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Using the model of the complex Ginzburg-Landau equation with global coupling, the influence of 
long-range interactions on the turbulent state of oscillatory reaction-diffusion systems is 
investigated. Experimental realizations of such a system are, e.g., oscillatory reactions on single 
crystal surfaces where some of the phenomena we simulate have been observed experimentally. We 
find that strong global coupling suppresses turbulence by transforming it into a pattern of standing 
waves or into uniform oscillations. Weaker global coupling gives rise to an intermittent turbulent 
state which retains partial synchrony. © American Institute of Physics. 

Oscillatory surface reactions demonstrate a large variety 
of spatiotemporal patterns, both regular and chaotic. 1

- 3 Spa­
tial coupling in these reactions under isothermal conditions is 
provided by two basic mechanisms: surface diffusion of mo­
bile adsorbates on the catalyst surface and changes of the 
educt pressures in the gas phase. The latter arise due to the 
mass balance in the reaction and, since mixing in the gas 
phase is very fast, this coupling is global. Gas-phase cou­
pling is known to significantly influence the course of oscil­
latory sUlface chemical reactions by tending to synchronize 
the oscillations.4- 5 Under certain conditions, periodically os­
cillating patterns of standing waves have been found on the 
surfaces.4 

To consider the effects of global coupling in oscillatory 
reaction-diffusion systems, we have proposed a simple 
mathematical model obtained by including an additional glo­
bal coupling term into the complex Ginzburg-Landau equa­
tion (CGLE).6,7 Although such a model can be fully justified 
only in the vicinity of a Hopf bifurcation, its analysis also 
reveals more general qualitative properties of the involved 
phenomena and thus provides a basis for the interpretation of 
experimental data. Using this model, we have investigated 
the breakdown of synchronization caused by strong super­
critical inhomogeneities (surface defects), we studied propa­
gation of phase flips over the globally synchronized state and 
the spontaneous formation of large-scale oscillation 
domains.6,7 This analysis has been performed in a parameter 
region where diffusional coupling between oscillators tends 
to synchronize the local oscillations. 

However, depending on the dynamical properties of os­
cillations in the individual surface elements and on the ratio 
of surface diffusion constants for different adsorbed reagents, 
local diffusional coupling may also destabilize uniform bulk 
oscillations and give rise to chaotic spatiotemporal regimes 
known as chemical turbulence.8

,9 Under proper choice of the 
parameters, these turbulent regimes can be described by the 
CGLE. A detailed statistical analysis of turbulence in CGLE, 
based on its numerical simulations, has been carried out in 
Refs. 10-13. 

The purpose of the present paper is to investigate how 
the effect of global coupling, which is common to all oscil­
latory surface reactions, changes the properties of diffusion­
induced chemical turbulence. By varying the relative inten­
sity of the additional global coupling term in CGLE, a 
transition from uniform synchronous oscillations (for a very 
strong global coupling) to periodic standing waves and fur­
ther to a turbulent state (for a weaker coupling) is found as 
shown below. The analysis of the turbulent state, realized in 
the presence of global coupling, shows that its properties are 
qualitatively different from those of diffusion-induced turbu­
lence realized in absence of global coupling. It retains a cer­
tain degree of long-range order and its temporal behavior can 
be characterized as intermittent, i.e., turbulent bursts appear 
on the background of almost synchronous oscillations. Based 
on the results of our analysis we attempt a qualitative com­
parison with experimental observations. 

Our mathematical model consists of a dynamical equa­
tion for the local complex oscillation amplitude 7](x,t) in a 
population of small-amplitude limit-cycle oscillators which 
are coupled both locally and globally. By choosing appropri­
ate dimensionless units, it can be written in .the form6 

7]= (1- iw) 7]- (l + i,8) 17]1 2 7]+ (1 + i €) v2 7]- ,ueix 1], (1) 

where 

1]= (1/S) f dX7](x,t) (2) 

is the spatial (surface) average of the local oscillation ampli­
tudes (S is the total surface area). It differs from the standard 
CGLE14 by the last integral term in Eq. (1) which can be 
interpreted asa driving force applied to each individual os­
cillator and collectively produced by all oscillators in the 
population. The intensity of global coupling is characterized 
by the coefficient f-L, the factor with X in the last term takes 
into account a possible phase shift between the driving force 
and the averaged amplitude 1]. The Benjamin-Feir (BF) in­
stability leading to diffusion-induced turbulence occurs for 
Eq. (1) without global coupling (p,=O) if the condition 
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1+ €j3<O holds. Below, in contrast to our previous 
publications,6,7 we consider the parameter region where this 
condition is satisfied. 

