marked with a cross.

c.6 discussion and conclusion

Cloud- and environmental properties associated with four patterns of meso-scale organi-
zation in the lower trades (50°W to 60°W) of the North Atlantic are examined. The four
patterns follow the Sugar, Gravel, Fish, Flowers taxonomy of Stevens et al. (2020) and are
identified using a neural-network applied to high-resolution infra-red imagery from the
GOES-16 and AQUA satellites.

We conditioned surface observations, back-trajectories, and reanalysis data on the
identification of different patterns to answer three questions: One, do the four patterns
show physical differences in the cloud geometry as seen by surface-based remote sensing?
Two, can differences in the large-scale environment associated with different patterns
be discerned? And, three can we identify the origins of discernible environmental
differences among the patterns.

Fig. C.14 summarizes these results and illustrates that the four patterns differ in
more than just their satellite presentation. Cloud coverage and its vertical distribution
differ and differences in the environment of different patterns are discernible. The
thermodynamic profiles in Fig. C.14 show inter-pattern differences, but also intra-pattern
differences as measured by radiosondes at points whose position relative to other features
within a pattern is schematized.

Many preconceptions from earlier studies, either inferred from snapshots (Stevens
et al., 2020) or from compositing reanalysis data on values of a cloud-clustering index
that correlate with different patterns (Bony et al., 2020), are supported by our analysis.
As an example, Flowers, and to some extent Fish, have a stratiform component detectable
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from surface-based remote sensing. In the latter this is less distinctly a capping stratiform,
or stratocumulus layer, as it is associated with more cloudiness throughout the cloud
layer. Compared to the mean conditions, or the other patterns, LTS is higher (0.5 K to
1.0 K) for Fish and (2 K) for Flowers.

Non-precipitating cloud coverage at the lifting condensation level, as emphasized by
Nuijens et al. (2014) for the entirety of trade-wind cloudiness, also holds across the four
patterns. This came as a surprise given that Flowers and Fish are characterized in part by
their cloud free areas. Differences in cloud-base echo fraction largely reflect differences in
precipitation, suggesting that to the extent environmental conditions demand an increase
in the mass flux out of the sub-cloud layer, for instance as shown by George et al. (2020),
this is largely associated with the development of deeper clouds and precipitation.

Similar to what was found by Bony et al. (2020), near surface winds identify Flowers
and Gravel with strong near-surface winds, and Fish and Sugar with light winds. Our
analysis, further discriminates within these two groups, with Sugar, Fish, Flowers and
Gravel each being separated by a roughly 0.5 m s−1 increase in surface wind speeds.
Precipitation increases with near surface winds, as previously noted for measurements
during RICO (Nuijens et al., 2009), with Fish being an outlier whose large rain rates are
associated with extra-tropical disturbances and anomalous low-level convergence.

Seasonal variations and back-trajectories provide further insight into the origin of
differences in the environments of the different patterns. The view of trade-wind clouds
as cumulus humilis, and hence non-precipitating with little vertical extent, as popular-
ized by studies based on data from BOMEX (Siebesma and Cuijpers, 1995) and most
closely associated with Sugar suggests that these are at least in the form of large-scale
homogeneous areas rather uncharacteristic of the trades. Sugar is found to favor more
suppressed conditions, uncharacteristically (for the trades) weak winds, and proximity
to deeper convection in the ITCZ.

As a historical note, the third author recalls that when the large-eddy simulation
community began focusing on shallow trade-wind convection through simulations of
conditions derived from BOMEX data (Siebesma et al., 2003), Bruce Albrecht admonished
us that less suppressed and more stratiform capped conditions – as for instance seen and
simulated in association with the Atlantic Trade-Wind Experiment Stevens et al., 2001,
ATEX and which we might today call Flowers– were more characteristic of the trades.
We find confirmation for his point of view, twenty years later, in our data. Given the
association of Fish with shear lines from remnant extra-tropical cold fronts intruding
deep into the sub-tropics, only Gravel is left to add to Flowers as an archetypical form of
trade-wind convection. Fish and Sugar are intruders.

Gravel and Flowers differ substantially in their cloud amounts (as seen here) and
their cloud radiative effects, as shown by Bony et al. (2020). We attribute this to Flowers
forming in conditions of weaker winds, and a drier and warmer free troposphere. These
differences to Gravel would support a more pronounced capping inversion, and stronger
boundary layer cooling. Based on back-trajectories we hypothesize that these conditions
arise from an acceleration of the trades and stronger subsidence in the upstream flow
along Flowers back-trajectories. This hypothesis lends itself well to tests with LES, and
may even be evident at the somewhat coarser resolution now being simulated by a new
generation of global storm-resolving models (Satoh et al., 2019).
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Independent of the formation mechanism, understanding of the conditions favoring
one or the other pattern may help anticipate to what extent climate change, by virtue of
changes in wind-speeds, or the frequency of extra-tropical disturbances, or changes in
the opacity and stability of the free troposphere, will affect the frequency of occurrence
for different patterns, and thus cloud-radiative effects in the lower trades. The widening
of the tropics (Seidel et al., 2008) and the poleward shift of the extra-tropical storm-tracks
(Ulbrich et al., 2008; Yin, 2005) would, following our analysis, disfavor Fish and Flowers
patterns in favor of Sugar with a much smaller cloud fraction, and less pronounced cloud
radiative effects.
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Figure C.14: Illustration of the cloud field during the four patterns of meso-scale organization and
the associated large-scale forcing (right) including the thermodynamic profiles (left).
The anomaly in forcing to the pattern mean is indicated by grey sliders. Vertical
lines indicate the contrasting positions of the thermodynamic profiles, purple being
in the moist part and orange in the dry area. Thermodynamic profiles are based on
soundings during the EUREC4A field campaign (Stephan et al., 2020b)

.



C.7 open research 87

c.7 open research

Primary data and scripts used in the analysis and other supplementary information
that may be useful in reproducing the authors’ work can be obtained from https://

doi.org/10.5281/zenodo.4767674. The ERA5 datasets used in this study (Hersbach, H.
et al., 2018) have been provided by the Climate Data Store. GOES-16 Advanced Baseline
Imager Level 1b radiances are available at https://doi.org/10.7289/V5BV7DSR and
were converted with (Raspaud et al., 2019) to brightness temperatures. MODIS imagery
originates from the NASA Worldview application (https://worldview.earthdata.nasa.
gov), part of the NASA Earth Observing System Data and Information System (EOSDIS).
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c.9 supporting information

c.9.1 Agreement between neural network classifications

To compare our results with the earlier study of Rasp et al. (2020) we apply their neural
network to visible MODIS-AQUA images of the time-period where all classification
datasets overlap: 2017/2018 (JFM), 2018/2019 (NDJFM) and 2019/2020 (NDJFM). An
overview of these different classification datasets is shown in Fig. C.15 for four arbitrarily
chosen days.

A more quantitative way to compare the classifications, is to use the Intersection over
Union (I) score, which is commonly used as a measure of agreement, with I = 0 being
no agreement and I = 1 if identical. To account for the overlap of labels, we define the
mean pattern specific Intersection over Union between two classification datasets (c1, c2)
as

Ic1,c2,p =
1
S

S

∑
s=1

Lc1,s,p ∩ Lc2,s,p

Lc1,s,p ∪ Lc2,s,p
, with Lcx ,s,p =

n⋃
i=1

lcx ,s,p,i. (C.1)

First, the union of individual labels l for a certain pattern p of a particular dataset (cx)
and satellite scene s is calculated to remove the intra-pattern overlap that is common for
object-detection algorithms and can be seen here e.g. on January 12, 2020, where two
classifications of Gravel overlap in the visible classification dataset (Fig. C.15). Second,
pairs of these unions (Lc1,s,p, Lc2,s,p) from two datasets are then used to calculate the
Intersection over Union for a specific scene and pattern. Ic1,c2,p is finally the pattern
averaged Intersection over Union.

For each label and each combination of the classification datasets the agreement is
shown in Fig. C.16. In cases where both approaches lead to a classification, I is between
0.5 and 0.7 (grey bars). Taking all labels into account, also those that are missing in one of

https://doi.org/10.5281/zenodo.4767674
https://doi.org/10.5281/zenodo.4767674
https://doi.org/10.7289/V5BV7DSR
https://worldview.earthdata.nasa.gov
https://worldview.earthdata.nasa.gov
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the classification datasets, reduces the agreement to the range of 0.3 to 0.6. This is mostly
due to the number of scenes that remained unclassified in the MODISVIS dataset. While
this agreement might seem to be low, it has to be kept in mind that these patterns are
not as well defined as objects traditionally identified with neural networks. This has also
been shown by (Rasp et al., 2020) where the inter-human agreement is on average below
0.3. As expected, the agreement between the infrared datasets is in generally higher as
any comparison with the visible dataset. Part of the differences might be due to different
observation times and the slightly different wavelengths.

A general agreement between the classifications can also be seen in Fig. C.17. The
mean area fraction a pattern classification covers is relatively constant with classifications
of Sugar being on average the smallest.

01/02/2020

12/01/2020

09/01/2019

Sugar Gravel Flowers Fish

12/02/2020

Figure C.15: Example of labels for the different classification datasets (left to right): MODISVIS,
MODISIR, ABIIR.
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MODISVIS unclassi�ed MODISIR unclassi�ed ABIIR unclassi�edboth classi�ed

Figure C.16: Agreement between the classification datasets based on the Intersection over Union
(I) score. Colored bars quantify the influence of missing labels (I = 0) on the averaged
I. The I excluding partially unclassified scenes is given in brackets.
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Figure C.17: Comparison of mean area fractions between the different classifications for the DJF
season.

.

c.9.2 ERA5 surface meteorology
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Figure C.18: Like Fig. 6 but with ERA5 data slightly east of Barbados (13.25N, -59.25 E)
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abstract

How spatial organization of clouds at the mesoscale contributes to the daily cycle of
shallow cumulus clouds and precipitation is here explored, for the first time, using three
years of high-frequency satellite- and ground-based observations. We focus on the four
prominent patterns of cloud organization – Sugar, Gravel, Flowers and Fish – which
were found recently to characterize well the variability of the North Atlantic winter
trades. Our analysis is based on a simple framework to disentangle the parts of the daily
cycle of trade-wind cloudiness that are due to changes in (i) the occurrence frequency
of patterns and (ii) cloud cover for a given pattern. Our investigation reveals that the
contribution of mesoscale organization to the daily cycle in cloudiness is largely mediated
by the frequency of pattern occurrence. All forms of mesoscale organization exhibit a
pronounced daily cycle in their frequency of occurrence, with distinct 24-hour phasing.
The patterns Fish and Sugar can be viewed as daytime patterns, with a frequency peak
around noon for Fish and towards sunset for Sugar. The patterns Gravel and Flowers
appear instead as nighttime patterns, with a peak occurrence around midnight for Gravel
and before sunrise for Flowers. The cloud cover for a given pattern, however, always
maximizes at nighttime (between 00 and 03 local times), regardless of the specific pattern.
Analyses of the role of large-scale environmental conditions shows that the near-surface
wind speed can explain a large part of the diurnal variability in pattern frequency and
cloudiness.

d.1 introduction

As one of the most fundamental modes of tropical climate variability, the daily cycle
has been thoroughly studied for many cloud types except, surprisingly, for shallow
cumuli in the trade-wind regime. Indeed, the daily cycle of trade-wind cumuli has only
been recently described in some details by Vial et al., 2019, forty years after it was first
documented (Brill and Albrecht, 1982; Nitta and Esbensen, 1974). In typical conditions
of the North-Atlantic winter trades, cloudiness overall maximizes at the end of the night
and is minimum in the afternoon. This daily cycle reflects the evolution of two distinct
cloud populations: (i) a daytime population of non-precipitating small cumuli, which
peaks around sunset and has weak vertical extents of only a few hundred meters above
the Lifting Condensation Level (LCL), and (ii) a nighttime population of deeper precipi-
tating clouds, peaking just before sunrise, which is often accompanied by a stratiform
cloud shield spreading below the trade inversion (Vial et al., 2019). In storm-resolving
and large-eddy simulations run over large domains, these two cloud populations seem
to be associated with distinct spatial organizations at the mesoscale (see Figure 4 in Vial
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et al., 2019). The daytime population exhibits a multitude of small cumuli scattered in a
regular pattern over hundreds (or even thousands) of kilometers, while the nighttime
field tends to show fewer and larger cloud clusters, sometimes organized along extensive
lines or arcs reminiscent of gust fronts accompanying rainfall-generated cold pools
(Ruppert and Johnson, 2016; Zuidema et al., 2011). Whether this visual impression from
the simulations is realistic and systematic, and whether this type of spatial organization
plays a role in the daily cycle of trade-wind clouds and convection, however, remain
open questions.

It has long been recognized that shallow convection can organize spatially into various
patterns; the most classical forms being cloud streets, closed or open cells in cold air
outbreaks or in subtropical upwelling areas (Atkinson and Zhang, 1996; McCoy et al.,
2017; Wood and Hartmann, 2006). In the North-Atlantic trades, different environmental
conditions (e.g., warmer sea surface temperature, weaker subsidence) give rise to other
forms of cloud organization, which have been recently discovered and characterized in
satellite- and ground-based observations (Bony et al., 2020; Schulz et al., 2021; Stevens
et al., 2020). Each organization pattern features a specific type of clouds and a specific
spatial layout of the cloud field on scales from 20 km to 2000 km. The patterns range from
isolated, shallow, non-precipitating cumulus clouds (Sugar organization), to precipitating
cumuli forming along lines or arcs defining gust fronts (Gravel organization), and to
organized structures of deeper precipitating cumuli with a stratiform cloud layer at their
top that can extend up to hundreds of kilometres and that are separated by large and
well defined cloud-free areas (Fish and Flowers organizations). These four patterns are
illustrated in Figure D.1.

The fact that the daily cycle and mesoscale organization of trade-wind cumuli have
only recently been discovered (or revived) clearly shows that there is a significant gap
in our understanding of the dynamics of trade-wind shallow convection and clouds.
This is of particular concern as the coupling between marine shallow trade-wind clouds
and circulation is known to play a central role in the uncertainty of the tropical cloud
feedback and climate sensitivity estimated by models (Bony et al., 2015; Brient and Bony,
2013; Rieck et al., 2012; Sherwood et al., 2014; Tomassini et al., 2015; Vial et al., 2016, 2017;
Vogel et al., 2016). To help fill this knowledge gap, and finally, improve our ability to
predict the Earth’s climate response to warming, in this article, we build upon the work
of Vial et al. (2019) to investigate more thoroughly the link between the daily cycle and
the spatial organization of trade-wind shallow cumulus convection. To our knowledge,
this study is the first to question the role of spatial organization in the daily cycle of
shallow cumulus convection. Specifically, we explore whether the observed occurrence
of the four aforementioned patterns of organization exhibits variability on the daily
timescale, and whether the different patterns of organization influence differently the
daily cycle of trade-wind cloudiness and precipitation.

Our analysis combines satellite- and ground-based remote sensing observations, as
well as in-situ surface measurements in the North-Atlantic trade-wind region, windward
of Barbados, which is known to be representative of the trade-wind regime in other
ocean basins (Medeiros and Nuijens, 2016; Rasp et al., 2020; Stevens et al., 2016). We
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focus on the boreal winter season, when the Intertropical Convergence Zone is at its
southernmost position, and thus when shallow cumuli predominate. After a descrip-
tion of the observational datasets and analysis framework (Section D.2), we document
the daily cycle in the occurrence frequency of mesoscale patterns (Section D.3), and
investigate the different ways in which the daily cycle of trade-wind cloudiness and
precipitation depend on the mesoscale patterns of organization (Section D.4). Finally, we
explore the role of the large-scale environment in the variability of pattern occurrence
and cloudiness at the daily timescale (Section D.5). Our conclusions are presented in
Section D.6.

d.2 observational datasets and methodology

We use satellite- and ground-based remote sensing and in-situ observations over the
tropical Atlantic Ocean around Barbados during the boreal winter months (DJFM) from
1 January 2018 to 31 March 2020. The different datasets and their use are described in
the following subsections.

d.2.1 GOES-16 satellite data

The Geostationary Operational Environmental Satellite (GOES)-16 is the current satellite
in the GOES-East location (centered at 75.2◦W), providing data since December 2017.
We use 30-minute infrared (13 µm) brightness temperature (Tb) at a spatial resolution
of 2 km from the Advanced Baseline Imager (ABI) Level 1b data product (GOES-R
Calibration Working Group and GOES-R Series Program, 2017).

d.2.1.1 Cloud organization classification

Two different approaches are employed here to classify mesoscale patterns of shallow
cloud organization using GOES-16 ABI data.

The first method, developed in Bony et al., 2020 and referred to here as the Iorg/S
method, characterizes the organization of a marine shallow cloud population within a
fixed 10

◦×10
◦ domain east of Barbados (48

◦W-58
◦W, 10

◦N-20
◦N) based on the mean

size (S) and the clustering (Iorg) of segmented cloud objects, which correspond to pixels
for which 280 K ≤ Tb ≤ 290 K. The index Iorg was defined by Tompkins and Semie, 2017

such that Iorg < 0.5 corresponds to a regularly distributed cloud population, Iorg = 0.5 to
a random distribution and Iorg > 0.5 to a clustered distribution. The lower and upper
terciles of S and Iorg distributions are then used to classify the mesoscale patterns into
four categories (Figures D.1a and D.10): Sugar is classified as high Iorg and low S; Gravel
as low Iorg and low S; Fish as high Iorg and high S; and Flowers as low Iorg and high S.
The unclassified pattern (also referred to as the No category in the figures) is defined as
all the times when Iorg and S fall in the intermediate terciles. Refer to Bony et al., 2020

for more details.
The second method, called NN method, is based on the neural network (NN) al-

gorithm originally developed and trained with visible satellite images in Rasp et al.,
2020, and adapted to infrared images in Schulz et al., 2021. Rectangles of the four cloud
organization classes (Sugar, Gravel, Flowers, Fish) are detected over a 14

◦×21
◦ domain
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including Barbados (9.3◦N-23.3◦N, 45
◦W-66

◦W), and the No category is considered
as the remaining part of the domain where none of the four patterns is detected (see
illustration in Figure D.1). Any number of pattern rectangles of various sizes can be de-
tected at a given time (with a minimum rectangle size of about 10% of the domain area),
with potential overlaps between them. When overlaps occur between several rectangles
of the same pattern (e.g., 3 overlapping Gravel rectangles), we merge them into one
polygone with the pattern area being the union of all overlapping rectangles; we thus
only count the overlapping area once. Overlaps can also occur between different labels
(e.g., 1 Fish overlaps with 1 Gravel rectangle) due to ambiguous forms of organization,
or connectivity among patterns (Rasp et al., 2020; Stevens et al., 2020). This could either
result from a weak machine learning prediction (which is affected by the quality of the
human labels), or it could have a physical explanation (for instance, the overlaps could
occur during transitions between patterns). Figure D.1b shows an example of an overlap
between Gravel and Fish (on the top-right corner of the domain), since the Fish here
appears as a network of Gravel-like cold-pool structures – which can be seen particularly
well in the visible image from MODerate-resolution Imaging Spectroradiometer (MODIS)
at the top. In these situations (i.e., of overlaps between different labels), we simply count
the total area of all rectangles without removing any overlap. The total area of patterns
(including the unclassified pattern) is thus greater than the domain area (we discuss this
further in Section D.2.1.2).

These two classification methods are quite different in nature. Iorg/S is based on
geometrical and statistical properties of the cloud field, and as such could be considered
as the most objective of the two approaches. However, since Iorg and S are continuous
measures and the patterns can only be robustly identified at the extremes (here, sub-
jectively chosen first and third terciles) of the paired (Iorg, S) distributions, the inner
paired tercile is by default unclassified and marks the regime of transitional or unclear
patterns. This transitional regime represents 5/9 of the paired distributions (∼55% of
the time), which thus potentially constitute an important methodological bias in the
interpretation of our results (cf. Section D.3). The NN method does not suffer from this
issue, but given the subjective categories, which human labelers sometimes did not agree
on, it can sometimes yield ambiguous classifications as well (cf. Figures D.1b and D.9).
Stevens et al. (2020) and Bony et al. (2020) have shown that especially the patterns Fish
and Flowers, on one hand, and Gravel and Sugar, on the other hand, can be confused.
Examples of these two ambiguities are shown in Figure D.9.

Another difference between NN and Iorg/S is that the former can detect several cloud
patterns within a domain and therefore does not have to classify a complete fixed domain
like Iorg/S. To compare the two methods, we can ask to which NN-detected predominant
pattern does the domain-scale pattern identification with Iorg/S correspond. To address
this question, we compute the relative occurrence and area of NN-detected patterns
overlapping the 10

◦×10
◦ classification domain at times when Iorg/S detects a specific

pattern. Figure D.2 shows that the two methods result in fairly consistent classifications.
That is, when Iorg/S detects a specific pattern, about half (or more) of the 10

◦×10
◦

domain is covered with the NN-detected patterns of the same category. For instance,
in 80% of Sugar cases detected by Iorg/S, NN detects predominantly Sugar patterns
with an average coverage of 50% of the Iorg/S domain. In the case of Gravel, nearly all
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Figure D.1: (a) MODIS-Aqua satellite images from NASA Worldview, illustrating the four promi-
nent mesoscale cloud organization patterns of the North Atlantic trade-wind region
over the 10

◦×10
◦ Iorg/S classification domain. The images are positioned in the four

quadrants defined by the lower and upper terciles of the S and Iorg distributions. (b,
bottom panel) Illustration of NN-detected pattern rectangles using the GOES-16 ABI
Tb field over the 14

◦×21
◦ classification domain (Gravel in yellow, Fish in blue and

Sugar in Green) and the corresponding Iorg/S classification (Fish) over the smaller
domain (in grey). The top panel is the corresponding visible MODIS image from
NASA Worldview. The location of the two sites, BCO and NTAS, is highlighted in
the lower panel (b). Note that the NN classification domain is positioned such that
BCO and NTAS are equally distant from the lateral edges of the domain, and the
Iorg/S domain is chosen as in Bony et al. (2020), upwind of Barbados.

