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I | ABSTRACT (ENGLISH) 

 

The vast majority of vertebrates have skeletons formed from bone, a mineralized tissue that supports 

body shape, acts as a surface for muscle attachment, and regulates the body's mineral homeostasis. 

In contrast to the hard material that bone offers to deal with skeletal demands, elasmobranchs (sharks 

and rays) have skeletons formed entirely of cartilage, a flexible and softer material, composed mainly 

of water. Elasmobranch cartilage, however, is stiffened by a surrounding mineralized layer, formed of 

abutting tiles called tesserae; this distinct skeletal crust is thought to be a major factor in the 

evolutionary success of the elasmobranch lineage. The cells in elasmobranch cartilage (chondrocytes) 

show a similar morphology and ultrastructure to chondrocytes of other vertebrates, but are 

responsible for forming the complex architectures of this tessellated cartilage, that combine both 

mineralized and unmineralized tissues. Moreover, elasmobranch chondrocytes appear to perform 

different functions than chondrocytes in other vertebrates by, for example, surviving the 

mineralization process and apparently exerting finescale control over where mineralization does and 

doesn’t occur (e.g. in the complex joints between tesserae). And yet, although the particular 

interactions of cell and matrix appear to dictate the formation of this unique cartilage type, the factors 

that distinguish these cells and their surrounding cartilage matrix have not been deeply explored nor 

compared to other vertebrate cartilages. In this dissertation, I characterize cell and matrix structure 

and organization in elasmobranch skeletal cartilage using a variety of imaging and materials 

characterization tools, including two label-free imaging and analysis techniques customized for this 

tissue. To characterize the anatomies and roles of tesserae chondrocytes, thousands of tesserae 

lacunae (cell spaces) were imaged in 3D using high-resolution synchrotron microCT, and 

morphometrics and arrangements of lacunae quantified in a high-throughput workflow. The results 

showed that tesserae lacunae have zonal variation in their morphology and orientation, as well as 

connections through passages (canaliculi) that link cells throughout the tesserae. This organization 

may permit long-distance fluid transport within and between tesserae, allowing for tesserae growth 

and biomechanics, as well as providing an integrated cellular connectivity throughout the mineralized 

tissue, a role typically attributed to bone cells rather than chondrocytes in other vertebrates. To further 

explore the interactions and physiological roles of hard and soft tissue components (matrix and cells) 

in both tesserae and the unmineralized matrix, I imaged and characterized cell morphology and matrix 
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composition by taking novel advantage of the tissue’s native fluorophores, applying a customized 

label-free imaging technique based on exciting the inherent autofluorescence of the tissue. 

Autofluorescence imaging revealed a rich diversity of different signals associated to specific tissue 

locations and cell populations, indicating untapped potential of this label-free tool for imaging 

tessellated cartilage. The autofluorescence signals that could be linked to specific tissue architectures 

(e.g. chondrocyte pericellular envelopes) and compositions (e.g. collagen type II, a common cartilage 

protein) suggest deeply conserved features among vertebrate cartilages; however, the many 

components that could not be identified from their spectral signatures suggest there may still be 

taxon-specific features of tessellated cartilage yet to be discovered. The combined works in this 

dissertation illustrate that the cells in tesserae and the unmineralized matrix, although all considered 

‘chondrocytes’, exhibit distinguishing morphological and organizational features and, therefore, likely 

different functions (e.g. in mineralization, matrix turnover), suggesting that elasmobranch 

chondrocytes are plastic cells able to form and maintain different skeletal structures by adapting their 

morphology to cope with elasmobranch-specific skeletal demands. Furthermore, the finescale 

variations in tissue architecture, evidenced by the complex arrays of native fluorophores in the tissue, 

argue that the mineralized architectures of tessellated cartilage are not formed by a direct 

mineralization of a hyaline cartilage matrix, but perhaps result from local variation and/or 

reorganization of matrix properties, probably through cellular action. Given the variety of cartilage 

types across vertebrates and the diversity of skeletal structures they form, the plasticity of 

elasmobranch chondrocytes may be just one example of plasticity in this cell type, a topic that has 

been deeply overlooked in cellular biology and cartilage evolution research (whereas cell fates and 

variation are heavily studied in bone biology). Further studies should characterize whether the 

diversity of chondrocyte function in elasmobranchs and in other vertebrates is genetically encoded 

(which may suggest multiple cell types), or whether all chondrocytes are the same cell type whose 

function is triggered by varying environmental factors (e.g. chemical and mechanical). This will help to 

clarify the roles that chondrocytes and cartilage played in the evolution of skeletal tissues, but also 

lineage diversification (e.g. into different habitats) and key anatomical adaptations in animal evolution, 

both in invertebrate body support and the origin of vertebrate endoskeleton. 
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ABSTRAKT (DEUTSCH) 

 

Die große Mehrheit unter den Vertebrata besitzen ein Skelett aus Knochen, ein mineralisiertes 

Gewebe, welches die Körperform stützt, als Ansatzstelle für Muskeln fungiert und die Mineral-

Homöostase des Körpers reguliert. Im Gegensatz zu dem harten Material, welches Knochen 

bereitstellt, um die Anforderungen an ein Skelett zu erfüllen, besitzen Elasmobranchii (Haie und 

Rochen) ein Skelett welches vollständig aus Knorpel gebildet ist, ein flexibles und weicheres Material, 

das hauptsächlich aus Wasser besteht. Der Knorpel der Elasmobranchii wird allerdings durch eine 

umgebende mineralisierte Schicht, gebildet aus nebeneinanderliegenden Kacheln - den Tesserae - 

versteift; es wird angenommen, dass diese distinkte Skelett-Schicht einen wesentlichen Faktor für den 

evolutionären Erfolg der Klasse der Elasmobranchii darstellt. Die Zellen (Chondrozyten) im Knorpel der 

Elasmobranchii weisen eine ähnliche Morphologie und Ultrastruktur wie die Chondrozyten anderer 

Vertebrata auf, sind aber verantwortlich für die Bildung der komplexen Architektur des ‚tessellated 

cartilage‘ Gewebes (Mosaik-Knorpels), welches sowohl mineralisiertes als auch unmineralisiertes 

Gewebe in sich vereint. Darüber hinaus scheinen die Chondrozyten der Elasmobranchii andere 

Funktionen zu erfüllen als die Chondrozyten anderer Vertebrata, in dem sie zum Beispiel den 

Mineralisierungprozess überleben und scheinbar feinskalige Kontrolle darüber ausüben, wo 

Mineralisierung stattfindet und wo nicht (z. B. in den komplexen Fugen zwischen den Tesserae). 

Obwohl die spezielle Interaktion von Zelle und Matrix scheinbar die Bildung dieses einzigartigen 

Knorpeltyps bestimmt, wurden die Faktoren, welche diese Zellen und deren umgebende 

Knorpelmatrix ausmachen weder weitergehend untersucht noch mit dem Knorpel anderer Vertebrata 

verglichen. Im Rahmen dieser Dissertation charakterisiere ich Zell- und Matrixstruktur und die 

Organisation im Skelettknorpel der Elasmobranchii unter Verwendung einer Vielzahl von Bildgebungs- 

und Materialcharakterisierungs-Methoden, inklusive zweier marker-freier Bildgebungs- und 

Analysetechniken, die für dieses Gewebe speziell angepasst wurden. Um die Anatomie und Rolle der 

Tesserae Chondrozyten zu charakterisieren, wurden tausende Tesserae Lacunae (Zellzwischenräume) 

mittels hochauflösendem Synchrotron micro-CT in 3D aufgenommen und die Morphometrie und 

Anordnung der Lacunae durch einen Hochdurchsatz-Workflow quantifiziert. Die Ergebnisse haben 

gezeigt, dass die Lacunae der Tesserae zonale Variationen in ihrer Morphologie und Orientierung 

aufweisen, sowie Verbindungskanäle (Canaliculi) welche die Zellen der Tesserae miteinander 
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verbinden. Diese Anordnung erlaubt möglicherweise Flüssigkeitstransport über größere Distanz 

innerhalb und zwischen Tesserae und spielt damit nicht nur eine Rolle für Wachstum und Biomechanik 

der Tesserae, sondern stellt auch eine integrierte zelluläre Verbindung durch das mineralisierte 

Gewebe dar, eine Funktion die in anderen Vertebrata typischerweise Knochenzellen zugeschrieben 

wird und nicht Chondrozyten. Um die Wechselwirkungen und physiologische Bedeutung von harten 

und weichen Gewebekomponenten (Matrix und Zellen) in Tesserae und unmineralisierter Matrix 

weitergehend zu untersuchen, habe ich die Zellmorphologie und die Matrixzusammensetzung 

bildgebend untersucht und charakterisiert. Hierfür verfolgte ich den neuen Ansatz die nativen 

Fluorophore des Gewebes durch Verwendung einer maßgeschneiderten marker-freien 

Bildgebungstechnik, die auf der Anregung der inhärenten Autofluoreszenz des Gewebes basiert, zu 

nutzen. Die Autofluoreszenz-Bildgebung zeigte eine großer Diversität an unterschiedlichen Signalen, 

die mit spezifischen Gewebestellen und Zellpopulationen assoziiert sind, ein Hinweis auf das 

ungenutzte Potenzial dieser marker-freien Methode für die Bildgebung von ‚ tessellated cartilage‘. Die 

Autofluoreszenzsignale, die mit spezifischen Gewebearchitekturen (z. B. die perizelluläre 

Chondrozytenkapsel) und Zusammensetzungen (z. B. Kollagen Typ II, ein häufiges Knorpelprotein) in 

Verbindung gebracht werden konnten, deuten auf stark konservierte Merkmale unter den Knorpeln 

der Vertebrata hin; die vielen Komponenten, die anhand ihrer spektralen Signaturen nicht identifiziert 

werden konnten, lassen jedoch vermuten, dass es noch taxonspezifische Merkmale des ‚tessellated 

cartilage‘ gibt, die noch zu identifizieren sind. Die kombinierten Arbeiten in dieser Dissertation zeigen, 

dass die Zellen in den Tesserae und der unmineralisierten Matrix, obwohl sie alle als "Chondrozyten" 

angesehen werden, unterschiedliche morphologische und organisatorische Merkmale aufweisen und 

daher wahrscheinlich unterschiedliche Funktionen haben (z. B. bei der Mineralisierung, dem 

Matrixumbau). Dies deutet darauf hin, dass Chondrozyten der Elasmobranchii plastische Zellen sind, 

die in der Lage sind, verschiedene Skelettstrukturen zu bilden und zu erhalten, indem sie ihre 

Morphologie an die für Elasmobranchii spezifischen Anforderungen des Skeletts anpassen. Darüber 

hinaus sprechen die kleinskaligen Variationen in der Gewebearchitektur, die durch die komplexen 

Anordnungen von nativen Fluorophoren im Gewebe belegt sind, dafür, dass die mineralisierten 

Architekturen des ‚tessellated cartilage‘ nicht durch eine direkte Mineralisierung einer hyalinen 

Knorpelmatrix gebildet werden, sondern möglicherweise durch lokale Variation und/oder 

Reorganisation der Matrixeigenschaften, hier wiederum vielleicht durch zelluläre Aktivität. Angesichts 

der Vielfalt der Knorpeltypen bei den Vertebrata und der Vielfalt der Skelettstrukturen, die sie bilden, 
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könnte die Plastizität der Chondrozyten der Elasmobranchii nur ein Beispiel für die Plastizität dieses 

Zelltyps sein, ein Thema, das in der Zellbiologie und der Knorpelevolutions-Forschung stark 

vernachlässigt wurde (während das Schicksal der Zellen und Zellvariationen in der Knochenbiologie 

intensiv untersucht werden). Weitere Studien sollten charakterisieren, ob die Diversität der 

Chondrozytenfunktion bei den Elasmobranchii und anderen Vertebrata genetisch kodiert ist (was auf 

mehrere Zelltypen hindeuten könnte), oder ob alle Chondrozyten derselbe Zelltyp sind, dessen 

Funktion durch unterschiedliche Umgebungsfaktoren (z. B. chemische und mechanische) ausgelöst 

wird. Dies wird dazu beitragen zu klären, welche Rolle die Chondrozyten und Knorpel bei der Evolution 

von Skelettgeweben, aber auch bei der Diversifizierung von Abstammungslinien (z. B. in verschiedene 

Lebensräume) und bei wichtigen anatomischen Anpassungen in der Evolution von Tieren gespielt 

haben, sowohl bei dem Skelett der Invertebrata als auch bei der Entstehung des Endoskeletts von 

Vertebrata. 
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II | INTRODUCTION & STATE OF THE ART 
 

Cartilage is an ancient skeletal tissue, previously thought to be exclusive to jawed vertebrates 

(gnathostomes) and considered a key in the evolution of vertebrate endoskeletons, together with 

bone [1,2,3]. In the past several decades, however, cartilage and cartilage-like tissues have been 

found to occur incredibly broadly, in jawless vertebrates (cyclostomes: hagfishes and lampreys), 

chordates (lancelets), hemichordates, and even a variety of invertebrate protostome taxa (e.g. 

cephalopods, horseshoe crabs, sabellid worms) (Fig. 1) [4,5,6,7]. Yet, despite cartilage being a 

support tissue shared among diverse animals, its definition has always been based on cartilages 

from mammals, the most studied group among vertebrates with regard to skeletal biology.  