The local phase cp and (real) amplitude p of the oscilla­
tions can be introduced by 

7J(x,t) = p(x,t)exp[ - iOt- icp(x,t)], (3) 

where O=w+ 13+ ,u(sin X- 13 cos X), Substituting Eq. (3) into 
Eq. (l), two coupled dynamical equations for the variables 
p(x,t) and cp(x,t) are obtained: 

p=(l- p2)p_ \12p- p(\1 cp)2+ €p\12cp+2€\1 p'Y cp 

- f-LR cos( cp- 'IjJ' + X), (4) 

¢= w+ j3p2-0 + (21 p)\1 p\1 cp+ \12cp- (€I p)\12p 

+ €(\1 cp )2+ (f-LRI p )sin( cp-'IjJ' + X). (5) 

The global phase '¥ and amplitude R are determined by 

R exp[ -i'ljJ'(t)]=(l/S) f dx p(x,t)exp[ -icp(x,t)]. 

(6) 

The uniform bulk oscillations with frequency 0 correspond 
to the steady state of Eqs. (5) and (6) with cp(x,t)='IjJ'=cpo 
and amplitude p(x,t) = R= Po=(l- f-L cos X)1I2. 

To investigate the stability of this steady state we take 
p(x,t)=Po+op(x,t» and cp(x,t) =cfJo+ o¢(x,t) and linearize 
Eqs. (4) and (5) with respect to small perturbations op and 
ocp. The solution of the linearized equations is given by a 
sum of independent spatial modes. If the system is one di­
mensional and we have no-flux boundary conditions at x=O 
and x = L, these modes are 

op(x,t) = OPic exp(-Ykt)cos(kx), 

ocp(x,t) = o{h exp( Ykt)cos(kx) , 

(7) 

(8) 

where k=2'TTnIL, n= 1,2, ... The rate Yk of growth (or de­
cay) of the mode with the wave number k satisfies 

(Yk+2P6+k2)(Yk-f-L cos X+k 2
) 

+ (€k2 - f-L sin x)(2j3P6 + €k 2 
- f-L sin X) = O. (9) 

When f-LI€~k2~1 it has an approximate solution 

Yk= f-L(cos X+ 13 sin X) -(1 + €j3)k2 

(10) 

Hence, the behavior of these modes is determined by the 
signs of the combinations q = cos X+ 13 sin X and b = 1 + €j3. 
As mentioned above, the case b >0 was considered by us in 
the previous publications;6,7 it corresponds to diffusion­
induced synchronization. When q>O, global coupling pro­
vides a positive feedback and induces its own breakdown.7 

In the present paper we investigate the behavior of the sys­
tem under the conditions that q < 0 and b < 0. 

In the case considered here, the rate Yk is maximal for 
the mode with the wave number k=ko given by 

2 211+€j3l. 
ka = €2(1 + 132) . (11) 
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HG. 1. Profiles of the amplitUde and the phase in a standing wave obtained 
by numerical simulation of Eq. (1) with parameter values /3=- 1.5, E=2.0, 
X=1T, and ,u=O.33; the total length of the system is L=256. 

The mode with this wave number is growing (Yk>O) only if 
f-L<f-Lo where 

(1+€j3)2 
f-La= 2q~( 1 + 132) . 

(12) 

Hence, we find that strong enough global coupling (f-L> f-Lo) 
stabilizes uniform synchronous oscillations and thus sup­
presses~the diffusion-induced instability. When the intensity 
of global coupling is decreased, uniform oscillations at 
f-L= f-La become unstable in respect to growth of standing 
waves with the wave number k = ka. 

To determine the nonlinear evolution of growing modes 
we performed one-dimensional numerical simulations of Eq. 
(1). They show (Fig. 1) that the bifurcation is supercritical 
and for f-L<f-Lo near the threshold we have stationary standing 
waves of a small amplitude. 

