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Supplementary Fig. 1: The bootstrap DIA workflow. This sequence of algorithmic steps 
is applied to each DIA sample vs. the whole library. A matching step is usually followed 
by a step in which a calibration function (e.g. precursor m/z recalibration function) is 
determined from the matches found in the previous step. Then constraints (e.g. m/z 
deviation windows) are updated for the next round of matching. The DDA samples 
constituting the library are assumed to be retention time (and ion mobility if applicable) 
aligned to each other.   a, The first matching from the library spectra to the DIA sample is 
performed with initial m/z windows for precursor and fragments of 20 p.p.m. by default 
and without restrictions on retention times or collision cross sections. b, Based on these 
matches, a linear recalibration is calculated to adjust for different total gradient lengths of 
library and DIA samples. c, After the linear retention time calibration has been calculated 
and applied, a time window is calculated from the data, which defines the allowed retention 
time difference for the next step. d, The second matching still uses the initial m/z windows 
and in addition uses the time window determined in the previous step. e, Based on the 
matches of the previous step a linear precursor m/z shift in p.p.m. between the DIA sample 
and calculated peptide masses is determined. f, Similarly, a fragment m/z shift is calculated 
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from the data. g, Next, precursor and fragment m/z tolerances are calculated based on the 
distributions of m/z differences between DIA sample and theoretically calculated masses. 
h, The third matching uses adapted m/z and retention time windows which are applied to 
the linear calibrated data. i, The elimination of noise achieved by the adapted tolerances 
used in the matching in the previous step allows now to perform nonlinear retention tine 
calibration. j, A time dependent nonlinear allowed region is determined from the data. k, 
The fourth matching uses more stringent retention time constraints than the third matching, 
since it is applied to nonlinear calibrated data. l, Now a nonlinear calibration of precursor 
m/z values is determined from the data. This is done in a multivariate way, with a model 
for the mass error depending at least on m/z and retention time. For TOF data an intensity-
dependent component is added and for timsTOF data another component depending on 
1/K0. This is similar to the ‘software lock mass’ calibration in the DDA MaxQuant 
workflow. m. Similarly, fragment m/z are nonlinear recalibrated. n, New, more stringent 
precursor and fragment m/z tolerances are calculated from the distributions of mass errors. 
o. Another matching step with updated constraints is performed. p, A linear function for 
the recalibration of CCS values is calculated from the data, in case of ion mobility 
spectrometry. q, A tolerance window for the acceptance of CCS value deviations is 
calculated. r, A matching round with constraints on the CCS values is performed. s, A 
nonlinear CCS calibration function is determined. t, CCS tolerance is adapted to the 
nonlinear calibrated data. u, The final round of matching is performed without constraints 
on retention time and CCS values. Instead, these deviations are used as features in the 
XGBoost-based machine learning. Precursor and fragment masses are still filtered with 
hard windows for the deviations. 
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Supplementary Fig. 2: Score distributions along the bootstrap DIA workflow. 
Histograms of score distributions, separately for target and decoy hits after the different 
matching steps in the bootstrap DIA workflow. Target (blue) and decoy (red) distributions 
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are stacked on top of each other. A single run of the HepG2 Orbitrap dataset (DIA_13.raw) 
was used. a, Score histogram after the first matching step. (Step a in Supplementary Fig. 
1.) No constraints on the retention time are used. Initial tolerances of 20 p,p,m. are applied 
to precursor and fragment mass matches. The spikes at integer score values correspond to 
matches in which all matching fragments hit exactly the apex of the peak in retention time 
direction. The peaks from one to four matching fragments are dominated by false positives, 
since these bins have half or even more decoy hits.  Score values of six or above indicate 
correctness of the match since decoy hits are strongly suppressed. b, Score histogram after 
the second matching step. (Step d in Supplementary Fig. 1.) Retention time is filtered after 
linear retention time calibration between library and DIA sample and after determining a 
tolerance from the distribution of retention time differences. c, Score histogram after the 
third matching step. (Step h in Supplementary Fig. 1.) Linear ppm shifts are applied to 
precursor and fragment masses and mass tolerances are adapted accordingly. Scores larger 
than four indicate few false positives, d, Score histogram after the fourth matching step. 
(Step k in Supplementary Fig. 1.) e, Score histogram after the fifth matching step. (Step o 
in Supplementary Fig. 1.) in which nonlinear mass recalibrations have been applied to the 
data. f, Each profile shows the rate of false positive matches after each of the five different 
matching steps. The numbers are derived from the bins at integer values in the histograms 
of the previous panels. g, After all recalibrations have been applied, the final matching is 
done without constraints on retention times, but the mass constraints are kept. (The 
corresponding score distribution is displayed.) Instead the deviation from the calibrated 
retention time is offered as a feature to the machine learning for calculating an enhanced 
score. This strategy (hard mass cutoffs and soft, machine learning based, retention time 
cutoff) resulted in the highest number of identifications. Similarly, a soft cutoff is used for 
collision cross sections in ion mobility spectrometry data. 