Iorg/S classifications correspond to NN-detected Gravel patterns covering on average
80% of the Iorg/S domain. The Flowers pattern is the one for which the correspondence
between the Iorg/S and NN identifications is the least clear, because of a relatively high
occurrence of NN-detected Gravel (Figure D.2, third panel). The exact reason for this
ambiguity has not clearly been identified, but it might be related to the thresholding
by terciles chosen in Bony et al., 2020 and applied here as well. As shown in Figure
D.10, the distributions of Iorg and S are skewed toward high Iorg and low S values, which
disfavor the detection of Flowers situations (as also evidenced in the Figures D.2 and
D.3a by the relatively small sample size of Iorg/S-detected Flowers), and in particular,
Flowers situations with large mean cloud size S. This results in the Gravel and Flower
situations to be quite close from each other in the Iorg/S space, and thus perhaps less
easily distinguishable with this method. Note that the smallest ambiguity in the third
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panel of Figure D.2 occurs for NN-detected Sugar, which is precisely the furthest from
the Flowers pattern in the Iorg/S space.

Figure D.2: Relative occurrence (grey bars) and area (yellow bars) of NN-detected patterns
overlapping the 10

◦×10
◦ classification area at times when Iorg/S detects a pattern.

The frequencies of occurrence are computed with respect to the number of Iorg/S-
detected patterns (as indicated at the top of each panel), and the areas are computed
over the overlapping part of the NN-detected rectangles with the 10

◦×10
◦ domain

and normalized by the 10
◦×10

◦ area. The sum of occurrences and areas will thus be
greater than 100%.

The correspondence in pattern detection and classification between the two approaches
is thus fairly satisfactory. Nevertheless, as discussed above, each of these two classification
methods has its own limitations, and thus both methods will be used in our study in
order to more robustly assess the daily cycle of mesoscale cloud organization and its
influence on the daily cycle of cloudiness. It is also worth-mentioning that the NN
approach can offer two additional advantages with respect to Iorg/S: (i) a more accurate
characterization of the atmospheric or surface properties of the patterns (since it does
not have to classify an entire domain) and (ii) the possibility to select those patterns that
are located over instrumented sites to characterize the patterns in greater details using
the ground-based measurements.

d.2.1.2 Pattern cloud covers

The shallow cloud cover (CC) is computed from the GOES-16 ABI Tb mask as defined
earlier – i.e., CC is 1 in pixels for which 280 K ≤ Tb ≤ 290 K, and 0 otherwise.

When using the Iorg/S classification, the cloud cover is averaged over the 10
◦×10

◦

domain at each timestep and is assigned to one of the four cloud patterns or to the
unclassified category. In doing so, the domain-mean CC averaged over the entire period
(DJFM 2018-2020) can be expressed as: CC = ∑k(CCk × Fk) where k refers to pattern
labels (SU, GR, FL, FI, NO), CCk is the CC of a given pattern k (also referred to as
‘pattern-related cloud cover’) and Fk is the frequency of occurrence of pattern k at a
given time of the 24-hour day, such that ∑k Fk = 100% across the daily cycle. The product
CCk × Fk is the effective contribution of pattern k to the total cloud cover.

The analysis, based on this simple decomposition allows us to both (i) quantify the
relative contribution of mesoscale patterns to the daily cycle in total cloud cover, and
(ii) disentangle the part of the daily cycle that is due to changes in pattern occurrence
frequency and the part due to changes in cloudiness for a given pattern. For reference,
we present in Table D.1 the daily characteristics of these two main quantities (Fk and CCk)
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Table D.1: Observed daily characteristics of pattern frequency of occurrence (Fk) and cloud cover
(CCk), as derived from Iorg/S and NN over their respective computational domain
and (with NN only) at the location of the intrumented sites BCO and NTAS—diurnal
mean (in %), amplitude (referred to as amp, in %) and local time of daily maximum
(the phase, rounded to the nearest hour)—as derived from the first harmonics.

Sugar Gravel Flowers Fish No

mean amp phase mean amp phase mean amp phase mean amp phase mean amp phase

Frequency of occurrence (Fk)

Iorg/S 7.4 8.8 14 15.7 13.8 00 2.1 2.4 03 15.2 8.8 12 59.5 4.2 05

NN 12.8 6.4 17 36.0 14.3 00 17.2 11.0 06 19.4 4.1 12 32.7 6.5 14

NN-BCO 16.2 8.4 18 37.1 17.5 00 15.7 12.0 06 21.6 4.6 12 27.3 8.4 13

NN-NTAS 21.5 11.0 16 46.3 17.6 00 24.2 15.6 05 24.8 5.6 12 14.4 4.3 14

GOES-16 ABI cloud cover (CCk)

Iorg/S 7.1 1.1 07 13.2 1.2 03 26.9 3.5 02 25.9 5.5 03 19.4 4.0 03

NN 6.5 1.3 01 16.8 2.4 02 26.7 4.3 00 28.2 3.3 00 19.9 3.8 01

NN-BCO 5.8 1.1 02 15.4 2.5 02 24.8 4.0 02 26.2 3.4 01 - - -

NN-NTAS 6.8 1.8 01 16.6 2.6 02 25.8 4.8 01 27.1 3.7 00 - - -

BCO radar cloud cover (CCk)

NN-BCO 20.3 2.3 23 26.3 3.1 23 33.9 6.3 20 36.7 2.7 19 26.7 5.1 01

derived from the different methods, geographical locations and observational datasets
(as described below).

We follow the same approach when using the NN classification, but because multiple
patterns with different sizes can be detected at one timestep over the domain, the
frequency of pattern occurrence (Fk) becomes dependent on both the area of patterns
(ak) relative to the domain area (adom) – i.e., ak/adom – and on their temporal frequency
of occurrence (fk), such that Fk = fk × ak/adom, where adom = ∑k ak and thus ∑k Fk =

∑k fk = 100%.
Note that while in the formulation above, the domain area corresponds to the sum

of all NN-pattern areas (including unclassified patterns), in practice, here, adom tends
to overestimate the actual domain size due to the overlaps between rectangles of dif-
ferent patterns. The difference between adom and the actual domain size is somewhat
proportional to the number of detected patterns, ranging between 15% in the afternoon
and 30% at nighttime (Figure D.11). While this difference seems significant, tests on the
accuracy of pattern detection have shown that the interpretation of our results is not
sensitive to these overlaps (Figures D.11 and D.12). Our findings also remain consistent
when we discard multiple pattern occurrences at one timestep and location (Section
D.2.2 and Figure D.13).
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In addition to the “domain-mean” pattern-related cloud covers, we also consider the
GOES-16 ABI cloud cover for those pattern rectangles that overlap specific locations on
the domain (i.e., the location of the instrumented sites described in the following section).
In doing this, we similarly weight the pattern cloud cover by its spatial coverage, except
for the ’No’ category (which is not a distinct class, and thus does not have a delineated
area around the site location).

d.2.2 Ground-based remote sensing and in-situ data at BCO and NTAS

Following Vial et al. (2019), we use ground-based radar, ceilometer, and Micro Rain Radar
(MRR) measurements from the Barbados Cloud Observatory (BCO), which is located at
the most windward tip of Barbados at 59.48

◦W, 13.15
◦N and samples undisturbed trade-

wind conditions (see Nuijens et al., 2014 and Stevens et al., 2016 for a detailed description
of the BCO and its instrumentation). The cloud and rain statistics are aggregated into
5-min averages. Periods with a radar signal between 4 km and 8 km, including the hour
before and after, are discarded to limit our analysis to shallow convection.

The mean rain rate is derived from MRR data at 325 meters above ground (the
lowermost level with reliable data). The MRR is also used to compute a rain flag, which
is set to 1 when rain rates greater than 0.05 mm/h are measured in at least five range
gates in the lowest 3 km (following Nuijens et al., 2014).

The vertical distributions of hydrometeors (i.e. cloud and rain droplets) and clouds
are derived from a 35.5 GHz (Ka-Band) Doppler cloud radar. The hydrometeor mask is
derived using a threshold of -50 dBZ on the equivalent radar reflectivity Ze (a 10 dBZ
lower threshold than used in Vial et al., 2019 to increase the sensitivity to smaller clouds).
Cloud fraction profiles are obtained from the hydrometeor mask by discarding periods
of rain: when the ceilometer does not detect a cloud base (due to strong rain) or when
the MRR rain flag is 1. Moreover, radar signals below the ceilometer-detected cloud-base
height are set to 0 in the cloud fraction profiles. Periods when neither the ceilometer nor
the MRR are running are also discarded.

The (rain-corrected) radar cloud profiles are also used to derive the total cloud cover,
as well as the contribution to the total cloud cover from three distinct categories of clouds:
(i) shallow cumuli with cloud base (CB) below 1 km and cloud top (CT) below 1.3 km, (ii)
deeper cumuli with CB < 1 km and CT > 1.3 km, and (iii) clouds aloft with CB > 1 km.
This decomposition is slightly different than the more commonly used decomposition
from Nuijens et al., 2014, as the use of radar rather than ceilometer data allows us to
further decompose the ’LCL’ cloud category into two sub-categories according to the
cloud-top height. The decomposition used here is similar to the one applied to model
data in Vial et al., 2019 (see details in their Appendix A).

Note that the rain-correction applied will lead to an underestimation of total cloud
cover, as periods of rain are usually also periods of cloudiness. Because rain is most
frequent during nighttime (Nuijens et al., 2009; Vial et al., 2019) and because the rain
frequency also depends on the patterns (i.e. fish is the rainiest, followed by Flowers and
Gravel Schulz et al., 2021), we tested that this underestimation does not bias our results
by comparing the daily cycles of the total cloud cover and the total hydrometeor cover.
The hydrometeor cover includes both cloud and rain droplets and thus overestimates
cloud cover (being on average ∼10% larger for Sugar, ∼15% larger for Gravel and Flow-
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ers, and ∼20% larger for Fish). However, we find the daily cycles of total cloud cover and
total hydrometeor cover to be very similar for all patterns (compare the black and grey
curves on the top-right panels of Figure D.7), and thus conclude that the underestimation
of cloud cover due to the rain-correction does not bias our results.

We also use measurements of sea surface temperature (SST) and near-surface wind
speed from the Northwest Tropical Atlantic Station (NTAS) open ocean surface mooring
at 51.02

◦W, 14.82
◦N. NTAS measurements have a temporal sampling rate of 1 minute.

Wind data are collected at about 3 meters above sea level and SSTs at 1-meter depth. To
directly compare the buoy observations of wind speed with ERA5 estimates (section
D.2.3), we adjust the 3-meter wind to conform to the reference height of 10 meters, using
the simple power-law wind profile (u2 = u1(z2/z1)

0.11 – where u2 is the wind speed
at the reference 10-m height (z2), and u1 the wind speed measured at height z1 (= 3.4
meters)), which was shown to be a good approximation for use over the ocean, where
near-neutral stability conditions prevail (Hsu et al., 1994). his adjustment implies an
increase of the wind speed of about 1 m/s between 3 and 10 meters.

In a similar way as described in Section D.2.1, we construct pattern-related composites
for the BCO and NTAS sites, but we only select the NN-detected patterns overlapping
the location of these instrumented sites. The compositing is instantaneous in the sense
that we average all measurements within ± 15 minutes around the classification time.

As explained above, several pattern rectangles can be detected at one location, poten-
tially introducing a bias in the composite when different patterns occur at the same time.
That said, we show in Figure D.13 that discarding the timesteps when multiple labels
occur at BCO does not affect the results, but does reduce significantly the sample size of
our composites. We therefore keep all detected patterns at the site locations to construct
the pattern-related composites.

d.2.3 The large-scale environment from ERA5 reanalysis

The ERA5 reanalysis is based on the Integrated Forecasting System (IFS) Cy41r2, opera-
tional since 2016. It provides hourly estimates of atmospheric variables, at a horizontal
resolution of 31 km (0.25

◦ or TL639) and 137 vertical levels from the surface to 0.01 hPa
(Hersbach et al., 2020).

We here use hourly output for the 10-meter wind speed and the lower tropospheric
stability (LTS, defined in Klein and Hartmann, 1993 as θ700 - θ1000, where θ is the potential
temperature in Kelvin) over the NN classification domain (9.3◦N-23.3◦N, 45

◦W-66
◦W),

in order to explore how the daily cycles of cloudiness and mesoscale patterns relate to
these large-scale environmental factors that are known to play a role in the variability of
trade-wind cloudiness and organization at longer timescales (Bony et al., 2020; Brueck
et al., 2015; Nuijens et al., 2015).

Following the approach described in Section D.2.1, we construct the pattern-related
composites for the near-surface wind speed (Uk) and LTS (LTSk) and sample their daily
cycle. The relationship between the large-scale environment (including U and LTS) and
the mesoscale patterns of organization was first explored in observations at the day-to-
day and inter-annual timescales using the Iorg/S pattern classification method (Bony
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et al., 2020). Here, we extend the analysis by considering the daily timescale and patterns
detected with the NN approach. Note also that using the Iorg/S method, combined with
hourly estimates of the environmental conditions, the sample size is too small to see a
robust signal on the daily timescale.

d.3 daily changes in the occurrence of mesoscale patterns of organi-
zation

The first question we address here is whether the observed occurrence of mesoscale
patterns of shallow convection varies at the daily timescale.

Figure D.3: Top panels: daily cycle in the occurrence frequency of mesoscale patterns for Sugar
(green), Gravel (yellow), Flowers (red), Fish (blue) and No category (grey), with
the first harmonics superimposed in thicker lines. Panel (a) shows the 10

◦×10
◦

domain-scale Iorg/S pattern frequency and panel (b) shows the occurrence frequency
of NN-detected patterns within the 14

◦×21
◦ domain. Middle panels: contributions

to the NN occurrence frequency owing to (c) the temporal frequency and (d) spatial
coverage. Bottom panel (e): temporal frequency of NN-detected patterns over BCO
(solid line) and NTAS (line with markers). Note that at a single point, the temporal
frequency corresponds to the frequency of occurrence.
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Figure D.3 (a,b) shows that whatever the method we use to classify mesoscale organi-
zation (Iorg/S or NN), the frequency of occurrence of all forms of organization exhibits
a pronounced daily cycle with distinct 24-hour phasing. The patterns Fish and Sugar
preferentially occur during daytime, and as such can be viewed as daytime patterns,
while Gravel and Flowers appear rather as nighttime patterns. More specifically, the
frequency of Fish patterns increases in the morning and reaches a maximum at 12 local
time (LT); the peak in the Sugar pattern frequency is shifted towards the afternoon, at
14LT for Iorg/S and 17LT for NN (Table D.1); Gravel increases during the afternoon and
peaks at midnight; and the Flowers population grows soon after sunset until reaching a
peak at the end of the night between 03LT and 06LT depending on the method.

The amplitude of these daily cycles is substantial, with a minimum of 20% relative to
the daily mean for the NN-detected Fish, between 35% and 60% for NN-detected Gravel,
Sugar and Flowers, and more than 100% daily variation for the Iorg/S-detected Sugar
and Flowers patterns (Table D.1).

When using the NN approach, the frequency of pattern occurrence depends both on
the temporal frequency (Figure D.3c) and spatial coverage of patterns (Figure D.3d).
These two attributes of pattern occurrence exhibit very similar diurnal phasings, which
means that when the NN detects more of a given pattern, it also extends over a larger area
and vice versa. However, the daily variability in the occurrence of patterns (Figure D.3b)
appears to be more strongly driven by their temporal frequencies – whose variations
range between 10% and 45% with respect to daily means – than their spatial coverage,
which varies between 5% and 15% (relative to daily means) among the different patterns.

Gravel appears to be the most frequent pattern and on average covers larger areas of
the domain (more than 50% of the domain area on average). The Flowers pattern also
covers about half of the domain on average, but with a very pronounced daily cycle in
its temporal frequency – it is the least frequently observed pattern around sunset, as
well as one of the most frequent patterns at night. Sugar and Fish are the least spatially
extended patterns (about 30% and 40% of the domain, respectively), but they can be
frequently observed, especially during daytime (about 60% of the time at 12LT and 17LT,
respectively).

Similar daily phasings as on the entire domain are also found when looking at the
surface sites BCO and NTAS independently. However, the comparison between BCO
and NTAS (which lies 8

◦ east of BCO) reveals a geographical dependency in pattern
occurrence, especially regarding the daily means and amplitudes of the daily cycles in the
temporal frequency of patterns (Figure D.3e). Overall, the frequency of detected patterns
is systematically higher at NTAS than at BCO, while the frequency of unclassified
patterns is greater at BCO. Note that larger differences were found, especially for the
unclassified category, by applying the NN algorithm on a 5

◦-eastward shifted domain
(not shown). This was due to a lower pattern detection at BCO, which lay closer to the
edge of the domain. With the present domain, however, BCO and NTAS are equally
distant from the edge of the domain (about 6

◦), thus we expect the differences between
the two sites to be real.

In particular, the differences for the Gravel and the Flowers patterns, which are the
most important throughout the 24-hour daily cycle, might reflect an east-west gradient
in the frequency of occurrence of these patterns, with a greater occurrence on the east
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due to stronger easterlies (not shown). This is consistent with the findings in Bony et al.
(2020) who show that the Gravel and Flowers patterns mostly occur in conditions of
stronger near-surface wind speed. The frequencies of the Fish patterns are fairly similar
at BCO and NTAS, which can be expected given the large-scale characteristic of this
pattern that, moreover, is most often oriented along the east-west direction (Schulz et al.,
2021; see also in Figure D.9). Finally, we note also that the daily amplitude of the Sugar
pattern is higher at NTAS than at BCO due to a much higher occurrence frequency
during daytime.

d.4 dependence of the daily cycle of trade-wind cumuli and precipita-
tion on mesoscale patterns of organization

d.4.1 Mesoscale pattern signatures on the daily cycle of GOES-16 ABI cloud cover

Figure D.4 shows the averaged daily cycle of GOES-16 ABI cloud cover associated with
the different patterns (CCk) detected over the entire classification domains (panels a and
b) and over the sites at BCO (c) and NTAS (d). The similarity between all four panels
is salient, and suggests that the daily cycle in cloudiness is overall independent of the
classification method, of the patterns themselves and of the geographical location.

Figure D.4: Daily cycles and first harmonics of patterns cloud cover (CCk) derived from GOES-16

ABI using (a) Iorg/S classified patterns, (b) NN-detected patterns over the entire
domain, (c) NN-detected patterns over BCO and (d) NN-detected patterns over
NTAS. The dash lines represent the daily-mean cloud covers. Note that the NO
category does not appear in panels (c–d) as there is no delineated area over which
we can compute a cloud cover. The color code is the same as in Figure D.3.

The weak dependency of the daily phase of cloud cover on NN patterns is particularly
striking, especially so for the large domain (Figure D.4b): cloudiness always minimizes
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in the afternoon (between 13LT and 16LT) and maximizes at nighttime (between 00LT
and 04LT), consistent with Vial et al. (2019) and the 3-year winter-time climatological
daily cycle in cloud cover calculated here (cf. black lines in Figure D.6). The exception is
for Sugar identified with Iorg/S, which shows a phase shift of about 5 hours, although
the robustness of this daily cycle might be questioned given the small number of Sugar
cases identified with Iorg/S at nighttime (Figure D.3a).

From a more quantitative point of view, the daily mean and amplitude in cloud cover
are, to some extent, dependent on pattern, and more precisely, on the mean size of cloud
objects (S): patterns with small cloud entities (Sugar and Gravel), tend to have a smaller
daily mean and amplitude in cloud cover than the Flowers and Fish patterns, which
have much larger cloud structures and a larger fraction of stratiform cloudiness near the
inversion that is particularly sensitive to the daily cycle (Vial et al., 2019). Nevertheless,
the daily variability in cloud cover for a given pattern remains small compared to the
differences in daily-mean cloud cover between the patterns. The cloud cover varies by at
least a factor of two across the different patterns (see also Bony et al., 2020), while the
daily variations range between 10% and 20% relative to daily means.

Note that Bony et al. (2020) found a higher cloud cover (from MODIS cloud products)
for the Flowers pattern than for the Fish pattern identified with Iorg/S, which is consistent
with our daytime estimates (Figure D.4a), given that only daytime measurements of
MODIS over the North Atlantic trade-wind region (mid-morning for Terra and early
afternoon for Aqua) were used. Nevertheless, it should also be noted that our GOES-16

ABI estimates of cloud cover are overall lower than MODIS estimates (cf. Bony et al.,
2020), presumably because the Tb cloud mask and lower resolution of GOES-16 ABI
prevent from detecting the smallest clouds (see also the discussion at the end of Section
D.4.2).