... The standing waves which are established in the system 
as a result of such an instability. have several characteristic 
features. The amplitude of the local oscillations in the nodes 
of such waves does not vanish; therefore they can be also 
considered as a superposition of a small-amplitude standing 
wave and spatially uniform oscillations. Moreover, the phase 
of oscillations is also periodically spatially modulated in 
such a standing pattern and reaches its minima in the nodes 
where the oscillation amplitude is minimaL 

The phenomena leading to the formation of standing 
waves can be interpreted as a self-resonance in the system 
considered. Similar resonance effects are found in the pres­
ence of external periodic forcing applied to oscillatory dis­
tributed systems. I5 It should be emphasized that the lowest­
order resonance (with n = 1 in notations of Ref. 15) is 
responsible for formation of standing waves in our system. 
In the analysis of standing waves for CO oxidation per­
formed earlier in Ref. 16 the effect was attributed to a 
higher-order self-resonance (n =2) with the consequence that 
it could occur only under very special conditions of the 
codimension-two bifurcation. In the framework of our model 
such higher self-resonance would be described by the terms 
proportional to i/7J* in Eq. (1). We do not include such 
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FIG. 2. Different turbulent regimes in CGLE without global "coupling. (a) 
Phase turbulence (f3=-I, c-=1.5, L=256, the integration interval shown is 
T=200). (b) Defect turbulence (f3= -2, .:-=2, L=256, T=200, the. initial 
state is uniform with small random perturbations). The time development of 
the local real amplitude p(x,t) = I 1](x,t)1 of oscillations is shown iIi gniy 
scale, with darker areas corresponding to larger values of p. The defects are 
seen in (b) as moving white spots. 

temls and do not explicitly consider their effect because, for 
small amplitudes 77, their magnitude is small in comparison 
to the leading linear term, proportional to ij.in Eq. (1). 

When the intensity of global coupling is further de­
creased, the stationary pattem of standing waves is de­
stroyed, and spatiotemporal chaos appears. For fL=O the sys­
tem is described by CGLE without global coupling which 
was investigated in Refs: 8,10-13. At iliis stage the system 
can be found, depending on the proximity to the boundary 
b =0 of the BF instability, either in ilie state of phase turbu­
lence [Fig. 2(a)] or in the state of amplitude turbulence [Fig. 
2(b)]. 

Phase turbulence is characterized by random motion of 
shocks representing narrow regions with an increased oscil­
lation amplitude. The statistical analysis shows iliat this dis­
ordered state has long-range correlations and oscillations of 
distance elements are almost synchronous. 12 

On the other hand, amplitude turbulence demonstrates a 
large number of dynamical defects which represent (in the 
one-dimensional case) narrow regions where the local oscil­
lation amplitude almost vanishes. 17 This highly chaotic state 
has only short-range spatial correlations, i.e., ilie oscillations 
of different elements are de synchronized. 12 

\Ve have numerically investigated a transition towards 
fully developed (phase or amplitude) turbulence which takes 
place as ilie magnitude of ilie global coupling coefficient is 
gradually decreased. The periodic stationary pattern of stand­
ing waves persists within an interval of fL below the desta­
bilization threshold of ilie unifoIpl state. Tile profile of stand­
ing waves changes with a decrease of {J, and becomes 

FIG. 3. Breathing standing waves at ,u=0.02 for f3= -1.0, ,,= 1.5, X=7T, 
L '=256, and T=800; local values of the real oscillation amplitude are shown 
in grayscale. 

strongly unharmonical (Fig, J). The real amplitude p is then 
almost fiat, except for narrow intervals (i.e., shOCKS) where it 
is a little larger. Inside the. shocks the oscillation phase </> is 
also slightly increased. 

When a certaiIi critical value of the global coupling co­
efficient fL is reached, these stationmy standing \,Vaves be­
come unstable and are replaced by a breathing periodic pat­
tern where the shocks perform periodic oscillations around 
their equilibrium positions (Fig. 3). The amplitUde of such 
oscillations grows when fL is decreased. When the oscillation 
amplitude of ilie shocks becomes close to the spatial period 
of the pattem, ilie pattern loses its regUlarity. Collisions be­
tween the shocks result in their mutual annihilation and new 
shocks are occasionally produced between the existing ones. 
This stage is very similar to phase turbulence ill absence of 
global coupling [cf. Fig. 2(a.) J. Note that the average oscilla­
tion amplitude I ijl tn this turbulent state is only a little 