 

5 

 

 
Supplementary Fig. 3: Nonlinear m/z recalibration of precursors. One consequence of 
the bootstrap DIA is that masses of precursors and fragments are nonlinearly recalibrated 
against theoretically calculated molecule masses. This replaces the software lock mass 
strategy used in DDA MaxQuant, which is based on a ‘first search’ with the Andromeda 
search engine to produce the recalibration curves. We use the same data as in 
Supplementary Fig. 2 to compare mass errors before and after recalibration. In all panels, 
data points are color coded according to the conditional data density. For this, the bivariate 
density of data points is divided by the marginal distribution on the x-axis. Blue signifies 
the region of highest conditional density. a, Mass error in p.p.m. of precursor ions as a 
function of m/z. b, Same precursor mass error as in panel a as a function of retention time. 
c,d Mass errors of panels a and b after recalibration through bootstrap DIA. The high-
density regions are centered around 0 error. e, Histograms of precursor mass errors before 
and after recalibration. The medians of the error distributions are at 2.96 p.p.m. before and 
at 0.099 ppm after recalibration. The FWHM reduces from 1.92 to 1.61 p.p.m.. f, 
Dependency of the precursor mass error on logarithmic intensity. Interestingly, does the 
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distribution of mass error not depend much on the intensity, since the lines of constant 
density (constant color) run approximately horizontally.  
 
 
 
 

 
 
