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Experimental evidence for chiral melting of the Ge(113) and Si(113)3 X 1 surface phases
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Results of a spot-profile-analysis low-energy-electron-diA'raction study of the 3X1 order-disorder

phase transition of the Ge(113) and Si(113) surfaces are reported. For Ge(113) agreement with predic-
tions for chiral melting with isotropic scaling is found. For Si(113) we compare our findings to those of
other LEED and x-ray-scattering studies.

I. INTRODUCTION

During the past years there has been significant pro-
gress in the understanding of two-dimensional (2D) phase
transitions described by Pot ts or clock models' . In
particular, the transition from a (3 X 1) commensurate
(C) phase to an incommensurate (IC) phase has been
studied extensively. ' Huse and Fisher ' pointed out
that the classification scheme used at that time was in-
complete and suggested an additional universality class
which was displayed, in a prototypical way, by the 2D
three-state chiral clock model. In this universality class,
a continuous transition directly from a C solid into an IC
Quid may occur; this is called chiral melting.

Experimental evidence for such chiral melting is still
rather scarce. Recently, Yang et al. ' presented a spot-
profile-analysis low-energy-electron-diffraction (SPA-
LEED) study of the disordering of the Si(113) (3 X 1)
reconstruction. Here, the reconstructed surface layer
plays the role of the 2D system which undergoes phase
transformations. The unreconstructed deeper layers may
be considered as the substrate supplying adsorption sites.
Yang et al. observed an asymmetric broadening and a
shift away from the commensurate position for the 3 X 1

LEED spot. They argued that their findings on various
critical exponents and the temperature dependence of the
incommensurability are consistent with chiral melting.

In the course of a project on semiconductor (113) sur-
faces, we have studied the Si(113) surface in great
detail with angle-resolved UV photoemission and high-
resolution electron-energy-loss spectroscopy. ' ' We
found that at 300 K the surface has a 3 X 2 reconstruction
which is easily transformed with many residual gases into
a 3 X 1 structure. At the moment there is a majority of
studies' which find a 3X2 structure at 300 K and a
minority' ' which argue for a 3 X 1 structure. Despite
two scanning-tunneling-microscopy (STM) studies,
the atomic structure of the Si(113) surface is not com-
pletely solved. Jacobi and Myler' have proposed a buck-
ling model for the 3X2 structure which accounts for the
observation that the 3X2 structure is easily transformed
into a H-terminated (3X1)-H surface. The open ques-
tion of the correct positions of the atoms prevents, at
present, the elaboration of a realistic microscopic model
for the (3X1) order-disorder phase transition. It does
not prevent, however, the study of the classification of

this transition. In view of the difficulties in preparing
clean Si(113) surfaces we also have investigated Ge(113).
It turned out that the experiments for Ge(113) give more
convincing evidence for chiral melting with isotropic
scaling than those for Si(113). After completion of our
measurements, we were informed about an x-ray-
scattering study for Si(113). We will comment on that
work in our discussion.

Our contribution is organized as follows: Experimen-
tal details are given in Sec. II, followed by the results in
Sec. III and discussion in Sec. IV. We present and dis-
cuss the results for Si(113)and Ge(113) together.

II. EXPERIMENT

The experiments were performed in an UHV chamber
with a base pressure of 4X10 "mbar pumped by a tur-
bomolecular pump and a Ti sublimation pump. We used
a spot-profile-analysis LEED system with a transfer
width better than 1000 A. The boron-doped p-type sil-

icon sample had a dopant concentration of 2.5X10'
cm and a resistivity of 0.1 0 cm '. The germanium
sample was weakly n doped. Both samples had a size of
10X7X3 mm .

The preparation of the Si(113) surfaces is described
elsewhere. '

Briefly, the silicon sample was polished with
cerium oxide (0.25 pm granulation size). In a second pol-
ishing step a colloidal silicic acid dispersion (0.125 pm
granulation size) was used, followed by an etching pro-
cess with 40% hydrofluoric acid. Finally, the surface was

covered with silicon oxide to avoid contamination during
transfer to the UHV chamber and during the baking of
the system. The Ge(113) surfaces were first mechanically
polished with cerium oxide with a final granulation size
of 0.25 pm. To remove the topmost damaged surface lay-
ers the sample was etched with HNO3, HF, CH3COOH
4:4:10. In a second step the germanium sample was treat-
ed with hot NaOCl to cover the surface with thin film of
germanium oxide. The etching and oxidation steps were
done three times. Each step took 5 min and was fol-
lowed by a rinse in distilled water.