The work in this dissertation focuses on characterizing cellular organization and matrix 

composition of elasmobranch (shark and ray) skeletal cartilage by customizing and applying, 

through a collaboration with scientists from multiple disciplines, two imaging techniques that 

capitalize on intrinsic properties of the tissue using X-rays and light. For context, in the next pages, 

I describe the state of the art with regard to cartilage biology in animals, detailing the current 

knowledge of elasmobranch skeletal cartilage, describing similarities and differences in 

organization, composition and function relative to mammalian cartilage, the tissue considered the 

‘gold standard’ in cartilage biology research. Then, I describe the common imaging techniques 

used in cartilage biology, classifying them based on whether or not they use external reagents 

(‘labeled imaging techniques’ and ‘label-free imaging techniques’, respectively). Finally, I 

summarize which techniques have been used to image elasmobranch skeletal cartilage matrix and 

cells, the limitations that these present in imaging and characterizing this tissue, and the need to 

develop new imaging techniques using physical principles such as autofluorescence or X-rays to 

avoid the use of external reagents.  
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Fig. 1. Phylogenetic distribution of cartilage in bilateralians with special focus on vertebrates. The compiled 

information indicates that, a cartilage-like tissue based on class-A fibrillar collagen (encoded by the ColA 

gene) and a proto-chondrocyte may have been present in the last common ancestor of bilateralians. In 

protostomes and lancelets, cartilage cells synthesize a cartilage matrix based on class-A fibrillar collagen, 

which may be forming the cartilage matrix together with other unknown structural proteins (indicated with 

a question mark). Vertebrates have an endoskeleton which, depending on the taxonomic group, is 

composed of various skeletal materials (indicated in the figure with different colors). Vertebrate cartilage 

is synthesized by chondrocytes and the matrix is composed of fibrillar type II collagen (encoded by Col2a1 

gene), which can be combined with other structural proteins (*) such as myxinin (hagfishes), lamprin 

(lampreys) or elastin (tetrapods). Similar taxon-specific structural proteins have not been described in 

chondrichthyan cartilage. The oldest vertebrates (cyclostomes and chondrichthyans) have skeletons 

composed entirely of cartilage, while in more recent vertebrate groups (fishes and tetrapods), whereas 

bone is the predominant skeletal tissue, cartilage in adult animals is sparsely distributed and only associated 

with specific body functions. For further details see [5,6,7,8,9]. 
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1. What is cartilage? 

Cartilage is a connective tissue that, together with tendon and bone, forms the skeleton of 

vertebrates [10]. The dominance in the skeleton of each of these tissues varies according to 

developmental stages: during the embryonic stages of vertebrates, the entire skeleton is formed 

by cartilage (denominated embryonic primary cartilage), which allows comparatively fast growth 

and gives flexibility to the skeleton. Cartilage also provides a scaffold for skeletal development, in 

that in most vertebrates, embryonic primary cartilage is replaced by bone during development. In 

contrast, in adult stages, cartilage is associated only with specific body locations such as joints, 

noses, ears and parts of the respiratory system [10,11]. 

According to classical (mammal-centric) textbook definitions, adult cartilage: 1)  is a stiff, gel-like 

tissue with copious amounts of extracellular matrix (ECM) composed mainly of water (~70%), 

collagen type II (Col2) and proteoglycans (PGs, core proteins with branched glycosaminoglycans = 

GAGs); 2) is devoid of vascularisation; and 3) has only one resident cell type (the chondrocyte), 

which occupies little of the tissue compared to the ECM [3,9,10,12]. The interplay of these 

characteristics dictates the specific physiological and biomechanical aspects of cartilage. For 

example, the biophysical properties of the ECM are conferred by the interplay of Col2 (the most 

dominant collagen in cartilage), aggrecan (the most abundant PG in cartilage) and water: Col2 

fibrils form a tensile network that resists swelling pressure from the huge amount of water trapped 

by PGs, highly hydrophilic due to the presence of GAGs [10,13–15]. Additionally, the lack of 

resident vasculature in adult cartilage means chondrocytes must rely on diffusion for nutrient and 

waste exchange with surrounding connective tissues, resulting in chondrocyte metabolism being 

mainly anaerobic and cartilage typically having hypoxic oxygen tensions (10% in peripheral areas 

adjacent to connective tissues, but <1% in regions more distant) [3,10,12,16,17]. The associations 

of matrix components and their resultant biomechanics are a major focus of cartilage research, 

particularly with regard to biomedical interests (e.g. for cartilage grafts and joint repair) (e.g. 

[14,18,19]). As a result, the majority of research has centered on cartilage from humans or from 

model mammalian systems (e.g. rodents) [20–23].  
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2. Cartilage variations across taxa 

The synergistic effects of cartilage cellular and matrix components mean that compositional 

variations can have pronounced structure-function implications. However, the functional and 

physiological implications of the wide natural variation among cartilages from different animal 

groups —or even among mammals— have barely been explored (but see [24] for differences 

during cartilage ossification between mice and humans). For example, volume ratios between ECM 

and cells are highly variable: some cartilages are more cell- than ECM-rich, such as elastic cartilages 

in mouse, rabbits, rats and bats [25,26]; several cartilage types in fishes [27,28]; several skeletal 

cartilages in lampreys [10,29] and lingual cartilage in hagfishes [30,31]. On the contrary, cartilages 

can also be acellular —entirely devoid of chondrocytes— for example the pharyngeal cartilages of 

hemichordates and lancelets [4,32]. In vertebrates, acellular cartilage has only been described in 

the heart valve of a freshwater stingray [33], but this has not been deeply studied. The composition 

of the ECM is also variable, with Col2 and PGs not always being the dominant structural molecules. 

For example, taxon-specific non-collagenous proteins can serve as primary structural molecules, 

such as the elastin-like lamprin in lamprey cartilage [10,29] or myxinin in hagfishes [5,7,30].  

This natural diversity indicates the little-appreciated variability of cartilage structure and 

composition in animals, demonstrating that not all descriptions for mammalian cartilage are 

accurate for other taxa. Cartilage diversification also illustrates how skeletal systems have adapted 

through evolution to cope with different skeletal demands to survive. For example, 

chondrichthyans are the only jawed vertebrates that lack bones, with a skeleton completely 

formed by cartilage. With a cartilaginous skeleton, chondrichthyans became a successful 

evolutionary group for more than 400 million years, including the world’s largest living fish (the 

whale shark, Rhincodon typus), the vertebrate with the longest lifespan, reaching 400 years old 

(Greenland shark, Somniosus microcephalus) and a high variety of life history strategies (from top 

predators to filter feeders) [34–38]. 
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3. Cartilage in chondrichthyans 

Chondrichthyes (sharks, rays, and chimaeras; Fig. 2) represent an important model for 

understanding cartilage evolution as well as the extant functional diversity of cartilage, in being 

the only group of jawed vertebrates (gnathostomes) with a skeleton composed solely of cartilage 

throughout life, not replaced by bone during ontogeny [39,40]. As a result, the cartilage of these 

fishes must serve the roles expected for cartilage in vertebrates —flexible contour filler (e.g. in 

noses), scaffold for skeletal growth— but also some usually attributed to bone, for example organ 

protection, support and muscle attachment. Cartilage is a flexible and gel-like tissue and, to cope 

with these skeletal demands, the skeleton needs to be stiff at the same time as flexible.  

One hypothesis is that the cartilaginous skeleton of chondrichthyes has adapted to be stiff enough 

by surrounding the skeleton with a thin mineralized layer, made up of tiles called tesserae [41–

43]. The particular architecture of the tessellated layer (formed by abutting tiles joined together) 

results in a sheath around the flexible cartilaginous core, stiffening it enough to cope with the 

skeletal mechanical demands. The tesserae and the underlying unmineralized cartilage matrix 

constitute the main skeletal tissues of chondrichthyans, comprising nearly the entirety of the 

skeleton, excepting just a small region of the vertebral column (Fig. 2.) [44–46]. However, their 

structure and composition have been mainly studied in model species of sharks and rays 

(elasmobranchs), and are less known in chimaeras, the elasmobranch’s sister group. The lack of 

information in chimaeras is due to the difficulty to obtain samples, as many species live in deep 

sea water (below 2000 m), and arguably the general broader interest in sharks and rays (chimaera 

are little-studied in general). In fact, the skeleton organization of chimaera has only recently been 

described in depth for the first time [47,48]. These works showed that the skeleton in chimaeras 

presents a skeletal structure similar to elasmobranchs, based on a cartilaginous matrix surrounded 

by tesserae, however, with substantial differences such as, for example, a lack of cells living inside 

of the tesserae [47]. Therefore, due to the chimaera skeleton being still not well characterized, in 

the following sections and projects of this dissertation, I will be referring exclusively to the 

elasmobranch group (sharks and rays).  
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4. The skeleton of elasmobranchs 

4.1. The unmineralized cartilage 

As stated above, the bulk of the elasmobranch skeleton is composed of an unmineralized 

cartilaginous matrix (probably ~80% of the volume of the tessellated cartilage elements; [49]) with 

chondrocytes embedded, similar to the hyaline cartilage that forms articular joints and embryonic 

skeleton in mammals (Fig. 2). Histologically, elasmobranch skeletal cartilage and mammalian 

hyaline cartilage present a similar glassy appearance, huge amounts of ECM composed mainly of 

water, Col2 and PG, and sparse chondrocytes [39,40,42,43]. 

However, despite this grossly similar histological organization, elasmobranchs cartilage is 

suggested to differ in composition from mammalian hyaline cartilage in a variety of ways. For 

example, elasmobranchs cartilage contains urea (nitrogenous protein breakdown product) that, 

in mammals and fishes, is only present in the urine but not in the skeleton. The effect of urea in 

the cartilage is unknown, but it is thought to contribute to the high swelling ratios [50]. Similar to 

mammalian cartilages, PGs have been identified as the major non-collagenous molecules forming 

the cartilaginous matrix of elasmobranch cartilage [51], with the GAGs chondroitin sulfate and 

keratan sulfate attached to the PG’s protein core. However, in elasmobranch cartilage, these GAGs 

differ in size, structure and concentration from their counterparts in mammalian hyaline cartilage. 

This confers larger hydrodynamic sizes to elasmobranch cartilage PGs, which increases their 

hydrophilic interactions with water, resulting as well in an increase in the swelling ratio compared 

to those for mammal and bony fish cartilage; this in turn should also make the elasmobranch 

cartilaginous matrix stiffer [50–54]. Additionally, elasmobranch lack the GAG hyaluronan and, 

thus, the ability to form PG aggregates, suggesting that the observed compositional variations 

could translate to profound structural differences between elasmobranch and mammalian hyaline 

cartilage [51].  

Together with PGs and GAGs, collagen type-II (Col2) has been identified as the main structural 

protein forming the unmineralized elasmobranch cartilaginous matrix [49] which indicates that, 

despite the compositional differences listed above, the elasmobranch cartilage matrix has the 

same dominant structural protein as other vertebrate cartilages [7,10,55]. Beyond these primary 
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components, the composition of elasmobranch cartilage is largely uncharacterized. In other 

vertebrates, a variety of secondary components can be found in cartilage, depending on the 

cartilage’s function and mechanics. These can include other collagens (e.g. collagen type 5, 9; [3]), 

other proteins (e.g. elastin, myxinin, lamprin; [30,56,57] and other cells like large adipocytes 

(lipohyaline-cell cartilage in fishes; [28]). Due to the unique performance demands of the 

elasmobranch skeleton, molecules other than Col2, PGs and GAGs could be expected to form the 

unmineralized cartilaginous matrix. However, these have yet to be identified.  

 

4.2. The tesserae 

Surrounding the unmineralized cartilage are the tesserae, forming a permanent, apparently ever-

growing, and tessellated ring of mineralized tissue (Fig. 2.) [42–44]. Unlike in mammals, where 

permanent calcified cartilage represents a small portion of the adult skeleton (only located at the 

base of the articular cartilage), in the elasmobranch skeleton, tesserae are one of the main 

components. In fact, tesserae are considered a  synapomorphy of the entire chondrichthyan 

group, appearing in the 400 million years-old fossil record of stem species such as the extinct shark 

Mcmurdodus and shark-like Doliodus [35,47,58]. 

The distinct polygonal pattern of the tesserae is thought to have crucial roles in skeletal growth 

and biomechanics (Fig. 2) [39,43,59,60]. Tesserae first appear during embryonic development as 

isolated platelets at the outer borders of the unmineralized matrix [59,61]. These platelets 

continue growing throughout the animal’s life, eventually growing into contact with one another 

[39,61]. The constant growth of the tesserae is an exclusive attribute of elasmobranchs, differing 

with what is known for mammals, where calcified cartilage growth during adult stages is only 

associated with pathological conditions (e.g. osteoartritis, [62,63]).  

During growth, tesserae add mineral to all edges, increasing their size and volume in all directions 

through the unmineralized matrix [39,64]. In this process, the chondrocytes in the unmineralized 

matrix adjacent tesserae are also surrounded by the accreting mineral, ending permanently 

trapped within the tesserae where they are maintain alive within spaces in the mineral, called 
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lacunae [42,43,65]. In mammals and birds, cartilage mineralization is led by chondrocytes (e.g. 

endochondral ossification) which become larger (hypertrophic chondrocytes), synthesize specific 

matrix products (e.g. Collagen type 10) and, once their surrounding matrix is mineralized, undergo 

programmed death (apoptosis) or transdifferentiation into bone cells [66–68]. It is unknown 

whether these cells change their function during this process or whether they are involved in the 

mineralization process itself, but neither during the mineralization process nor once enclosed 

within tesserae, do these chondrocytes appear to suffer any variation in morphology, volume or 

shape [49,69], differing from what is known for chondrocytes in other vertebrates. These 

differences in chondrocyte function between mammals and elasmobranchs suggest that 

elasmobranch chondrocytes differ cell function during the skeletal mineralization process, 

performing specific functions to form and maintain the cartilaginous matrix as well as the tesserae.  

The growth process of tesserae —their accretion of mineral, their apparent lack of remodeling, 

their eventual growth into contact with each other— determines tesserae architecture and 

ultrastructure [59,61], which are likely directly related with their biomechanical function [60,70]. 