Supplementary Fig. 4: Nonlinear m/z recalibration of fragments. a, Histograms of 
fragment mass errors before and after recalibration. Since in this dataset, the statistical 
fluctuations are much larger for the fragment mass errors compared to the precursors, the 
correction of systematic errors is of less importance here. b, Dependency of the fragment 
mass error on logarithmic intensity. The distribution of mass errors gets wider towards 
lower intensities. 
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Supplementary Fig. 5: Nonlinear retention time alignment between different 
gradients. a, A library of HeLa cell lysate was measured in 16 high-pH reversed phase 
peptide fractions with an active gradient time of 25 minutes. b, While analyzing the library 
in MaxQuant in DDA mode, retention times are aligned between the LC-MS runs in the 
library. c, Alignment of library retention times against for DIA samples with active gradient 
times of 120, 90, 60 and 30 minutes. d, Heat map views of the MS1 m/z-retention time 
planes of the respective DIA samples. 
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Supplementary Fig. 6: Nonlinear retention time alignment: LFQ after the alignment. 
Triangular matrix of scatter plots showing MaxLFQ quantification results between the four 
DIA samples with different gradients. The default value of 0.3 was used for the transfer q-
value. The alignment enables precise quantification even between samples with vastly 
different gradients. On the diagonal, technical replicates with same gradients are shown. 
Pearson correlation coefficients between logarithmic LFQ intensities range from 0.998 for 
120h gradients to 0.979 for 30h gradients. Throughout, quantification between non-equal 
gradients results in Pearson correlation values close to the one achieved with equal 
gradients of the respective shorter length.   
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Supplementary Fig. 7: Scoring library spectra against DIA samples. a, Libraries are 
collections of DDA samples analyzed with MaxQuant. MS/MS spectra from the library are 
first sub-divided into unique peptide-charge-modification combinations. Each such 
combination that has assigned more than one MS/MS spectrum to it is then clustered into 
retention time clusters. Prerequisite for this is that all library samples are retention-time 
aligned to each other. The idea is that if a peptide is eluting at more than one place in a 
gradient, it will be stored as multiple instances in the library with different retention times. 
This is feasible, since from the MaxQunat DDA analysis it is known how the peptides elute 
from their MS1 features. For data with ion mobility spectrometry this kind of library feature 
clustering is done in the two-dimensional space consisting of retention times and collision 
cross sections. A resulting cluster may still contain more than one MS/MS spectrum. In 
that case, the one with the highest Andromeda score is chosen. This spectrum is then 
filtered to the top-N most intense fragment peaks. These are then scored against the DIA 
sample. By default, is N = 7. We visit each retention time in a DIA LC-MS run and 
calculate the score which is defined below. The matching position is defined as the 
retention time at which the highest score is achieved. This highest value of the score is also 
defined as the matching score of this library spectrum to the DIA sample. For ion mobility 
spectrometry, this score maximization takes place in the two-dimensional space of all 
retention time and ion mobility value pairs. b, For calculating the score of a library 
spectrum at a certain retention time (and CCS value) in the DIA sample, one first searches 
with a given mass tolerance for 3D/4D features that match the precursor and the N 
(typically = 7) top fragment peaks. For each spectrum mass that matches a feature in the 
DIA sample we calculate the apex fraction which is the ratio of the intensity at the current 
retention time to the maximum peak intensity. To obtain the score, we sum up the apex 
fractions for the precursor (in case one was matched) and the matching fragments. c, So far 
the scoring was done independently for each consolidated library spectrum. This can lead 
to multiple usages of a DIA feature in several library matches. d, To prohibit over-
interpretation, we perform a second round of scoring. This time we put the library spectra 
in descending order according to the score they achieved in the first round of scoring. The 
same procedure is repeated, but now it is remembered which features in the DIA sample 
(precursors and fragments) have already been assigned and these will be prohibited from 
being assigned a second time. Note that an MS1 precursor match is not required but 
contributes the same way to the total score as each fragment does.  
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Supplementary Fig. 8: Feature space for the machine learning-based score. a, 25 
‘single’ features for the feature matrix for calculating the machine learning score. Features 
2 and 3 are correlations between the fragment intensities found in the DIA sample and the 
library fragment intensities. Feature 9 specifies the collision cross section value, in case 
ion mobility data is available. Feature 11 is the number of fragments in the library spectrum 
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before filtering for the top intense peaks. Feature 15 is explained in panel c. Feature 19 
quantifies how close to its apex the precursor was hit. Feature 22 defines if the precursor 
was found in the MS1 data and feature 23 specifies whether an isotope pattern was seen. 