Overall, our results suggest that the mesoscale patterns of cloud organization constitute
a fairly robust constraint on cloud cover, and that the dependence of the daily cycle on
mesoscale organization is essentially due to the daily changes in pattern frequency of
occurrence. This also means that knowing the daily variation in pattern occurrence and
the mean cloud cover for a given pattern, we can recover to a large degree the daily cycle
in the effective cloud cover of the different patterns (Figure D.5).

d.4.2 Contribution of mesoscale patterns to the daily cycle of cloud cover

Combining the daily cycles in Fk (Section D.3) and CCk (Section D.4.1) into the product
CCk × Fk allows us to quantify more explicitly the relative contribution of mesoscale
patterns to the daily cycle in total cloud cover. We present this “effective pattern cloud
cover decomposition” in Figure D.6 for GOES-16 ABI cloudiness and detected patterns
over the entire classification domains (panels a and b), as well as for the radar cloud
cover at BCO and the NN-patterns overlapping the BCO site (panel c). Recall that when
using the NN-patterns, the sum of all contributions is greater than the total cloud cover
(black lines) because of the overlaps between multiple label occurrences (Section D.2.1.1).
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Figure D.5: Daily cycle in the effective pattern cloud covers (CCk × Fk, solid lines) from GOES-16

ABI using (a) Iorg/S classified patterns and (b) NN-detected patterns over the entire
domain. The dashed lines represent the product CCk × Fk but with CCk fixed to the
daily-mean. The color code is the same as in Figure D.3.

Overall, the contribution to total cloudiness from the four defined patterns is greater
at night – when the total cloud cover is maximum – than during the day. However,
the extent to which the patterns explain the total cloudiness strongly depends on the
classification method. When using Iorg/S, about 60% of total cloudiness is explained by
the No category throughout the 24-hour cycle (Figure D.6a). This percentage reflects the
frequency of occurrence of the No category (Figure D.3a) that is set by the classification
criteria of patterns (Section D.2.1.1). With the NN method, only about 30% of the cloud
cover is due to the No category, and the daily cycle for this contribution remains weak
(Figures D.6b,c) owing to the opposite diurnal phasing of FNO and CCNO (compare for
instance Figures D.3b and D.4b).
The contribution of the No category to the overall daily cycle in cloud cover, however,
deserves some more discussion. It is notable that adding the percentage of cloud cover
due to the overlaps between NN patterns (i.e., the difference between the sum of all
contributions and the actual total cloud cover in Figure D.6b) and the percentage of
CCNO × FNO (the grey area in Figure D.6b), leads to a similar contribution of unclear
patterns as that of the No category for Iorg/S. This further supports the coherence be-
tween these two intrinsically different methods. Moreover, it suggests that using the NN
method, we can unravel the contribution to total cloud cover due to forms of cloud orga-
nization that are somehow related to the four predefined patterns (i.e., the contribution
from overlaps) and that due to organization forms that are not related to the predefined
patterns (i.e., contribution from the No category). Therefore, we argue here that the most
likely contribution of unclassified forms of organization to total cloud cover is about 30%
(the percentage given by the NN method) – and thus that the largest extent of cloud
cover can be explained by these four forms of mesoscale cloud patterns, as follows.

The Fish pattern is the most important contribution to the afternoon cloudiness
regardless of the classification method (Figure D.6a,b). This is partly because this pattern
occurs more frequently during daylight hours (especially when using Iorg/S), but also
because the other patterns are less frequent and therefore contribute relatively little to
cloudiness at this time. Actually, when using the NN method, the effective contribution
of the Fish pattern to the daily cycle in cloud cover tends to be quite small (Figure
D.6b,c), because of opposing phases between FFI and CCFI (Figure D.5b) and relatively
weak daily amplitudes in FFI (Table D.1 and Figure D.3). Note that the Fish pattern is
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Figure D.6: Daily cycle of total cloud cover (black thin line, with the first harmonics superimposed
in thicker line) and relative contributions of the different mesoscale patterns of cloud
organization (CCk × Fk): Sugar (green), Gravel (yellow), Flowers (red), Fish (blue)
and No classification (grey). In panels (a,b) the pattern cloud covers are derived
with GOES-16 ABI Tb cloud mask on (a) the 10

◦×10
◦ Iorg/S domain and (b) the

NN-detected patterns within the entire 14
◦×21

◦ classification domain. In panel (c):
same as in (a–b) but the cloud covers are diagnosed from the radar at BCO using
NN-detected patterns overlapping the BCO site.

often associated with a synoptic disturbance that persists for several days, continuously
forced by a convergence line (Aemisegger et al., 2021; Schulz et al., 2021). This may thus
explain the small daily cycle in the occurrence frequency of the Fish patterns.

When using the NN method, Gravel and Flowers are the dominant contributions at
nighttime, both over the entire classification domain and at BCO. Gravel explains about
45% of the total cloud cover around midnight, while the Flowers contribution maximizes
just before sunrise with values ranging between 30% (at BCO) and 40% (over the large
domain). A similar 24-hour phasing is observed for these two patterns when using Iorg/S,
although their contribution to total cloudiness remains small (Figure D.6a).

The case of the Sugar pattern is interesting because it can occur quite frequently
(Figures D.3c,e) but its spatial extent is relatively small (Figure D.3d). Consequently, its
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contribution to total cloudiness appears much larger at BCO (Figure D.6c) than over the
large domain (Figure D.6b). Moreover, the daily phases of FSU and CCSU are opposed
(Figures D.3b and D.4b), which reduces the effective contribution of this pattern to the
daily cycle of total cloudiness. With Iorg/S, Sugar is the pattern that contributes the least
to the total cloud cover and its daily cycle.

Overall, these results reveal that unclassified and Fish patterns are the most important
for daytime cloudiness, while Gravel and Flowers contribute most to nighttime cloudi-
ness. The contribution from the Sugar pattern, although never dominant, maximizes
around sunset (with NN) and can be more important when viewed locally than at
large-scale.

Finally, we draw attention to the three different cloud cover estimates in Figure D.6
(black lines). We note, in particular, that the cloud cover from the radar at BCO is about
3% to 10% larger than the satellite-based estimates over the large domain. This difference
is even larger when using the ceilometer-based cloud cover (not shown). This difference,
which has also been reported in previous studies comparing BCO data with other
satellite-based products (Nuijens et al., 2015; Vial et al., 2019), is likely due to different
capabilities of the instruments to measure low-level clouds – the BCO radar or ceilometer
being much more sensitive to low-level cumuli than the GOES-16 ABI infrared channel.
Moreover, the Tb cloud mask is defined such as to exclude some of the shallowest clouds,
in particular those with a cloud-top height below 1 km (Bony et al., 2020). So we might
expect the difference in the cloud cover estimates (between GOES-16 ABI and the BCO
radar or ceilometer) to be particularly pronounced for the Sugar pattern that essentially
consists of clouds with little vertical extent above the LCL (Schulz et al., 2021). Although
this difference is indeed slightly larger for the Sugar pattern, it remains, nevertheless,
of the same order of magnitude regardless of the pattern (compare the pattern-related
CCk’s in Table D.1). This could be explained based on findings from Schulz et al., 2021

showing that the cloudiness near the LCL does not vary substantially from pattern to
pattern, and therefore the difference between the BCO and satellite-based estimates
should also remain relatively similar from pattern to pattern.

d.4.3 Mesoscale pattern signatures on the daily cycle of clouds and precipitation at BCO

We here take advantage of the BCO dataset (Section D.2.2) to characterize further the
different cloud and precipitation properties associated with each pattern of organization.
Schulz et al. (2021) provides a detailed description of the mean structure of clouds and
of the convective boundary layer for each pattern. Here, we focus more on the daily
evolution of precipitation and of the vertical distribution of cloudiness (Figure D.7). We
show that, even if the daily cycle of the overall cloud cover (CCk) is very similar among
the different patterns (Section D.4.1), each organization pattern appears with its own
daily cycle of shallow convection:

• The Sugar pattern essentially consists of small non-precipitating cumuli with a
cloud-base height close to the LCL (below 1 km) and weak vertical extent during
daylight hours. Near sunset, the overall cloud cover starts to increase due to a
blooming of slightly deeper clouds reaching the upper cloud layer (above 1.3 km)
between 19 LT and 02LT. The proportion of shallower clouds (i.e., CT < 1.3 km) is
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dominant and remains fairly constant throughout the day. However, despite this
overall cloud deepening at night, the precipitation rates measured at the surface
remain low throughout the day.

• For the Gravel pattern, clouds overall reach higher levels in the cloud layer, with
about 2/3 of the cloud population having their top above 1.3 km. The daily cycle
of the total cloud cover is mainly driven by the population of thicker clouds (CB
< 1 km and CT > 1.3 km), which increases in the afternoon and maximizes at
00LT. The cloud cover from both the very shallow clouds (CB < 1 km and CT <

1.3 km) and clouds aloft (CB > 1 km) remains roughly constant throughout the
day. Interestingly, the precipitation peak is delayed by about 6 hours with respect
to the maximum in cloud cover. Seifert and Heus, 2013 noted a similar feature
in large-eddy simulations of shallow convection with cold-pool organization (cf.
their figure 2). One reason could be that there is, first, a reduction of rainfall due
to evaporation below cloud-base and that, later, the generated cold-pools created a
moister environment allowing more rainfall at the surface. Further investigation
is needed to verify the robustness of this time shift between cloudiness and
precipitation and to provide an explanation for it.

• The Flowers pattern has to be interpreted with caution as the number of detected
patterns is small over BCO, especially between 18LT and 21LT (Figure D.3), at times
when the peak in cloudiness is observed (Figure D.7). Nevertheless, we find that
about 80% of the cloud cover is explained by clouds with cloud-top height above
1.3 km, and the cloud fraction near the inversion tends to be more pronounced at
late night hours. The daily cycle in precipitation seems weak and local maxima are
not always correlated with peaks in cloudiness (for instance at 12 LT) – a feature
that could also be explained by the presence of cold pools as for the Gravel case.

• For the Fish pattern, the relative contributions of shallow and deeper clouds are
similar as for the Flowers pattern. The daily variability in CC exhibits two local
maxima, around sunset and at early morning hours, but with an overall tendency
(given by the first harmonic) for a daily maximum in cloudiness around sunset.
The vertical cloud fraction profiles reveal that the nighttime inversion and clouds
can reach higher levels than during the day. The precipitation daily cycle given by
the first harmonic is similar as for the Gravel pattern, albeit with more pronounced
variability.

• The unclassified cloud scenes (the ‘No’ category) might be the most variable on
the daily timescale. The cloud profile is fairly similar to that of the Sugar pattern
during the day, whereas at night it appears as a mixture between the Gravel and
the Fish patterns (with both a strong inversion near 2 km and a significant cloud
fraction above). Despite the nighttime cloud deepening, surface rainfall remains
quite low throughout the day. However, there is small difference in the amplitude
of the daily cycle between the total hydrometeor cover and the total cloud cover
(of about 3% – between the grey and black curves in the top-right panel), which
suggests a nighttime enhancement of clouds with precipitation at higher levels.

One notable feature worth mentioning is the different 24-hour phasing in pattern-
related cloud cover at BCO whether the cloud cover is derived using GOES-16 ABI
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(Figure D.4c) or BCO remote sensing instruments (Figure D.7). When using the BCO
measurements, the peak in cloud cover is systematically earlier in time compared to
when GOES-16 ABI retrievals are used (with a phase shift of several hours–between
2h and 7h–depending on the pattern, see Table D.1). The time difference in the solar
forcing between the western and eastern boundary of the NN classification domain
is at most 1h24’ (4 minutes for every degree longitude), which cannot explain the
aforementioned time shifts. One reason explaining these differences could, however,
be related to sampling: a small number of detected patterns at BCO (e.g., Flowers at
18LT) and/or a too small temporal averaging for a given pattern to capture the averaged
properties of the pattern at a given time. For example, given the large size of Flowers (∼
100 km or more), they can take several hours to cross entirely over BCO (see Figure 7 in
Stevens et al., 2020). Complementary tests of the influence of spatial/temporal scales on
our results support this explanation (Figure D.14).

d.5 the role of environmental factors

Two related questions that can be asked now are what controls the daily variability
of pattern frequency, on the one hand, and the constancy in the nighttime peak of
cloudiness regardless of the pattern, on the other hand. We shed light on these questions
by diagnosing the daily cycle of some of the environmental factors that are known to be
either determinant for pattern occurrence (Bony et al., 2020) and/or controlling factors
of winter trade cloudiness at timescales longer than a day (Brueck et al., 2015; Nuijens
et al., 2015). In those studies, the near-surface wind speed and LTS appear to be the most
influential factors on the day-to-day and interannual timescales. We thus consider those
two variables, as well as the SST, which is known to be an important ingredient for the
daily cycle of convection when the near-surface wind speed is weak (Bellenger et al.,
2010; Ruppert and Johnson, 2016).

The results presented in Figure D.8 show that these three variables exhibit a daily
cycle, with distinct phasings and amplitudes depending on the variable itself, on the
pattern, and on the dataset that is considered.
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Figure D.7: Pattern-related daily cycle of cloudiness and precipitation from the Barbados Cloud
Observatory for (top-to-bottom) Sugar, Gravel, Flowers, Fish and No patterns. Left
panels: rain-corrected cloud fraction derived from the radar; Middle panels: profiles
at selected times for the rain-corrected (cloud) and hydrometeor (cloud and rain
droplets) fraction derived from the radar; Right panels: (top) radar-derived cloud
covers and (bottom) rain rate derived from the Micro Rain Radar (MRR). In the right
panels, the thin solid lines represent the actual data, the thicker lines are the first
harmonics, and the thin dotted horizontal lines are the daily means. Also shown in
the top right panels by the grey curve, is the daily cycle in total hydrometeor cover
(HC), with the difference in the daily means between HC and CC removed (for ease
of readability in the figure). The daily means in HC are 31.5% for Sugar, 40.6% for
Gravel, 49.8% for Flowers, 57.4% for Fish and 46.3% for No.
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Figure D.8: (a) Fractional anomalies (with respect to climatological mean) of pattern-related
large-scale 10-m wind speed (U) and LTS from ERA5 and local SST from NTAS
measurements. The empty circles represent the anomalies based on the daily-mean
U, LTS and SST, whereas the filled circles represent the anomalies at the time of the
peak occurrence of the specific patterns (which is indicated by the filled markers
in panels b–g). (b–e) Pattern-related daily cycle of U, LTS, θ700 and θ1000 sampled
over the large NN classification domain when using ERA5 data. (f–g) Pattern-related
daily cycle of U and SST sampled over the NTAS site and using NTAS measurements
(d, e). The first harmonics is shown by the thicker line. Note that the 3-meter wind
speed measured at NTAS has been adjusted to conform to the reference 10-m height
(section D.2.2). The color code for the patterns is as indicated in the legend, and the
black line represents the climatological mean (DJFM 2018-2020).
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d.5.1 Relation to the daily cycle in pattern frequency

For daily means in large-scale wind speed and LTS, our findings are consistent with
Bony et al. (2020): the large-scale environment tends to be less stable with weak winds
for Sugar, less stable with strong winds for Gravel, more stable with strong winds for
Flowers, more stable with weak winds for Fish (Figure D.8a, empty circles). Here, we
show that this holds at any time of the day, and that the daily cycle in wind speed
amplifies the relationship between wind speed and pattern occurrence (Figure D.8a,
filled circles). The large-scale wind tends to be stronger at night regardless of the pattern
(Figure D.8b), and thus it discriminates the occurrence of the organization patterns in
the same way at sub-daily, daily and inter-annual timescales: Gravel and Flowers occur
mostly at night when the wind is stronger, while Fish and Sugar occur mostly during
daytime when the wind is weaker. It is, however, worth noting that this relationship can
be different depending on whether the wind speed is diagnosed at large-scale (here,
with ERA5 over the large NN classification domain in Figure D.8b) or locally (e.g., at
NTAS in Figure D.8f). Indeed, the overall increased variability in the pattern-related
daily cycles in wind speed at NTAS could explain the difference for the Sugar pattern
(compare the thin lines between Figures 8b and 8f).

The daily cycle in LTS can be different from one pattern to another (Figure D.8c), and
the relationship between LTS and pattern occurrence at daily timescale is opposite to that
found at longer timescales: at times of maximum occurrence of Fish and Flowers patterns
the environment is the least stable of the day, and at times of maximum occurrence of
Gravel and Sugar patterns the environment tends to be more stable compared to the
pattern-related daily-mean LTS (Figure D.8a).

The SSTs tend to be colder for the Flowers pattern and warmer for the Sugar pattern
(as in Bony et al., 2020), but overall this variable does not significantly explain the
variability in pattern occurrence on the day-to-day or daily timescales (Figure D.8a).

Therefore, the near-surface wind speed is here the factor that explains best the daily
variability in pattern occurrence; it discriminates the daytime from nighttime patterns.

d.5.2 Relation to the constancy of the nighttime peak of cloudiness

As mentioned earlier, the large-scale wind is overall stronger at night whatever the
pattern (Figure D.8b), and thus correlates quite well with the daily cycle in pattern-
related cloudiness (Figure D.4). This co-variability between trade-wind cloudiness and
near-surface wind speed has already been discussed in the context of slowly-varying
observations (Brueck et al., 2015; Nuijens et al., 2015) or in equilibrated large-eddy
simulations (Nuijens and Stevens, 2012). Here, we show that it happens on the daily
timescale whatever the organization pattern in place, and could therefore constitute a
basic ingredient of trade-wind convection: as the winds reinforce, surface evaporation
increases, providing the moisture that is needed for the clouds to grow deeper, which
then helps increase the overall cloud cover. Surface winds, in turn, can be enhanced at
night as radiative cooling destabilizes the boundary layer and strengthens the momentum
transport by the shallow convection (Hourdin et al., 2015; Schlemmer et al., 2017).

The domain-mean LTS has a small daily cycle with a maximum at nighttime – at times
when the cloud cover is maximum (compare black line in Figures D.8b and Figures D.6b).
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This result is somewhat expected given that large nighttime cloudiness is mainly related
to the spreading of a stratiform cloud layer below the trade inversion (Vial et al., 2019),
and that stratiform cloudiness is more likely to occur under stronger stability (Wood and
Bretherton, 2006). Given that strong LTS is favored by weak θ1000 and/or strong θ700 and
that both θ1000 and θ700 exhibit a daily cycle with a minimum at nighttime, the nighttime
maximum in LTS then primarily owes to the minimum in (near-)surface warming.

Note, however, that the daily cycle in LTS is different from one pattern to another; this
is related to a θ700-dependency, as the daily cycle in θ1000 is fairly similar for all patterns
(Figures D.8d,e). The Flowers pattern in particular is associated with less stable conditions
during the night, owing to a large decrease in θ700. From these results, we hypothesize
that while more stable conditions can be more favorable to stratiform cloudiness at
night, once the Flowers stratiform cloud layer are present they might produce locally
less stable conditions, presumably through enhanced radiative cooling at cloud-top (see
for instance in Figure 6 of Albright et al., 2021). Case studies of the field campaign
EUREC4A (Elucidating the role of clouds-circulation coupling in climate, Stevens et al.,
2021) that took place windward of Barbados in January-February 2020 could provide new
opportunities to further investigate how the cloud patterns impact the local environment.

Due to the sustained easterlies in this season, the daily cycle in SST is not expected
to be strong and hence also not expected to play a major role in the daily cycle of
trade-wind cumuli (Brill and Albrecht, 1982; Vial et al., 2019). Indeed, as shown in Figure
D.8e, the daily amplitudes of SSTs remain small, ranging between 0.1◦C and 0.2◦C across
the different patterns. Moreover, there is an overall tendency for higher SSTs during the
day, at times when the cloud cover is minimum, revealing that the nocturnal increase in
cloud cover is not forced by surface warming (a somewhat obvious fact).

The dependence of the SST daily cycles on the mesoscale patterns of organization
and associated wind speed does not appear straightforward. Whereas there is an anti-
correlation between the daily cycles of the wind speed and of the SST for the 3-winter
climatology (black curves in Figures D.8d,e), consistently with previous observational
analyses over this area on long time scales (e.g., Xie, 2004), more diverse relationships
are found at the daily timescale for the individual patterns. We note, for instance, a
time shift of about 6 hours between the daily maximum in wind speed and the daily
minimum in SST for the patterns Sugar and Flowers. Moreover, there does not seem to
be a linear relationship between the daily-mean wind speed and SST among the different
patterns. These results therefore suggest that different factors (e.g., precipitation, upper
ocean eddies) might affect the air-sea coupling on short time scales and depending on
the mesoscale pattern of cloud organization.

d.6 conclusions and discussions

High-frequency geostationary satellite observations over the tropical Atlantic ocean and
ground-based remote sensing measurements from the Barbados Cloud Observatory
(BCO) are used to explore how the daily cycle of cloudiness in the winter trades depends
on the spatial organization of shallow convection. We focus on the four prominent
patterns of cloud organization of this region – Sugar, Gravel, Flowers and Fish – that
have been characterized recently (Stevens et al., 2020). We apply two existing classification
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methods on 30-minute infrared brightness temperatures from GOES-16 ABI to sample the
daily cycle of these four forms of organization: one based on a neural network (referred
to as NN) and one based on the mean size and degree of clustering of segmented
cloud objects (referred to as Iorg/S). A fifth category is also considered for unclassified
mesoscale cloud scenes. Although these two classification methods are quite different in
nature, they both yield qualitatively similar results, which are summarized hereinafter:

1. All forms of mesoscale organization exhibit a pronounced daily cycle in their
frequency of occurrence, with distinct phasing and amplitude. The patterns Fish
and Sugar preferentially occur during daytime, with a frequency peak around noon
for Fish and around sunset for Sugar. The patterns Gravel and Flowers occur more
frequently during nighttime; Gravel maximizes around midnight and Flowers at
early morning hours before sunrise. From a more quantitative point of view, the
daily characteristics of pattern occurrence (mean, phase, amplitude) are somewhat
dependent on the classification method and on the geographical location of the
patterns. The dependence of pattern occurrence to the large-scale environmental
factors, such as the east-west gradient in near-surface wind speed, can explain
some of the geographical disparities.