In this sense, mathematical models have shown that a structure that plays crucial roles in tesserae 

growth and biomechanics are the regions where the tesserae abut, the intertesseral joints (Fig. 2) 

[59,60,70–72]. In the intertesseral joint region, there are zones where tesserae are in direct 

contact and zones where tesserae are separated by gaps filled with unmineralized cartilage and 

fibers connecting the tesserae [45,49,59]. It is hypothesized that this unmineralized area between 

tesserae neighbours allows continuous space for mineral deposition at tesserae margins, also 

increasing versatility of the mineralized layer by introducing regions of flexibility [60,70–72]. In 

contrast, in the areas where tesserae are in direct contact with their neighbours with no gap 

between them, the continuous mineral accretion appears to densify the mineralized tissue, 

producing areas of high mineral concentration denominated spokes, that radiate from the center 

to the edge of tesserae, like spokes in a wheel [59]. It is believed that spoke regions provide 

mechanical protection to the center of the tesserae (especially the central cells) by dispersing the 

energy and redirecting cracks [60]. However, the biomechanical function of spokes and 

intertesseral joints has only been theorized using mathematical models and simulations, never 

experimentally tested in situ.  
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Fig. 2. The tessellated cartilaginous skeleton of elasmobranchs. A photograph of the stingray Dasyatis 

pastinaca (left) combined with a microCT scan of the skeleton (right). The enlarged propterygium shows 

the unmineralized cartilaginous matrix (UM) entirely covered by tesserae (T). Bottom: The schematic view 

of a cross section of the skeleton shows the distribution and organization of the UM, T and perichondrium 

(P). Enclosed in the circle, tesserae cross section stained with toluidine blue can be observed, showing a 

tessera with two intertesseral joints (J) at each side, the P located at the upper part and the UM at the 

lower part. Note that the UM occupies the majority of the skeleton. A planar section of the tesserae, shown 

with an SEM image and a schema, illustrates the tesserae architecture, involving polygonal tiles joined 

together by (J). Spokes (high-mineral density features) are indicated by white lines in the regions where 

two tesserae are in direct contact. Both planar and cross section images show the distribution of 

chondrocytes (C) and their differences in organization between the tesserae and the UM. Abbreviations: 

Chondrocytes (C), Intertesseral Joints (J), Perichondrium (P), Tesserae (T), Unmineralized Matrix (UM). 
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5. Common techniques used to image cartilage 

To understand how cartilage (or any other tissue) has adapted to cope with different 

biomechanical demands, it is necessary to study its anatomical arrangement, matrix composition 

and cell type, organization and function. Nearly all the knowledge in cartilage research comes from 

mammals and few other well-established animal models (e.g. zebrafish), from which the resulting 

information is usually extrapolated to define cartilage in other vertebrates. To study cartilage, a 

variety of imaging techniques are typically used (most of them optimized to those model species), 

allowing the characterization of specific cartilage components from different perspectives, 

depending on the technique. For example, to analyze composition and ultrastructure, techniques 

based on tissue staining with external reagents (e.g. histology) and a posterior imaging with light 

microscopy (e.g. optical microscopy) or electron microscopy (e.g. TEM) are used. To study, instead, 

3D structure and organization of tissues and cells, techniques based on computed tomography 

(e.g. CT-scans), magnetic resonances and light (e.g. polarized microscopy) are commonly used. 

Therefore, depending on whether or not these techniques use external reagents to highlight 

specific tissue components and structures, they can be divided into two groups: labeled imaging 

techniques and label-free imaging techniques. In the following paragraphs I outline some of the 

more commonly used techniques and their advantages and disadvantages, particularly with regard 

to cartilage imaging. 

 

5.1. Labeled imaging techniques 

Labeled imaging techniques use reagents that bind to specific molecules, highlighting their 

location in the tissue and making them visibles under the microscope. They are broadly applied to 

study morphology, structures and composition of cells and tissues and so are the techniques most 

often taught in anatomy and physiology courses. Depending on the microscope used, these 

techniques can be classified as: 1) histology (including immunohistochemistry); 2) In situ 

hybridization, both relying on light microscopy, and 3) electron microscopy.  
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The term histology refers to a variety of techniques based on imaging the stained tissue under the 

light microscope (e.g. confocal microscope, optical microscope). Several staining agents can be 

used to stain tissue and cellular structures [3,73], with histology techniques typically classified into 

either  classical histology and immunohistochemistry (IHC), depending on the specificity of the 

dyes used and how they bind to target tissues. Classical histology colours tissue using dyes (which 

can also be fluorescent) that have affinity to specific chemical properties of the molecules. For 

example, basic dyes (positively charged) bind to cell and tissue components that are negatively 

charged such as DNA and GAGs. Since GAGs are one of the main components in cartilage, several 

basic dyes (e.g. alcian blue and toluidine blue) are used in cartilage histology [21,74,75]. On the 

contrary, acidic dyes (negatively charged) bind to cell and tissue components that are positively 

charged, such as proteins like collagens. Thus, acidic dyes like sirius red are also widely applied to 

study cartilage, since proteins are important to cartilage structure (e.g. Col2) [76,77]. Due to their 

basic and relatively non-specific function, histological dyes have been applied to anatomical and 

comparative biology studies in a broad range of tissues from a huge diversity of organisms [5,78]. 

The result of the long-standing, standard application of such stains for histology of particular 

tissues (e.g. cartilage or bone) means that staining function is often casually (or even erroneously) 

attributed to particular tissue types (e.g. Col1), rather than to general qualities of those tissues 

(e.g. their charge).  Other histological techniques use dyes (usually fluorescent) that bind to 

specific molecules such as, for example, the enzyme alkaline phosphatase, the cell nucleus (DAPI 

staining) and the actin fibers of the cytoplasm (phalloidin staining) [79,80]. As these techniques 

bind specific components, they require testing and optimization of protocols for different tissue 

preparations (fixation, embedding) and tissue types [79,81–83]. 

An even more specific histology technique, immunohistochemistry, relies on the use of antibodies 

to localize specific proteins (antigens), providing information about expression, distribution and 

localization of target proteins (e.g. a particular collagen) in a tissue [84,85]. To detect the 

antibodies (and, therefore, the antigens they bind to) under the light microscope, the antibodies 

need to be labeled with a visible marker, either directly or indirectly in the form of a labelled 

secondary antibody [84,86,87].  The latter is more common, since it enables the amplification of 

the signal, as more than one secondary antibody binds to each primary. Several labels can be used 
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as markers, such as fluorochromes like rhodamine, enzymes like alkaline phosphatase or biotin 

[73]. In cartilage biology, IHC is mainly used to characterize matrix composition like, for example, 

identifying different collagens such as Col2 (cartilage matrix, Fig.3) and Col6 (pericellular matrix), 

as well as chondrocyte- and gene-products that give information about cell function and cartilage 

development, such as Sox9 [6,73,88,89]. 

In contrast to the gene products stained in tissues by immunohistochemistry, in situ hybridization 

(ISH) involves the identification of a specific DNA or RNA sequence in the tissue and, therefore, is 

a tool used to understand the regulation, expression and function of genes and cells. Labelled DNA 

or RNA probes (counterparts of the target sequence) are used to identify and quantify the position 

of the genetic sequences in situ (in their natural position within the chromosome) [90,91]. To 

ensure the correct attachment, there should be a high specificity between the labelled sequences 

and the target sequence and, for that, the nucleotide sequence of the mRNA or the DNA of the 

desired cell must be known beforehand [92].  In cartilage, ISH has been mainly used to target the 

expression of cartilage and chondrocyte-specific genes such as Col2a1, Sox9 or Runx2 [93,94]. 

Whereas histological techniques rely on light microscopy, electron microscopy uses a beam of 

accelerated electrons to image tissues. The short wavelengths of the electrons result in images of 

high resolution (of nanometers), allowing imaging of matrix and cellular ultrastructure [95]. 

Depending on how the electrons are detected, two types of electron microscopes are used: 

scanning electron microscope (SEM) and transmitted electron microscope (TEM). SEM images 

tissues by detecting reflected or scattered electrons, giving information about the surface of the 

sample and its composition. In contrast, TEM creates an image detecting the transmitted electrons 

(electrons that passed through the sample), offering information on the inner structure of 

ultrathin samples (50 - 70 nm) [95–97]. Depending on their electron density, the biological 

structures interact differently with the electron beam, scattering or absorbing the electrons. The 

differences in electron density generate contrast in the resulting images, making it possible to 

distinguish between biological structures [98–100]. However, non-mineralized biological tissues 

like cartilage and chondrocytes are low-contrast materials and, therefore, their resolution is lower 

(~100nm) than high-contrast materials (which can reach 10 nm) [98]. To increase the resolution 
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of low-contrast materials, electron-dense markers such as heavy metals (e.g. lead citrate and 

uranyl acetate) or gold nanoparticles (immunogold technique) are used, giving enough contrast to 

distinguish cell ultrastructure (e.g. organelles) and aspects of extracellular matrix composition (e.g. 

GAGs, Col2) [101–104]. Based on TEM and SEM principles, other microscopy arrays have been 

developed to cope with specific imaging demands, such as, for example,  FIB-SEM, which images 

the surface of the sample using an ion beam, or cryoSEM, which images the surface of hydrated 

and cryogenically fixed samples (frozen below -127ºC) [105,106]. 

The information given by classical histology, IHC, ISH and electron microscopy can be 

complemented in order to obtain a broad picture of the tissue at different scales (Fig. 3). For 

example, histology is frequently used to study the morphological organization and composition of 

the tissue at large scales (mm - cm), such as the arrangement of chondrocytes in the cartilage 

matrix, to compare cartilages among species or to differentiate cartilage from bone (e.g. 

[21,107,108]). To identify specific components in the tissue, IHC and ISH can be used, allowing the 

characterization of tissue composition and cellular function. However, histology, IHC and ISH are 

indirect techniques, where the components are identified and imaged using vectors (antibodies, 

dyes or genetic material) and, therefore, several inaccuracies can result such as cross-reactivity 

(binding to non-target antigens) or false negatives (no staining because the protein is in low 

concentration or not enough antibody bound to the protein). To help verify the presence of 

components in such cases, their ultrastructure (nm - μm) can be imaged using electron 

microscopy, also allowing the study of their morphology and organization within the tissue (e.g. 

the cartilage matrix network formed by GAGs and Col2). However, the high resolution images 

obtained by electron microscopy are limited to image small areas of the sample (of μm2), being 

only possible to image discrete structures of the tissue.  
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Fig. 3. Comparison of elasmobranch tessellated cartilage imaged using labeled imaging techniques. All 

images show cross sections of Raja clavata’s tessellated cartilage. A) Section stained with alcian blue 

(classical histology), which highlights the negatively charged molecules like the glycosaminoglycans and cell 

nuclei. B) Section immunohistochemically stained (IHC) for Col2 (yellow-brown regions). Both the 

unmineralized cartilaginous matrix and spokes are stained, while no staining is observed in the 

perichondrium and the tesserae. C) FIB-SEM image of the cartilage matrix ultrastructure, with Col2 fibers 

visible, stained with heavy metals.  

 

5.2. Label-free imaging techniques 

Label-free imaging techniques involve imaging the tissue without the need of external reagents. 

Instead, they cause a reaction in specific biological molecules using electromagnetic radiation such 

as light (UV, visible light, X-rays), magnetic fields or electron beams to image the tissue. Biological 

molecules react differently when excited with these sources and, based on the molecular physical 

properties (e.g. chemical composition, structure, density), they will emit a specific signal that is 

collected by the detector. Although the physical properties of the different sources are known for 

decades, some of them have only in the last 10-15 years started being applied to image biological 

tissues, especially non-mineralized tissues like cartilage [109–111]. In cartilage research, several 

label-free imaging techniques have been used in order to image the matrix and cell ultrastructure 

and composition. These techniques differ in the excitation source and the technology utilized (e.g. 

confocal microscopy, laser surface scanning, polarized light microscopy) and, therefore, they can 

be classified as: light-based techniques, computed tomography, electron beams and magnetic 

resonance.  
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Light-based label-free imaging techniques use light to excite different photonic properties of 

molecules. Polarized light imaging distinguishes between singly refracting materials (light 

refraction is direction independent) and double refracting materials (light refraction is direction 

dependent) (Fig. 4) [112,113]. This allow us to define the prefer orientation of birefringence fibers 

present in the tissue like, for example, collagen Polarized light microscopy has been used in 

cartilage research to localize fibrial collagens in the tissue (which have positive birefringence), 

however, it is not possible to distinguish between collagen types [114,115]. Autofluorescence is 

the capacity of certain biological molecules with aromatic rings (endogenous fluorophores) to emit 

light (Fig. 4) [116,117]. There are several biological fluorophores in the cartilage matrix such as 

Col1, Col2, Col3 and elastin, as well as in cells, like flavins, DNA or NADH (e.g. [116,118–120]. 

Depending on the molecular structure, fluorophores react and emit light with different 

wavelengths (different colors), meaning that, once standardized, they can be distinguished based 

on their emission and excitation spectra [116,119,121].  

Like autofluorescence, two-photon excitation fluorescence (TPEF) and second harmonic 

generation (SHG) are nonlinear optical processes based on the excitation of an endogenous 

fluorophore (biological molecules that react to light), resulting in the emission of light [122–126]. 

TPEF excites the fluorophore when two photons from high wavelengths (near infrared) hit the 

fluorophore simultaneously. These photons are absorbed by the fluorophore, resulting in an 

emission of light (Fig. 4) [123,127]. As longer wavelengths are used, they have the advantage of 

penetrating deeply in the tissue producing less damage than lower wavelengths. In cartilage, TPEF 

has been mainly applied in mammalian articular cartilage for imaging elastin networks and 

chondrocytes [128–130]. Lastly, SHG is the capacity of specific molecules (nonlinear materials) to 

interact with two photons with the same energy, and emit one photon with twice the energy of 

the excitation photons (Fig. 4) [122,131]. In cartilage, Col2 can generate second harmonic 

generation properties due to their molecular structure [130,132,133].  