FIG. 4. Spontaneous formation of defects (white regions) on the background 
of phase turbulence in the presence [(a) ,u=0.0505] and in absence [(b) 
,u=O] of global coupling; other parameters are f3= -1.0, .:-=2.0, x~1i, 
L=256, T=400. Local values of the real oscillation amplitude p are shown 
in gray scale. : 
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FIG. 5. Intermittent turbulent regimes in the presence of global coupling: Ca) 
at ,u=0.3 for f3=-1.5 and (b) at ,u=0.5 for f3=-2.0; other parameters are 
<,=2.0, X=1T, L=256, and T=400. Local values of the real oscillation am­
plitude p are shown in gray scale. 

smaller than for the uniform oscillations. It means that oscil­
lations remain almost synchronous in this case. Phase turbu­
lence is the terminal state of the system (at JL=O) close 
enough to the boundary b =0 of the BF instability. 

Farther from the BF boundary the phase turbulence is 
only a transient stage of the system's evolution. Here the 
numerical simulations show the spontaneous creation of de­
fects [Fig. 4(a)]. Some of the shocksstali suddenly to accel­
erate, run rnto their neighbors, and thus produce small areas 
where the oscillation amplitude almost vanishes, Le., ampli­
tude defects. This process is similar to the transition to the 
amplitude turbulence in COLE without global coupling [Fig. 
4(b)]._ 

Although the properties of individual amplitude defects 
are not apparently modified by the presence of global cou­
pling, their collective behavior is different. They tend to form 
compact groups which have finite lifetimes. Figure 5(a) 
shows that local bursts of the amplitude turbulence are sur­
rounded by larger "laminar" regions filled by periodic stand­
ing waves. Such a turbulent state can be characterized as 
intermittent. When the intensity of global coupling is smaller 
[Fig. 5(b)] the bursts become more frequent and the state of 
the medium between them approaches that of the phase tur­
bulence. However, it is still significantly different from the 
developed amplitude turbulence without global coupling [cf. 
Fig. 2(b) for the same values of the system parameters but 
JL=O]. 

The intermittency which persists in the presence of glo­
bal coupling is qualitatively different from the one recently 
found in Ref. 18 in a narrow parameter region in two­
dimensional simulations of COLE without global coupling. 
In the latter case the defects multiplied until they filled the 

" 0:: 
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11 

FIG. 6. Dependence of the time-averaged global oscillation amplitude 
(black circles) and its standard deviation (white circles) on the global cou­
pling coefficient,u for f3"" -1.5, ,;=2.0, X=1T, and L=1024. 

entire medium. After that they became eventually suppressed 
by one spiral wave that gained control over the whole me­
dium. In contrast to this, Fig. 5 shows well-localized bursts 
of defects. The intermittency which we have observed can be 
described as spontaneous random nucleation of the ampli­
tude turbulence on the background of either regular standing 
waves or of phase turbulence. The appearing nuclei first 
grow but then die out. 

A very interesting property of such intermittent turbulent 
regimes is that they do not lead to the synchronization break­
down, in contrast to the complete destruction of the synchro­
nization by periodic waves emitted by emerging pacemakers 
which we have earlier described.6,7 The absolute value R(t) 
= I 'ift) I of the spatially averaged local oscillation amplitude 
TJ(x,t) fluctuates with time in such an intermittent state 
around a stationary level. Figure 6 shows the calculated 
time-averaged value (R) of this amplitude (black circles) as a 
function of the global coupling coefficient JL and the standard 
deviation of the same quantity (white circles). For JL>0.34 a 
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FIG. 1. Dependence of the time-averaged global amplitude (black circles) 
and its standard deviation (white circles) on the system size L at p.=0.2, 
/3=-1.5, X=1T, and E=2.0; the averaging interval is At= 1600. 
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~G. 8. Suppression of the defect turbulence by global coupling. In the time 
mterval 0<t<2000 the global coupling is absent l,u=O) and, after an induc­
tion period, the system evolves into the state of the defect turbulence with 
almost vanishing average oscillation amplitude R. At time moment t=2000, 
shown by the arrow, global coupling with ,u=0.07 and X=7r is switched on 
which results, after a transient, in establishing of uniform synchronous os­
cillations. 

coherent pattern (uniform oscillations or standing waves) is 
found in the system and therefore the standard deviation is 
close to zero. For smaller values of f.L the intermittent ampli­
tude turbulence develops and the local bursts of defects ap­
pear. The time-averaged amplitude R is considerably larger 
in this regime due to the contribution from the regions where 
standing waves or phase turbulence are still found. 