2. The daily cycle in cloudiness for a given pattern is relatively weak compared to the
differences in cloudiness between the patterns. It is also fairly independent of the
pattern and its geographical location: any given pattern cloud cover is maximum
at nighttime (between 00LT and 03LT) and minimum in the afternoon (between
12LT and 15LT).

3. As a result of points 1 and 2, the effective contribution of patterns to the daily
cycle in total cloudiness is to a large extent mediated by the frequency of pattern
occurrence. The Fish pattern, which mostly occurs during the day, explains about
30% of daytime cloud cover. The contribution to total cloud cover from the Sugar
pattern is the most important around sunset, representing up to about 25% of
total cloud cover at this time at BCO. Gravel is the dominant form of organization
around midnight (explaining up to 45% of total cloudiness), and Flowers can
contribute up to 40% at early morning hours before sunrise.

4. A significant contribution of total cloud cover is also associated with unclassified
organization, especially during daytime, which happens to be at the time of mini-
mum cloud cover. Nevertheless, and although the importance of the unclassified
contribution depends on the classification method, we find that the mesoscale
patterns of cloud organization can explain to a large extent the daily cycle in total
cloud cover.

A more detailed analysis of the cloud vertical distribution and precipitation at BCO
allows to connect our findings with the description of the daily cycle of shallow cumuli
made in Vial et al. (2019). First, they showed that during daytime a population of very
shallow clouds grows, reaches a peak at 18-19LT and decays until dawn. Here we
demonstrate that this behaviour is associated with an increased occurrence frequency of
the Sugar pattern towards sunset. Second, the overnight cloud deepening discussed in
Vial et al. (2019) is here primarily connected to the increased occurrence of the Gravel
pattern, and to a lesser extent, to an overall deepening of clouds embedded in the Sugar



D.7 supporting information 115

and Gravel patterns. Third, the dawn peak in cloud cover owing to the spreading of a
stratiform cloud layer below the trade inversion (Vial et al., 2019), is here connected to a
maximum occurrence of the Flowers pattern at this time of the day. It thus appears that
the daily cycle in the occurrence of Sugar, Gravel and Flowers together may, to some
extent, explain the evolution of trade-wind cloudiness from the shallowest cumuli in late
afternoon to the nighttime population of deeper cumuli. These insights raise the question
of the auto-correlation time-scale of individual patterns, and of the evolution from one
pattern to another, which we leave for future investigation. In that respect, we expect the
Fish pattern to be somewhat different, as it appears more strongly connected to non-local
synoptic-scale disturbances persisting on timescales longer than a day (Aemisegger et al.,
2021; Schulz et al., 2021). This is further supported here with a relatively weak daily
cycle in the occurrence frequency of the Fish pattern.

The early morning peak in surface precipitation, identified in previous studies (Nui-
jens et al., 2009; Vial et al., 2019), is here associated with both the peak occurrence of
the nocturnal patterns (Gravel and Flowers) and the enhanced rain rate at the end of
the night for the ‘rainy’ patterns (Gravel, Flowers and Fish), regardless of their time of
occurrence. Interestingly, for those three patterns (and especially for Gravel), the rain
rate peak tends to succeed the cloud cover maximum by a few hours, which might be
related to cold pools. A hypothesis that should motivate further investigation to ascertain
whether cold-pools actually play a role in the phasing of rainfall.

Finally, we find that the large-scale near-surface wind speed can explain some of the
geographical disparities in pattern frequency, it can also robustly discriminate between
daytime and nighttime patterns, and it is fairly related with the daily cycle in pattern
cloudiness regardless of the pattern in place. These insights, combined with findings
from previous studies (Bony et al., 2020; Brueck et al., 2015; Nuijens et al., 2015), suggest
that the strength of the trade winds are overall tightly connected to cloud amount and
organization over a wide range of time scales from sub-daily to inter-annual.

d.7 supporting information

d.7.1 Examples of known ambiguities in NN-pattern detection

We consider the NN approach as more subjective (compared to the Iorg/S method) in the
sense that the NN algorithm is trained from satellite images classified by the qualitative
and subjective human eye (Rasp et al., 2020; Stevens et al., 2020). This subjectivity
inevitably gives rise to ambiguous detections, and this is why there are a certain number
of overlaps between multiple pattern rectangles. In addition to Figure D.1b, we here
provide two more Examples of such ambiguous classifications that were identified in
previous studies (Bony et al., 2020; Stevens et al., 2020). One is due to the confusion
between the patterns Flower and Fish (Figure D.9, left) and the other one is between
Gravel and Sugar (Figure D.9, right).
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Figure D.9: Same as Figure D.1b but for different dates. The color code for the rectangles is the
same as the one used throughout the manuscript: Red is for Flowers, Blue for Fish,
Yellow for Gravel, Green for Sugar. The Iorg/S classification is indicated in the grey
area.

d.7.2 Characterization of shallow cloud organization from the paired (Iorg, S) distributions

Figure D.10 (left panel) shows how the four patterns are distributed according to their
Iorg/S values (Sugar: green, Gravel: yellow, Flower: red, Fish: blue, undefined: grey). The
two panels on the right show the distribution function of Iorg and S. Note that the figure
on the left is the same as Figure 1 in Bony et al., 2020, but using a different dataset,
sampling frequency and period. In particular, the shape of the Iorg and S distributions
are similarly skewed toward high Iorg and low S values. However, the distribution S is
here shifted toward lower values than in Bony et al., 2020, which is presumably due to
the higher spatial resolution of GOES-16 ABI Tb field (2 km) than the GridSat-B1 product
(0.07

o) used in Bony et al., 2020.

d.7.3 Impact of multiple pattern overlaps on pattern frequency and cloud cover

We here test the robustness of our conclusions to the degree of overlaps between multiple
NN-detected patterns (Figures D.11 to D.13). This is done in two ways.

First, we vary a score of the neural network algorithm – that we call a classification score
– which measures how well the detected cloud structure fits to that of a specific pattern
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Figure D.10: Left panel : characterization of shallow cloud organization from the thresholding by
terciles of the Iorg and S distributions: Sugar is shown in green, Gravel in yellow,
Flowers in red, Fish in blue, and the undefined regime is shown grey. Right panel
: distribution functions of the clustering index (Iorg, top) and mean size of cloud
objects (S, bottom).

(Figures D.11 and D.12). When the score is increased, the chance to detect overlapping
pattern rectangles is reduced and the sum of pattern areas (including unclassified areas)
approaches the domain area. The default value of the score used in this study is 0.4
(Figures D.11 and D.12, solid line). As shown in Figure D.11, the error due to the overlaps
is substantially reduced with a score of 0.5 (dotted line) and almost zero with a score of
0.6 (dash line). The drawback of increasing the score is that less patterns are detected
overall: in Figure D.12 (right panels), the temporal frequency of pattern occurrence (fk)
is substantially reduced as the score is increased. Figure D.12 (left panels) shows that
the phase and amplitude of the daily cycles in cloud cover for a given pattern (CCk) are,
however, quite robust and independent of the classification score. The large differences
that are seen occur essentially for a score of 0.6, for which the sample size of detected
patterns per category becomes quite low (Figure D.12, right panels).

Second, we compare, in Figure D.13, the daily cycle in pattern frequency and cloud
cover between two data samples: one containing all detected patterns overlapping
the BCO site at a given timestep (thus including multiple pattern overlaps), and one
containing only the timesteps with single pattern detection at BCO. Figure D.13 shows
that the daily cycles are very similar whether we allow multiple pattern overlaps or not.

Overall these two supplemental analyses show that multiple pattern overlaps have a
minimal effect on the daily cycles of occurrence frequency and cloud cover of mesoscale
patterns.
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Figure D.11: Daily cycle of the ‘error’ due to overlaps between several rectangles of different
labels for three values of the classification score. The horizontal lines are the daily
means of the error. The error is actually the sum of all pattern areas (including the
no classification) normalized by the domain area. A value of 1 means no error.

d.7.4 Sensitivity of pattern cloud cover to spatial scales

Figure D.14 shows the GOES-16 ABI cloud cover for patterns overlapping BCO (as in
Figure D.4c), but the cloud cover averaging for each detected pattern rectangle is limited
to a 20 km2 subdomain centered over BCO (Figure D.14a), or located 10 km east of BCO
(Figure D.14b). The comparison between Figure D.14 and Figure 4c shows that the daily
cycles of pattern-related cloud covers are sensitive to the spatial scale used to compute
the cloud covers. Therefore, we presume similarly that the results at BCO (Figure D.7)
and at NTAS (Figure D.8f,g) are to some extent affected by the relatively small temporal
interval (used to average the surface or atmospheric field for a given pattern) compared
to the size of patterns. On a somewhat different level, the comparison between Figure
D.14a and Figure D.14b shows that the results are very similar whether they are focused
over BCO or east of BCO, suggesting a negligible effect from the island (e.g., land/sea
breeze).
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Figure D.12: Daily cycle of pattern temporal frequency of occurrence (fk, left panels) and pattern
cloud cover (CCk, right panels) for different values of the agreement score. The
default score, used in the study is s = 0.4.
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Figure D.13: Daily cycle of pattern frequency (fk, a) and BCO radar-derived cloud cover (CCk, b)
when NN-detected patterns overlap the site BCO. The solid lines refer to the case
for which we allow multiple pattern occurrences over BCO and the dash lines refer
to the case for which only one pattern is detected at a given timestep.

Figure D.14: Daily cycle of pattern cloud covers diagnosed from GOES-16 ABI for patterns
overlapping BCO. The cloud covers are calculated over the part of the patterns that
is contained in a 20×20 km2 sub-domain (a) centered at BCO and (b) 10 km east of
BCO.
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Assessment of meso-scale patterns of shallow convection in
realistically forced large-eddy simulations

Hauke Schulz1, Bjorn Stevens1

1Max Planck Institute for Meteorology

e.1 abstract

The variability in meso-scale patterns of shallow convection in the trades has recently
been identified to alter the mean CRE. To understand the mechanisms leading to these
different patterns the utility of large-eddy simulations is tested running 37 days nested
ICON-LES on domain sizes ranging between (700 km)2 and (1300 km)2. The simulation is
realistically forced to match the conditions captured during the EUREC4A field campaign.
Forward operators are used to compare the simulation output with the observations. The
cloud cover is captured well on average but with discrepancies in its vertical and spatial
distribution. Cloudiness at the lifting condensation level depends on the model resolution
with the finer one producing on average a more realistic cloud profile. Independent of
the resolution, the variability in cloudiness below the trade inversion is not captured,
leading to a lack of stratiform cloudiness with implications on the detectability of meso-
scale patterns whose cloud patches are characterized by stratiform clouds. Still, these
patterns show a meso-scale circulation making the cloud-top cooling an unlikely driving
mechanism. Overall, the simulations prove to be a valuable tool to complement the
observations and guide future studies.

e.2 introduction

The importance of shallow convection has been recognized as a vital part of the net cloud
radiative effect mostly due to their sheer ubiquity and large cloud fraction, especially in
the eastern ocean basins where cold ocean currents and the overlying warm air form
extensive cloud decks. The trade winds advect the cloud decks altering their shape from
closed-cells to open-cells until randomly scattered shallow cumuli are the dominating
cloud species in the downwind trades. This is however a rather idealized and simplified
view. In reality, the variability of cloudiness in the downwind trades is much larger
according to Riehl (1954), Stevens et al. (2020), Schulz et al. (2021). The latter two
characterize this variability by the cloud meso-scale organization and Bony et al. (2020)
further attributed different cloud radiative effects to different forms of organization. In
addition, Schulz et al. (2021) showed that these forms of organization have distinct cloud
fractions and they are observed along with distinct meteorological environments.

To estimate how the distribution of patterns and their impact on the net cloud radiative
forcing will change in a changing climate, we first need to better understand the processes
that lead to the co-variability of cloudiness and its environment.

Can large-eddy simulations help us understand the physical processes of meso-scale
patterns of shallow convection in the downwind trades? More precisely:



E.3 data and methods 123

1. Do simulations reproduce the observed variability in cloudiness and its meso-scale
patterns?

2. Can meso-scale processes be associated with the patterns and how do they differ
among them?

To answer these questions, we conducted regional large-eddy simulations (LES) for the
duration of the EUREC4A field campaign. The EUREC4A period offers a rich variety of
meso-scale patterns and a great framework to evaluate the simulations with a multitude
of observations.

This study is structured as follows: Section E.3 describes the simulation configurations,
observations and the forward operators used to better compare the simulation output
with measurements. Section E.4 discusses the similarities of cloudiness in LES and
observations, while Section E.5 investigates if hypothesized formation processes are
evident. We conclude with Section E.6.

e.3 data and methods

e.3.1 Large-eddy simulations

We focus on the downwind trades of the North Atlantic from January - February 2020

when this area has been intensively sampled as part of the EUREC4A field experiment
(Stevens et al., 2021). We conducted simulations with the ICOsahedral Nonhydrostatic
(ICON) model family (Zängl et al., 2015) at gridspacings of 1.25 km (ICON-SRM), 624 m
(ICON-624m), 312 m (ICON-312m) and 156 m (ICON-156m). With the exception of the
storm-resolving simulation (ICON-SRM), which is used for the initialization and the
lateral boundary conditions only, all simulations are based on the large-eddy simulation
capabilities introduced by Dipankar et al. (2015) and Heinze et al. (2017). This branch of
the model is called in the remainder ICON-LEM.

The domains (Fig. E.1) of the large-eddy simulations are oriented along the trade-
winds to maximize the temporal coverage of the evolution of the shallow convection.
The eastern borders of the nested domains decrease by at least two degrees with each
refinement to reduce numerical artifacts in the mean wind direction of the trades. On
the western borders these reductions only affect high clouds that are advected by the
sometimes called anti-trades from western directions. These clouds are however not the
focus of this study and are not expected to interfere with the low-level cloudiness.

With domain sizes between about (700 km)2 and (1300 km)2 the simulations are able
to capture the meso-scale variability in its full extend. Stevens et al. (2020) defined meso-
scale patterns, ranging from very fine clusters called Sugar to larger scale Fish pattern,
should all be reasonably well resolved as they identified the patterns on a domain of
similar size.

The simulations were created in two separate steps. First, the ICON-SRM simulations
were run to calculate the initial and boundary conditions for the nested LES. Second,
the nested LES was started with the ICON-624m simulation. Once initialized with the
ICON-SRM output, it was forced at its lateral boundaries with hourly output. For each
24 hour set of lateral boundary conditions, the ICON-SRM was granted a spin-up of 16

hours. Sea surface temperatures or to be precise, sea skin temperatures, were updated
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Figure E.1: Overview of simulation domains ICON-SRM (gray), ICON-624m (blue), ICON-312m
(red), ICON-156m (brown). The tracks of the platforms HALO and L’Atalante, which
are representative for the two different measurement foci of the EUREC4A campaign
are shown in orange and purple, respectively. Standard HALO circle is shown in
black. The location of the BCO and the NTAS buoy are marked with a red star at
the western and eastern part of the domain, respectively. For a sense of scale, the
MODIS image of February 12 is shown with landmasses colored in green to brown
depending on height.

every timestep based on linearly time-interpolated hourly ERA5 skin temperatures.
The skin temperatures were chosen because the used ICON version does not have a
skin temperature parameterization. Different to the ICON-SRM, the ICON-LEM has
not been restarted but ran for the whole period of 09.01.2020 to 14.02.2020. As a result
only one spin-up period exists for each nest. ICON-624m has been started at 10 UTC
and ICON-312m at 16 UTC of January 9, 2020. We analyze the output after midnight of
January 10, 2020.

The simulations ICON-312m and ICON-156m were one-way nested into the ICON-
624m domain, while the later was only activated for one case due to its computational
cost. Fig. E.2 shows a snapshot of this case for all domains and illustrates that the
structure in the humidity field is captured in all cases. It should be noted that ICON-
156m snapshot is taken 8 hours after the initialization and spin-up might still affect
the output. Nevertheless, it shows a consistent structure with the other domains and
can be used for future investigations. The specific configuration of all simulations is
summarized in Tab. E.1
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Figure E.2: MODIS visible satellite image on February 1, 2020 at about 13:10 UTC (right swath)
and 14:50 UTC (left swath) and the simulation output at 14:30 UTC. The relative
humidity at 2 m is visualized for the simulations. The simulations ICON-624m,
ICON-312m and ICON-156m are shown in b), c), d), respectively.

e.3.1.1 Satellite forward simulator

To compare the output of the LES with satellite observations, we rely on the RTTOV
forward simulator (Saunders et al., 2018), which can emulate satellite imagers and
how they would capture the simulation output. In this study, we use the GOES-16 ABI
specifications to compare them to the actual satellite’s instrument, which covers the
region of interest with a high temporal and spatial resolution of of 10 min and 2 km
(channel 13: 10.35 µm), respectively. In an attempt to get the most consistent synthetic
satellite images, we made modifications to the most recent version of ICON (2.6.3).
These modifications include design changes that let us use RTTOV v13 during the run
time of ICON and reduce the amount of data that needs to be saved to disk for offline
calculations. In addition, we use the calculated two-moment microphysics to feed both
the internal RRTM radiation and the RTTOV forward operator to make them consistent
with each other. Otherwise the radiation scheme and RTTOV would use their own
independent parameterisations leading to an inconsistent result.
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The synthetic satellite images are calculated every 10 minutes to match the temporal
resolution of the ABI instrument. A snapshot of the animation (10.5281/zenodo.5553825)
that visualizes the actual and synthetic satellite images for the complete time period is
shown in Fig. E.3.

Figure E.3: Comparison of GOES-16 ABI channel 13 satellite image (left) and the synthetic
counterparts from ICON-624m (middle) and ICON-312m (right) for February 2, 2020

at 7:50 UTC.

e.3.1.2 Radar forward simulator

Satellite images are a great tool to analyze the meso-scale cloud formation. However, to
better understand the formation mechanisms the vertical cloud distribution is important.
As shown by Schulz et al. (2021) these patterns have cloud contributions from two layers.
Clouds with a cloud base height at the lifting condensation level and those that exist
further aloft below the trade inversion. The interplay between these layers has always
been challenging for models to reproduce (e.g. Atlas et al. (2020)).

Because cloudiness is not a very well defined quantity and dependent on the instru-
ment or model, we also use a forward simulator to resemble the vertical distribution
of cloudiness that a radar would measure. In particular the Ka-Band radar at the BCO
(see next section) because this was capturing the advecting trade-wind clouds during
EUREC4A and was used for Schulz et al. (2021).

We rely on the radiative transfer simulator PAMTRA (Passive and Active Microwave
TRANsfer package) (Mech et al., 2020) that has successfully been used with the same
radar frequency in earlier studies in this region (Jacob et al., 2020).

PAMTRA has been configured similar to Mech et al. (2020) to match the two-moment
microphysics scheme of Seifert and Beheng (2006) which has been used in the LES of this
study. Hence, PAMTRA is able to infer the original particle size distribution assumed by
the simulations from its bulk measures of mixing ratio and number concentration that
are saved every 60 s at the location of the BCO. PAMTRA is therefore able to simulate
reflectivities that are consistent with microphysics used in the LES. The inconsistency
caused by the Ka-band radar measuring reflectivity, the sixth moment of the particle size
distribution, directly is assumed to be negligible. The reflectivities are only used here to
create a cloud mask, which further justifies this assumption.

https://www.doi.org/10.5281/zenodo.5553825
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e.3.2 Observations

e.3.2.1 Barbados Cloud Observatory

Besides the tremendous amount of observation platforms that were present in the
simulated area during the EUREC4A time period, the Barbados Cloud Observatory
is taking long-term measurements at the most windward tip of the Caribbean island,
Barbados (Stevens et al., 2016). We used the measurements from the vertically pointing
Ka-band radar to detect the vertical distribution of hydrometeors. Averaging these
measurements in time results in echo fractions which are a combined measure of cloud
fraction and precipitation fraction. A threshold of −50 dBZ has been applied to exclude
backscatter from sea-spray that is otherwise frequently detected in the lower range gates
(Klingebiel et al., 2019).

e.3.3 Classifications of meso-scale patterns

This study uses two approaches to identify the meso-scale patterns of shallow convection.
First, for identifying the days with observed canonical meso-scale patterns we rely on the
manual classifications done by the scientific community of the EUREC4A field campaign
(Schulz, in preparation). The scientists inspected satellite images captured during the
EUREC4A time period and labeled regions containing Sugar, Gravel, Flowers or Fish. The
canonical days shown in Fig. E.4 are used to separate the simulation days by pattern and
study them individually. Second, to understand how well the patterns are replicated in
terms of area fraction and occurrence, the simulations themselves needed to be classified.
Here we make use of the satellite forward operator and the same neural network that has
been successfully used to identify the patterns in observations (Schulz et al., 2021). With
the forward operator the simulation output is converted into synthetic satellite images
using the sensor characteristics of the ABI instrument onboard GOES-16 to retrieve
synthetic infrared images at 10.35 µm (channel 13), the same wavelength as used in
Schulz et al. (2021). The neural network is run on both the simulation output and the
GOES-16 ABI images. Cropped to the domain size of the simulations, this allow a fair
comparison.