Rather than light, computed tomography uses X-rays for sample imaging [134,135]. The sample is 

placed between a source and a detector and, as the X-ray beam crosses the sample, the 

constituent sample materials attenuate the passage of X-rays differently depending on their 
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density (Fig. 5). The resulting signal is collected by the detector, creating a projection image, a 2D 

radiograph. In the late twentieth century, the detector was often a physical X-ray-sensitive film, 

but in modern machines (e.g. laboratory microCTs) are digital flat panel detectors. In computed 

tomography, either the sample or the source-detector pair are then rotated to direct the X-rays 

through the sample from different angular positions, generating a series of 2D projection images 

that can then be used to reconstruct a 3D volumetric dataset (showing the sample’s interior 

structure) (Fig. 5) [135–137]. As this technique is non-destructive, it is particularly valuable to 

obtain 3D data sets of the outer and inner materials without losing the sample. Several computed 

tomography techniques are used in biology, which vary in the maximum sample size they can 

support, their X-ray energy, and the geometry of their scanning chambers (e.g. how close samples 

can be brought to the source, how far the detector can be moved from the sample) [138]. These 

factors decide the resulting image resolution, which ranges over four orders of magnitude, from 

sub-millimeter down to sub-micron, with inherent trade-offs between sample size and resolution:  

1. Medical computed tomography, which can be used for larger patients/specimens (up to 

~60 cm wide), but has comparatively low resolution (≥600 µm) and so is useful largely only 

for overview scans of larger animals. 

2. Micro-computed tomography (μCT), which can be used to image smaller samples (like skulls 

or small animals, Fig. 6A) with a voxel size typically one to two orders of magnitude better 

than medical CT (~100 μm down to ~5 μm). In the last decade, this technique has become 

far more accessible: laboratory µCTs now are common in research laboratories, varying 

from desktop machines that accommodate small bones/animals (e.g. Bruker) to stand-

alone cabinet devices that can scan items the size of a volleyball and weighing kilograms 

(e.g. RX Solutions, YXLON). 

3. Nano-computed tomography (nCT), which can be used to image even smaller samples (Fig. 

6B) with a higher resolution, with voxel size values ranging from ~5 μm down to 0.4 μm (i.e. 

an order of magnitude better than μCT). 

4. Synchrotron radiation micro-computed tomography (SR-μCT), which also allows imaging 

samples at resolutions similar to nCT, but using beams with a single X-ray wavelength, which 
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results in higher beam intensities and, therefore, higher contrast in order to image 

structures of interest (Fig. 6C).  

Fig. 4. Light-based label-free imaging techniques. Schematic visualizations of the different label-free 

imaging techniques based on light, showing how the sample interacts when excited with an excitation 

wavelength (λex) by emitting a specific wavelength (λem). Light polarization and autofluorescence are 

techniques based on linear properties of light, while Two-Photons and SHG are based on non-linear 

properties of light (i.e. responding non-linearly to the light electric field). Among several differences 

between linear and non-linear principles, one visible example is the inconsistency of the non-linear 

techniques between the number of photons excited (2) and emitted (1).   
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Two ‘next generation’ directions in computed tomography, under development currently, are 

particularly relevant for biological and medical research, namely the scanning of moving objects 

and the imaging of soft tissues. With regard to the former, true “4D”-µCT —scanning moving 

objects in real-time, without having to move the sample in a stepwise fashion— is especially 

sought-after for scanning tissues and organs in vivo. Although this technique is highly technically 

challenging due to its requirement of high temporal resolution (i.e. rapid acquisition of multiple 

3D datasets, in order to capture biological motion), systems are in development and in use in 

industry (e.g. TESCAN) and synchrotron facilities for application in, for example, biomechanics and 

fluid transport in geological materials [139,140]. 

With regard to soft tissue imaging, cartilage, as a non-mineralized tissue, offers poor contrast to 

be clearly imaged using computed tomography. Therefore, computed tomography techniques are 

mainly used to image mineralized tissues (e.g. calcified cartilage, bone) and less used to image soft 

tissues. Where soft tissues are of interest, staining reagents (e.g. PTA, PMA, iodine) have been 

used to increase contrast, for example, between matrix and cells; with its high water content, 

however, cartilage does not respond well to contrast enhancement and most images allow only 

gross evaluation of structural features in CT [141–144]. 

Fig. 5. Schema of the computed tomography scan set up. X-rays (in yellow) are emitted from a X-ray tube 

towards a rotating sample, and the transmitted electrons are recorded by a detector as a 2D projection 

image. 2D projections, recorded from multiple sample rotation angles, are then used to reconstruct a 3D 

volumetric dataset. 
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Fig. 6. Computed tomography scans of batoid’s mineralized skeleton. A) μCT scan of Raja clavata’s skeleton 

rendered in Amira. Yellow areas correspond to higher mineralized structures, such as scales located on the 

dorsal side of the animal, whereas purple areas correspond to lower mineralized structures. B) nanoCT scan 

of tesserae surface, where the morphology of tesserae and the joint areas (non-mineralized black gaps) can 

be appreciated. C) Cross section of tesserae SR-μCT image, where several features can be distinguished 

such as spokes laminae (highly mineralized regions), the lacunae spaces where chondrocytes reside and 

the fibrous material characteristic of the intertesseral joints.  

 

Magnetic resonance combines high magnetic fields with radiofrequency pulses to image tissues 

at large scales (cm-m). This technique involves exposing the biological sample to powerful 

magnets, which align the positively charged atoms (mainly hydrogen) in the direction of the 

magnetic field generated. Once the atoms are aligned, a radiofrequency pulse is applied, pushing 

the atoms to be aligned to the radiofrequency field instead of to the magnetic field. Then, the 

atoms emit their own radiofrequency radiation, which is detected by the scanner. After a certain 

amount of time, the atoms stop emitting a radiofrequency signal and realign again with the 

magnetic field. The times to stop emitting a radiofrequency signal (T2 relaxation) and to realign 

(T1 relaxation) vary within different tissues in the body and, therefore, can be used to generate 



32 
 

images with different contrast [145–147]. For example, tissues with low T2 are bones and lungs, 

and high T2 include more fluid-filled tissues such as synovial fluid and the gray matter of the brain 

[148]. Although magnetic resonance is a label-free technique, sometimes contrast agents like 

gadolinium can be used to identify specific components such as GAGs and Col2 in cartilage [149]. 

Due to the fact that magnetic resonance is safe to be used in living specimens and can generate 

images of entire organs (e.g. brains, lungs, joints) it is widely used in clinical assays [150–154]. 

However, this technique cannot achieve enough resolution to image tissue ultrastructure and, 

therefore, it is not suitable for cellular and matrix characterization.  

The fact that these techniques do not require the use of reagents offers a variety of advantages. 

First, external reagents can interfere with the organization and structure of molecules, so tissues 

can be imaged in a closer native state. Second, they are easier to use in non-model organisms, 

since there is no need to optimize the reactivity of reagents to ensure staining of specific tissue 

structures (e.g. not all antibodies for mammalian IHC work for the tissues of other taxonomic 

groups).  

 

6. Imaging elasmobranch cartilage 

Although the imaging approaches applied to elasmobranch skeletal cartilage are not nearly as 

diverse as those applied to mammalian tissues, tessellated cartilage has been studied since the 

19th century, being especially of interest to paleontologists and comparative anatomists [155–

158]. Since the mineralized parts are the structures that fossilize and are easier to fix and preserve, 

there was an interest during the 20th century in studying the structure, composition and 

arrangement of the hard parts of the elasmobranch skeleton, including teeth, denticles, vertebra 

and tesserae (e.g. [41,159–162]. The study of hard parts, especially tesserae, has increased in the 

last 40 years, addressing new topics such as growth and biomechanics [59,60,70]. However, the 

soft parts of the skeleton, like the cartilage matrix and cells, have been far less studied. This is 

probably because 1) the cells and matrix are more difficult to preserve than mineralized tissues 

and 2) the techniques to image them are mainly label-based, and require a thorough optimization 

of, for example, staining protocols. Regarding fixation, cells are especially difficult to preserve and 
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prepare to be imaged under the microscope and, until now, no study has succeeded in obtaining 

an optimal preservation of elasmobranch cellular ultrastructure and morphology, especially 

regarding the cells enclosed within the tesserae.  

In general, the techniques used to study elasmobranch cartilage matrix and cells are mainly 

labeled imaging techniques (e.g. classical histology, IHC; see section 5.1). These techniques have 

allowed the identification of different tissue types forming the elasmobranch skeleton (e.g. 

tesserae, cartilage matrix, intertesseral joints), the characterization of their anatomical 

organization, and the description of several matrix components and cell products (e.g. 

[40,46,49,163]. However, the information obtained with these techniques is also limited, since 

they can be, depending on the technique, unspecific and/or biased toward the study of proteins 

already described in mammals and other model-organisms. 

Classical histology techniques have been the most used techniques to image elasmobranch 

cartilage, as they are highly useful to quickly obtain a broad sense of tissue anatomy and 

organization (e.g. [40,49,61,164,165]). However, since the composition of elasmobranch cartilage 

is largely unidentified, the components that bind to stainings have yet to be verified. Indeed, some 

histological results for tessellated cartilage do not correspond to their mammalian supposed 

counterparts (see Table 2 in [49]). For example, as stated in the section 5.1., alcian blue and 

toluidine blue are positively-charged dyes that bind to negatively-charged components like GAGs. 

When these stains are used in elasmobranch cartilage, it is assumed that they are bound to GAGs, 

leading to the conclusion that elasmobranch cartilage is similar in composition to mammalian 

cartilage [40,49,61]. However, other negatively charged structures or elasmobranch-specific GAGs 

may be reacting to the stainings in elasmobranch cartilage. Actually, studies based on cartilage 

matrix characterization have demonstrated that elasmobranch GAGs differ from other vertebrate 

GAGs, as showcased by their lack of hyaluronan [50,53,166]. Therefore, classical histology cannot 

be used for fine comparison of elasmobranch cartilage with other vertebrate cartilages, requiring 

support from other techniques, such as chemical composition analyses or electron microscopy. 

However, such systematic, multi-technique correlative characterizations of unmineralized 

elasmobranch cartilage have yet to be tackled. 
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For more specific localization of gene expression or products (proteins), several different 

techniques have been successfully applied to elasmobranch cartilage, identifying the expression 

or presence of several components crucial for understanding the development, composition and 

function of the elasmobranch skeleton. For example, using histological dyes, the identification of 

alkaline phosphatase (enzyme related with mineralization) in cells prior to tesserae formation and 

surrounding tesserae borders, demonstrating that 1) cells are involved in the mineralization 

process and 2) mineralization is accomplished using an enzyme conserved through evolution, since 

alkaline phosphatase is involved during mineralization in both prokaryotes and eukaryotes 

[61,64,167–169]. Similarly, immunohistochemistry (IHC) has been used to identify several tissue 

components such as Col1, Col2, and in situ hybridization (ISH) to localize the genes for Col1a1 

(Col1), Col2a1 (Col2), Col10a1 (Col10), Agc (Aggrecan), as well as genes from the Sox family related 

with cartilage development and growth (Sox5, Sox6 and Sox9) [40,46,49,61,163,170]. The 

presence of these components in elasmobranch cartilage indicates a shared cartilage composition 

and chondrocyte function with mammals, demonstrating that the basal cartilage structure is 

apparently conserved across evolution. However, similar to classical histology, the applications of 

these techniques and their resulting information present several limiting factors. First, ensuring 

result accuracy in elasmobranch cartilage requires protocols more difficult to optimize and apply 

than classical histology due to the specificity of antibodies and genetic material, which also are 

more expensive than dyes used in classical histology. Second, the information obtained is limited 

to the identification of genes and proteins already described in mammals, not allowing further 

identification of specific components of elasmobranch cartilage, which still remain unidentified.  

To characterize the ultrastructure of elasmobranch cartilage matrix and cells, electron microscopy 

techniques such as SEM and TEM have been used in multiple studies. SEM has been mostly used 

to image the ultrastructure of mineralized tissues (e.g. tesserae), some non-mineralized structures 

such as cells and cartilage matrix, and the morphological interactions between them 

[39,42,43,47,59,171]. On the other hand, TEM has been used to image, with a resolution of 

nanometers, the ultrastructure of both mineralized and non-mineralized tissues, being especially 

useful for imaging cells and matrix components. Therefore, TEM images have been effective in 

supporting results obtained by histology, such as the verification of Col1 in the perichondrium and 
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tesserae, Col2 in the unmineralized matrix  [42,49,172], the characterization of cell ultrastructure 

and morphology [39,42,171], and to identify unknown fibers not detected by histology techniques, 

such as the parallel organized fibers of the intertesseral joints [49]. Although electron microscopy 

techniques have proved powerful for describing ultrastructural components, –especially those 

specific for elasmobranchs–, sample preparation for these techniques can be technically very 

complex, requiring several steps that, in most of the cases, cannot be achieved for elasmobranch 

cartilage like, for example, the difficulty of getting fresh samples to fix the tissue as closer as 

possible to its native stage. 

Due to the difficulty of applying labeled imaging techniques to image elasmobranch cartilage, 

other techniques should be developed and optimized to study and characterize elasmobranch 

skeletal cartilage, especially techniques able to distinguish and identify distinct features of the 

elasmobranch skeleton. Among the battery of label-free imaging techniques, only polarized light 

has been used to image elasmobranch cartilage [43,59,173,174]. These studies were able to 

illustrate how the organization of fibers (e.g. collagen) vary depending on the tissue region where 

they are located. For example, while the intertesseral joints are composed of well aligned fibers 

that link tesserae [59], the cartilage matrix appears to be composed of fibers with a far more 

random organization [43,59]. However, polarized light does not give information about the 

composition of the tissue and, therefore, this technique needs to be complemented with 

information from other techniques. 