The sample was mounted at a tantalum block which
could be pressed against a copper block to allow cooling
either with liquid nitrogen (120 K) or with liquid helium

(20 K). During heating the Ta block was separated from
the copper block. The heating was performed from the
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back side through a tungsten filament (250 W). The sam-
ple could be heated up to 1500 K through electron bom-
bardment. The temperature distribution on the sample
was very uniform because of the large mass of the tan-
talum block. The temperature was monitored with a
Pt-Pt/Rh thermocouple for Si and a NiCr-CuNi thermo-
couple for Ge, which were welded to the Ta block
beneath the sample. For temperatures above 700 K an
infrared (IR) pyrometer was used to calibrate the thermo-
couple. For silicon the absolute-temperature measure-
ment was accurate to within ET=+20 K. For germani-
um we calibrated the temperature by using the melting
point at 1210.5 K. This reduced the uncertainty in tem-
perature to AT=+10 K. The relative accuracy in tem-
perature was +0.2 K.

After the base pressure had been reached in the UHV
chamber, the sample and the Ta block were degassed for
several hours with increasing temperature up to 850 K.
When the pressure at this temperature was better than
1X10 ' mbar the sample was flashed to 1470 K for Si
and to 1150 K for Ge to remove the thin oxide layer.
During the flash the pressure stayed below 1X10
mbar. This procedure helped to reduce C contamination
and reduced sputtering time. During a long period of
measurement only flashing to 1470 K was sufficient to
achieve a clean silicon surface. After flashing, the ger-
manium sample was cleaned additionally by Ar+ sputter-
ing and annealing (1150K) cycles.

1X1 and 3X1 spots have the same full width at half
maximum corresponding to a correlation length of 250
A, which is limited by defects and steps on the surface.
The 3X2 superstructure spots are three times broader
(75-A correlation length) and have an intensity ten times
smaller.

For Ge(113) we found a 3 X2 superstructure similar to
that of Si(113) (Fig. 2). The low temperature was neces-
sary because the 3 X 2 superstructure spots are very weak
and broad (40-A correlation length only). Olshanetsky,
Mashanov, and Nikiforov found at room temperature
only a 3 X 1 reconstruction. The Ge(113) 1 X 1 and 3 X 1

superlattice spots are sharper (370-A correlation length)
than the spots on the Si(113) surface. We could not find

any change of the Ge(113) 3 X2 reconstruction by the re-
sidual gas within four days. Since the contamination
from residual gas was smaller and the ordered areas were
larger, Ge(113) was more suitable for investigating the
phase transition than Si(113).

For an overview we measured the temperature depen-
dence of tlute integral intensities from a 3 X 1 and 3 X2
LEED spot for Si(113) as shown in Fig. 3. The Si(113)
3 X2 surface experiences a transition into a 3 X 1 recon-
structed surface (full dots) which is completed at about
780 K. At T, =929 K the silicon surface undergoes an
order-disorder phase transition from 3X1 into a 1X1
disordered surface. The determination of T, is described
below. Since the transition temperatures are quite
different, the 3 X2 reconstruction has no influence on the
3 X 1 order-disorder phase transition. For Ge(113) we
found a similar temperature dependence for the 3 X 2 (full
dots) and 3 X 1 (open dots) integral LEED intensities (Fig.
4). Compared to Si(113), the 3 X2 LEED spots vanish at
lower temperature (750 K) and the 3 X 1 spots disappear
at higher temperature (T, =1063 K). Accordingly, the
temperature window of the pure 3 X 1 reconstruction is

III. RESULTS

A. LEED pattern and its temperature dependence: overview

A LEED pattern of the clean annealed Si(113) surface
(Fig. 1) shows the known 3 X2 reconstruction at 300 K.'
One possible 1X1 unit cell in k space is drawn connect-
ing 1 X 1 spots. The LEED pattern also exhibits 3 X 1 and
3X2 spots. All spots have a Gaussian line shape. The
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FIG. 1. LEED pattern of the 3X2 reconstructed Si(113) sur-
face at room temperature (E~=60 eV) using a spot-profile-
analysis system LEED (SPA-LEED).