Features 24 and 25 quantify how close the peptide m/z is to the edges of the isolation 
window.  b, Machine learning features derived from fragments. Feature 1 quantifies how 
close to its apex the fragment was hit. Feature 4 defines if the fragment was found and 
feature 5 specifies whether an isotope pattern was seen for it.  By default, 7 top intense 
fragments are considered for identification which results in a 25 + 7 * 5 = 60 dimensional 
feature space in total. c, Explanation of the fragment overlap feature. The first peptide has 
a fragment overlap of 0 since the y and b ion series are not overlapping. The second peptide 
has overlapping y and b series and hence is its fragment overlap greater than 0. d, List of 
the top 10 features ranked by importance according to XGBoost ‘gain’. Even more 
important than the score is whether the precursor had an isotope pattern or is a single 
feature. Interestingly, the absence or presence of the MS1 precursor did not make it into 
the top ten most relevant features.  e, Log-log scatter plot of feature importance according 
to XGBoost ‘gain’ for library against discovery mode. To guide the eye, we drew a straight 
line from the cloud of non-important features in the lower left corner to the raw score, 
which is expected to be of high relevance for the classification. Whether the precursor 
feature has an isotope pattern became much less important in the discovery mode. Features 
that are correlated with peptide length and charge became more important in discovery 
mode, presumably since the length and charge distributions of predicted spectra in the in 
silico library are significantly different from these distributions for peptides that are 
detectable in the DIA samples.  
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Supplementary Fig. 9: Comparison between different classification methods. We 
compared XGBoost, random forests, AdaBoost and fully connected multi-hidden layer 
neural networks to using the raw score. We tuned meta-parameters to its optimal value if 
applicable. a, ROC curves for the five classification methods. XGBoost has the highest 
area under the curve. b, Number of identified peptides when using each of the four 
classification Methods or the raw score in MaxDIA. XGBoost results in the highest number 
of peptide identifications. c, Number of identified protein groups when using each of the 
four classification Methods or the raw score in MaxDIA. XGBoost results in the highest 
number of peptide identifications. d, Optimal values of classification algorithm parameters 
found in grid searches. 
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Supplementary Fig. 10: Comparison of peptide properties. We compare different 
properties of identified peptides in the benchmark datasets between MaxDIA and 
Spectronaut. a, Logarithmic distribution of the MaxQuant intensities of all peptides found 
by MaxDIA is shown (light blue). Peptides uniquely found by MaxDIA are highlighted in 
dark blue. These are biased towards lower intensites. b, Logarithmic distribution of the 
Spectronaut intensities of all peptides found by Spectronaut (orange) with the ones found 
uniquely by Spectronaut highlighted in brown. Unique peptides are biased towards lower 
intensities here as well, but they are less in total compared to panel a. Note that the intensity 
ranges in panels a and b differ, since these are computed differently in the two programs. 
For instance, peptide intensities in MaxDIA are calculated from MS1 features. (Please note 
that this is not the case for the protein-level MaxLFQ intensities, which are by default 
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hybrid MS1-MS2.) c, Distributions of retention times of peptides identified by MaxDIA 
and Spectronaut. d, Distributions of precursor mass-to-charge ratios of peptides identified 
by MaxDIA and Spectronaut. e, Distributions of precursor mass errors in p.p.m. of peptides 
identified by MaxDIA and Spectronaut. f, Distributions of charges of peptides identified 
by MaxDIA and Spectronaut. g, Detailed comparison of identification results between 
MaxDIA, Spectronaut 13 and Spectronaut 14. For the latter we tested the impact of 
changing a set of parameters one by one from their default values on the result. In 
particular, we used the inverse database, we set profiling strategy to ‘on’ and we used 10 
precursors and 10 peptides. None of these settings had a major impact on the results or 
changed the overall conclusions. 
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Supplementary Fig. 11: Comparison of identification results in discovery mode 
obtained with DeepMass:Prism, wiNNer and PROSIT. In order to study the sensitivity 
of identification results in discovery mode towards the machine learning algorithm used 
for predicting the MS/MS spectra, we repeated all calculations using the predictions of two 
other state of the art prediction models, winner and PROSIT, both used with default 
settings. In PROSIT the optimal collision energy was determined and found to be 32. 
Instructions for preparing in-silico libraries with DeepMass:Prism, winner and PROSIT 
can be found at https://github.com/cox-labs/DIAtools/blob/main/Misc/MLprediction/README.md#MLprediction. a, 
Comparison of results on gene level. For better comparability, we mapped the identified 
protein groups of the three approaches to Entrez gene identifiers. The vast majority of genes 
(protein groups) has been identified in all three approaches with a very slight lead in the 
collision energy-aware PROSIT identifications. b, Same as a but with comparison on the 
peptide level. 
 