Figure E.4: Meso-scale patterns identified by the EUREC4A community in GOES-16 ABI infrared
satellite images. (Schulz, in preparation)
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e.4 similarity of les and observations

e.4.1 Meso-scale patterning

e.4.1.1 Visual inspection

The evaluation of the model output draws on the quantification done in Schulz et al.
(2021). A general indicator of whether the patterns are represented or not, is the visual
inspection of the spatial distribution of clouds just like the earlier cloud classifications.
In this case, the cloud scenes are not captured by an actual satellite but are simulated
from the model output by the satellite forward operator RTTOV.
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Figure E.5: Overview of simulated satellite images of ICON-624m matching the cloud scenes
shown in Fig. 1.1. Different to Fig. 1.1 the infrared channel of ABI is shown. Cross-
sections along the black line are shown in Fig. E.12.

The results are depicted in Fig. E.5. The scenes match those in Fig. 1.1 and should
therefore show the same meso-scale patterns.

The visualisation already demonstrates that most of the scenes match the principle
structure of the patterns with the exception of Flowers. Flowers are hardly distinguishable
from the Sugar scene even when decreasing the grid-spacing from 624 m to 312 m (see
supplemental Fig. E.14). The stratiform layers of the Flowers are hardly reproduced.

Fish and Gravel are more alike to their respective observations shown in Fig. 1.1. Their
general pattern structures agree visually well with the observations. Fish shows band
structures of cloudy and clear-sky patches and Gravel consists of much smaller patches
that are roughly arranged in hexagons. Some clouds also rise deeper and produce
stratiform clouds that are also visible for this day in the observations. The surface
temperature field (not shown) also confirms the frequent and wide-spread occurrence of
cold pools supporting the hypothesis about their importance.

Overall, it seems that the smallest cloud patches that one would normally attribute to
Sugar, are occurring too widespread in the simulations.
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e.4.1.2 Neural network

In contrast to the visual classification the NN detects cloud patterns more objectively as
shown by Schulz et al. (2021). We ran the satellite forward operator during the simulation
to get synthetic brightness temperature images on which the NN can be applied as
described in Sec. E.3.3.
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Figure E.6: Daily mean area fraction covered by meso-scale patterns as identified by the neural
network on actual (ABI) and simulated (ICON-624m) satellite images.

Applying the NN on the actual and synthetic satellite images results in rectangular
bounding boxes that enclose the respective meso-scale pattern. The area-fraction A that a
pattern p covers at a certain time t can be calculated by setting the union of each pattern
classification lp,t,i in relation to the total domain size D:

Ap,t =
Lp,t

D
, where Lp,t =

n⋃
i=1

lp,t,i (E.1)

The result of this calculation is shown in Fig. E.6 and is a measure of how dominant a
pattern has been on a specific day. Note that the cumulative area fraction (∑4

p=1 Ap,t) can
be larger than 1 due to the overlap of the pattern classifications. At first sight, it becomes
visible that simulations and observations agree quite well in terms of the daily pattern
occurrence. If a widespread pattern (high Ap,t) has been detected in the observations, it
has also been classified in the simulation output. Nevertheless, systematic differences
between the two classifications are visible.

The impression from the visual inspection of Fig. 5.1 that small cloud entities of the
Sugar type are too dominantly occurring in the other organizational forms is reflected
by the continuously large cloud area fractions of Sugar. In contrast, Fish and Flowers are
rather limited in their area fraction in the simulations often at the cost of Gravel. In the
periods from 09/01/2020 to 13/01/2020 and from 29/01/2020 to 05/02/2020 does the
area fraction of Gravel and Sugar agree well with the observations. However, they are also
widespread between 14/01/2020 and 25/01/2020 where rather Fish should dominate.

The agreement between patterns detected in the simulations and observations are
quantified using the Intersection over Union (IoU). Fig. E.7 shows this quantification and
confirms that the agreement for Flowers and Fish is low, mostly due to the lack of Flowers
and Fish in the simulations. The agreement for Sugar and Gravel is large with 0.43 and
0.35, respectively. For these pattern, IoU is reduced primarily by “missing” Sugar and
Gravel in the observations.
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ICON 624m unclassi�ed ABI unclassi�edboth classi�ed

Figure E.7: Agreement between neural network classifications based on ABI images and synthetic
satellite images of ICON624 measured by IoU.

If a pattern is detected simultaneously in both, simulation and observation ( gray area
in Fig. E.7), the overlap is fairly high indicated by an average IoU of 0.56 or greater.
A similar picture is drawn from the ICON-312m run (supplemental Fig. E.17). Except
for Gravel the overall agreement reduced with increased resolution. No Flowers were
detected in ICON-312m. Remember that these classes have no ground-truth and the
IoU is therefore systematically lower compared to traditional object detection exercises.
Furthermore, slight differences in the extend of the patterns in observations and simula-
tions are expected Hence, perfect alignment of cloud patches on the meso-scale is not
expected.

The agreement between the visual inspection and the neural network classification
demonstrate that the simulations replicate the observations. However, the objective
analysis points out deficits.

e.4.2 Variability of cloudiness

e.4.2.1 Cloud cover

Despite the different frequency of occurrence of patterns in the simulations compared to
the observations, a crucial factor that needs to be captured is the cloud cover. As Schulz
et al. (2021) have shown, cloud cover is one of the most distinguishing factors between
the different meso-scale patterns and is according to Bony et al. (2020) the primary factor
influencing the CRE and ultimately the energy balance at the top of the atmosphere.

To compare the cloud cover of the simulations with the satellite observations, we rely
again on the measured and simulated brightness temperatures. Similar to Bony et al.
(2020) we define shallow clouds by a brightness temperature between 280 K and 290 K.
The definition of cloud cover follows as the ratio of the number of shallow cloud pixels
to the number of pixels of the entire domain. For a better comparison of the different
sources a common domain has been chosen (10° N - 16° N and 60° W - 54° W).

The simulated cloud cover variability agrees well with GOES-16 ABI (Fig. E.8), both
in terms of the overall time-series (Fig. E.8a) as well as the diurnal cycle (Fig. E.8c). The
large discrepancies to the observations e.g. between the January 21 and January 27 go
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a)

b)

c)a)

Figure E.8: Timeseries of cloud cover inferred from actual and synthetic satellite images (a) and
the lower quantile of brightness temperature within the domain as an indicator of
high clouds (b). The diurnal cycle without contributions from high-clouds ( lower
quantile brightness temperature below 290 K as indicated by gray bars in (a)) is shown
in (c) as anomaly to the daily mean. Gap on 16 January is due to model output issues.

along with colder lower-quantile brightness temperatures. These brightness temperatures
(Fig. E.8b) indicate that the domain is contaminated with high clouds. In cases where
the lower-quantile drops below 290 K are marked with a gray bar in Fig. E.8a.

The diurnal cycle of cloud cover without the contributions of high clouds is shown
in Fig. E.8c. It is shown as an anomaly to the mean cloud cover of 10%, 9% and 7%
for GOES-16 ABI, ICON-624m and ICON-312m, respectively. Owing to the synthetic
satellite images, we present a fair comparison of the diurnal cycle of shallow convection
in both LES and observations. Based on Fig. E.8c, we note the quantitative agreement
of the diurnal cycle in addition to the qualitative agreement found in Vial et al. (2019).
The overall reduced cloud cover compared to Vial et al. (2019) might be caused by the
different definitions of cloudiness. Furthermore, the time period covered might have
less Flowers and Gravel that contribute most to the diurnal cycle in terms of cloud cover
anomaly and frequency.

e.4.2.2 Vertical cloud distribution

In addition to the arrangement of the cloud patches, the cloudiness below the inversion
distinguishes the patterns from each other (Schulz et al., 2021) and can serve as an
indicator of how well cloud processes are captured. Here, we examine the vertical
distribution by means of the high-frequency ICON-LEM column output at the location
of the BCO. This has the advantage of evaluating the simulated cloudiness against the
observations. As described in Sec. E.3.1.2 the output has been converted with the therein
noted limitations to reflectivity as a common quantity with the observations.

The temporal average cloud fraction profiles and their variability is shown in Fig. E.9
for the observations, ICON-624m and ICON-312m. By inspection, the average cloud
profile with its peak at about 800 m and a slow decrease in cloudiness with height is
well captured. However, the variability is quite reduced compared to the observations
independent of the resolution of the simulation. This is especially true for the cloudiness



E.4 similarity of les and observations 133

between 1 km and 2 km where the stratiform cloud component is usually located. While
the interquartile range is about 5 % in the simulations, it is nearly doubled in the
observations.
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Figure E.9: Variations in daily mean echo fraction measured (left) and simulated (middle: ICON-
624m; right: ICON-312m) echo fractions at the location of the BCO across the simu-
lated time period. Median is depicted as line. Observations are drawn as dashed line
for reference in each panel. Shading indicates interquartile range.

The mean profile is less cloudy in ICON-312m with a slight underestimation at the
lifting condensation level. In contrast, ICON-624m overestimates the cloud fraction there.
Overall, the slope with which the cloudiness reduces with height and the precipitation
near the surface are better captured by ICON-312m.

Based on study C the meso-scale variability is connected to large-scale forces and air
mass origins. Processes that lead to the patterns can therefore be very different from
pattern to pattern. In the following, the echo fraction profile is separated by pattern to
test if simulations are able to capture specific ones better than others. A better agreement
with a certain pattern can hint to which processes are captured and which are missing.
More importantly we can identify the important and necessary mechanisms to form a
certain pattern.
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Figure E.10: Cloud fraction variability grouped by meso-scale pattern as identified in Schulz (in
preparation). N defines the number of days found for each group.
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To answer this question, we separated the cloud fraction profiles shown in Fig. E.9 by
the prevalent meso-scale cloud pattern as described in Sec. E.3.3. The average profiles
per pattern are shown in Fig. E.10.

The figure reveals that the differences between simulations and observations do
depend on the observed meso-scale context. Sugar and Gravel are not only visually very
similar to their observed counter-part but also exhibit a similar vertical distribution
of cloudiness. The precipitation seems however overestimated in the case of Sugar. In
contrast, precipitation of Flowers and Fish is underrepresented.

Both patterns are shallower and precipitate less in the simulations than in the ob-
servations. Especially the Fish pattern that passed over the BCO between January 21

and January 23 is hardly matched. While it cannot be expected that the patterns are
collocated in observations and simulations, the supplemental movie shows that this Fish
pattern was well developed and passed over the observatory also in the simulations
(10.5281/zenodo.5553825). However, it also reveals that the pattern completely disap-
peared in the simulations on January 23 and gave rise to much shallower and suppressed
convection that resembles Sugar. In the observations, the Fish was still dominating. De-
spite this large discrepancies, the radar measured already on January 22 more cloudiness
aloft 3 km than was represented in the model (not shown). The failure in representing
these deeper clouds explains also in parts the smaller echo fractions close to the surface,
because the deeper convection can be expected to rain more.

The simulated Flowers profit from the higher resolution run of ICON-312m in terms of
a better separation of the cloudiness at the lifting condensation level and the one aloft.
However, the cloud fraction is underestimated at each level.

e.5 discussion

While the previous sections have shown how well the simulations capture the meso-scale
variability, this section examines hypotheses about the processes that might be involved
in forming and maintaining the different meso-scale patterns.

The hypothesis that boundary layer circulations might be important for the organiza-
tion of convection has been shown in several idealized model studies of deep convection
(Bretherton et al., 2005; Muller and Held, 2012). Those circulations are able to transport
moisture upgradient and enhance the differences between moist and dry regions. By
doing so, convection is increasingly suppressed in the dry regions and aggregated in
the moist ones. In nature though, such circulations cannot develop freely. Different to
the idealized model studies no closed domain exists and disturbances interact with
these circulations and may alter or hinder the self-organisation. Nevertheless, a shallow
circulation was found as well (Schulz and Stevens, 2018).

Whether such a circulation exists to organize shallow convection is an open research
question. Bretherton C. S. and Blossey P. N. (2018) found evidence of such a circulation in
LES forced by a climatological mean thermodynamic profile representative for situations
of meso-scale clusters of cumulus rising into thin stratocumulus. In addition, George
et al. (in preparation) found an anti-correlation between the divergence in the subcloud
layer and the cloud layer in dropsonde data of the EUREC4A field campaign. They
explain this relationship with a potential meso-scale circulation.

https://www.doi.org/10.5281/zenodo.5553825
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This sparked the hypothesis that such circulations might also exist for the meso-scale
patterns of Stevens et al. (2020) which are generally larger and more diverse as the ones
studied by Bretherton C. S. and Blossey P. N. (2018) on a (128 km)2 domain.

To explore whether such a circulation is also present in the simulations of this study,
we calculated the anomalous wind speed along the cross-sections shown in Fig. E.5 by
subtracting the mean wind speed profile from the actual one.

S N S N

Fish Flowers

Figure E.11: Boundary-layer circulations inferred from anomalous wind-speeds along the cross-
sections indicated in Fig. E.5. The cross-sections are illustrated from south to north.
Arrows indicate circulations. Note the different scales of the colorbar.

Fig. E.11 reveals that in case of Fish and Flowers shallow circulations are indeed present.
The anomalous wind is converging in the lower 100 hPa and is diverging below the
inversion, resulting in the indicated circulations. While these are two snap-shots and
further research is needed, the differences between the circulations of Flowers and Fish
are evident.

The circulation of the Fish case is much deeper and stronger and follows the slope of
the inversion. In contrast, the exemplary circulation of Flowers is much more layered and
an equally strong counter-circulation above the inversion exists. This counter-circulation
might be caused by the evaporative cooling from occasionally deeper convective cores
within the cloudy patches that mix with dry free-tropospheric air and cause the air to
sink within the inversion as in Bretherton C. S. and Blossey P. N. (2018).

Fig. E.12 highlights the differences in moisture between the dry and moist regions.
Interestingly, the simulated Fish are shallower than their observed counter-part (Fig. E.10)
and accompanied by a strong inversion that according to Schulz et al. (2021) is usually
less pronounced.

From this point of view Flowers and Fish might only be different due to the additional
convergence that the Fish pattern receives in form of the shear line and can consequently
develop a deeper convective system.

For the other patterns no circulation of this scale could be found (see supplemental Fig.
E.15). This is however not surprising, because the scale of individual cloud patches is
much smaller. In particular Sugar, in its most idealized sense, is not organized but rather
randomly distributed. The external organization of these cloud patterns into streets or
clusters shall not be discussed here, but the reader is referred to Stephan (2021) and the
references therein for possible explanations.

The visual impression of Gravel however, raises a strong link to the open mesoscale
cellular convection observed in the upstream trades and its accompanying precipitation
processes (Stevens et al., 2005). As Fig. E.13 suggests, precipitation and the development
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Figure E.12: Example cross-sections through the meso-scale patterns as indicated in Fig. 5.1
(right) with profiles from a wet (blue) and dry (red) location. The horizontal moisture
anomaly (∆qv) is shown with respect to the cross-sectional mean profile. Clouds are
identified by their cloud water content qc.
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of cold pools that eventually collides with other cold pools are frequently observed in
the case of Gravel.
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Figure E.13: Cool pool structures as seen in the ICON-312m surface temperature (left) and a
visible image from MODIS onboard AQUA (right) at about 17:40 UTC on January
11, 2020.

In sum, the simulations support the hypotheses posed about the physical mechanisms
maintaining and leading to the individual patterns and are proven to be a valuable tool
to study these in more detail.

e.6 conclusion

Realistically forced large-eddy simulations have been performed in the North Atlantic
downwind trades to evaluate their ability to reproduce the observed meso-scale variabil-
ity of shallow convection and the imprints of its driving processes.

The presented ICON LESs covers 37 days from January - February 2020, which
concurs with the field campaign EUREC4A. The measurement strategy of EUREC4A
was to statistically sample the atmosphere rather than aiming at specific atmospheric
conditions. This strategy has also been applied to the simulations. Instead of simulating
a few cases, these simulations were continuously run using large domain sizes ((700 km)2

to (1300 km)2) that captured the intrinsic meso-scale variability of the region, including
the meso-scale patterns of several 100 km that have been identified recently by Stevens
et al. (2020).

The ICON-LEM’s performance in representing the meso-scale variability in cloudiness
was examined using observations collected at the Barbados Cloud Observatory and the
GOES-16 ABI instrument. Additionally, the forward operators RTTOV and PAMTRA
allowed a fair comparison between the observed and simulated shallow cloud patterns.
Lastly, the neural network that has already been shown to identify the meso-scale
patterns in satellite images (Schulz et al., 2021) has been successfully applied to the
simulation output to evaluate the meso-scale structure.
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We find that the average meso-scale variability is represented well in terms of the total
cloud amount and the spatial distribution of cloud patches. However, this agreement
differs among the patterns defined by Stevens et al. (2020). While all patterns have been
identified in the observations, the simulations show disproportionately more frequent
and widespread Sugar and Gravel at the cost of Fish and Flowers.

This discrepancy can be primarily explained by the lack of stratiform cloudiness in the
simulations. The stratiform cloudiness is characteristic for Flowers and Fish. The vertical
cloud distribution and in particular its variability in the layer 1 km to 2.5 km where the
stratiform clouds occur is however not matched. The variability is reduced by about
a factor of 2 independent of the horizontal resolution. In case of Fish the large-scale
forcing was not sustained long enough which lead to a premature dissipation. If this is a
systematic issue of the model needs to be studied further.

With an increase in grid-spacing from 624 m to 312 m, the cloud fraction profile
improved, particularly at the lifting condensation level. The representation of Flowers
and Fish did therefore not improve in terms of their appearance in satellite images. They
only benefit from the general trend of a more realistic average cloud profile with a more
realistic balance of clouds at the lifting condensation level and aloft. This is in agreement
with Vial et al. (2019) who found a reduction of cloudiness with cloud tops above 1.3 km
with increasing resolution.

Although the simulations do not match the stratiform component, meso-scale shallow
circulations are evident for the larger cloud patches and might play a role in the
emergence and maintenance of these patterns. The drivers of these circulations will
be addressed in future investigations. However, because the pattern structure is fairly
well represented in the simulations but the stratiform cloud component is not, the
simulations highlight that the cloud top radiative cooling is unlikely to be relevant for
the general meso-scale structure. Future investigations should focus on other potential
drivers like radiative cooling in clear-sky regions or precipitation processes. Thanks to
the simulations and the tremendous amount of EUREC4A measurements, we provided a
great framework to gain further process understanding of how these patterns with their
different CRE form.

e.7 open research

GOES-16 Advanced Baseline Imager Level 1b radiances are available at https://doi.
org/10.7289/V5BV7DSR and were converted with (Raspaud et al., 2019) to brightness
temperatures. MODIS imagery originates from the NASA Worldview application (https:
//worldview.earthdata.nasa.gov), part of the NASA Earth Observing System Data
and Information System (EOSDIS).
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abstract

To advance the understanding of the interplay among clouds, convection, and circulation,
and its role in climate change, the EUREC4A and ATOMIC field campaigns collected
measurements in the western tropical Atlantic during January and February 2020.
Upper-air radiosondes were launched regularly (usually 4-hourly) from a network
consisting of the Barbados Cloud Observatory (BCO) and four ships within 51–60

◦W,
6–16

◦N. From January 8 to February 19, a total of 811 radiosondes measured wind,
temperature and relative humidity. In addition to the ascent, the descent was recorded
for 82 % of the soundings. The soundings sampled changes in atmospheric pressure,
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winds, lifting condensation level, boundary layer depth, and vertical distribution of
moisture associated with different ocean surface conditions, synoptic variability, and
mesoscale convective organization. Raw (Level-0), quality-controlled 1-second (Level-
1), and vertically gridded (Level-2) data in NetCDF format (Stephan et al., 2020a) are
available to the public at AERIS (https://doi.org/10.25326/137). The methods of data
collection and post-processing for the radiosonde data set are described here.

f.1 introduction

A number of scientific experiments have focused on the trade-cumulus boundary layer
over the tropical Atlantic Ocean. The Barbados Oceanographic Meteorological Exper-
iment (BOMEX 1969; Kuettner and Holland, 1969), Atlantic Trade-Wind Experiment
(ATEX 1969; Augstein et al., 1973), Atlantic Stratocumulus Transition Experiment (AS-
TEX 1992; Albrecht et al., 1995), and Rain in Shallow Cumulus Over the Ocean (RICO
2006; Rauber et al., 2007) experiment measured thermodynamic and wind profiles of
the Atlantic trade regime (reviewed by Baker, 1993). With these profiles as initial and
environmental conditions, models of the cumulus clouds explain their interaction with
the environment (e.g. Albrecht, 1993; Albrecht et al., 1979; Arakawa and Schubert, 1974;
Bretherton, 1993; Krueger, 1988; Tiedtke, 1989; Xue et al., 2008; vanZanten et al., 2011).

Arrayed networks of soundings have been used to characterize the interaction of
clouds, convection, and the synoptic environment. In many examples, they have been
used to diagnose tendencies of the heat, mass, and moisture budgets for the tropical
atmosphere (e.g. Johnson and Ciesielski, 2013; Lin and Johnson, 1996; Mapes et al., 2003;
Nitta and Esbensen, 1974; Reed and Recker, 1971; Yanai et al., 1973). These experiments
in the deep tropics monitored the synoptic (100–1000 km) variations of vertical motion
and moisture convergence as context for the evolution of the ensemble of convective
clouds observed within their sounding networks.