FIG. 2. LEED pattern of the 3X2 reconstructed Ge(113)
surface at about 120 K (E~ =50 eV). The 3X2 spots are three
times broader and weaker than for the Si(113)surface.
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observed in Monte Carlo simulations of Bartelt, Einstein,
and Roelofs ' on a hard hexagon model displaying a
transition from the (3 X 1)C phase to an IC phase. In that
analysis, the deviation from the Lorentzian form has been
neglected.

IV. DISCUSSION

A. Asymmetry and shift of the (3X 1) spots

b) 1061K

0) 1066 K

d) 1065K

8) 10B7K l

e
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N ~

metric deviation in the foot had no influence on the full
width at half maximum (FWHM). Therefore we used for
the evaluation of the FWHM a Lorentzian function ac-
cording to I(1+( (k —q) ) where I is the LEED spot
intensity and g the correlation length. It may be interest-
ing to note that a similar asymmetric line shape has been
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FIG. 6. Two-dimensional LEED intensity plots around the
(1,1) spot as a function of relative momentum K during the
(3X1) order-disorder phase transition (T, =1063 K). On top,
the location of the two-dimensional window around the (1,1)
spot is given in reciprocal space. The heavy dots represent the
1 X 1 lattice and the light dots the 3 X 1 superlattice spots.

At low temperatures, the (113) 3 X 1 commensurate
surface is expected to take on one of the three physically
distinct but equivalent types of domains, characterized by
different phase factors.

At and above the C-IC transition, the wave number of
the periodicity of the reconstruction changes from

qc =2m/3 (setting the lattice constant equal to 1) to
values q&c =qc —

q, leading to a corresponding shift of the
(3 X 1) spots in the LEED pattern. The change can be
described in terms of the domains and the domain walls,
perpendicular to the (110) direction, separating different
domains. Usually, one distinguishes two types of walls,
heavy and light walls, which have been visualized in com-
puter simulations and STM studies (for references, see the
review articles' ). By convention, the observed shift of
the LEED spots to smaller momentum values, associated
with an increase of the periodicity for the reconstruction,
is attributed to the presence of heavy walls. Note that
heavy and light walls may occur in various modifications,
depending on geometrical details of the system and on
the kind of microscopic interactions. Modifications in-
clude, for instance, superheavy walls and bounded pairs
of walls. Obviously, the density of domain walls vanishes
as q approaches zero.

The asymmetric broadening of the spot profiles parallel
and perpendicular to the (110) direction at temperatures
close to the transition rejects the different behavior of
the corresponding correlation lengths. The broader
shapes parallel to the (110) direction reflect the smaller
correlation length

g~~
in that direction.

B. Different pathways for a commensurate solid
to an incommensurate fluid phase

0
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FIG. 7. Si(113) 3X I and Ge(113) 3X1 LEED (1,1) spot in-
tensities during the order-disorder phase transition as a function
of reduced temperature
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Some years ago, Huse and Fisher ' introduced a new
universality class, the chiral melting, describing the tran-
sition from a (3 X 1)C phase to a disordered IC phase in
two dimensions. The three-state chiral clock model is be-
lieved to be a prototypical model exhibiting such a transi-
tion. ' In that model, the clock (or Potts variables),
situated on sites i of a rectangular lattice, can take three
values n; =0, 1,2. In the ordered state, three equivalent

types of domains exist just as in the (3 X 1) commensurate
phase. Incommensurate structures may occur due to a
chirality parameter 6 which favors one of the two possi-
ble types of domain walls. A schematic phase diagram of
the three-state chiral clock model is shown in Fig. 8. In-
terestingly enough, phase diagrams with a similar topolo-