 

https://github.com/cox-labs/DIAtools/blob/main/Misc/MLprediction/README.md#MLprediction
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Supplementary Fig. 12: MaxLFQ algorithm for DIA. The conventional MaxLFQ 
algorithm for DDA consists of two parts, feature intensity normalization and protein 
quantification. While in the adaptation to DIA the normalization part did not change, the 
quantification was adapted to accommodate signals contributing from precursor and 
fragment features. a, As an example we use the protein sequence of UniProt entry P07327. 
Three peptides were identified, Peptide 1, unmodified with charge 2 and 3, Peptide 2, 
unmodified and with an oxidation of methionine, and Peptide 3, only unmodified with 
charge 2. These five peptide, charge and modification combinations are treated as 
independent intensities in the protein quantification, as was already the case in the DDA 
version of MaxLFQ. In DIA, also the different types of ions, precursors and fragments, are 
treated as separate signals. Feeding these as independent ‘channels’ into MaxLFQ is a 
natural way of implementing hybrid precursor-fragment quantification. For every 
combination of peptide, charge and modifications, we take the top N intense fragment 
peaks over the whole dataset. These N annotations are then used in every spectrum of this 
type for quantification. In the example we chose N = 3 for simplicity, although N is a user-
definable parameter and much larger by default. (See Supplementary Fig. 13a for the 
influence of N on the quantification accuracy.) b, In the example from panel a with five 
peptide-charge-modification combinations and N = 3 we end up with 20 peptide-charge-
modification-ion combinations. We assume that data for four samples was acquired. Then 
we have for this protein 20 intensity profiles over the four samples. Those intensities in 
this matrix which are zero we call missing, since they cannot be used for calculating ratios 
between samples. c, Next we calculate protein ratios between all pairs of samples to fill the 
lower triangular matrix indicated in the figure. ‘Ratio 2,1’ is the median of all ratios 
calculated from the intensities in the columns ‘Sample 1’ and ‘Sample 2’ in panel b. These 
are 20 if all values are present but can be less due to missing values. If the number of 
peptide-charge-modification combinations for which ratios can be calculated is less than 
the parameter ‘LFQ min. ratio count’ the corresponding ratio in the triangular matrix will 
be missing. d, For each ratio in panel c that is not missing we obtain one equation for the 
determination of the four LFQ intensities. (One for each sample.) This system of equations 
is usually over-determined and a least-squares best fit is obtained. e. Result of this 
operation is the profile of non-negative LFQ intensities over the four samples. 
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Supplementary Fig. 13: Optimization of number of top fragments and peptides. a, 
Summed inter-quartile ranges for the four-species benchmark dataset by Bruderer et al. as 
a function of the number of top intense fragments used for quantification. The accuracy is 
increasing with rising number of fragments and plateauing around seven fragments after 
which no noticeable improvement happens. The default value of 0.3 was used for the 
transfer q-value. b, Same as in panel a but optimizing the number of top intense peptides 
used for quantification. The more peptides are taken, the higher is the quantification 
accuracy. c, Same as in panels a and b but filtering for top 3 intense peptides and top 3 
intense fragments simultaneously.   
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Supplementary Fig. 14: Comparison to Avant-garde filtered quantification. In order 
to judge how the accuracy of protein quantification with MaxLFQ for DIA compares to 
methods that explicitly filter the data for interfered transitions we use a dataset from Vaca 
Jacome et al. (Nature Methods, 2020) called ‘Extended benchmarking DIA dataset’ in the 
publication. There it was analyzed with the Skyline software and curated by Avant-garde. 
We analyzed the same data with MaxDIA and for comparison mapped MaxLFQ intensities 
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to Entrez gene identifiers. For the Avant-garde results taken from the publication, the 
median was taken over all peptide-level logarithmic ratios that were mapped to a gene 
identifier. All ratios were globally normalized such that the median of all the human log 
ratios is at zero. All box plots indicate the median and the first and third quartile as box 
ends. Whiskers are positioned 1.5 box lengths away from the box ends. a, Gene level ratios 
derived from the peptide-level ratios provided in the Avant-garde publication as a function 
of log(Intensity). 18 sub-populations of proteins (genes) exist with a defined expected ratio. 
Several outlier ratios are present at large deviations and some of the sub-populations show 
systematic trends with Log(Intensity). b, Same as in panel a but for MaxLFQ ratios. c, 
Comparisons of performance measures between Avant-garde and MaxDIA results. For all 
18 sub-populations. The population-wise standard deviations are about half as low in 
MaxQuant results for the H. sapiens ratios. For the S. cerevisiae ratios tend to have a lower 
standard deviation with Avant-garde while there is no clear trend in the standard deviations 
of the E. coli ratios. 
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Supplementary Fig. 15: Scanning through values for the transfer q.value. We analyzed 
the Bruker timsTOF pro three-species benchmark data using a range of values for the 
transfer q-value between 0.01 and 1. We provide summed inter-quartile ranges of species-
specific ratio distributions as a measure of variability. Summed absolute errors are the 
deviations of the expected value for each species. The box plots are based on the numbers 
of data points given in the tables below the respective plot (Valid LFQ ratios). All box plots 
indicate the median and the first and third quartile as box ends. Whiskers are positioned 
1.5 box lengths away from the box ends.  
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Supplementary Fig. 16: Single-shot BoxCar samples. a, Venn diagram of protein 
identifications mapped to Entrez gene identifiers for the single shot BoxCar DIA samples 
using three different library approaches. In particular, comparing protein identifications 
between fractionated library and discovery approach shows good agreement of results. b, 
Same as in panel a but comparing peptide-level identifications. c, Venn diagram-like 
comparison of replicate-specific identifications in the fractionated BoxCar DIA samples 
analyzed in discovery mode.  Only very few protein groups were not identified in all three 
replicates. 
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Supplementary Fig. 17: Dependence of identifications on the number of fractions. a, 
DIA samples were fractionated into one, two, four and eight fractions and analyzed with 
single-shot, fractionated and discovery library, similarly as in Figure 6. The number of 
identified protein groups is indicated for each of these cases. While the number of protein 
groups is not increasing much with the fractions when using a single shot library, there is 
a linear increase with the discovery library. b, Same as a but showing the number of 
identified peptides. 
  



 

26 

 

Supplementary notes to ‘MaxDIA enables library-based and 

library-free data-independent acquisition proteomics’ by 

Sinitcyn et al. 