 

  



36 
 

  



37 
 

III | AIMS & OUTLINE OF DISSERTATION 

 
In this dissertation, through three consecutive and highly multidisciplinary projects, I characterize 

aspects of elasmobranch skeletal cartilage structure and biology, with particular emphasis on the 

use of label-free imaging techniques based on X-rays and light; these were specifically developed 

and optimized for this tissue through collaborations with scientists with a broad range of 

backgrounds. These techniques allowed us to describe for the first time several tissue structures 

from elasmobranch skeletal cartilage, as well as to provide insights into the physiology of the 

tissues, especially the cells. The dissertation tackles these research questions through the 

following structure: 

 

- Protocols and Methods. For all techniques, I firstly developed and optimized sample 

preparation protocols (e.g. fixation, embedding), tailored to the particular material 

properties and composition of tessellated cartilage. These allowed the analysis of 

elasmobranch skeletal cartilage using a variety of different techniques and microscopes.  

- Paper 1. This study describes quantitatively the three-dimensional organization and 

orientation of chondrocytes living in tesserae, by the analysis of high-resolution 

synchrotron scans using a custom workflow in AMIRA software. Quantification of 

chondrocyte organization allowed understanding of the role cells play in tesserae growth 

and biomechanics. 

- Paper 2. This study builds a flexible workflow for high-throughput processing of large 

tomographic datasets with repeating structural elements. The approach has broad utility 

—this structural motif is very common in nature and 3D (e.g. μCT) datasets are ever 

larger— also demonstrating the value of multi-disciplinary approaches for tissue analyses 

and enriching collaborations. The developed workflow was used to analyze the data set of 

the chondrocytes enclosed in the tesserae from Paper 1.  

- Paper 3. This study explores the use of a native fluorescence signal (autofluorescence) to 

image elasmobranch skeletal cartilage. We demonstrate that, without the need of external 
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reagents, the autofluorescence signal can be used to obtain high-quality images of 

elasmobranch skeletal cartilage at different scales (from cells to entire skeletal pieces) and, 

with a posterior hyperspectral image analysis, identify different tissue components (e.g. 

ColI2, mineralization fronts, cell membranes) and their location in the tissue.  

The combined results of these works demonstrate how, within the same skeleton, chondrocytes 

can develop species-specific functions and structures, as in the case of the tesserae, but also 

maintain the basic tissue structure and composition characteristic of deuterostome and 

protostome cartilage, as is the case with chondrocytes of the unmineralized matrix. In addition, 

the techniques developed here provide the possibility to explore cartilages from non-model 

species, offering foundations for a comparative approach to explore the diversity of  cartilaginous 

skeletal structures across a massive evolutionary scope (i.e. bilaterian animals).  
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IV | METHODS FOR SAMPLE PREPARATION 

Cartilage is challenging to prepare for imaging and analysis, due its high water content; shared 

borders with  mineralized tissues with different swelling properties (e.g. subchondral bone); and 

its cells (chondrocytes), which are very sensitive to osmotic variations, losing their structure when 

hydration fluctuates even minutely. As such, it has been argued that the only method that 

adequately preserves tissue and cellular architectures is high-pressure freezing, a technique that 

involves ultra-rapidly freezing the tissue below -128ºC under high pressure conditions to avoid the 

formation of ice crystals [1]. While the imaging results from fresh, high-pressure frozen cartilage 

samples do indeed show a near-ideal level of tissue structure preservation [2,3], high-pressure 

freezing is not available to all laboratories. In particular, in the study of non-model species (e.g. 

those rarely maintained in the laboratory), specimens are often captured in the field (e.g. boats, 

ports) out of controlled conditions, making complicated, device-driven sample preparation 

unrealistic. These sampling restrictions for cartilage have surely limited the understanding of how 

cartilage structure and composition vary, especially at fine tissue scales, outside of well-known 

model species. 

During my dissertation, I developed and optimized several protocols for sample preparation of 

elasmobranch skeletal cartilage, adapted to different imaging modalities (e.g. light-, electron- and 

x-ray based imaging) and analysis techniques. Moreover, these straightforward and efficient 

protocols are suitable for field sampling, providing a high level of preservation of tissue and cellular 

ultrastructure, without the hardware-intensive aspects of high-pressure freezing.  However, 

although the resulting preservation is not as pristine as that obtained with high-pressure freezing 

(especially regarding cell ultrastructure), these protocols allow an optimal sample preservation in 

situations where high-pressure freezing is not available or cannot be used (e.g. field work; 

separated animal facilities and high-pressure device).  
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Protocols developed to study elasmobranch skeletal cartilage: 

Independently of the technique, all protocols developed during this doctoral period follow a basic 

structure:  

1. Pre-planning and dissection 

2. Sample preparation (e.g. fixation, staining) 

3. Sample imaging (e.g. electron microscopy, histology, fluorescence microscopy, µCT) 

4. Image processing (e.g. AMIRA segmentation; autofluorescence signal deconvolution) 

This chapter describes the dissection and sample preparation protocols developed to study 

elasmobranch skeletal cartilage, while also acting as a primer for aspects to consider when 

designing experiments to investigate this tissue. The downstream, specific posterior sample 

imaging and image processing techniques are described in each manuscript, for example, the 

AMIRA segmentation workflow in Paper 1 and 2, and the autofluorescence signal deconvolution 

in Paper 3.  The protocols are designed and optimized to prepare mineralized samples since we 

aim to study mineralized structures and to keep the tissue as less altered as possible by avoiding 

tissue demineralization treatments (e.g. demineralization with EDTA). Therefore, any protocol 

related with demineralized or non-mineralized tissues (e.g. paraffin embedded) is included.  

 

1. Pre-planning and dissection 

For optimal preparation of elasmobranch skeletal cartilage, the following recommendations 

should be considered before dissection, as some will play decisive roles in tissue preservation 

quality, especially with regard to soft tissues (e.g. cells, extracellular matrix): 

 Specimen morphometrics. Record relevant specimen morphometrics such as total length 

(TL), disc width (DW, for batoid fishes) and sex (determined by the presence or absence of 

claspers). Take photos of the animal next to a ruler to later verify measurements (see Fig. 

1A). 
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 Localize the skeletal piece of interest and plan out the dissection. The more exposed 

samples are to the environment, the more quickly they degrade, so planning incisions for 

more rapid processing is helpful. Especially in batoids (rays and skates), some skeletal 

elements such as the propterygium and metapterygium are large and close to the skin and 

can be easily localized by palpating the animal (Fig. 1B-C).  

 

 Process specimens quickly. In case the samples need to be fixed, the time between the 

animal’s death and fixation should be kept as short as possible (< 5 minutes). Hydration is 

particularly important for cartilage structure: never let the sample dry.  

 

 Plan specimen size in advance. If the planned imaging or analysis is geared toward tissue 

ultrastructure (e.g. preservation of cell structures, analysis with electron microscopy), 

samples should be as small as possible for better fixation, with a maximum size of 1x1x1 

cm. Tessellated cartilage can be cut quite easily with double-edged safety razor blades, but 

also a variety of other medical or craft tools work well for standardizing sample extraction 

(e.g. biopsy or leather punches). 

 

 Remove all unnecessary tissue. Fixative permeates smaller samples more rapidly, resulting 

in higher quality preservation. For optimal fixation, remove muscle and connective tissue 

attached to skeletal pieces to help fixative penetrate faster into the deeper areas of the 

tissue (Fig. 1B). We have found this particularly important for adequate fixation of cells in 

the tissue. 
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Fig. 1. Morphometrics and dissection of Dasyatis pastinaca. A) Dorsal view of the stingray D. pastinaca, with 

relevant specimen morphometrics indicated, such as total length (TL), the distance from the rostrum to the 

end of the tail; disc length (DL), from the rostrum to the caudal end of the body disc; and disc width (DW), 

which measure the distance between the tips of both wings. Sex is determined by the presence or absence 

of claspers. B) Ventral view of D. pastinaca; the larger skeletal pieces (propterygium and metapterygium) 

can be located by palpating the animal prior to its dissection. C) μCT scan of the animal’s skeleton, where 

the propterygium (P) and metapterygium (M) can be recognized in the skeleton as the largest skeletal 

pieces. 
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2. Sample preparation 

2.1. Fixation 

Fixation is the preservation of biological tissues, to avoid decay due to autolysis or putrefaction 

and therefore, preserve tissue structure and composition. In addition to the factors for 

consideration for fixation of mammalian cartilage (e.g. quick sample fixation, small sample size), 

elasmobranch skeletal cartilage fixation requires additional steps (e.g., because of the higher 

content of water and swelling ratios [4,5]. Therefore, for an optimal fixation of elasmobranch 

skeletal cartilage, the following points need to be considered: 

 Reduce time between animal death and fixation. As tissue degradation begins when the 

animal dies, for high-quality histology and ultrastructure imaging, it is critical that tissue be 

fixed as soon as possible after the animal's death; we have found that if fixation can be 

performed within 5 minutes, it makes a large difference to resultant tissue quality. If this 

requirement cannot be reached, the tissue should at least be maintained at low 

temperatures (~4°C) to slow down tissue degradation, but not frozen, as ice crystals can 

severely damage cell membranes. 

 

 Avoid dehydration. Additionally, once the biological sample has been removed from the 

animal, exposure with air should be limited to avoid dehydration. Water is a large 

proportion of tessellated cartilage volume [6,7] and so dehydration can result in extreme 

distortions and catastrophic collapse of samples; the collapse of the unmineralized 

cartilage in air-dried specimens is why museum collection specimens often present cracks 

in the tesseral layer. Although specimens can be rehydrated to some degree if placed back 

in water or physiologic saline, considerable structural damage can be caused in 

dehydration/rehydration. Hence, samples are best kept hydrated, either in chilled 

seawater or PBS. If fixation cannot be performed immediately, it is useful to delay 

specimen dissection as well: the muscle surrounding the cartilage appears to act as a buffer 

against large temperature and hydration changes, with resultant tissue preparations being 

of higher quality the shorter the time between dissection and fixation.  
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 Fixative volume should be ~20 times the volume of the sample. With this ratio, it is 

ensured that there is enough fixative (e.g. enough PFA molecules) to react with the tissue. 

Specific fixatives are discussed below. 

 

 Smaller samples are better. We have found that cutting samples into blocks of ≤1 x 1 x 1 

cm is optimal for adequate fixation of elasmobranch skeletal cartilage (denser tissue may 

require smaller samples). The importance of the sample size is based on the penetration 

rate by diffusion of formaldehyde reagents, which is ~1 mm/h [8]. Thus, if the sample is 

too large, it will take several hours until the reagent reaches the inner areas of the sample 

(it will take ~25h for the fixative to reach to the center of a 10 mm thick sample) and, by 

this time, the biological structures in these areas (especially cells) may have degraded. 

 

 Use a fixative that fits your imaging goals. There is no universal fixative optimized to fix 

all tissue structures for all imaging techniques and so, depending on the structure or 

technique of interest, a different fixation protocol should be used (see Table 1). We 

discuss common fixatives below, outlining their advantages, disadvantages and other 

considerations (e.g. with regard to imaging): 

 

2.1.1. Ethanol - Organic solvent 

 Fixation: Replacement of water (dehydration) by ethanol, precipitation and denaturation 

of proteins in situ. 

 Advantages: Cheap, easy to come by, non-toxic and easy to dispose of. 

 Disadvantages: It extracts lipids and aqueous-soluble proteins, altering the cartilage 

extracellular matrix and shrinking the chondrocytes. 

 Recommended structures: Mineralized structures (e.g. tesserae, areolar cartilage) and 

genetic material analyses. 
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 Suitable techniques: Computed tomography (CT-scan, synchrotron), SEM, Raman, 

histology, some immunohistochemistry (IHC), DNA and RNA. 

 Reagent considerations: Flammable. 

 

Protocol: 

Due to the potentially damaging effect of dehydration on structure, samples should be stepped 

gradually through increasing ethanol concentration in 20 minute steps until reaching 100% (see 

Appendix, protocol Fixatives).  

Considerations: 

1. The buffer solution used (e.g. for rinsing and hydrating samples) should be PBS 0.1M. To 

avoid impurities that can have an effect in our sample (e.g. osmolarity variations), it is 

recommended to prepare the PBS solution fresh everytime. For that, solid PBS tablets can 

be dissolved in distilled water prior to use (we used PBS tablets Thermofisher, catalog 

number: 18912014).  

2. All the steps should be performed on the rotator to facilitate the fixative reaching all tissue 

areas. 

3. After each step, it is recommendable to leave the sample 10 min in the desiccator under 

vacuum to facilitate the infiltration of the fixative. We have found this step particularly 

important to preserving cells located within mineralized areas (e.g. tesserae). 

4. All steps can be performed at room temperature. If some of the steps need to be done 

overnight, the sample should be kept at 4°C (fridge). 

 

2.1.2. Paraformaldehyde 4% in PBS – cross-linking fixative 

Paraformaldehyde (PFA) is the most-used fixative in histology because it is a monoaldehyde (i.e. 

its molecules are small), which allows rapid diffusion into tissue, and therefore, an efficient 

fixation. However, there are indications that PFA does not adequately preserve cell membranes 



58 
 

and organelles and, as a consequence, it is not used for ultrastructural analyses (see section below) 

[8,9]. 

 Fixation: PFA establishes covalent links with the side-chains of several molecules such as 

unsaturated lipids (particularly if calcium ions are present), groups on lysine, arginine, 

cysteine, tyrosine, threonine, serine and glutamine to form reactive complexes. These 

reactive complexes can also react with each other forming cross-links, which results in a 

stable meshwork. PFA does not react with carbohydrates [8,10]. 

 Advantages: Fast, optimal for cartilage matrix preservation and cell morphology analysis at 

non-high resolution scales (e.g. for histology, rather than electron microscopy). 

 Disadvantages: Toxic. Oxidates with time. Masks some epitopes for certain antibodies 

through the generation of a dense cross-liked meshwork (excessive cross-linking). Not 

recommended for cell ultrastructure analysis with electron microscopy imaging (TEM, FIB-

SEM) due to destruction of organelles. 