gy have been discussed for a variety of lattice-gas models
with competing interactions describing (3 X 1)C
ph
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As seen in Fig. 8, there are typically two pathways,
separated by a Lifshitz point, to go from the commensu-
rate 3 X 1 phase to the disordered phase: (a) via a floating
incommensurate phase within a double transition or (b)
directly. In case (a), the transition at the lower tempera-
ture is of Pokrovsky-Talapov type and the other transi-
tion is of the Kosterlitz-Thouless ' type. Such a floating
IC phase has been observed, for instance, for krypton on
graphite by Chinn and Fain. The direct transition (b)
from the commensurate to the disordered phase is forbid-
den by the Landau rules for second-order transitions.
According to these rules the transition should be of first
order. Huse and Fisher pointed out that fluctuations not
included in the Landau theory may lead to a continuous
transition in the form of the chiral melting. The finger-
print of that transition is the product (qg~~), which has
been argued to be constant at the transition, with g~~~~ ac

and q~0. '
g~~~

is the correlation length parallel to the
spatial modulation, i.e., perpendicular to the domain
walls. Furthermore, numerical studies, such as finite-size
transfer-matrix calculations and Monte Carlo simulation,
suggest that the critical exponents are close (or identical)
to those of the 2D three-state Potts model, which, in

turn, are known exactly.
It should be noted that the existence of a chiral melting

has been questioned, ' arguing that, in the case of the
chiral clock model, there is a (possibly extremely narrow)
floating incommensurate phase at all nonzero values of
the chirality parameter A. In general, a direct transition
from the (3X1)C phase to the IC disordered phase had
to be of first order. Of course, numerical studies as well
as experiments can resolve this subtle question only up to
a reasonable limit.

The best way to experimentally distinguish between the
two different pathways (a) and (b) is to measure the corre-
lation length parallel to the spatial modulation (or per-
pendicular to the domain walls) g~„and the shift q in the
wave number of the periodicity. Figure 9 exhibits the
behavior of these entities for the two different pathways
in dependence on temperature. For a double transition
there are two different critical temperatures T, and T,

1 2

[Fig. 9(a)]; the correlation length g) diverges (exponential-
ly3') at T, , whereas the shift q vanishes (with a square-

qx g

TEMP ERhTURE

FIG. 9. Shift q of the 3 X 1 (1,1) LEED spot and the correla-
tion length

g~~~
together with the product

qg~~~
as a function of

temperature for two di6'erent pathways in the phase diagram
given in Fig. 8 ~ For a double transition (a) there are two critical
temperatures T, and T, . g~ diverges at T, , whereas q disap-

1 '2 '2'
pears at T, with decreasing temperature. The product qg~~

1

(open dots) diverges at T, . For a chiral transition (b) there is'2

only one T, and the product of qg~~ (open dots) is constant.

root power law at T, . For a chiral transition there is
1

only one critical temperature where
g~~

diverges and q
vanishes. The product (qg~~) can be easily distinguished:
For a double transition it diverges at T, , and for a chiral'2'
transition it stays constant approaching T, .

C. Critical exponents

In Fig. 10 we depict our results for the correlation
length

g~~
and the shift q for (a) Si(113) and (b) Ge(113).

We do not find any indication of two different critical
temperatures within an uncertainty of 3 K for Si(113)and
0.6 K for Ge(113).

Figure 11 shows the temperature dependence of the
product p = (q g~~ ) for Si(113) (a) and Ge(113) (b) (full

dots). In addition, the LEED intensity of the 3 X 1 spot is
depicted. The temperature range was chosen so that the
LEED intensity curves look similar for silicon and ger-
manium. For both surfaces there is obviously no indica-
tion for a divergent behavior of p. The data may be ana-

lyzed to narrow down the maximal extent of the floating
IC phase, AT= T, —T, [see Fig. 9(a)], to KT(1 K for

Si(113)and to 5T (0.2 K for Ge(113).
For both surfaces we observe, in some ranges of tem-
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FIG. 10. Shift q (full circles) and correlation length gl (open
circles) above the transition temperature T, for Si(113) 3 X 1 (a)
and Ge(113) 3X1 (b).

perature close to the transition, a nearly constant value of
(q(II) as predicted for chiral melting. For Si(113) we get

p =0.64, in agreement with Yang et al. ' For the more
perfect, smoother Ge(113) surface the constancy of p is
much more evident; see Fig. 11(b). Surprisingly, the
value of the constant is approximately half of that for
Si(113),p =O. 32.