How to run MaxDIA in library mode 
Summary: In order to enable MaxDIA for your DIA runs, after loading your mass 

spectrometry output data (raw data) into MaxQuant and setting your experiment design 

and the number of threads you’d like to utilize for your MaxQuant run, you can select either 

“Max DIA”, “TIMS MaxDIA” or “BoxCar MaxDIA” from the “Type” menu within the 

“Group-specific parameters”. Doing so will bring up a menu where you can specify your 

library files. These files include the peptide, evidence and msms text files from your DDA 

MaxQuant runs. 

Note: To be able to run MaxQuant, .NET Core 2.1 needs to be installed. Please visit 

https://dotnet.microsoft.com/download/dotnet-core/2.1 and install the SDK x64." 

Steps: 

1. Using your internet browser, navigate to https://maxquant.org/ 

 
2. Click on the blue “Download” button to navigate to the download form. 

https://maxquant.org/
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3. Fill in the form with your details and click on the check box at the end of the form to 

confirm your agreement with the MaxQuant license terms. 
4. Click on the blue “Download” button to download MaxQuant. 
5. Navigate to your downloads folder on your PC, where the zipped MaxQuant folder 

has been downloaded to. 
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6. Extract the contents of the zipped MaxQuant folder you downloaded. 

 
7. After extraction, open the extracted MaxQuant folder and double click on 

MaxQuant.exe to run MaxQuant. 
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8. Click on the “Load” button to load your mass spectrometry output data (raw data) 

into MaxQuant. 

 
9. Now you can set the experiment design and the number of threads to be utilized by 

MaxQuant. Most PCs have two threads per core. You can simply press the Windows 
key on your PC and type “System Information”, press enter and look at the number 
of “Logical Processors” to find out the maximum number of threads you can set. It is 
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recommended to have at least 4 GB of Ram per utilized thread (e.g. 4 threads would 
need 16 GB of Ram).  

 
10. Next move on to the “Group-specific parameters” tab. 

 
11. Here you can select the type of your mass spectrometry runs. There are three 

different MaxDIA algorithms available, MaxDIA, TIMS MaxDIA and BoxCar MaxDIA. 
Depending on your runs, choose the appropriate one. 
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12. Next, you can choose the “Library type”. Choose “MaxQuant” for DDA library runs 

which have been processed with MaxQuant and “tsv” for other third party software 
which support a tsv output format. 

 
13. After choosing the library type, the library files should be added to each relevant 

section. The “peptides.txt”, “evidence.txt” and “msms.txt” files can be found in the 
“txt” folder of the “combined” folder of your DDA library runs with MaxQuant. 
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14. In the “Instrument” section, you can find many DIA related parameters. These 

parameters are further explained within the table at the end of this document. 
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15. MaxQuant’s label free quantification algorithm can be used for DIA samples too. To 

enable this, navigate to the “Label-free quantification” section and select “LFQ” from 
the drop-down menu. 

 
16. On the “Global parameters” tab, you can choose the appropriate FASTA files for your 

data under the “Sequences” section. You can download FASTA files for different 
organisms from the UniProt ftp server (ftp.uniprot.org) under: 
/pub/databases/uniprot/current_release/knowledgebase/reference_proteomes 
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17. You can now start your analysis. 

How to run MaxDIA in discovery mode 
Summary: Running MaxDIA in discovery mode is identical to the library mode in every 

step except for the library files used (step 13 of library mode). Use in silico generated 

library files to run MaxDIA in discovery mode and the relevant FASTA files. Follow the 

steps below to download in silico libraries for most common species. 

Steps: 

1. Navigate to http://annotations.perseus-framework.org/. 

 
2. Click on “DiscoveryLibraries”. 

http://annotations.perseus-framework.org/
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3. Here you can choose your organism of choice. 

 
4. First download the relevant FASTA files. Then depending on the number of missed 

cleavages choose the relevant folder. 

 
5. Here you can find the three library files needed for the discovery mode. You should 

unzip these files before use in MaxQuant. 

How to submit results to the PRIDE repository 
Summary: The PRIDE database has two main types of submissions “Complete 

Submission” and “Partial Submission”. The main different between both types of 

submissions is that in Complete Submissions the results (e.g. peptide and protein 
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evidences) are provided in a standard file format such as mzTab or mzIdentML. In addition, 

Complete submissions received a DOI. MaxQuant supports the mzTab file format to store 

its results, which is needed for the PRIDE complete submission. To generate the mzTab 

file, simply enable it from the “Tables” menu of the “Global parameters”. 