 Recommended structures: Cartilage extracellular matrix, cells (gross morphology), 

mineralized tissues.  

 Suitable techniques: Computed tomography (µCT, synchrotron-µCT), SEM, Raman, 

histology, most IHC, DNA and RNA.  

 Hazard statements: Toxic (skin contact and inhalation). Manipulate under the hood with 

adequate protection (lab coat, googles). Dispose of properly. 

 

Protocol: 

The fixation solution 4% PFA is buffered with PBS 0.1M. Samples should be maintained in this 

solution during 6 hours at room temperature (RT) or overnight at 4°C. Once the sample has been 

fixed, the fixative should be washed by soaking three times the sample in PBS (see Appendix, 

protocol Fixatives). 
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Considerations: 

1. All the steps should be performed on the rotator to facilitate the fixative reaching all tissue 

areas. 

2. After each step, it is recommendable to leave the sample 10 min in the desiccator under 

vacuum to facilitate the infiltration of the fixative. We have found this step particularly 

important to preserving cells located within mineralized areas (e.g. tesserae). 

3. We recommend purchasing a pre-mixed stock solution of buffered 4% PFA (we used 

Paraformaldehyde solution 4% PBS, Santa Cruz Biotechnology, catalog number: sc-

281692). This can then be divided into separate vials (e.g. 15 ml vials) and frozen until time 

for use. PFA oxidizes to formic acid with time; older (less reactive) PFA has an obvious 

yellow tint. Our method ensures that the PFA is fresh for each sample preparation.  

4. The fixation time cannot exceed 48 hours. Otherwise, the fixative will create excessive 

cross-linking (mask of epitopes and proteins that produces a weak histology staining) [11]. 

5. Once fixed, samples can be stored in PBS at 4°C, although it is recommended to continue 

with the ensuing procedures (e.g. embedding) as soon as possible. 

 

2.1.3. Glutaraldehyde 2% + 2% PFA – cross-linking fixative 

Glutaraldehyde (GA) is a crucial fixative for electron microscopy due to its effectiveness in 

stabilizing cell ultrastructure and morphology. However, it is composed of larger molecules than 

PFA and, as a consequence, has a lower penetration rate into the tissue. To ensure the optimal 

tissue and cell ultrastructure preservation, a combination of GA and PFA is used to analyze samples 

in electron microscopy [12,13]. 

 Fixation: GA (similar to PFA) establishes covalent links with tissue molecules creating a 

stable meshwork. GA can react with the same chemical groups as PFA (see above), 

however, GA has a higher potential to produce cross-links, due to the presence of an extra 

aldehyde group: while PFA has only one aldehyde group at the end of its molecule, GA 

contains two. The extra aldehyde group of GA also reacts with the protein, resulting in a 
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higher cross-linking than PFA. The excessive cross-linking results in better preservation of 

the tissue ultrastructure, although it negatively affects other techniques such as 

immunohistochemistry (reacting with the epitopes of the antibodies) and slows the 

penetration of the fixative (due to the higher size of the molecule). GA does not react with 

lipids, unless they contain free amino groups (e.g. phospholipids) [10]. 

 Advantages: Fast, optimal for cartilage matrix and cell ultrastructure fixation. 

 Disadvantages: Toxic. Oxidates with time. Masks some epitopes for certain antibodies 

through the generation of a dense cross-liked meshwork (excessive cross-linking). 

 Recommended structures: Ultrastructure of cartilage extracellular matrix and cells. 

 Suitable techniques: Electron microscopy (SEM, ESEM, TEM, FIB-SEM). 

 Hazard statements: Toxic (skin contact and inhalation). Manipulate under the hood, with 

adequate protection. Dispose of properly. 

Protocol: 

The fixation solution 2% GA + 2% PFA can be buffered with PBS 0.1M or sodium cacodylate buffer 

(see Appendix, protocol Fixatives). 

Considerations: 

1. The fixative solution needs to be prepared fresh every time, ideally immediately prior to 

fixation. Usually, GA is stored in a stock solution of 25% GA and PFA can be obtained from 

a frozen stock solution or prepared from scratch (see section above). 

2. To preserve cell ultrastructure it is crucial to fix the tissue immediately after the animal’s 

death. 

3. The sample should be maintained at 4°C (fridge) in the fixative until the embedding 

procedure. However, the storage time should be minimized to avoid excessive cross-

linking. 
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2.1.4. Osmium tetroxide  

Osmium tetroxide (OsO4) is used after the samples have been fixed with GA 2% + PFA 2% and prior 

to electron microscopy analysis, acting as a post-fixation reagent (second-fixation step) as well as 

a staining reagent.  

 Fixation: OsO4 reacts with amino and sulphydryl groups, binding unsaturated acyl chains of 

membrane lipids (stabilizing cell membranes) and staining them black, which provides 

contrast with cellular structures. 

 Advantages: Optimal to preserve and visualize cell and matrix ultrastructure, particularly 

for soft tissues with low native electron-contrast. 

 Disadvantages: Highly toxic and difficult to dispose of. 

 Recommended structures: Ultrastructure of cartilage extracellular matrix and cells 

 Suitable techniques: Electron microscopy (SEM, ESEM, TEM, FIB-SEM). 

 Hazard statements: Highly volatile. Severe irritant for eyes and respiratory tract, can cause 

irreversible eye damage including blindness with direct contact. Can cause long-term 

toxicity in liver and kidneys. 

Considerations: 

1. OsO4 is photosensitive. Both the reagent and post-fixed samples should be maintained in 

dark conditions until embedding (see Appendix, protocol TEM+FIB-SEM sample 

preparation). 

 

2.1.5. Non-fixed samples 

For some applications, it should be noted that cartilage can also be preserved to some degree by 

freezing (e.g. in traditional -20° or -80° freezers). To a point, this allows the study of the tissue 

closer to its native state, in avoiding some artifacts produced by fixatives (e.g. excessive cross-

linking). However, depending on the freezing temperature and rate of cooling, artifacts and tissue 

disruption related to water vitrification and crystallization can appear. These can be avoided using 
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cryofixation techniques, which involve rapid cooling of tissues to temperatures below the “safe 

temperature” (-127.41°C) [14]. By cooling extremely rapidly (e.g. by plunge-freezing in liquid 

nitrogen or ethane) and especially at high pressures (~2100 bars, as in high-pressure freezing), 

artifacts from ice crystal formation (vitrification) can be avoided [2,3,16,17,18]. Whereas 

cryofixation techniques render the best cartilage and cell ultrastructure preservation, however, 

they could not be used during this dissertation to prepare elasmobranch skeletal samples since 

the needed laboratory equipment and reagents (e.g. liquid nitrogen) were not available when the 

specimens were fixed. 

 

2.2. Embedding 

Embedding involves encasing a tissue sample within a block of material, to provide a stabilizing 

matrix for sample sectioning and imaging. Just as the surrounding banana bread helps you slice 

through walnuts, embedding samples allows tissues to be sectioned in uniform, oriented and thin 

slices (in the range of mm to μm), that can then be polished to expose and smooth desired regions 

of interest. 

The properties of the supporting matrix must match those of the sample in order to stabilize 

sectioning (i.e. the bread cannot be too soft compared to the walnut or the knife will drag it 

through the bread); as a result, the hardness of the embedding block is crucial for precise 

sectioning. Thus, if we want to accurately section tissues containing mineralized materials (e.g. 

tesserae), the embedding media should match the hardest material (e.g. a hard plastic resin like 

PMMA should be used). If, on the contrary, our tissue lacks mineralized areas or has been 

demineralized, we can use softer embedding media (e.g. paraffin). We are especially interested in 

preserving the mineralized tesserae and therefore all embedding techniques below are based on 

hard embedding media. 
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2.2.1. PMMA Embedding 

PMMA is a hard plastic material (polymer) used to embed mineralized tissues. The exact material 

properties of PMMA are adjustable, depending on the combination of reagents used to prepare it 

and the polymerization protocol. We have used two PMMA protocols with different 

polymerization temperatures: “cold PMMA embedding” (performed at 4°C) and “hot PMMA 

embedding” (performed at 30-60°C). 

The two protocols have different advantages and disadvantages. The hot PMMA embedding 

process is considerably faster than the cold PMMA embedding process (1 week vs. 1 month); 

however, as sample blocks tend to fracture when cut in a microtome, hot embedding is only 

suitable for thick sectioning of sample blocks (e.g. with low-speed saw) for resultant sections tens 

to hundreds of microns thick. This is useful for imaging and analyses where sample thickness is not 

particularly relevant (e.g. surface imaging techniques like SEM). In contrast, cold-embedded 

sample blocks can be sectioned considerably more thinly, allowing the production of samples of 

microns thick, and therefore more suitable for techniques that require serial sectioning such as, 

for example, histology. For this reason, only cold PMMA embedding was used to prepare the 

samples for this dissertation (see PMMA embedding protocol). 

 Embedding media: Polymethylmethacrylate (PMMA).  

 Advantages: Transparent embedding blocks, optimal for cutting by microtome or low-

speed saw (e.g. Isomet precision saw). 

 Disadvantages: Toxic, long embedding process (1 month), not functional for IHC. 

 Suitable techniques: CT-scan, histology, light microscopy (confocal, polarized), SEM. 

 Hazard statements: Toxic (skin contact and inhalation). Manipulate under the hood, with 

adequate protection. Dispose of properly. 
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2.2.2. EPON Embedding 

EPON is a resin widely used to embed samples for electron microscopy, since it allows sectioning 

ultra-thin cuts [19]. 

 Embedding media: Glycid ether 100 (aka EPON 812). 

 Advantages: The best embedding media for ultrastructure imaging of cartilage matrix and 

cells in electron microscopy. 

 Disadvantages: Highly toxic, medium-long embedding process (2 weeks), not functional for 

IHC. 

 Suitable techniques: Electron microscopy (TEM, FIB-SEM, SEM, ESEM), CT-scan and 

histology. 

 Hazard statements: Toxic, produces eye and respiratory tract damage, skin corrosion and 

irritation, skin sensitization, carcinogenic. However, the resin is not toxic once it has 

polymerized. 

Considerations: 

1. EPON must be prepared freshly for each embedding session (see protocol). The 

proportions of combined reagents results in differing degrees of hardness, which can be 

tuned to the type of sample being embedded. 

 

2.2.3. Cryo-embedding 

The primary advantage of cryo-embedding/microtomy is time: samples can be embedded, 

sectioned and imaged in <1 day. Cryo-embedding is commonly used to embed non-fixed samples, 

although it can also be used with fixed tissue. This process involves embedding samples in OCT (a 

water-soluble medium of resins and glycols) at low temperatures (~-10°C). OCT-embedded blocks 

can be stored frozen, but typically are immediately cut into slices using the cryo-microtome on the 

same cold stage where embedding is performed (see Cryo-microtomy below). Once slices have 
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been cut, the OCT media is easily removed with distilled water. The protocol from cryo-embedding 

to cryo-microtomy is described under Cryo-microtomy below. 

 Embedding media: OCT reagent. 

 Advantages: Optimal for rapid preparation of unfixed tissues, fast embedding (<1 day), 

allows sectioning of both hard and soft materials, the embedding media is removed with 

water, and is non-toxic. 

 Disadvantages: Requires the cryo-microtome, only used to cut thin samples, permanent 

blocks are not possible (only short storage), fresh samples remain unfixed. 

 Suitable techniques:  Histology, IHC, Raman. 

 Hazard statements: Not toxic. 

 

2.2.4. Clarification 

Although not an embedding technique, clarification is also used to prepare samples for imaging 

and so we will discuss it briefly here. Clarification functions by rendering bulk tissues transparent 

to permit imaging of deeper structures (e.g. for confocal microscopy). The tissue is submerged in 

a reagent with a higher refraction index than the sample’s tissues; once the clarification reagent 

permeates the tissue, the sample and the reagent have the same refractive index, allowing light 

to pass through without being refracted, making the tissue transparent [20]. Comparatively large 

samples, several centimeters in each dimension, can be cleared effectively, allowing imaging of 

macroscopic tissue features.  

As no published protocols exist for clarification of tessellated cartilage, we compared two clearing 

agents: ethyl cynamate (ECi) [21] and BABB (BenzyAlcohol-BenylBenzoate) [22]. We found that ECi 

cleared the tissue more completely (e.g. in BABB-cleared samples, blood vessels were often not 

completely cleared), while also being faster, cheaper and non-toxic. Protocols for ECi clarification 

are found in Appendix, ECi clarification. 
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 Embedding media: Ethyl cinnamate (ECi). 

 Advantages: Optimal to visualize large pieces of samples, on the order of centimeters thick 

(e.g. entire skeletal elements), to penetrate deeply into tissues and obtain 3D images of 

whole structures. 

 Disadvantages: To be transparent, the tissue needs to be submerged within the clarification 

media. 

 Suitable techniques: Raman, confocal microscopy (autofluorescence, fluorescent-stained 

samples), light sheet microscopy. 

 Hazard statements: Not toxic. 

Considerations: 

1. The tissue can be kept submerged in the clarification media for months without 

degradation. 

 

Fig.2. Propterygium cross-section before and after being clarified with ECi. Note that, in the clarified sample 

(right), the tesserae and the cartilage matrix became transparent, however, the perichondrium (yellow 

elements at top of image) remained opaque.  
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2.3. Cutting, polishing and mounting 

Once the samples are embedded in blocks —whether PMMA, Epon or some other technique— 

the blocks need to be prepared for the visualization technique of interest. The preparation 

methods are listed as follows: 

 

2.3.1. Microtome cutting and mounting 

Microtome cutting and mounting is suitable for histology, IHC, Polarized microscope, Confocal 

microscope. 

Microtome cutting and mounting is suitable for histology, IHC, Polarized and confocal 

microscopy. 

1. Using a saw, trim the excess embedding media from the block. It is recommended to leave 

some embedding media surrounding the sample, in order to make the slices more stable 

when cut with the microtome. 