These sounding arrays measure horizontal divergence, which is used to estimate
mean large-scale vertical motion. In DYCOMS-II, Lenschow et al., 2007 used stacked
flight circles to estimate subsidence on a fine scale relevant to marine stratocumulus
clouds. Studying the variations of mesoscale (∼100 km) organization of the trade
wind shallow cumulus clouds likewise requires fine horizontal resolution. The Next-
Generation Aircraft Remote Sensing for Validation Studies (NARVAL; Bony and Stevens,
2019; Stevens et al., 2016, 2019) demonstrated that circles of dropsondes released from
aircraft above the shallow clouds reliably measure a snapshot of vertical motion.

The shallow trade cumulus clouds over the tropical Atlantic Ocean are a focus
also of the Elucidating the Role of Clouds-Circulation Coupling in Climate Campaign
(EUREC4A; Bony et al., 2017) and associated campaigns, i.e, the Atlantic Tradewind
Ocean–Atmosphere Mesoscale Interaction Campaign (ATOMIC)1. The experimental
design of EUREC4A involved 85 dropsonde circles from aircraft flights combined with
regular around-the-clock upper air observations from surface-launched radiosondes.
The regular sampling from surface-launched radiosondes complemented the mesoscale
vertical velocity measurements from dropsonde circles by continuously measuring time-
height profiles of the atmosphere, synoptic variability for an extended time period, and

1 Because the sounding network and EUREC4A comprised many projects, or component campaigns, we refer
to the union of these simply as EUREC4A.

https://doi.org/10.25326/137
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diurnal variability. Radiosondes sampled when research aircraft were not flying, notably
at night.

This article introduces the radiosonde observations and their resulting data sets. Other
measurements, including the dropsonde data, are described in the overview paper by
Stevens et al., 2021 and the references therein. Between January 8 and February 19, 2020,
811 radiosondes were launched from Barbados and the northwestern tropical Atlantic
Ocean east of Barbados. A focus of the campaign was on shallow cumulus clouds, their
radiative effects, and their response to the large-scale environment, contributing progress
toward the World Climate Research Programme’s Grand Challenge on Clouds, Circula-
tion and Climate Sensitivity (Bony et al., 2015). Other EUREC4A investigations focus on
air-sea interactions due to ocean mesoscale eddies, cloud microphysical processes, and
the effect of shallow convection on the distribution of winds.

Radiosondes were launched from Barbados and four research vessels. The island-
based launches took place at the Barbados Cloud Observatory (BCO; 59.43

◦W, 13.16

◦N), situated at Deebles Point on the windward coast of Barbados. Surface and remote
sensing observations at BCO have been in operation since April 1, 2010 (Stevens et al.,
2016).

Four research vessels launched radiosondes over the northwestern tropical Atlantic east
of Barbados (51–60

◦W, 6–16
◦N) during EUREC4A: two German research vessels, Maria

S. Merian (hereafter Merian) and Meteor, a French research vessel, L’Atalante (hereafter
Atalante), and a United States research vessel, Ronald H. Brown (hereafter Brown). The
BCO and the research vessels all measured surface meteorology and deployed various
other measurements for remote sensing of clouds and the atmospheric boundary layer.

In Section F.2 we describe the measurement strategy for the coordinated EUREC4A
radiosonde network, the data collection procedures for each platform, and the post-
processing steps that were applied to create the final data set. Section F.3 shows an
overview and some characteristics of the data and is followed by a summary in Section F.4.
The Atalante additionally launched a different type of sonde, which is described in the
appendix.

f.2 sounding measurements

f.2.1 The EUREC4A sounding network

The number of launches per day as well as the dates of regular observations (Fig. F.5)
differ from platform to platform, reflecting availability of ships and personnel. Soundings
supported specific research interests on each platform, in addition to the coordinated
EUREC4A sounding network. We designed the radiosonde network to optimize the
joint contribution of all platforms to the overarching goals of EUREC4A. Sounding
platforms were usually spaced to optimally sample the scales of the synoptic circulation.
The Meteor remained nearly stationary at a longitude of 57

◦W and moved within a
meridional corridor between 12.0–14.5 ◦N to support coordinated aircraft measurements
in its vicinity (Fig. F.1a). The Brown occupied a southwest-northeast transect along the
direction of the climatological surface trade winds, and approximately orthogonal to
Meteor’s sampling line. The Brown’s transect between the BCO (59.43

◦W, 13.16
◦N) and

the Northwest Tropical Atlantic Station for air-sea flux measurements buoy (NTAS) at
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(d) MS-Merian
 

-60 -58 -56 -54 -52 -50
Longitude [°E]

6

8

10

12

14

16

L
a
ti
tu

d
e
 [

°
N

]

(c) Atalante
 

 

8.0 9.1 10.2 11.2 12.3 13.4 14.4 15.5 16.6 17.7 18.8 19.8 20.9 22.0 23.0 24.1 25.2 26.3 27.3 28.4 29.5 30.6 31.6 32.7 33.8 34.9 36.0 37.0 38.1 39.2 40.2 41.3 42.4 43.5 44.5 45.6 46.7 47.8 48.9 49.9 51.00

1

Jan 8
Jan 15

Jan 22

Jan 29

Feb 5
Feb 12

Feb 19

Figure F.1: Routes and launch coordinates of radiosondes for the four research vessels colored by
date. Circles mark the locations of the first radiosonde launch on each day. The gray
lines in (a) and (b) mark the nearly orthogonal lines that were sampled by the Meteor
(North–South) and the Brown (West–East). Purple lines mark the northern (12.5–14.5
◦N; solid) and southern (8.5–10.5 ◦N; dashed) latitude bands that we later use to
define a North (Trade-wind Alley) and South (Boulevard des Tourbillons) domain.
Downward pointing black triangles in (c) mark the locations of dropsonde releases
during regular circular aircraft flights.
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Figure F.2: The horizontal trajectories of ascending and descending, respectively, radiosondes
launched from the BCO. The location of the BCO on Barbados is marked by the thick
black dot. The black arrow is the mean wind direction at 500 m as measurement by
ascending soundings launched from the BCO.

51.02
◦W, 14.82

◦N (Fig. F.1b) sampled airmasses upwind of the BCO that move westward
with the climatological easterly trade winds within 12.5–14.5 ◦N. This elongated region
between BCO and NTAS is referred to as the ‘Trade-wind Alley’. The Merian and
Atalante ventured southward to a minimum latitude of ∼6.5 ◦N to observe oceanic
and atmospheric variability associated with Brazil Ring Current Eddies as they tracked
northwestward along the corridor referred to as ‘Boulevard des Tourbillons’. The Atalante
and Merian thus often form the southern points of the radiosonde network (Fig. F.1c, d).

Aircraft operations included a circular flight pattern of 180–200 km diameter centered
at ∼13.3 ◦N, -57.7 ◦E (Fig. F.1c). Dropsondes were deployed along the circle to estimate
the area-averaged mass divergence, as described in Bony and Stevens, 2019. To sample
larger scales than represented by this circle, we aimed at 4-hourly soundings from all
five stations while platforms were separated by more than 200 km. The launch frequency
was reduced when such a separation could not be maintained or when vessels left the
key region of the network, i.e. moved south of 12

◦N. These scenarios occurred from
time to time in order to support other measurements. Figure F.2 shows that the network
sampled large scales for 30 consecutive days.

To increase the number of vertical profiles, we recorded the ascent as well as the
descent of the radiosondes. For descending soundings the raw data near the surface
are missing as the signal is lost due to Earth’s curvature at 300–800 m above mean
sea level. The median of the lowest descent measurement is at 340 m. Except for the
Brown, balloons were equipped with parachutes, which nearly match fall speeds in the
middle and lower troposphere to balloon ascent speeds. Given that a typical ascent takes
about 90 min, a radiosonde was sampling the air somewhere close to each platform



F.2 sounding measurements 149

-60 -58 -56 -54 -52 -50

6

8

10

12

14

16

Jan-18
-60 -58 -56 -54 -52 -50

6

8

10

12

14

16

Jan-19
-60 -58 -56 -54 -52 -50

6

8

10

12

14

16

Jan-20
-60 -58 -56 -54 -52 -50

6

8

10

12

14

16

Jan-21
-60 -58 -56 -54 -52 -50

6

8

10

12

14

16

Jan-22

-60 -58 -56 -54 -52 -50

6

8

10

12

14

16

Jan-23
-60 -58 -56 -54 -52 -50

6

8

10

12

14

16

Jan-24
-60 -58 -56 -54 -52 -50

6

8

10

12

14

16

Jan-25
-60 -58 -56 -54 -52 -50

6

8

10

12

14

16

Jan-26
-60 -58 -56 -54 -52 -50

6

8

10

12

14

16

Jan-27

-60 -58 -56 -54 -52 -50

6

8

10

12

14

16

Jan-28
-60 -58 -56 -54 -52 -50

6

8

10

12

14

16

Jan-29
-60 -58 -56 -54 -52 -50

6

8

10

12

14

16

Jan-30
-60 -58 -56 -54 -52 -50

6

8

10

12

14

16

Jan-31
-60 -58 -56 -54 -52 -50

6

8

10

12

14

16

Feb-1

-60 -58 -56 -54 -52 -50

6

8

10

12

14

16

Feb-2
-60 -58 -56 -54 -52 -50

6

8

10

12

14

16

Feb-3
-60 -58 -56 -54 -52 -50

6

8

10

12

14

16

Feb-4
-60 -58 -56 -54 -52 -50

6

8

10

12

14

16

Feb-5
-60 -58 -56 -54 -52 -50

6

8

10

12

14

16

Feb-6

-60 -58 -56 -54 -52 -50

6

8

10

12

14

16

Feb-7
-60 -58 -56 -54 -52 -50

6

8

10

12

14

16

Feb-8
-60 -58 -56 -54 -52 -50

6

8

10

12

14

16

Feb-9
-60 -58 -56 -54 -52 -50

6

8

10

12

14

16

Feb-10
-60 -58 -56 -54 -52 -50

6

8

10

12

14

16

Feb-11

-60 -58 -56 -54 -52 -50

6

8

10

12

14

16

Feb-12

-60 -58 -56 -54 -52 -50

6

8

10

12

14

16

Feb-13

-60 -58 -56 -54 -52 -50

6

8

10

12

14

16

Feb-14

-60 -58 -56 -54 -52 -50

6

8

10

12

14

16

Feb-15

-60 -58 -56 -54 -52 -50

6

8

10

12

14

16

Feb-16

L
a

ti
tu

d
e

 [
°
N

]

Longitude [°E]

Figure F.3: For each day between Jan-18 and Feb-16, 4-hourly polygons mark the outer bounds
of the radiosonde network. Polygon vertices correspond to starting locations of either
ascending or descending soundings that occurred within ±2 hours of a fixed time.

nearly continuously during regular operation. The horizontal drift of the sondes is
shown in Fig. F.3 for the example of the BCO. All platforms deployed Vaisala RS41-SGP
radiosondes, which measure wind, temperature, relative humidity, and pressure, and
used Vaisala MW41 ground station software to record and process the sounding data.
The software versions of the MW41 system are given in Table 1 for each platform. Basic
algorithms and data processing did not change between these versions. Vaisala sondes
were attached to 200 g balloons (BCO, Atalante, Merian, Meteor) or 150 g balloons (Brown).
When present, the balloons were equipped with internal parachutes (see Table 1 for the
use of parachutes). A modification took place on the Atalante, where after 0800 UTC on
February 8, 350 g balloons with external parachutes were used instead.

To start a sounding, a radiosonde sensor was placed on the ground station for an
automated ground check initialization procedure, which took about 5–6 min. The fre-
quency at which the radiosonde transmits its signal to the receiver was set manually to a
designated value for each platform (listed in Table F.1) to avoid radio interference.

The default launch times were 0245, 0645, 1045, 1445, 1845, and 2245 UTC. This
schedule was selected to include two launches per day that were timed to match the
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00 and 12 UTC synoptic times. In practice the soundings reached 100 hPa on average
in 60 minutes and burst after 90 minutes. Departures from this schedule occurred
due to a variety of reasons, including defective radiosondes, balloon bursts before the
launch, collisions of ascending radiosondes with other on board instrumentation, and
air traffic safety. In the following section, we describe specific issues and aspects of the
launch procedure and equipment particular to each platform. All stations followed best
practices for different equipment, which were established by several experienced teams
at in-person sounding orientations prior to the campaign. For instance, every platform
used a different empirical way of gauging the fill amount of gas, to arrive at desired
ascent rates. Equipment and procedures differed between the platforms, but this does
not introduce systematic biases to Level-2 data, as these data only start at 40 m height
(see Section 2.3.2), where measurements are independent of the surface procedures.

f.2.1.1 Barbados Cloud Observatory (BCO)

Figure F.4: Photographs of the (a) launcher with balloon at the BCO, (b) DWD launcher with
balloon on board the Meteor, (c) launch container with balloon on board the Merian,
(d) manual balloon filling procedure on board the Brown, (e) empty launcher on board
the Atalante.

The BCO is located at the eastern-most point of Barbados (59.43
◦W, 13.16

◦N) and
thus directly exposed to easterly trade winds from the ocean (Fig. 3). The BCO launched
182 sondes, of which 162 measured descents. Radiosondes were prepared inside an air-
conditioned office container with air temperature and relative humidity adjusted to 20

◦C
and 60 %, respectively. Balloons were prepared outside and placed into a launcher whose
size provided rough guidance for achieving the desired filling level (Fig. F.4a). Launches
were coordinated with Barbados Air Traffic Control, which sometimes delayed soundings
by up to 15 min. Surface conditions obtained from the weather station observations at
the BCO were entered into the software after automatic release detection.
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R/V Meteor

The Meteor launched 203 sondes and collected data for 167

descents during the EUREC4A core period (January 8 to Febru-
ary 19). Eight additional ascents and descents, respectively,
were recorded after February 20. Radiosondes were prepared
inside a laboratory on the top deck of the ship with the an-
tenna placed on the roof. Before February 9 the soundings were
launched from the container of the German Weather Service
(DWD) on the port side at the stern of the ship (Fig. F.4b). This
container had a marker to indicate the optimum fill level of
the balloons.

On February 9 the DWD launcher broke and a launcher of
the type shown in Fig. F.4a was used, located at the stern of
the ship. An awning over the balloon indicated the fill level.
Ground data were obtained from on-board instruments of
the DWD. In addition to sondes launched by the EUREC4A
science crew, the DWD launched one radiosonde per day. The
31 ascending DWD sondes launched during the EUREC4A core
period, plus an additional eight after February 20, are included
in the Level-1 and Level-2 data sets, described in Section F.2.3.

By mistake, the heights of the pressure sensor, the GPS
antenna and the launching altitude were incorrectly entered at
the beginning of the cruise. In addition, we noticed large delays
between the time at which surface measurements were entered
and the launch. Therefore, we reprocessed the raw data using
the MW41 software, after correcting the sensor heights and
surface data in the raw files. This post-processing is lossless
and the reprocessed data have the same quality standard as the
data from the other platforms. We included both the original
and reprocessed Level-0 data in the dataset.

R/V Ronald H. Brown (Brown)

The Brown released 169 sondes and collected data for 158 de-
scents. The radiosondes were initialized and ground-checked
inside an air-conditioned laboratory. Near-surface measure-
ments were recorded from the ship’s meteorological sensors
via the ship computer system display. The ground station an-
tenna was located on the aft 02 deck railing above the staging
bay. Initialized radiosonde sensor packages were placed for 1–5

min on the main deck to equilibrate to ambient environmental
conditions and check GPS reception and telemetry. The bal-
loons were filled by hand in the staging bay (Fig. F.4d), which
was mostly sheltered. Operators avoided unnecessary contact
with the balloon body but restrained it by hand if the wind
was strong.
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On leg 1 (January 8–24) at night, less helium was used to reduce the buoyancy of the
balloons in order to achieve lower ascent rates and better resolve the fine-scale vertical
structure of the atmosphere. The ascent rate for day launches was 4.4±0.5 m s−1. Ascent
was about 12 % slower for night launches (3.9±0.6 m s−1). To avoid the potential for
biasing analyses of the diurnal cycle with systematic diurnal differences in ascent rates,
after January 24, the same target ascent rate was used for day and night. Operators
obtained consistent balloon volumes by timing the filling.

Balloons were launched from a location on the deck to minimize the effect of the
ship and obstructions on the sounding. The ship usually turned or slowed to improve
the relative wind for the sounding. The relative wind carried the sounding away from
the ship, but the ship’s aerodynamic wake made the first ∼5 s of the balloon’s flight
unpredictable. The sounding was sometimes launched up to 10 min earlier or later to
accommodate other ship operations.

f.2.1.2 R/V L’Atalante (Atalante)

The Atalante launched 139 Vaisala sondes and measured 138 descents. A coordinated
sounding phase was performed with the Merian to increase the temporal resolution from
January 30 at 2045 UTC to February 2 at 1645 UTC around 52–54

◦W and 6–8
◦N. During

this period launching times were shifted by 2 hours aboard the Atalante (0045, 0445,
0845, 1245, 1645, 2045 UTC) while the Merian launched at regular times. In addition to
the Vaisala soundings, 47 sondes of MeteoModem type M10 attached to 150 g balloons
without parachutes were launched from the Atalante to measure the lower atmosphere
across mesoscale sea surface temperature (SST) fronts, as detailed in the appendix.

The radiosondes were prepared aft of the bridge. This open space was right next to
the top building of the ship, which may have affected measurements at low levels. Before
launching, operators asked the bridge for direction change if necessary and possible. The
balloons were launched by hand from the rear deck of the bridge, where the launcher
was situated (Fig. F.4e). The Vaisala antenna was installed on the roof top. Surface
measurements were obtained from local measurements on board. At the beginning of
the campaign a frequency of 401.0 MHz was selected, which later on had to be switched
to 401.2 MHz because of radio interference at 400.9 MHz from an unknown source.
This interference caused loss of signal for two radiosondes during their ascent. When a
previous sounding was not terminated at the launch time of a subsequent sounding, a
frequency of 400.7 MHz was selected.

The Atalante experienced substantial instabilities of the Vaisala acquisition system at
the initialization step of the system (system location unavailable) and with the reception
of the GPS signal by the Vaisala antenna and radiosondes. These problems required
multiple restarts of the software and the acquisition system (between 1 and 8 times),
creating delays between 10 min and 1 h. However, they did not affect the quality of
the soundings. The operators checked the cables and replaced the GPS antenna of the
Vaisala system with an antenna that had a larger DC voltage range (15 V instead of 4

V). Nevertheless, the problems persisted during the cruise with the need to restart the
system several times before each launch.
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f.2.1.3 R/V Maria S. Merian (Merian)

The Merian launched 118 sondes and recorded 38 descents. Fewer sondes were launched
on the Merian than other platforms (Fig. F.5) due to difficulties and priority of Atalante
sondes when the ships were close to one another. The radio signal was often lost using
the first antenna location, which the team suspected was due to blocking by the chimney.
A new location improved the reception of the signal.

The Merian was equipped with a launch container (Fig. F.4c). The helium fill level was
decided by inflating the balloon until it reached the upper edge of the launch container.
During the day, temperatures in the container rose considerably higher then ambient, but
the container was well ventilated as the launch was prepared, such that the instruments
experienced typical temperatures of 28–31

◦C during synchronization, with only few
exceptions. Nonetheless, the residual warming could be a source of bias relative to
the surface meteorology observations and persist for tens of meters after the launch.
Near-surface data were taken from ship measurements.

f.2.2 Real-time sounding data distribution

Sounding observations distributed in real-time over the Global Telecommunication
System (GTS) improve atmospheric analyses for initializing and verifying weather
forecasts, and improve subsequent reanalyses. Therefore, we aimed to disseminate as
much of the full 1-second resolution radiosonde data from the EUREC4A campaign
as possible over the GTS, regardless of the launch time. Radiosonde data (ascent and
descent) from the Atalante (114 reports during the campaign) and the BCO (60 reports in
February) were sent to the GTS through a Météo-France entry point. This allowed their
assimilation in numerical weather prediction (NWP) systems. Most of the Brown data
were sent to the US National Center for Environmental Prediction (NCEP). From here
they were ingested into US Weather Service and Navy NWP systems, yet not European
ones. None of the data from the Merian and Meteor could be transmitted to the GTS
by satellite internet. However, during EUREC4A, 29 daily ascent soundings from the
Meteor were sent to the GTS via the EUMETNET Automated Shipboard Aerological
Program (E-ASAP), at around 1630 UTC. The WMO station identifiers and designators
for tracking the data within the GTS are listed in Table 1 for each station.

World Meteorological Organization Binary Universal Form for the Representation
of meteorological data (BUFR) were submitted to the GTS and exchanged among the
platforms during the EUREC4A campaign.

f.2.3 Quality control and data formats

The Vaisala RS41 temperature and humidity measurements are highly robust and
accurate, even in cloudy environments. The humidity sensor is actively heated to prevent
water condensation and frost formation on the sensor surface. The Vaisala MW41

software writes proprietary .mwx binary files which are ZIP-archives that contain both
the raw as well as the processed measurements. These data make up our Level-0 data
set. We also provide Level-1 and Level-2 data, which we describe in the following. Our
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assignment of levels for the data sets adheres to the standards laid out in Ciesielski et al.,
2012.