Steps: 

 
1. To enable the mzTab output file, simple enable it from the “Tables” menu of the 

“Global parameters”. It is disabled by default. 
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Note: You can also enable the mzTab option as described in step one and use “Partial 

processing” to simply only generate the mzTab file format for previously processed files 

by loading the relevant mqpar.xml file within the folder containing your raw mass 

spectrometry data. 

Prepare the Pride Complete submission: 



 

38 

 

Summary: To make a complete Pride submission, you should download the submission 

tool from ProteomeXchange and follow the steps. 

Steps: 

1. Navigate to http://www.proteomexchange.org/submission/index.html. 

 
2. Download the submission tool and extract the contents of the zip file. Make sure to 

have java installed on your PC. The latest version of java can be downloaded and 
installed from https://www.java.com/en/download/. 

 
3. Double click on the jar file or refer to the README file for instruction on running the 

tool from the command line. Follow the steps accordingly. 
4. After adding the title, sample and protocol description in the first two panels of the 

ProteomeXchange submission tool, the user will arrive to a panel where files should 
be provided:  

https://www.java.com/en/download/


 

39 

 

 
For MaxDIA Complete submissions the following files should be provided:  

• The mzTab File (File Type RESULT): The mzTab contains the peptide and protein 
identifications in a standard file format including the references to the spectra use for 
the identification and the reference spectral library. The mzTab file is located in 
…/combined/txt/. 

• RAW files (File Type RAW): The RAW files contain the original spectra capture by the 
mass spectrometer.  

• Protein FASTA database (File Type FASTA): Protein database used in MaxDIA to 
map the peptides from the spectral library to the protein sequences.  

• Parameters file mqpar.xml (File Type Other): The mqpar.xml contains all the 
parameters of the experiment including search parameters such as enzyme, 
modifications and statistical thresholds such FDRs. This file can be found where you 
have stored your RAW files. 

• Spectrum library references (File Type Spectrum Library): MaxDIA generates with 
the mzTab a list of spectrum library files (extension MSP) which contains all the 
identified spectra from the original spectral library generated with the DDA data or 
the in-silico libraries. The MSP files are located in …/combined/msp/. 

• combined.zip (File Type Other): In complete submissions it is important to provide 
also the MaxDIA combined folder in a compressed format. This folder contains 
additional information not included in the mzTab that are important for the users to 
understand the full experiment.  This folder can be found where you have stored your 
RAW files. 

Note: PRIDE recommends to perform two separate submissions for DDA and DIA data 

even if they are part of the same study. The user can cite or mention both accessions in the 

main manuscript. In this way, the DDA data used to generate the spectrum libraries can be 

submitted as one project and the DIA data with the resulting spectrum libraries from the 

DDA experiment can be submitted as a different project.     
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Table of all MaxDIA parameters 

Parameter name 
(GUI) 

Location in 
GUI Tabs 

Location 
within GUI 

Tab 

Parameter 
name 

(mqpar.xml) 
Description 

Type Group-specific 
parameters Type lcmsRunType 

This parameter can now be set 
to "MaxDIA", "TIMS MaxDIA" 

and "BoxCar MaxDIA" to turn on 
the MaxDIA algorithm for both 
library-based DIA and discovery 

DIA proccesing of LC-MS/MS-
based proteomics runs. 

Library type ("Type" 
must be set to 

"MaxDIA", "TIMS 
MaxDIA" or 

"BoxCar MaxDIA") 

Group-specific 
parameters Type diaLibraryTy

pe 

This parameter can be set to 
"MaxQuant" or "tsv", 

depending on the source of the 
library to be used for the 

MaxDIA algorithm 

Peptide files 
("Library type" 
must be set to 
"MaxQuant") 

Group-specific 
parameters Type diaPeptidePa

ths 

By clicking "Add file(s)", 
MaxQuant peptides.txt output 
file(s) or in silico peptides files 

in the MaxQuant output format 
can be defined 

Evidence files 
("Library type" 
must be set to 
"MaxQuant") 

Group-specific 
parameters Type diaEvidenceP

aths 

By clicking "Add file(s)", 
MaxQuant evidence.txt output 
file(s) or in silico evidence files 

in the MaxQuant output format 
can be defined 

Msms files ("Library 
type" must be set 
to "MaxQuant") 