Note that p has been argued to be a universal con-
stant, ' assuming tacitly, however, fixed dimensionality
and a specific type of domain wall. Comparison of the
measured values of p to that of the 10 three-state chiral
clock model (p=1/&3), as has been done by Yang
et al. ' in interpreting their result for Si(113), should be
viewed with much care. Moreover, the different values of
p for Si and Ge may be explained by different types of
domain walls; a factor of 2 may be due to pairs of walls or
superheavy walls, compared to heavy walls. To substan-
tiate this somewhat speculative explanation, one had to
establish the actual positions of the surface atoms and
then the structure of the walls.

As seen in Figs. 11(a) and 11(b), the value ofp eventual-

ly drops down as one approaches T, more closely. That
behavior, which is much less pronounced for Ge, may be
attributed to finite-size effects and contamination leading
to a reduced correlation length. Indeed, as mentioned
above, the size of almost perfect surface areas is larger for
Ge(113} (linear extent of about 370 A) than for Si(113)
(about 250 A). However, other explanations of the drop
are possible, including, especially for Si, a possible incon-
sistency with the theory of critical melting.

The critical exponents v~~ and v~ were taken from log&o-

logto plots of the experimental data for )II and gt (see Fig.
12} in the temperature range of 1063.5 & T &1071 K for

gl and 1065 & T & 1071 K for gt. From our experimental
data, it follows that v~~, the critical exponent of the corre-
lation length parallel to the direction of modulation,

gl
—

~

T T, ~
I, has a—bout the same value as vt, the criti-

cal exponent for the correlation length in the perpendicu-
lar direction. This isotropic scaling may be seen directly
from the fact that the ratio g~//II is, nearly, independent
of temperature close to T„asshown in Fig. 12 for
Ge(113), with gI //II =2.
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FIG. 11. Temperature dependence of qgI~ (full dots) for
Si(113) (a) and Ge(113) (b). The open dots show the temperature
dependence of the 3 X 1 (1,1) spot intensity.

FIG. 12. Temperature dependence of the correlation length

(II (open dots) and g, (full dots) during the (3 X 1) order-disorder
phase transition on Ge(113). The ratio g, //II (open squares) is
also given.
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For the values of the critical exponents of the correla-
tion lengths we found, in the case of Ge, v~~=0. 72+0.05
and v~=0. 71+0.10, with T, =1063.0+0.5 K. The criti-
cal temperature has been also determined from the data
for the correlation length. The estimates for v are rather
close to the value for the three-state Potts model,
v= —', . For Si(113), we obtained T, =929+3 K and

v~~
=0.75+0. 10 [vj has not been measured for Si(113)].
In the prior LEED study on silicon, '

(~ could not be
measured because of the limited instrumental resolution.
The estimate for

v~~
was somewhat higher than in our

case, with a rather large error bar, v~~=0. 99+0.18. Nu-
merical calculations on models exhibiting (supposedly)
chiral melting yielded isotropic scaling with values for v
of about 0.8 —0.9, ' ' ' in reasonable agreement with our
estimates. Note that in all cases the critical exponents
are effective ones and estimates are affected in various
ways, such as corrections to scaling, finite-size effects,
and uncertainties in T, .

The critical exponent /3 of the shift in the wave num-

ber, q
—

~
T T, ~, was —estimated to be /3=0. 77+0.05 in

the case of Ge and P=O. 99+0.10 in the case of Si. Obvi-
ously, the product p =(qg~~) is constant close to T, only if
v~~~=/3. This identity is satisfied quite well for Ge, in con-
trast to the situation for Si. Indeed, the rather pro-
nounced drop of p close to T, [see Fig. 11(a)], may be
traced back to the rather large value of /3.