Sometimes the launch detection did not work properly, which resulted in differences
of more than 30 m between the surface altitude and the first reported sonde altitude.
Such profiles were reprocessed by correcting the launch time in the raw files. The files
were then processed like the corrected files from the Meteor (see Section 2.1.2).

f.2.3.1 Level-1 data

Level-1 data in NetCDF format are quality controlled and averaged to 1-second resolution
from the Level-0 data. Because the pressure, temperature and humidity are measured
with a different sensor (PTU) than wind and position, the data are synchronized to the
PTU time. This synchronization is done by the Vaisala MW41 software and the results
are included in the Level-0 archive files. The Level-1 data were processed from these
results.

The Vaisala MW41 sounding system applies a radiation correction to daytime temper-
ature measurements by subtracting increments that vary as a function of pressure and
solar zenith angle. The uncertainty of the radiation correction is typically less than 0.2
◦C in the troposphere; uncertainty gradually increases in the stratosphere.

The Vaisala system applies algorithms to adjust for time lags of the RS41 sensors.
At 10 hPa the response time of the temperature sensor is 2.5 s for an ascent speed
of 6 m s−1. At 18 km (75 hPa) with a temperature lapse rate of 0.01

◦C m−1 and an
ascent rate varying from 3 to 9 m s−1, the remaining uncertainty in the temperature
reading due to time lag is 0.02

◦C. At lower altitudes the uncertainty is even smaller.
A time-lag correction is also applied to measurements of humidity. The response time
of the humidity sensor is dependent on the ambient temperature. For example, at an
ascent rate of 6 m s−1 and at 1000 hPa it is <0.3 s for +20

◦C and <10 s for -40
◦C. The

remaining combined uncertainty during the sounding is 4 % relative humidity.
After time-lag adjustments, the Vaisala MW41 quality control algorithm detects outliers

and smooths the data to reduce noise. Periods of super-adiabatic cooling are interpolated,
and this also applies to temperature differences right above the surface. The MW41

software applies the same correction and quality control steps to the descending and
ascending phases of a sounding. Descending sondes, however, can be subject to uncon-
trollable factors. For example, a falling device may be affected by the remaining debris
of a balloon. For this reason, Vaisala does not guarantee the same above-mentioned error
margins for data from descending soundings. Our software (Schulz, 2020) reads the
processed Vaisala mwx, and MeteoModem cor files, and converts them to self-describing
NetCDF files. We also add the ascent or descent rate, calculated from the geopotential
height and time information between consecutive measurements, to the NetCDF files.
The resolution of the measurements is 1 s. The resulting NetCDF files are the Level-1
data set distributed here.

f.2.3.2 Level-2 data

To facilitate scientific analyses, Level-2 data are provided on a common altitude grid with
bin sizes of 10 m, by averaging the Level-1 data. Mean temperature, wind components,
position, and logarithm of pressure are directly averaged within height centered bins.
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Relative humidity is calculated from the mean of the Level-1 water vapor mixing ratio,
calculated from the water vapor pressure formula of Hardy, 1998, which is also used
by the Atmospheric Sounding Processing ENvironment (ASPEN) software (Suhr and
Martin, 2020) for EUREC4A dropsonde measurements. Surface-launched soundings were
not reprocessed with ASPEN, as the ASPEN manual warns against duplicating quality
control procedures applied by the Vaisala MW41.

In case of missing data within a sounding, we linearly interpolate gaps of up to 50 m.
Gaps larger than 50 m, as well as data below 40 m in our Level-2 data set originating
from the ship soundings, are filled with missing values. Discarding the lowest 40 m
avoids potential biases in the soundings associated with local ship effects, like heating
or exhaust plumes, and other problems that are discussed by, e.g. Hartten et al., 2018.
Yoneyama et al., 2002 found ship influences on radiosonde measurements to extend no
further than 40 m above the deck.

f.3 data characteristics

f.3.1 Ascending versus descending soundings

We begin with an examination of instrument ascent and descent speeds for the different
platforms (Fig. F.6). The figure is based on the ascent (or descent) rates with a 10-m
vertical resolution included in the Level-2 data. The median ascent speed in the mid-to-
upper troposphere is between 4.5 and 5 m s−1 for radiosondes launched from the BCO,
Atalante and Merian (Fig. F.6a, g, i). Radiosondes launched from the Meteor and the Brown
ascended at slightly slower rates of about 4 m s−1 (Fig. F.6c, e). For all platforms and at
all altitudes the 10th and 90th percentiles are roughly symmetric about the median ascent
rate and fall mostly within ±1 m s−1 of the median. Radiosondes from the Atalante
and Merian appear to have experienced stronger updrafts in the upper troposphere.
This is consistent with sampling the more convectively-active conditions in the south,
where there is a warmer ocean surface, more precipitable water, deeper convection and
a greater chance of land influences. Above 20 km, the median ascent rate and the spread
in ascent rates increase for all platforms.

Descent speeds exhibit a much stronger functional dependence on altitude (Fig. F.6b,
d, f, h, j). For platforms that employed parachutes (BCO, Meteor, Atalante and Merian),
descent rates decrease towards the ground to a minimum of about 5 m s−1 in the
lowest kilometers. Instruments without a parachute from the Brown have descent rates
of sightly less than 15 m s−1 in the lowest few kilometers. The positive skewness of
the distributions associated with stations that used parachutes is due to descending
radiosondes with broken or detached parachutes, or with unexpected behavior of the
torn balloon remains. With the exponential decrease of air density with altitude, descent
rates increase non-linearly and rapidly with altitude, exceeding 20 m s−1 between 20–25

km when parachutes were used and exceeding 40 m s−1 in case of the Brown.
Despite corrections and quality control steps applied by MW41, measurements taken

during descent may be accompanied by larger uncertainties due to less favorable and
more variable measurement conditions. To establish what degree of confidence we may
attribute to the descent data, Fig. F.7 compares the measurements of horizontal wind
speed, air temperature and relative humidity between ascending and descending sound-
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Figure F.6: Instrument (left) ascent and (right) descent speeds as a function of height. The sum of
occurrence frequencies in each altitude bin is 100 %. The pink line shows the median
profiles and the pink-green lines show the 10th and the 90th percentiles, respectively.
Altitude bins are 500 m deep and speed bins are 1 m s−1 wide. The numbers of
radiosondes that crossed the corresponding height-levels (2.5, 7.5, 12.5, 17.5 and 22.5
km, respectively) are shown in each panel.
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Figure F.7: Comparison of (left) horizontal wind speed, (middle) air temperature, and (right)
relative humidity, measured during ascent and descent. The pink dots show the
average over all included ascent profiles minus the average over all included descent
profiles. Brown (blue) dots show the 95 % confidence intervals for ascent (descent).
Numbers inside the panels on the left-hand side show the counts of ascending (brown)
and descending (blue) radiosondes that crossed the corresponding height-levels (2.5,
7.5, 12.5, 17.5 and 22.5 km, respectively.)
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ings. We do not expect perfect agreement between ascending and descending soundings,
for several reasons. First, the instruments drift substantial horizontal distances and
hence systematically sample a downwind location (as illustrated in Fig. F.3 for the BCO).
Meridional horizontal drift could create systematic biases. Second, there are variable time
lags of the order of a couple of hours between ascending and descending measurements,
which we expect might increase the scatter between ascent and descent measurements
but not create systematic differences. A systematically different response of the sensors
during descent might be the most important factor for biases. We also note that the
number of descent profiles available for computing statistics is in some cases substan-
tially smaller than the number of ascent profiles (Fig. F.5). The numbers of available
measurements are again listed on the left hand side of Fig. F.7. All quantities shown in
Fig. F.7 are computed from matched ascent-descent pairs of the same instrument.

Measurements of horizontal wind speeds do not show statistically significant differ-
ences between ascent and descent (the mean lies within the 95 % confidence intervals),
with the exception of the Brown. Here, wind speeds at around 20 km altitude are stronger
for the ascent. This systematic difference could be related to excessively rapid descent
rates. Similar results are found for measurements of air temperature (Fig. F.7b, d, f, h, j).
In case of the Brown, stratospheric temperature observations during descent are warmer
by more than 1

◦C, suggesting a bias due to high descent rates. The same bias exists for
the other platforms, but the effect is smaller and not statistically significant at the 95 %
confidence level. Differences in relative humidity are not statistically significant inside
the troposphere.

f.3.2 Synoptic conditions

We first present the synoptic situation for the region defined by the Meteor and the
BCO soundings. Our initial analysis focuses on the soundings for these two platforms
because they define a more or less fixed geographic area – radiosondes launched from
the Meteor were almost all launched between 12.5 ◦N and 14.5 ◦N along 57.15

◦W –
bounding the subdomain that was most intensively sampled. A comparison between
twelve BCO soundings with coincident and nearly co-located ship-based soundings
(ships were positioned just offshore of the BCO) showed no evidence (Fig. F.17) of a
systematic influence of the island on the BCO soundings. Hence, the BCO soundings
appear representative of the western most boundary of the marine measurement area.
Focusing on a fixed region during the period of most intensive airborne operations,
between January 20 and February 17, also provides a reference for quantifying differences
in soundings taken outside of this region, or time period, as is discussed at the end of
this subsection.

Synoptic differences among variables believed to be important for patterns of low-
level cloudiness suggest that: (i) the Meteor and the BCO sample the same synoptic
environment; and (ii) changes in the environment can usefully be described by week-
to-week variability over the four weeks starting on Monday, January 20. The lower
tropospheric stability (LTS), the near surface winds, the lifting condensation level (LCL)
of near-surface air, and the hydrolapse track each other well (Fig. F.8). The hydrolapse
marks the depth of the trade-wind cumulus layer. It is defined as the mean height where
mean relative humidity on a centered running 500 m range first drops below 30 %. LTS
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Figure F.8: Synoptic overview of period and region of intensive aircraft measurements. Plotted
are the lower tropospheric stability (LTS), the height of the hydrolapse, the lifting
condensation level (LCL) and the wind vector averaged over the lower 200 m. Winds
are 12 h median values, other quantities are resampled on a 4 h interval, with median
values plotted except for the LCL where minimum values are plotted. For the wind
vectors the maximum and minimum wind speeds are 12.3 m s−1 and 2.0 m s−1,
respectively. Tick marks denote maximum and minimum LTS, and maximum and
median height of Meteor hydrolapse and the mean height of the LCL (Meteor). Also
shown are days when aircraft with dropsondes were flying, the synoptic cloud
observations of mid-level (CM) and high (CH) clouds with the associated WMO
cloud-symbol (Table 14 of 2017 World Meteorological Organization Cloud Atlas,
https://cloudatlas.wmo.int/en/home.html) that predominated for that day. Cloud
types are taken from the Barbados Meteorological Service SYNOP reports. Days on
which a mesoscale pattern of shallow convection, following the classification activity
of Schulz (in preparation), was readily identified are indicated by the emojis for Fish,
Sugar (candy), Flowers or Gravel (rocks).

https://cloudatlas.wmo.int/en/home.html
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Figure F.9: Comparison between ascending and descending soundings and ceilometer measure-
ments on the Meteor. The relative humidity from radiosonde measurements is shown
in blue-to-white shading. The black dashed line represents the lifting condensation
level calculated based on Bolton, 1980. Cloud base heights as observed by the ceilome-
ter are marked with orange dots. The vertical axis is chosen to be logarithmic for
better visibility of the moisture distribution near the surface. The time-axis for the
soundings uses launch time. The temporal resolution of the ceilometer data is 10 s.
Low-altitude relative humidity profiles (300–800 m) of the descending soundings were
recovered by assuming a dry adiabat temperature and a constant humidity profile.
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is defined as difference of potential temperature at 700 hPa and the mean potential
temperature in the lowest 200 m. Fig. F.9 further illustrates that the LCL tracks well
the lowest cloud bases as measured by the Meteor ceilometer. Week-to-week variations
as deduced from the soundings of either platform show the first and last week to be
characterized by a deeper moist layer, and lessened lower tropospheric stability, the
latter primarily explained by changes in the potential temperature at 700 hPa. The two
week period starting on January 27 has a much shallower trade-wind layer and stronger
stability. Near surface winds vary somewhat out of phase with the moisture variability,
with winds stronger in the second half of the four week period, and weaker in the first
half. The LCL shows very little synoptic variability.

Cloud observations are also included in Fig. F.8. Reports of mid-level (CM) and
high-level (CH) clouds are derived from 3 hourly SYNOP observations reported by the
Barbados Meteorological Service at Grantley Adams International Airport. If a reported
mid or high-level cloud type was persistent through the day (more than three reports) it
is included via its WMO cloud symbol2 in Fig. F.8. Notable are mid-level clouds that
coincide with the deepening of the marine layer, particularly during the period at the end
where a layer of altocumulus (CM = 4) persisted for several days (Fig. F.9). Observations
of low clouds (CL) indicated that CL=8 and CL=2 where the dominant low-level clouds;
both evident on almost every day with little evidence of synoptic variability. This is also
evident from the Meteor ceilometer measurements (Fig. F.9). For this reason, in Fig. F.8 we
instead identify days when particular patterns of mesoscale variability were in evidence.
We adopted the four patterns, Sugar, Gravel, Flowers, Fish following Stevens et al. (2020).
While the low and small Sugar clouds appear with little organization, Gravel clouds
reach deeper extents and organize along gust fronts. The fish-bone like organization
of clouds on horizontal scales of 200–2000 km is described by the Fish pattern, and
large stratiform, often circular-shaped cloud clumps are labeled as Flowers. Whether or
not one particular pattern was identified was taken from a cloud classification activity
organized by one of the authors (H. Schulz). These patterns suggest that the initial
moist period has the satellite presentation of Fish, and that the period of increased
lower-tropospheric stability and strengthening winds on February 2 is associated with
the pattern Flowers, consistent with the analysis of Bony et al. (2020).

To give a better impression of the synoptic variability, the period identified with
the Fish pattern, between January 22–24, is investigated further. The visible satellite
imagery from MODIS on Aqua (Fig. F.10a) illustrates the large-scale characteristics of
the observed Fish cloud pattern, covering the BCO and the northern latitudes of the
observations region. The pattern resembles a spine in a surrounding cloud-free area and
was accompanied by unseasonably large amounts of surface precipitation. Fig. F.10b
illustrates the moistening of the atmosphere and the deepening of the boundary layer, as
measured at the BCO, over the course of this event. Between January 20–26, the increase
of integrated moisture up to 55 kg m−2 coincides well with the deepening moist layer,
thus also with changes in cloud top height and trade wind inversion height. Before and
after the event, the inversion layer height was around 2 km (Fig. F.8), and the boundary
layer was characterized by a mixture of Gravel and Sugar, albeit the latter not on a scale
that lent itself to identification from the satellite imagery. During the peak of the event on

2 These symbols are taken from the 2017 edition (Table 14) of the WMO Cloud Atlas
(www.wmocloudatlas.org).
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Figure F.10: Fish cloud pattern passing Barbados between January 22–24, 2020. (a) MODIS-
Aqua scene from January 22. The image covers 9–18

◦N, 48–60
◦W with Barbados

shown in artificial green. (b) Temporal evolution of relative humidity (lower panel)
and integrated water vapor (IWV; upper panel, color-coded) as measured by the
BCO soundings January 20–26. Profiles and calculated IWV values are color-coded
according to the nearest hour of the sounding reaching 100 hPa. The upper panel
also shows a one-minute running mean of rain intensity recorded at BCO (black).



164 atmospheric soundings

Figure F.11: (a-e) Time-height cross sections of daily (a) temperature anomaly, (b) relative hu-
midity, (c) zonal wind, (d) meridional wind anomaly, (e) pressure anomaly and (f)
Brunt-Väisälä frequency (units of 10

−2s−1), computed from ascending soundings
north of 12.5 ◦N. The data combine 182 soundings from the BCO, 169 from the
Brown, 159 from the Meteor, 30 from the Merian and 4 from the Atalante. Anomalies
are defined as deviations from the time average at each altitude.
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January 22 and 23, the moisture layer deepened up to 5 km. While the Fish cloud pattern
passed over BCO, the pressure in the boundary layer decreased by up to 4 hPa (see Fig.
F.11e) and the temperature in the upper middle troposphere (6–8 km) showed a slight
positive anomaly (see Fig. F.11a). The rain intensity, measured at BCO with a Vaisala
WXT-520 ground station, peaked at 15 mm h−1, and precipitation events were persistent,
in contrast to the short rain showers more typical of the dry season (Stevens et al., 2016).
Bony et al., 2020 found that the Fish cloud pattern often occurs under weaker surface
trade wind speeds below 8 m s−1; the sounding data confirm this, as the measured wind
speeds lie well below this threshold in the lower boundary layer, e.g. Fig. F.8.

Given that the vertical structure of the humidity field appears to be a strong indicator
of synoptic variability, time-height humidity plots for all of the platforms are used to
explore the coherence of synoptic conditions sampled by individual platforms. This
analysis (Fig. F.12) shows that soundings from the Brown, which moved around more,
but stayed mostly north of 12.5 ◦N and east of the Meteor, sampled a similar synoptic
environment. The Merian and Atalante however were further south and their soundings
show a humidity structure and evolution that is less coherent than seen by the ships in
the Trade-wind Alley. Based on this finding and because performing the same analysis
for any one station does not change the big picture, we composite the soundings from
all of the platforms north of 12.5 ◦N. Figure F.11 shows the temporal evolution of
atmospheric conditions for the full period of data coverage averaged north of 12.5 ◦N,
i.e., over the Trade-wind Alley. Before January 22 the mid-troposphere is relatively cool
and zonal winds in the upper troposphere are strong. From January 22 onward the
observational domain experienced warmer temperatures, weaker upper-tropospheric
westerlies, as well as weaker easterlies near the surface. Positive pressure anomalies
first appear in the upper troposphere and reach the surface at the end of January when
a ridge starts to dominate the area. Surface and upper-tropospheric winds strengthen
again after February 6 when the positive pressure anomaly fades. A strong moistening of
the mid and upper levels is seen around February 13, which coincides with a directional
change of the meridional winds at these levels, favoring the aforementioned extensive
and persistent altocumulus cloud layer (Fig. F.8).

Most differences between the structure of the atmosphere within the Trade-wind Alley
(North of 12.5 ◦N) and the ‘Boulevard des Tourbillons’ (southern corridor) are confined
to the structure of the lower-tropospheric humidity. South of 12.5 ◦N, the atmosphere
was on average much more humid in the lower and middle troposphere, as shown in
Fig. F.13. This humidity anomaly is not persistent, as dry conditions, similar to those
observed north of 12.5 ◦N, were also present; it can rather be associated with more
frequent periods of a deep moist layer and deeper convection, for example as observed
during the period around January 29 (see Fig. F.12). Additional, albeit less substantial
differences (not shown), are that middle-upper troposphere relative humidities (between
7–10 km) are actually somewhat drier in the South. There is very little evidence of
systematic differences in the temperature structure between the northern and southern
soundings, except for a hint of enhanced stability in the upper troposphere (11–15 km)
in the North. Over the ‘Boulevard des Tourbillons’, the depth of the near surface easterly
layer is 1–2 km shallower and between 5–15 km, the westerlies have a stronger northerly
component.
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Figure F.12: Time-height series of relative humidity measurements from all platforms. The plot
combines ascending and descending soundings.
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Figure F.13: Occurrences of relative humidity as a function of height below 4 km for soundings
launched between January 26 and February 12. The sum of occurrence frequencies
in each altitude bin is 100 %. Altitude bins are 50 m deep and each x-axis contains
40 bins. North (panel a) designates soundings from the northern (12.5–14.5 ◦N; 261

profiles) latitude band, and South designates soundings from southern (8.5–10.5 ◦N,
63 profiles) latitude band. Solid lines show the mean profiles in each region and
dashed lines the 10th and the 90th percentiles. Only data from ascending radiosondes
are used in this comparison.

f.4 summary

The EUREC4A field campaign during January–February 2020 included among its wide
range of observational platforms an extensive radiosonde network, consisting of the
Barbados Cloud Observatory and four research vessels. 182 radiosondes of type RS41-
SGP were successfully launched in a regular manner between January 16 and February
17 from the BCO, 203 between January 18 and February 19 from the Meteor, 169 between
January 8 and February 12 from the Brown, 139 between January 21 and February 16

from the Atalante, and 118 between January 20 and February 19 from the Merian. In
addition, 47 MeteoModem radiosondes of type M10 were launched from the Atalante
during intensive observational periods to sample variability associated with sea surface
temperature fronts. These are described in the appendix.

We made data at three stages publicly available. Level-0 data contain the raw .mwx
binary files, which can be read and processed with the MW41 software. Level-1 data
were subject to Vaisala’s standard quality control algorithm, which detects outliers in
the profiles, performs a smoothing to reduce noise, and applies time-lag and radiation
corrections. The Level-1 file format is NetCDF with a temporal resolution of 1 s. To
facilitate scientific analyses, Level-2 data are vertically gridded by averaging Level-1
data in 10-m bins. All soundings, ascending and descending, from each platform were
collected into one NetCDF file for the Level-2 data.