2. Superglue the sample block to a piece of PMMA (Fig. 3) that fits into the microtome holder; 

we made a mold so the PMMA base piece could be easily reproduced. Once the sample 

and block are clamped in the microtome, rotate and orient the sample according to the 

desired cutting orientation. 

3. Use a D-knife (diamond knife) to trim into the block face until reaching (Fig. 4) the region 

of interest. For this trimming step, an older/duller D-knife can be used and thicker cuts 

(~20-30 μm) can be made to remove tissue more quickly. 

4. When cutting sample slices, to make cutting smoother, it is useful to wet the sample 

surface before each slice, using a brush dipped in 0.25% Triton X-100 (detergent) in distilled 

water. 

5. Once the desired region of interest is reached, change for the sharpest/newest D-knife for 

more precision in cutting (Fig. 3). 
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6. Reduce the speed and adjust the thickness of the cut. The optimal thickness for tessellated 

cartilage is between 7 and 10 μm. Thicker than that, the tesserae are pulled away from the 

soft tissue and out of the sample block (Fig. 5). To generate sections of more uniform 

thickness and to avoid damage, it is recommended to cut the block at low speeds. 

7. Prepare Dako slides (special glass slides with a glue on them, which facilitates the adhesion 

of the tesserae) on a flat surface with a drop of 70% ETOH on them. It is important to 

hydrate cut samples at all times with 70% ETOH. Never with 100% ETOH, as this will 

dissolve the PMMA. 

8. Once a section is cut, take it carefully with tweezers and place it in the previously prepared 

drop of 70% ETOH on top of a Dako glass slide. The section should be soaked all time with 

70% ETOH. 

9. Cover the sections with a plastic cover slip (Kisol) and pass a roller or brush over the 

covered samples to flatten them out. The cover slip should cover the sample completely, 

without jutting beyond the borders of the glass slide, otherwise air may leak into the 

sample space. 

10. Cover the samples with a filter paper to absorb the remaining 70% ETOH. 

11. Once all slide sections have been prepared, stack the slides together with filter paper 

between them, Add empty glass slides (5 of each) on top and below the pile of slide-

sections containing the samples and place them in the pressing device. 

12. Tighten the pressing device without breaking any glass slides and place the pressing device 

with the slides in the oven at 60°C for 48h. 

13. After 48h in the oven, take out the slides and wait until they cool and reach RT. The sections 

are ready to use or store. 
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Fig. 3. Sample embedded in PMMA and cut sections. Above: A sample embedded in a PMMA block 

superglued in a piece of PMMA. Below: a Dako glass slice with PMMA cut sections covered with a plastic 

cover slip (Kisol).  

 

 

Fig. 4. Difference between trimming and cutting steps.  
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Fig. 5. Difference between sections showing broken tesserae and well-sectioned tesserae. In non-

demineralized samples, when tesserae are not sectioned properly (left), the tesseral layer tends to tear in 

two parts like a zipper, making impossible any analysis and imaging. In the well-sectioned tesserae (right), 

the tesserae morphology is maintained.  

 

2.3.2. Cryo-microtome cutting and mounting 

Cryosectioning can be performed with formalin-fixed, fresh or frozen tissue samples. Suitable 

techniques include light microscopy (raman, confocal and  polarized microscopy), histology and 

IHC. 

1. Cut the sample in small pieces that can fit into silicone flat embedding molds. 

2. Place the samples into the molds, with the regions of interest oriented to the tip (where 

the block will be cut). 

3. Slowly fill  the molds with OCT medium, avoiding the formation of bubbles. 

4. Place the molds inside the cryo-microtome chamber on the metal plate at -7°C. Wait until 

the OCT medium turns white, indicating that the sample has frozen. 

5. Affix the sample block to the cutting plate by placing a drop of OCT medium between block 

and plate, freezing them together. 

6. Cut the block with the cryo-microtome in a manner generally similar to the process 

described for the microtome above (Microtome cutting + mounting section): First, trim the 

block with thick cuts (~60 μm) and, once the region of interest is reached, make cuts 

thinner (~10 - 50 μm). In fresh, cryo-prepared samples, we have found that thicker samples 

(50 μm) maintain structures better than thinner samples. 
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7. The cut sections can be lifted off with a paintbrush and placed on a glass slide. As above, 

Dako glass slides are recommended, as they have a special coating that helps the section 

adhere to the glass slide. 

8. The tissue sections on the glass slides can be stored in the freezer indefinitely. When ready 

for use, the glass slides can be removed from the freezer and thawed, but then should be 

mounted as soon as possible to avoid sample damage. 

9. Once thawed, check tissue slices under the microscope (some may be broken or 

destroyed) and select samples of interest. 

10. To eliminate the OCT medium, take the desired tissue slices with tweezers (being careful 

not to break them) and place them on a separate glass slide with a drop of PBS and wait 

~5 minutes. Then, place the sections in a new drop of PBS 

11. While the sample is in PBS, prepare a glass slide with a gene frame on it, with one new 

drop of PBS inside the frame (Fig. 6). 

12. Place the tissue slice inside the gene frame in the PBS drop (Fig. 6). 

13. Cover it with a cover slip (Fig. 6). 

14. The sample can be kept in this configuration until it starts degrading; how long depends on 

whether the sample is fixed or not and whether anti-bacterial solution has been added to 

the PBS. 

Considerations: 

1. The tissue slices can be stored in the freezer. However, once thawed, slices should be 

processed/imaged immediately, as multiple freeze-thaw cycles can damage tissue 

structure, particular for cartilage. 

2. Once cut and the embedding media removed, slices are mounted using aqueous media 

(usually PBS, see below). Therefore, they have a limited storage time (~2 weeks) until 

bacteria starts growing on the tissue. 
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Fig. 6. Cryosectioned samples mounted and maintained in wet conditions. To keep cryosectioned samples 

hydrated, they are kept in aqueous media (usually PBS) inside of a gene frame (blue square), which is 

covered with a cover slip to avoid evaporation.  

 

2.3.3. Block polishing 

Block polishing is suitable for SEM, FIB-SEM, confocal and polarized microscopy. 

1. If possible, perform a µCT scan of the sample block to have an image of the sample 

orientation and localize the regions of interest. 

2. If the region of interest is far from the surface, the sample can be trimmed down using a 

cutting saw, using the reconstructed µCT data as a guide (if available). 

3. Once the region of interest is close to the surface, the sample is polished with decreasing 

grain size (e.g. grinding paper or diamond spray) to expose a smoothed region of interest 

at the surface. Start polishing with higher grain size (4000) until the region of interest is 

exposed to the surface. Then, continue polishing using smaller grain size (2000 and 

diamond size) to polish the sample surface (Fig. 7). 

4. If a sub-surface imaging technique is planned (e.g. FIB-SEM, confocal microscopy, Raman 

spectroscopy), perform a second µCT scan to localize subsurface regions of interest 

according to surface landmarks. 

5. For FIB-SEM and SEM, place the sample on carbon conductive tabs and coat them with 3X 

carbon and 1X platinum. 
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Considerations: 

1. Samples prepared for SEM need to be polished carefully to create a perfectly smooth block 

face, as the regions of interest are located on the surface of the sample. 

2. In contrast, samples prepared for FIB-SEM do not need to be polished carefully, as the 

regions of interest are usually located beneath the surface. 

 

Fig. 7. Samples embedded in EPON for electron microscopy imaging. For TEM (left), the sample is positioned 

facing and against the cut surface of the tip (at the bottom of the sample block in the image) for ultra-thin 

(nm) sectioning using an ultramicrotome. The rest of the block, containing only EPON, is needed to hold 

the sample in the ultramicrotome while cutting. For FIB-SEM (right), the sample block needs to be as small 

as possible, again with the sample positioned on the surface of the block.  

 

2.4. Stainings 

In this section are summarized the techniques based on histology, fluorescent dyes and IHC used 

and optimized during the doctoral period. Protocols can be found in Appendix, pages 227-244. 

 

  



74 
 

2.4.1. Classical histology  

Alcian blue 

Alcian blue is a positively charged dye (cationic) with an affinity for anionic groups (negatively 

charged) such as glycosaminoglycans in cartilage (Fig. 8).  

Results: 

- Blue: Cartilage extracellular matrix, pericellular matrix, territorial matrix, tesserae matrix, 

spokes.  

 

Toluidine blue 

Similar to alcian blue, toluidine blue is a positively charged dye (cationic) with an affinity for anionic 

groups (negatively charged) such as glycosaminoglycans in cartilage (Fig. 8). It is often used to stain 

samples prepared for electron microscopy, in order to have a broad image of the section before 

imaging it under the electron microscope.  

Results: 

- Blue: Cartilage extracellular matrix, pericellular matrix, territorial matrix, tesserae matrix, 

spokes.  

 

Safranin O 

Safranin O is a positively charged dye (cationic) that binds to polyanions (several anionic groups, 

negatively charged), having an affinity for glycosaminoglycans (Fig. 8). Safranin O is usually 

combined with fast green (negatively charged) as a counterstaining.  

Results: 
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- Red: Cartilage extracellular matrix, pericellular matrix, territorial matrix, spokes. 

References: [23] 

 

Hematoxylin & Eosin 

Hematoxylin & Eosin is used to have an overview of the tissue, as it stains different structures (Fig. 

8). This staining is a combination of two dyes: (1) Eosin (pink), which is acidic (negatively charged) 

with affinity for basic structures, and (2) hematoxylin (purple), which is used in a combination with 

aluminum salts (mordant) and interacts with acidic structures. 

Result: 

- Red-pink: cartilage matrix 

- Purple-blue: Nucleus 

 

Sirius red 

Sirius red is a negatively charged dye (anionic) containing sulfonic acids groups that increase the 

birefringence when bound parallel to basic proteins such as collagens or proteins containing basic 

aminoacids (positively charged). In cartilage, it has an affinity for collagen fibers, where the 

staining intensity corresponds to the abundance or degree of packing of collagen fibers.  

 

Results: 

- Red: Cartilage extracellular matrix, perichondrium, tesserae.  

References: [24,25] 
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Fig. 8. Tessellated cartilage stained using classical histology dyes. Alcian blue (AB), toluidine blue (TB) and 

safranin O (SO) are cationic dyes with an affinity for glycosaminoglycans, located mainly in the cartilage 

matrix, tesserae and spokes. Unlike AB and TB, SO shows a better contrast between the cartilage matrix 

and spokes, since this stain is used in combination with fast green (counterstrain). Hematoxylin-Eosin (HE) 

is a combination of eosin (which stains positively-charged structures such as collagens in pink) and 

hematoxylin (which stains negatively-charged structures such as nucleus and GAGs in purple). Note that 

the unmineralized cartilage matrix is stained with pink, showing the dominance of collagens over GAGs.  
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2.4.2. Fluorescent dyes 

Phalloidin 

Phalloidin is a toxin with an affinity for the actin fibers present in the cytoplasm of the cells. For its 

visualization under the microscope, phalloidin is labelled with a fluorescent analog. Several 

fluorescent analogs can be used, differing on their excitation and emission spectra such as, for 

example,  Alexa Fluor 488 phalloidin (green) or rhodamine phalloidin (red). Both phalloidins were 

tested in elasmobranch skeletal cartilage, and none of them gave satisfactory results. Red 

phalloidin did not bind to the cellular actin fibers, but to the mineralized matrix of the tesserae 

(Fig. 9). Instead, green phalloidin bound to the cellular actin fibers, but also to the nucleus and 

cellular membrane.  

 

Rhodamine  6G 

Rhodamine 6G is a fluorescent dye with an affinity for soft tissues, not binding to mineralized 

tissues. As the soft tissues are stained with bright red and mineralized tissues are seen in black, it 

offers an optimal contrast to segment and visualize soft tissues, especially those that are small 

such as canaliculi passages in bone or tesserae (Fig. 9).  

 

DAPI 

DAPI is a fluorescent dye with an affinity for the DNA and, therefore, it is used to visualize cell 

nuclei (Fig. 9A-B).   
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2.4.3 Immunohistochemistry 

Sox9 

Sox9 is a transcription factor exclusive for chondrocytes, as it regulates the genes Agc and Col2a1, 

which encode the production of aggrecan and Col2 (Fig. 9B).  

Fig. 9. Elasmobranch skeletal cartilage stained with fluorescent labels. A) Chondrocytes from a catshark 

embryo notochord stained with Sox9 antibody (red) and DAPI (blue) to highlight the cell nuclei. B) Cross 

section of the (juvenile) tessellated skeleton stained with rhodamine phalloidin (red) and DAPI (blue). Note 

that although rhodamine phalloidin is typically used to stain the actin cytoskeleton, here, it stained the 

mineralized matrix of the tesserae, instead of the cell cytoplasm. C) Planar view of tesserae stained with 

rhodamine (red). Rhodamine stains soft tissues, including the joint spaces and the cell lacunae. Mineralized 

structures are unstained (black in this image).  
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2.4.4. Stainings for electron microscopy 

Uranyl acetate 

Uranyl acetate (UA) is a staining used to enhance the contrast in biological tissues that are 

analyzed in electron microscopy (Fig. 10). In particular, the uranyl ions of UA enhance the contrast 

by binding with lipids and proteins with sialic acid carboxyl groups such as glycoproteins as well as 

with the nucleic acid phosphate groups of the genetic materials (DNA and RNA).  

Lead citrate 

Lead citrate is a staining used to enhance the contrast in biological tissues for electron microscopy 

(Fig.10). Lead citrate reacts with several cellular structures such as ribosomes, lipid membranes 

and  cytoskeleton.  

Fig. 10. Elasmobranch skeletal cartilage stained with heavy metals for electron microscopy imaging. A) A pair 

of twin chondrocytes from the same chondron imaged with FIB-SEM. B) A chondrocyte from the tesserae 

imaged with TEM. In both cases, samples were stained with osmium tetroxide (OsO4), uranyl acetate (UA) 

and lead citrate (LC), which allowed imaging cellular and matrix ultrastructure such as matrix Col1 and Col2 

fibers and cell organelles such as the nucleus, the mitochondria and the rough endoplasmic reticulum.  
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Table 1. Summary of the sample preparation protocols required for each technique and the image types obtained. 