We also determined the canonical critical exponents of
the order parameters, P, and of the susceptibility, y, from

standard log&p-log&p plots. Figure 13 shows a log&p-log, p

plot of the LEED intensities as a function of the reduced
temperature for germanium. The slopes of these log]p-

log, p plots determine the effective critical exponents y
( T)T, ) and P ( T (T, ). We used the temperature range

between log&p-log&p
—3.2 and lnt ——1.8 in order to es-

timate the critical exponents. Closer to T„finite-size and

contamination effects are expected to play a major role;
further away from T„corrections to scaling may dom-

inate. As results we obtained y = 1.27+0. 10 and

P=O. 10+0.01, which may be compared to the values for

the 2D three-state Potts model, /3= —,
' and y= —", . The

Potts values for P and y are indicated by the solid lines in
Fig. 13.

For Si(113) we obtained y = 1.20+0.20 and
P=0.093+0.02, in reasonable agreement with the
prior estimates by Yang et al. ,

' y=1.03+0.19 and
/3=0. 11+0.04. Monte Carlo simulations yielded in those
parts of the phase diagram where chiral melting is ex-
pected estimates of P and y which are compatible with
the Potts values. We should emphasize that we always
estimated the values of e+ectiue exponents, which, of
course, may deviate from the true asympototic ones. In
the experimentally accessible range of reduced tempera-
tures t the correlation length increases up to a few hun-
dred angstroms. Therefore the experimental data corre-
spond, e.g. , to simulational data on systems with the
linear dimension of the order of 100 lattice spacings.
Usually, such moderate sizes seem to be sufficient to ex-
tract rather decent values for the exponents; see, e.g. ,
Refs. 8, 26, and 27. Certainly it would be desirable to ob-
tain meaningful data even closer to T„butone has to be
aware of finite-size and contamination effects. Further-
more, more accurate estimates are limited by uncertain-
ties in determining the transition temperature very accu-
rately.

D. Comparison of integral intensities
from LEED and SPA-LEED

We measured integrated LEED intensities I(T) with a
low-resolution LEED system (Varian) to determine the
critical exponent a. This method was introduced by Bar-
telt, Einstein, and Roelofs, who argued that the in-
tegrated intensity is expected to have the form
I ( T) = 3 + B+

~
t

~

' —Ct; t =
~
T T, ~

/T„wh—ere A, B
and C are fit parameters. In Fig. 14, the integrated
LEED intensities are compared to those of the prior
study. ' The integrated LEED intensities of Yang et al.
drop down less steeply close to the critical temperature
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FIG. 13. log&0-logio plots of the LEED intensity for Ge(113)
as a function of reduced temperature

~
T T, ~ /T, below and-

above T, . The solid lines are drawn using slopes according to
the universality class of the three-state Potts model.

FIG. 14. Comparison of the integrated LEED intensities of a
3 X 1 spot measued by Yang et al. Ref. (15) (full dots) and our
results (stars) both measured with conventianal low-resolution
LEED systems. In addition, our high-resolution SPA-LEED re-
sults are shown (open dots)
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than our data, which may reAect stronger finite-size and
contamination effects than in our data. Unfortunately, es-
timates for a depend strongly on the integration radius
for the LEED spots. For example, the estimated values
for a by Yang et al. varied between 0.26 and 0.64. Using
a variable integration radius (four times the FWHM, we
obtained values between 0.6 and 0.8, both for Ge and Si.
These values should be viewed with much care, having in
mind the ambiguities of the method and general
difficulties to determine the critical exponent of the
specific heat accurately from data which may be not
sufficiently close to T, . Obviously, our values are appreci-
ably higher than —,', the exact number for the three-state
Pot ts model.

We measured the integrated LEED intensities also
with the high-resolution SPA-LEED, as included in Fig.
14 and found, somewhat surprisingly, the same tempera-
ture dependence as with the low-resolution LEED sys-
tem.

LEED analyses, P (=0.11+0.02} and y (=1.56+0. 13}
are compatible with the values of the three-state Potts
universahty class (albeit, the LEED studies gave some-
what smaller estimates for y). However, in contrast to
our result for Ge, the exponent for the correlation length
perpendicular to the domain walls, vi (=0.65+0.07), is
found to be different from that for the correlation length
parallel to the domain walls, v~ ( =1.05+0.07). This an-

isotropic scaling could be due to the closeness of the
Lifshitz point, at which one expects v~~= —', and v~=1."
Unfortunately, in the case of Si, we determined only vl (in

good agreement with the x-ray result}. For Ge, we ob-
serve isotropic scaling, in accordance with simulational
and numerical findings on chiral melting.