Group-specific 
parameters Type diaMsmsPat

hs 

By clicking "Add file(s)", 
MaxQuant msms.txt output 

file(s) or in silico msms files in 
the MaxQuant output format 

can be defined 
Libraries ("Library 
type" must be set 

to "tsv") 

Group-specific 
parameters Type diaLibraryPat

hs 

By clicking "Add file(s)", library 
files in the tsv format can be 

defined 

Min. DIA peak 
length 

Group-specific 
parameters Instrument diaMinPeakL

en 

Minimum number of MS1 or 
MS2 scans for defining a 3D 

peak in DIA data 
DIA initial precursor 

mass tolerance 
[ppm] 

Group-specific 
parameters Instrument diaInitialPrec

MassTolPpm 
Indicates the mass tolerence for 

the initial search 

DIA initial fragment 
mass tolerance 

[ppm] 

Group-specific 
parameters Instrument diaInitialFrag

MassTolPpm 
 

DIA corr. threshold 
for feature 
clustering 

Group-specific 
parameters Instrument 

diaCorrThres
holdFeature
Clustering 
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DIA prec. mass tol. 
for feat. clustering 

[ppm] 

Group-specific 
parameters Instrument 

diaPrecTolPp
mFeatureClu

stering 
 

DIA frag. mass tol. 
for feat. clustering 

[ppm] 

Group-specific 
parameters Instrument 

diaFragTolPp
mFeatureClu

stering 
 

DIA score N Group-specific 
parameters Instrument diaScoreN  

DIA min. score Group-specific 
parameters Instrument diaMinScore  

DIA quant method Group-specific 
parameters Instrument diaQuantMet

hod 

Indicates the quantification 
method used for DIA data 

DIA feature quant 
method 

Group-specific 
parameters Instrument diaFeatureQ

uantMethod 
 

DIA top N 
fragments for quant 

Group-specific 
parameters Instrument diaTopNForQ

uant 
 

DIA top msms 
intensity quantile 

for quant 

Group-specific 
parameters Instrument 

diaTopMsms
IntensityQua
ntileForQuan

t 

Indicates the top MS/MS 
intensity quantile to be used for 

quantification 

DIA min. msms 
intensity for quant 

Group-specific 
parameters Instrument 

diaMinMsms
IntensityFor

Quant 
 

DIA precursor filter 
type 

Group-specific 
parameters Instrument diaPrecursor

FilterType 
 

DIA min. fragment 
overlap score 

Group-specific 
parameters Instrument 

diaMinFragm
entOverlapSc

ore 
 

DIA min. precursor 
score 

Group-specific 
parameters Instrument diaMinPrecu

rsorScore 
 

DIA min. profile 
correlation 

Group-specific 
parameters Instrument diaMinProfil

eCorrelation 
 

DIA global ML Group-specific 
parameters Instrument diaGlobalMl 

Indicates whether to perform 
the machine learning on a per 
run basis or on the entire data 

set (global) 

DIA adaptive mass 
accuracy 

Group-specific 
parameters Instrument 

diaAdaptive
MassAccurac

y 
 

DIA mass window 
factor 

Group-specific 
parameters Instrument diaMassWin

dowFactor 
 

DIA XGBoost Base 
Score 

Group-specific 
parameters Instrument diaXgBoostB

aseScore XGBoost base score parameter 

DIA XGBoost Sub 
Sample 

Group-specific 
parameters Instrument diaXgBoostS

ubSample XGBoost sub sample parameter 
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DIA XGBoost 
learning objective 

Group-specific 
parameters Instrument 

diaXgBoostL
earningObjec

tive 

XGBoost learning objective 
parameter 

DIA XGBoost Min 
child weight 

Group-specific 
parameters Instrument 

diaXgBoostM
inChildWeigh

t 

XGBoost minimum child weight 
parameter 

DIA XGBoost 
Maximum Tree 

Depth 

Group-specific 
parameters Instrument 

diaXgBoostM
aximumTree

Depth 

XGBoost maximum tree depth 
parameter 

DIA XGBoost 
Estimators 

Group-specific 
parameters Instrument diaXgBoostEs

timators XGBoost estimators parameter 

DIA XGBoost 
Gamma 

Group-specific 
parameters Instrument diaXgBoostG

amma XGBoost gamma parameter 

DIA XGBoost Max 
Delta Step 

Group-specific 
parameters Instrument diaXgBoostM

axDeltaStep 
XGBoost maximum tree depth 

parameter 

DIA no ML Group-specific 
parameters Instrument diaNoMl Parameter to turn off the 

machine learning 
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