The Meteor and the Brown followed nearly-orthogonal sampling lines, mostly in the
latitude band 12.5–14.5 ◦N, whereas the Atalante and Merian sampled conditions further
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to the south. It was a central goal of EUREC4A to better understand the formation
and feedbacks of different patterns of shallow cumulus clouds. We were fortunate
that nature provided us with a wide variety of cloud conditions, which are reflected
in the radiosonde data. The six weeks of sounding data at high temporal resolution
should render the radiosonde data described herein useful for a large variety of scientific
analyses.

f.5 code and data availability

Raw Level-0 data consist of single files per sounding in .mwx. format, which combine
ascent and descent from each instrument. Quality-controlled Level-1 data consist of
single files per sounding in NetCDF format, with separate files for ascent and descent.
Level-2 data are stored in a single file per station and include data on a 10-m vertical
resolution grid, including all available ascents and descents. Ascent and descent can be
distinguished by a flag that indicates the direction. All data (Stephan et al., 2020a) are
archived and freely available for public access at AERIS (https://doi.org/10.25326/
137). Our software, which we used to convert to NetCDF format is also publicly available
(Schulz, 2020; https://doi.org/10.5281/zenodo.3712223).

f.6 appendix

f.6.1 Extra soundings on board the ATALANTE

In addition to the regular Vaisala soundings, further soundings were performed from
the Atalante primarily to sample the lower atmosphere across sea surface temperature
(SST) fronts associated with oceanic mesoscale dynamics. An independent radiosonde
receiver was used to not interfere with the regular soundings depicted in this article.
MeteoModem M10 radiosondes were chosen for availability and cost. In order to decide
the period of intensive sampling using these sondes, we first identified on a daily
basis the ocean mesoscale eddies and currents by applying the TOEddies detection
algorithm (Laxenaire et al., 2018) to the Ssalto/Duacs Near Real Time (NRT) altimeter
products (Absolute Dynamic Topography – ADT – and the associated surface geostrophic
velocities; Ablain et al., 2017, Taburet et al., 2019).

These data were successively analyzed together with the NRT SST produced by
Collecte Localisation Satellites (CLS), the ship’s ThermoSalinoGraph (TSG) 5 m-depth
temperature measurements, and ARPEGE and ECMWF forecasts in order to decide
in real time the launching strategy. The NRT CLS SST is produced as a 1-day average,
high-resolution product, which is a simple data average of the satellite measurements
taken over the previous day, and has a resolution of 0.02

◦ in latitude and longitude. This
product may have local gaps due to the presence of clouds or missing data. The CLS SST
NRT product is derived from nighttime observations (to avoid diurnal warming of the
sea surface) by the MODerate-resolution Imaging Spectroradiometer (MODIS) on board
TERRA and AQUA satellites, the Advanced Very High Resolution Radiometer (AVHRR)
on board METOP-A and -B, the Visible Infrared Imager Radiometer Suite (VIIRS) on
board Suomi-NPP, the Advanced Himawari Imager (AHI) on board HIMAWARI-8, and
the Advanced Baseline Imager (ABI) on board GOES-16 and -17.

https://doi.org/10.25326/137
https://doi.org/10.25326/137
https://doi.org/10.5281/zenodo.3712223
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Precisely setting the sounding periods was difficult because the satellite observations
were only available for the previous day with additional uncertainties in the location of
SST fronts due to cloud screening. Furthermore, this strategy was defined in coordination
with the Merian to take into account the oceanographic observation goals common to
both ships.

The first targeted and intensive radiosonde observation leg took place on January 26.
11 MeteoModem sondes were launched while crossing a SST front associated with a
relatively cold filament (-0.5 to -1 ◦C SST anomaly) steered from the Guyana coast by
a mesoscale anticyclonic eddy (Fig. F.14a). During this leg, the ship crossed a front of
about 0.5 ◦C extending over 30 km with near surface wind of 6–7 m s−1 magnitude and
60
◦–70

◦ direction. During this leg the ship was heading eastward, almost into the wind.
Figure F.14a shows the February 25 SST map, chosen as clouds prevented retrievals on
the following day. According to the satellite product, one would have expected to meet
the front further east. Fortunately, a first diagonal transect during the night provided us
with the actual front location.

The second targeted and intensive radiosonde observation leg took place on February
2–3. This leg lasted for about 24 hours during which 28 MeteoModem radiosondes were
launched while the ship was zigzagging in order to sample several times the northeastern
edge of a cool SST anomaly of nearly -1 ◦C associated with coastal upwelling off the
Suriname and French Guyana coast (Fig. F.14b). During this leg, the ship was moving
westward and sampled SST variations of 0.3–1

◦C extending over 50–60 km. At this time
the near surface wind was variable in direction, 40

◦–80
◦, and relatively strong (8–11 m

s−1).
The remaining MeteoModem radiosondes were launched on few diverse occasions:

two were launched in the center of the warm core of a second eddy on January 27.
Another radiosonde was launched under a convective system on February 10. The last
four launches took place in cloud streets on February 17.

We used M10 GPS radiosondes with an SR10 station and EOSCAN (1.4.200306)
software. With the exception of one sounding, only ascent data are available for these
soundings as most of the launches were stopped manually at about 10 km height to
increase the sampling frequency of the lower atmosphere in regions characterized by
SST fronts. Launch frequencies reached up to one sounding every 40 min during the
intensive launch periods. Therefore, several radiosondes were emitting at the same time,
so frequencies had to be changed within the 400.4–403.4 MHz band to avoid interference.
M10 radiosondes measure relative humidity and temperature, from which dew point
temperature is deduced. The altitude and horizontal displacements of the radiosondes
are measured by GPS and are used to diagnose the horizontal wind components. Unlike
with RS41 SGP sondes, the pressure is deduced from the altitude and the surface station
pressure measurement, using the hydrostatic approximation. Our published data formats,
NetCDF and ASCII formatted files (.cor files), both contain data reported every second.
The raw MeteoModem data are processed in the same way as the Vaisala soundings
to create Level-1 and Level-2 files that match the format of the corresponding Vaisala
data. The only difference is that the description of the MeteoModem corrections that are
automatically applied by the software is a trade secret and therefore not known to us.
However, the M10 sondes are currently in the process of being certified by the Global
Climate Observing System Reference Upper-Air Network (GRUAN). If the GRUAN
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certification is granted, details on these corrections will become available. We checked
for and corrected spurious data in the surface observations using handwritten log-sheets
filed during the campaign.

Figure F.15 illustrates the outcome of these targeted and intensive radiosonde observa-
tions with results from the February 2–3 intensive observation period (Fig. F.14b). Profile
color (Fig. F.15a–c) denotes the SST measured by the ship at the time of the launch
(Fig. F.15d). Blue (red) profiles are thus on the cold (warm) side of the SST front. These
profiles are from raw data (level-0) and no attempt was made to validate, correct or
remove doubtful data such as the surprisingly cold layer between 800–900 m altitude that
can be seen in one of the blue potential temperature profiles (Fig. F.15a). No attempt has
either been made to disentangle diurnal or synoptic scale variability from the imprint of
the SST front on the lower atmosphere. However, one can note that the warm side of
the SST front was sampled mostly during nighttime (local noon at 1530 UTC, nighttime
from 22–10 UTC). There is a clear tendency for warmer boundary layers over the warm
side of the front than over the cold side (Fig. F.15a). On the other hand, the height of
the mixed layer, that can be defined as near homogeneous potential temperature layers
close to the surface, tends to be deeper over the cold side than over the warm side. This
contrasts with results obtained over stronger SST fronts from observation (Ablain et al.,
2014) and modeling studies (e.g., Kilpatrick et al., 2013; Redelsperger et al., 2019) and
suggests that the lower atmosphere does not solely respond to the SST gradient. Over
the cold side, wind speed tends to decrease with altitude (Fig. F.15b). Over the warm
side, and despite a larger variability from a profile to another, the wind speed tends to
be more homogeneous in the vertical than on the cold side. Because the mixed layer
depth is shallower over the warm side, it is however difficult to interpret this as the
result of a stronger vertical turbulent mixing. Overall, near surface wind speed tends
to be slightly weaker on the warm side than on the cold side. There is also a noticeable
change in wind direction throughout the boundary layer from E-NE over the warm side
to NE over the cold side (Fig. F.15c).

Finally, we provide a first assessment of the quality of MeteoModem M10 measure-
ments based on the Atalante soundings, as also Vaisala soundings were launched during
the intensive MeteoModem periods. We compare MeteoModem and Vaisala wind, tem-
perature and relative humidity profiles for 8 pairs of soundings that were launched
within 25 min (Fig. F.16). Choosing such a small time period certainly limits the number
of difference profiles that can be computed, but it ensures that the two radiosondes
sampled comparable situations. Mean difference profiles and corresponding standard
deviations are computed on 100 m bins. Neither horizontal wind components (Fig. F.16a,
b) nor temperature (Fig. F.16c) show any clear bias, although the differences between
MeteoModem and Vaisala can be a few m s−1 for the wind components (standard
deviation of about 0.5–1 m s−1) and about 1

◦C for temperature (standard deviation of
about 0.1–0.2 ◦C). On the other hand, despite a large noise below 4 km height, relative
humidity shows a rather homogeneous moist bias of about 5 % (1–5 % standard devia-
tion) in MeteoModem measurements compared with Vaisala (Fig. F.16d). No correction
was applied, neither to the temperature nor to the relative humidity measurements. In
particular, corrections for the relative humidity seem necessary but are still a matter of
research. An example of such corrections, developed for soundings in the continental
mid-latitude can be found in Dupont et al., 2020.
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Department of Geosciences of ENS through the Chaire Chanel program; MétéoFrance.
Vaisala radiosondes were funded by the Max Planck Society, and the US National
Oceanic and Atmospheric Administration Ocean and Atmospheric Research grant num-
ber NA19OAR4310375. MeteoModem radiosondes were funded thanks to Caroline
Muller by the European Research Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation programme (Project CLUSTER, grant agreement No.
805041). Claudia C. Stephan was supported by the Minerva Fast Track Program of the
Max Planck Society.
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Figure F.14: Maps of CLS SST (◦C) for (a) January 25, 2020, and (b) February 2, 2020, with the
Atalante track during the first (January 26) and second (February 2–3) intensive leg,
respectively. The color shows the SST measured by the ship’s ThermoSalinoGraph
(TSG) at 5 m depth and the ticks show the location of Vaisala (squares) and Meteo-
Modem (circles) radiosonde launches. Inserts in the upper corners, where the black
lines indicate the ship’s course, show the larger scale view of the corresponding
scenes with the geographical imprint indicated by white squares. In the panel insert
a, the closed contours and the black diamond indicate, respectively, the edges of an
anticyclonic eddy and the position of its center.
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Figure F.15: Vertical profiles (50–1500 m) from MeteoModem M10 sondes launched during the
second targeted intensive radiosonde period (Figure A1b) for (a) potential temper-
ature, horizontal wind (b) speed and (c) direction, and (d) the corresponding SST
time series from the Atalante TSG with each circle corresponding to a MeteoModem
launch. Colors are indicative of the SST (◦C) at the time of each launch. Vertical
profiles are built from Level-0 raw measurements.
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Figure F.16: For Atalante soundings launched within ±25 min, the mean difference MeteoModem-
Vaisala (pink) and ±1 standard deviation (blue) computed on 8 difference profiles
with a vertical resolution of 100 m. Shown are difference profiles for (a) zonal wind,
(b) meridional wind, (c) temperature, and (d) relative humidity.
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Figure F.17: As Fig. F.13, but instead of comparing different regions, we here compare ascending
soundings launched from BCO with ascending soundings launched within ±90

min from nearby ships (within 1
◦ longitude to the east and ±1◦ latitude of BCO,

resulting in 12 matching soundings). Altitude bins are 100 m deep and there are 20

bins on the x-axis.
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The work in this appendix is intended for publication as:

Schulz, Hauke (in preparation). Meso-scale patterns of shallow convection during EU-
REC4A

The contributions of the authors to this publication are as follows:

This is a single author manuscript with no other contributions except the participants of
the international remote classification event who contributed to the dataset by labeling
meso-scale patterns of shallow convection.
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Meso-scale patterns of shallow convection during EUREC4A

Hauke Schulz1

1Max Planck Institute for Meteorology

abstract

Shallow trade-wind convection can occur in patterns of meso-scale extent. Their origin,
formation process and radiative impacts are currently studied in field and model
experiments. Here we give an overview about the meso-scale organization during
the EUREC4A field campaign in early 2020 that has been manually identified by 51

researchers based on infrared and visible satellite imagery as well as simulation output.
Because the four pattern categories defined by Stevens et al. (2020) are rather subjective,

the common perception of the scientific community can be derived from this dataset.
With the provided post-processed data, it is shown that the dataset is able to serve as a
reference for other studies to classify measurements taken during the EUREC4A field
campaign.

The full dataset including postprocessed datasets for easier usage are freely available
at the Zenodo archive at http://doi.org/10.5281/zenodo.3763414.

plain language summary

Clouds are often clustered. One of the larger clusters are squall lines or even the Inter-
tropical convergence zone. Also smaller clouds, like shallow trade wind cumuli, are
often seen clustered on a scale of several 100 km. How this clustering is happening is not
yet well understood and has been a core question of the recent field campaign EUREC4A.
This dataset provides the manual pattern classifications to this campaign period.

g.1 dataset details

• Identifier: https://doi.org/10.5281/zenodo.3888876

• Creator: Hauke Schulz

• Title: Manual classifications of meso-scale organization during EUREC4A

• Publisher: Zenodo

• Publication year: 2020

• Resource type: Dataset

g.2 introduction

The understanding of the meso-scale patterns of shallow convection is still sparse. How-
ever, the ubiquity of these clouds and their reoccurring structure, suggest that they

http://doi.org/10.5281/zenodo.3763414
https://doi.org/10.5281/zenodo.3888876
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play an important factor in determining the radiative effects in the trade-wind regime
(Bony et al., 2020). The EUREC4A field campaign addresses among other questions,
the question on how the organization of shallow convection is happening. Prior to the
campaign, studies concentrated on the classification of meso-scale patterns based on
satellite images by visual inspection (Stevens et al., 2020), rule-based algorithms (Bony
et al., 2020) or trained neural networks (Rasp et al., 2020). These efforts show that the
categorisation of the meso-scale patterns is an elementary part in order to gain further
knowledge about these cloud structures. To address this need, the dataset presented
here contains the manual classifications of 51 scientists from over 10 institutes who were
involved in the EUREC4A field campaign in January - February 2020 and participated in
a joint online classification event. The dataset presented here can therefore be seen as
a baseline dataset for the meso-scale patterns of shallow convection in the downwind
trades. It reflects the community consent of these visually defined patterns and allows to
put the participating platforms and there measurements taken during EUREC4A in the
meso-scale context.

g.3 data description and development

The manual classifications were gathered through the online platform zooniverse.org

which has already been successfully used in an earlier project by Rasp et al. (2020). The
platform makes it possible to crowd-source labels for e.g. machine learning projects and
define tasks that need to be completed.
For this dataset, we defined three workflows. Two workflows are based on satellite
observations in the visible and infrared channels, respectively, while another workflow
is based on a storm-resolving simulation covering the EUREC4A time period. Details of
this ICON simulation can be found in Schulz and Stevens (in preparation).

To visualize the output, we calculated a pseudo-albedo α by the following approxima-
tion:

τ = 0.19 · (LWP)
5
6 · (N1/3) (G.1)

α =
τ

6.8 + τ
, (G.2)

where LWP is the liquid water vapor path and N an assumed cloud droplet number
density of 70 cm−3.

The workflows are further described in Tab. G.1 together with an example for each of
these visualized in Fig. G.2.

On March 24, 2020 the international, virtual classification hackathon has been hosted
with 51 scientists from over 10 institutes participating to collect the pattern classifications.
For a full day the participants classified patterns of shallow trade-wind convection by
drawing rectangles around the four common types: Sugar, Gravel, Flowers, Fish (Stevens
et al., 2020).
In the end, over 12.500 labels were gathered and accumulated intentionally on the
observational workflows (see Fig. G.3) as it quickly turned out that the identifcation of
the patterns in the model simulation was too demanding. The features had too little
similarity with those found in nature. Comparing the amount of labels that have been

zooniverse.org
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created for each class and workflow (Fig. G.3), Sugar has been classified least in the
simulation workflow. It becomes clear that the Sugar type clouds were the hardest to
identify or not present in the simulation output. The largest feature, Fish, however, has
been identified more often. This supports the assumption that larger features are better
represented in storm-resolving simulations.

Because all users are known to the authors and were trained before the classifi-
cation through an online presentation to get familiar with the labeling interface on
zooniverse.org but also to refresh the different meso-scale cloud pattern categories, it
can be assumed that the labels are of high quality. Compared to Rasp et al. (2020) where
the focus has been to classify as many diverse cloud scenes as possible to capture the
variability and thus serve as a better machine learning dataset, the aim for this dataset is
to create a baseline classification that participating scientists agree on and can directly
use in further studies. Therefore, the temporal frequency has been increased from daily
cloud scenes to 2-hourly cloud scenes to reflect also the changes on the sub-daily scale
that have been identified by Vial et al. (2021). Due to this design difference, cloud scenes
are classified on average by 15 participants in case of the visible workflow instead of just
about 3 as in Rasp et al. (2020).

For all three workflows we provide post-processed datasets which are illustrated in
Fig. G.1 and described as follows:

• Level 0
The Level 1 data consists of the raw data output and originates from the zooniverse
platform. It consists of CSV files that contain entries for each classification including
technical details like the the time spend on to draw a specific label.

• Level 1
The Level 1 dataset is further processed. It contains each label as a separate entry
and contains information about the classified object, the user and the geographical
and Cartesian coordinates of the label. This data is saved as a netCDF file.

• Level 2
For the Level 2 dataset, the data is merged by classification_id.
The classification_id is a unique identifier of a classification, while a classifi-
cation refers here to the process of labeling a single image by a single user. The
user might use several labels of the same or different kind to completely classify a
scene. This process eliminates overlaps of same-user classifications for each pattern
and turns the data into masks, rather than coordinates (see Fig. G.1).

• Level 3
To ease working with the dataset, daily frequency contributions like shown in Fig.
G.2 are calculated and saved as Level 3 data for each workflow. The percentage of
agreement (p) among users on a specific pattern on each location is calculated as
follows:

ppattern(i, j) = ∑U
0 c(i, j)

U
, (G.3)

where U is the number of users that have seen the particular image, c the classifi-
cation mask from the Level 2 data and i, j the geographic coordinates. Because the

zooniverse.org
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labels of users that attributed several classes to one pixel are not removed, ∑ p can
be greater than 100%.
This dataset is shown in the appendix for each day and workflow to give an
impression of the dataset and in particular the meso-scale patterns present during
the EUREC4A field campaign.
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Figure G.1: Overview of processing levels of the dataset.

g.4 dataset access

The data including raw data, processed data and the source code with examples on how
to process the data are freely available at zenodo.org.

Schulz, Hauke. (2020). EUREC4A meso-scale cloud classifications (Version v.0.1.0)
[Data set]. Zenodo. https://doi.org/10.5281/zenodo.3888876

g.5 potential dataset use and reuse

The EUREC4A field campaign has been an international study with a wide range of
research platforms and associated studies Stevens et al. (2021). This dataset does not only
cover the core area of the experiment, but also the wider area and time period. While
the participating research airplanes and drones were mostly staying in the trade-winds,
some ships departed as far south as 6.5◦N.

This dataset gives the opportunity to study all these measurements in the context of
the meso-scale patterns observed in the downwind trades. Due to the high subjectivity
of these meso-scale cloud pattern definitions, it is of particular importance to discuss
results based on a community consent to keep studies comparable. This dataset can
serve as such a reference for the period of the EUREC4A field campaign.

g.6 acknowledgments

The author thanks the participants of the international remote classification event.
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g.7.1 Daily classification overview
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Figure G.2: Manual classification examples for the three workflows (top to bottom: visible,
infrared, simulation. The labels for each pattern (from left to right: Sugar, Flowers,
Fish, Gravel) are shown next to the labeled image.
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Figure G.3: Distribution of labels by data source. The relative distribution is indicated by the
bars, while the absolute number of labels is indicated as text. The total labels per
workflow are on top of each bar.



184 meso-scale patterns of shallow convection during eurec
4
a

08.01 13.01 18.01 23.01 28.01 02.02 07.02 12.02 17.02 22.02
date

0

50

100

cla
ss

ifi
ca

tio
n 

(%
)

Sugar
Gravel
Fish
Flowers

08.01 13.01 18.01 23.01 28.01 02.02 07.02 12.02 17.02 22.02
date

0

50

100

cla
ss

ifi
ca

tio
n 

(%
)

Sugar
Gravel
Fish
Flowers

08.01 13.01 18.01 23.01 28.01 02.02 07.02 12.02 17.02 22.02
date

0

50

100

cla
ss

ifi
ca

tio
n 

(%
)

Sugar
Gravel
Fish
Flowers

Figure G.4: Exemplary use cases: meso-scale setting of research platforms during EUREC4A (top
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Figure G.5: Heatmaps of manual classifications based on MODIS (Aqua and Terra) visible
imagery. Left to right: Visible imagery during Aqua overpass, User agreement on
Sugar, Flowers, Fish and Gravel. Circle indicates HALO flight circle.
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Figure G.6: continuation of Fig. G.5
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Figure G.7: continuation of Fig. G.5
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Figure G.8: continuation of Fig. G.5
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Figure G.9: Images at 16 o’clock. (except 11.02.2020: 17 o’clock)
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Figure G.10: continuation of Fig. G.9
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Figure G.11: continuation of Fig. G.9
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Figure G.12: continuation of Fig. G.9
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Figure G.13
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Figure G.14: continuation of Fig. G.13
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Figure G.15: continuation of Fig. G.13
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Figure G.16: continuation of Fig. G.13
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