V. CONCLUSION

K. Recent study of Si(113)

Very recently, Mochrie and co-workers ' studied the
Si(113) (3X1) order-disorder phase transition, using x-
ray scattering. At about 960 K, Abernathy et ol. 3s ob-
served the incommensurate-to-incommensurate transi-
tion, characterized by a divergent correlation length and
appearance of domain walls, in agreement with our ob-
servations on a direct continuous C-IC transition. Close
to T„they found the product p =(qual) to be constant,
apart from a weak oscillation. It may be interesting to
note that we observed a similar oscillation for a contam-
inated Ge(113} sample, but not in the case of a more
cleanly prepared surface. At any rate, results are compa-
tible with chiral melting, postulating a constant for p near
Tc'

To elucidate the nature of the transition, Abernathy et
al. also estimated various critical exponents. As in the

%e measured the commensurate-incommensurate
(3X1) order-disorder phase transition at Ge(113) and
Si(113)surfaces. The characteristics of the transitions are
compared to chiral melting, as has been discussed for
various microscopic models with competing interactions.

The crucial criterion of a constant value for the prod-
uct of the shift in the wave number, describing the spa-
tially modulated structure, and the correlation length
perpendicular to the domain walls seems to be well
satisfied for Ge, while the situation is not as clear in Si.
A possible difference of the constant by a factor of 2 may
be explained by different types of domain walls in Ge and
SI1.

The critical exponents of the order parameter P and of
the susceptibility y are rather close to those of the two-
dimensional three-state Potts model, in agreement with
theoretical work on chiral melting. Using integrated
LEED intensities to determine the exponent of the
specific heat, a, somewhat ambiguous results are ob-
tained.

TABLE I. Critical exponents a P, y, vi, y~, and P (see text), the product qg'1 of shifts q of the 3X1 LEED spots aud the correlation
length gl parallel to the corrugation introduced through domain walls, the ratio fj /gi, and the transition temperature T, for the 3 X 1

order-disorder phase transition of the Ge(113) and Si(113)surfaces. Our experimental values are compared to the data of Yang et al.
(Ref. 15) and Abernathy et al. (Ref. 35). Also given are theoretical values for the three-state Potts model.

T, {K)

Three-state
Potts
Ge(113)

Si(113)

Si(113)
{Yang et al. )
Si(113)
(Abernathy et al. )

0.333

0.71
+0.1

0.71
+0.1

0.32
+0.06

0.111

0.10
+0.01

0.093
+0.02

0.11
+0.04

0.11
+0.02

1.44

1.27
+0.10

1.20
+0.20

1.03
+0.19

1.56
+0.13

0.833

0.72
%0.05

0.75
+0.1

0.99
%0.18

0.65
+0.07

0.833

0.71
+0.10

1.06
+0.07

0.77
+0.05

0.99
+0.1

0.32
+0.05

0.64
+0.1

0.577

0.66 1.6
+0.05 +0.2

2.0
10.1

1063
+10
929
+20
844

959
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For Ge, considering correlation lengths parallel and
perpendicular to the domain walls, isotropic scaling is ob-
served. In contrast, a recent x-ray-scattering study sug-
gests anisotropic scaling for Si, possibly reflecting the
closeness of a Lifshitz point.

The critical exponents from our work and from the
literature are summarized in Table I. Further experimen-
tal work and theoretical modeling on these fascinating
surfaces seem desirable.

Note added in proof. Very recently, we repeated and
extended our experiments on silicon to study the question
of anisotropic scaling, reported by Abanathy et al. We
used a Si(113) wafer and also improved the temperature
resolution. We found, for the new sample, a somewhat
higher transition temperature (T, =963+20 K). We sup-
pose that, due to the fact that wafer domains of larger
size can be prepared: the shift in T, may be, therefore,

partly regarded as a finite-size effect. The value for the
critical exponent v~~ agreed with our values given in Table
I. However, we found v~ ( v~~ (indicating, possibily,
insufficient resolution), similar to the result by Yang
et al. '
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