Since we have performed our simulations for finite one­
dimensional systems, a question is whether the intermittency 
effect is size dependent. Figure 7. shows the computed de­
pendence of the mean value of R and of its standard devia­
tion as functions of the total system's length L. We see that, 
although for smaller L, some size effects are present, the 
dependence approximately saturates for larger systems so 
that the mean values are no longer size dependent (remaining 
small variations are the effect of the finite averaging time) 
while the standard deviation progressively decreases. 

A phenomenon closely re1a,ted to the continuous nature 
of the transition to turbulence is the absence of hysteresis. In 
the numerical experiment shown in Fig. 8 we have started 
our simulation from initial conditions representing uniform 
oscillations with small random perturbation without global 
coupling (f.L=O). After about 500 time units the defects spon­
taneously appeared and a state of amplitude turbulence has 
been established. This is seen in the significant reduction of 
the average oscillation amplitude R in Fig. 8. At a later time 
moment, shown by the arrow of Fig. 8, we switched on glo­
bal coupling and followed the evolution of the system from 
the turbulent state into a complete recovery of uniform syn­
chronous oscillations. 

Although the main part of our numerical experiments 
has been performed for one-dimensional systems, we have 
also carried out a few two-dimensional simulations. They 
demonstrated a similar pattern of transition to turbulence 
upon a decrease of the global coupling intensity. The essen­
tial difference was that, instead of horizontal stripes which 
would have been a direct analog of standing waves in one 

dimension, we saw oscillatory standing wave patterns of 
hexagonal cells. When we started our simulations from ran­
dom initial conditions, the array of cells was highly irregular, 
giving the impression of a foamlike structure with local hex­
agonal order. Moreover, the transition to defect turbulence 
was strongly facilitated and purely laminar states with only 
standing waves or phase turbulence were not yet obtained in 
our simulations . 

In a single-crystal experiment in which the catalytic CO 
oxidation was studied on a Pt(llO) surface, spatially resolved 
measurements revealed the existence of a standing wave con­
centration pattern on the catalyst.4 These standing wave pat­
terns appeared only in a very narrow region of the parameter 
space. Since the medium in this experiment is oscillatory and 
since the partial pressure variations in the gas phase provide 
a global coupling, one might consider these concentration 
patterns as the experimental counterpart of the standing wave 
patterns discussed here. Although the principal mechanism 
might be identical, one also has to be aware of some sub­
stantial differences between theory and experiment. Due to 
the geometry of the substrate lattice the surface diffusion on 
Pt(llO) is strongly anisotropic thus favoring an effectively 
one-dimensional behavior which was seen in the 
experiment. 4 

A transition from synchronized oscillations to turbulence 
has been observed in the NO+NH3 reaction on Pt(100).19 
The turbulent state in this reaction emerges as the strength of 
gas-phase coupling weakens with decreasing temperature. 
This finally leads to the complete breakdown of the rate os­
cillations (the amplitude of which corresponds in our model 
to 7;). Before the complete breakdown of global coupling 
takes place one observes the coexistence of localized patterns 
such as spiral waves with areas still oscillating in a synchro­
nous manner. The situation is quite similar to that of Fig. 5 
where we have the coexistence of defects with synchronized 
behavior. There is of course also one important difference 
since in the experiment the spirals are typically pinned to 
structural defects of the surface while in the simulations we 
assume a homogeneous medium. 

Finally, we note that, due to great simplicity and gener­
ality of the considered model of CGLE with global coupling, 
the results of our study might find applications far beyond 
the field of physical chemistry. They could be viewed in the 
context of recent interest in emergence of synchrony in large 
populations of interacting oscillators (see, e.g., Refs. 20 and 
21) and general aspects of self-organization in nonequilib­
rium reaction-diffusion systems. It should also be remarked 
that the effects of global coupling can lead to interesting 
complex behavior in a different class of systems, Le., in ex­
citable and bistable meciia.22 
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