Technique Biological structure Scale range Fixative 
Post- 

fixation 
Staining Embedding Polishing 

Microtome 
cutting 

Time 

FIB-SEM 3D tissue ultras nm - μm 2%GA + 2% PFA 2% OsO4 
2% UA + 

lead citrate 
EPON Yes - 3 weeks 

SEM 2D cells + matrix nm - μm 
2%GA + 2% PFA / 4% PFA / 

ETOH 70% 
Optional Optional EPON/PMMA Yes - 4 weeks 

TEM 2D cells + matrix nm - μm 2%GA + 2% PFA 2% OsO4 
2% UA + 

lead citrate 
EPON Yes - 3 weeks 

BSEM 2D mineralized tissue nm - μm Without / ETOH 70% - - 
EPON/PMMA/

Without 
Yes - 1 week 

Histology 
2D cells + matrix + 
mineralized tissue 

μm - mm 4% PFA / ETOH 70% - - 
PMMA/Paraffin

/ OCT 
- Yes 4 weels 

IHC 2D cells + matrix μm - mm 4% PFA / ETOH 70% - - 
PMMA/Paraffin

/ OCT 
- Yes 

3 days - 3 
weeks 

Dyes 2D cells + matrix μm - mm 4% PFA / ETOH 70% - - 
PMMA/Paraffin

/ OCT 
- Yes 4 weeks 

Cryo 
2D cells + matrix + 
mineralized tissue 

μm - mm Without /  4% PFA - - OCT - Yes 1 day 

CTscan 3D mineralized tissue μm - mm 
Without /  4% PFA / ETOH 

70% 
- - 

EPON/PMMA/
Without 

- Yes 1 day - 3 weeks 
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Abstract 

A prerequisite for many analysis tasks in modern comparative biology is the segmentation of 3-

dimensional (3D) images of the specimens being investigated (e.g. from microCT data). 

Depending on the specific imaging technique that was used to acquire the images and on the 

image resolution, different segmentation tools are required. While some standard tools exist 

that can often be applied for specific subtasks, building whole processing pipelines solely from 

standard tools is often difficult. Some tasks may even necessitate the implementation of 

manual interaction tools to achieve a quality that is sufficient for subsequent analysis. In this 

work, we present a pipeline of segmentation tools that can be used for the semiautomatic 

segmentation and quantitative analysis of voids in tissue (i.e. internal structural porosity). We 

use this pipeline to analyze lacuno- canalicular networks in stingray tesserae from 3D images 

acquired with synchrotron microCT. 

 The first step of this pipeline, the segmentation of the tesserae, was performed using 

standard marker-based watershed segmentation. 

 The efficient processing of the next two steps, that is, the segmentation of all lacunae 

spaces belonging to a specific tessera and the separation of these spaces into individual 

lacunae required recently developed, novel tools. 

 For error correction, we developed an interactive method that allowed us to quickly 

split lacunae that were accidentally merged, and to merge lacunae that were wrongly 

split. 

 Finally, the tesserae and their corresponding lacunae were subdivided into structural 

wedges (i.e. specific anatomical regions) using a semi-manual approach. 

 

With this processing pipeline, analysis of a variety of interconnected structural networks (e.g. 

vascular or lacuno-canalicular networks) can be achieved in a comparatively high-throughput 

fashion. In our study system, we were able to efficiently segment more than 12,000 lacunae in 

high-resolution scans of nine tesserae, providing a robust data set for statistical analysis. 
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1. Introduction 

Porosity is a characteristic feature of mineralized biological tissues, from the skeletons of corals, 

sponges and radiolaria to the bone and dentin of vertebrates [1–5] (Fig. 1). These diverse 

tissues are perforated by canals and cavities of a huge range of size scales, from ostia, medullary 

cavities and foramina visible to the naked eye down to micron-scale tubules and passages and 

interstitial nanoscale porosities within the collagen-apatite matrix of teeth and bones. Passages 

or chambers can communicate to the exterior of the tissue or be bounded and entirely internal, 

can exhibit relatively uniform geometric properties or a range of constrictions and expansions, 

can be aligned in simple arrays or in complex and interconnected networks. Internal porosity 

can play mechanical roles (e.g. reducing weight, aiding buoyancy), but also physiological ones, 

providing pathways for nerves, vasculature and cell connections. The latter explains why 3D 

porosity organization and pore size-scale distribution is a vital consideration in tissue 

engineering scaffolding; see e.g. [4]. 

The characterization of biological porosities can be greatly challenged by their morphology (e.g. 

the degree of interconnectedness and linking to the exterior). Here, we describe the design and 

implementation of a processing pipeline allowing extraction and downstream quantification 

from microCT data of the lacuno-canalicular network (LCN) of tesserae, porous mineralized tiles 

that cover the cartilage skeletons of sharks and rays [6–9] (Fig. 1(C)). The overarching goal of 

the pipeline is to efficiently segment multiple tesserae and their corresponding cell lacunae 

(several hundred per tessera) to carry out statistically-relevant quantitative analyses on a large 

scale. The tesseral LCN presents several generally-applicable segmentation challenges: (1) the 

tesserae are in close contact; (2) the LCN communicates to the exterior of the tesserae (i.e. 

complicating determination of the ends of passages); (3) the LCN exhibits serial constrictions 

(canaliculi) and expansions (cell lacunae) that we wished to analyze separately from one 

another. 

The pipeline was developed for a companion study [6], which aimed to characterize the shapes, 

orientations, and spatial organization of the cell lacunae in tesserae (gaps where cells reside). 

To achieve this goal, individual cell lacunae had to be separated from one another with high 

fidelity, requiring us to solve several smaller segmentation problems. First, we had to segment 

out individual tesserae from the image data. Second, for each tessera, the entire LCN (i.e. all 

cell lacunae and canaliculi) had to be extracted, from which subsequently the individual cell 
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lacunae needed to be separated. Finally, in order to allow study of the spatial arrangement and 

orientation of the cell lacunae with regard to their position in the skeleton (e.g. in association 

with neighboring tesserae), the cell lacunae needed to be divided into regions called ‘wedges’ 

[6]. Apart from the last step, these segmentation tasks can be grouped into three broad 

categories: (1) intensity value-based segmentation; (2) distance-based object separation; (3) 

cavity segmentation. Some tools that fall into these three categories are reviewed in the 

following paragraphs. 

 

Fig. 1. Porosity in mineralized biological tissues. (A) Sectioned (internal) view of a blue coral skeleton 

(Heliopora coerulea; Helioporacea). (B) Skeletal growth front of a reef-forming glass sponge 

(Aphrocallistes vastus; Hexactinellida). (C) A section through several tesserae from the skeleton of a 

stingray (Urobatis halleri; Chondrichthyes), the study model in the current and companion work [6] . 

The black gaps between tesserae are unmineralized joints, the small black dots within tesserae are cell 

lacunae. Note the large sample preparation cracks and the several instances of cell lacunae 

communicating to the exterior of tesserae (e.g. red arrows) –both situations would pose challenges to 

traditional segmentation protocols. (D) Osteonal bone from a dog femur (Canis familiaris; Carnivora). 

The larger cavities are vascular channels, the smaller ones peppering the matrix are cell lacunae. (E) The 

surface of an ossicle from a brittle star (Ophiopteris papillosa; Ophiuroidea). Note the large range of 

sizes and morphologies for porosities, both within and among images. All images are SEM ((C), and (D) 

from backscatter SEM). (A), (B), and (E) courtesy of James Weaver, (D) courtesy of Ron Shahar. 
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An important standard tool for intensity value-based segmentation is the watershed algorithm 

[10]. The basic watershed algorithm starts from local minima and floods the whole image, 

separating it into as many regions as there are local minima. Segmentation using this method 

usually results in what is called over-segmentation, because it separates the image in too many 

regions or segments (i.e. more than the actual number of objects of interest). A typical reason 

for over-segmentation is noise in the scan data, which can result in many local minima. Such 

local minima, however, can also be due to small substructural components of the material to 

be segmented. The hierarchical watershed algorithm [11] was developed to overcome such 

over-segmentations. It allows merging of neighboring regions according to several criteria. 

Hierarchical watershed is also similar to the contour-tree segmentation [12] with the major 

difference being that the latter starts from local maxima instead of local minima as the 

watershed does. If the number of objects to be segmented in an image is rather small, the 

marker-based watershed algorithm represents an efficient alternative since it allows the user 

to specify regions by manually setting a few seeds (starting points). In our processing pipeline, 

we apply marker-based watershed to segment out the individual tesserae (Section 

"Segmentation of cell lacunae " below). 

When objects cannot be separated from one another by considering image intensities alone 

and are connected by extensions that are substantially narrower than the objects to be 

separated, distance- based object separation can be applied. The first step is usually to create 

a binary segmentation containing all objects of interest in the foreground. Then, a distance 

transform [13] is computed on the foreground resulting in an intensity image that can be 

segmented using the watershed or contour- tree segmentation algorithm. The standard 

distance transform is the Euclidean distance transform [14] that computes for each foreground 

voxel the shortest distance to any background voxel. One deficiency of this distance transform 

is its susceptibility to background noise. An alternative distance transform is the more recently 

developed random-walk distance transform [15] that computes for each foreground voxel the 

average length of all random walks starting at this foreground voxel and ending in any 

background voxel. This distance transform is much less prone to background noise and, hence, 

often results in superior segmentations when used in combination with watershed or contour-

tree segmentation. In our processing pipeline, we apply the random-walk distance transform 

together with contour-tree segmentation to separate the individual cell lacunae from one 

another (Section "Segmentation of cell lacunae " below). 
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Another problem that often arises in image analysis of porosities is the determination of the 

border of a cavity space of interest to allow its separation from the ’real’ background space (i.e. 

regions external to the scanned object). This problem occurs if the cavity space of an object is 

connected to the outside of the object, as in the tesserae LCN, where cell network passages 

connect to the exterior of tesserae [6, 9] (Fig. 1(C)). To solve this problem, the ambient occlusion 

algorithm [16] was developed that computes an intensity field that assigns the degree of 

occlusion from ‘simulated’ ambient light to each voxel. In our processing pipeline, we apply this 

algorithm to separate the tessera cell lacunae space from the background space outside of the 

tesserae. 

 

2. Specimen preparation and SR-µCT scanning 

Detailed descriptions of sample preparation and scanning protocols are provided in [6]; we 

provide abridged versions here. Samples of the propterygium (a long, rod-like portion of the 

skeleton, supporting the wing) were dissected from two adult Haller’s round rays (Urobatis 

halleri)—a 19 cm disk width (DW) female and a 21.4 cm DW male. Urobatis halleri is an 

established study system for tessellated cartilage biology, with the majority of recent high-

resolution, ultrastructural data coming from this species (e.g. [7, 9, 17–19]). Long strips of 

tessellated cartilage were excised from skeletal samples, air-dried and affixed upright in micro-

centrifuge tubes for subsequent synchrotron experiments. 

Tesserae samples were scanned in synchrotron radiation micro-computed tomography (SR- 

μCT) at the BAMline, BESSY II synchrotron source, Helmholtz-Zentrum Berlin für Materialien 

und Energien (HZB) and reconstructed, as described in [6]. The resulting data sets contained 

several tesserae in close contact, with effective pixel sizes of 876 nm (Fig. 2). 

 

3. Processing pipeline 

Here, we describe the processing steps performed to segment tesserae and their cell lacunae, 

as well as the separation of the tesserae and their cell lacunae into structural wedges (i.e. 

specific anatomical regions). These steps are the prerequisite to the lacuna morphometric 

analysis described in the Methods in [6]. All image and geometry processing described in this 

section was carried out in the visualization software Amira (AmiraZIBEdition 2019.12) [20]. The 
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Amira modules used for data processing and analysis are detailed below. Whereas most are 

available in the commercial version of the software, for some steps, we implemented custom 

Amira modules. These can be obtained upon request from the corresponding author. 

The processing pipeline consists of three major steps: (1) the segmentation of all individual 

tesserae in each data set; (2) the segmentation of individual cell lacunae; and (3) the grouping 

of cell lacunae according to the tessera wedges. These three steps are described in detail below. 

 

3.1. Segmentation of tesserae 

For the segmentation of the input data set (Fig. 2 (A)) into individual tesserae (Fig. 2 (C)), a 

marker- based watershed transformation was used [10] . This technique involves the manual 

placement of initial markers in distinct regions (e.g. individual tesserae, joint spaces; Fig. 2 (B)) 

to act as seeds from which segmentation will begin. This was performed using Amira’s 

segmentation editor, the software’s primary segmentation tool. The watershed algorithm 

expands outward from the markers until the entire data set is segmented, with any remaining 

regions between tesserae belonging to the background (label/material value = 0) (Fig. 2 (C)). In 

addition to the markers, we used an ‘edge image’ generated from the original intensity field. 

This is a very common approach and serves to guide the algorithm’s detection of material 

boundaries. In the current study, the edge image was generated by using the Watershed tool 

of Amira’s segmentation editor. Edges appear in places with a rapid change of intensity values. 

As a result, the strength of an edge indicates the likelihood of a material boundary.  

From the watershed segmentation result (Fig. 2 (D)), tesserae were extractable as separate 

data sets, facilitating the downstream segmentation of cell lacunae within individual tesserae. 

Each label of the watershed segmentation result, however, represented a segmented tessera 

including all of its internal spaces (i.e. cell lacunae were not yet isolated from the tessera label 

field) (Fig. 2 (C) and (D)). Furthermore, it is important to note that the lacuno-canalicular 

passages within tesserae often communicate to the outside (i.e. into the intertesseral joint 

space; [7]) (some of such cell lacunae are visible in Fig. 3 (B) and (C)). As a result, the borders of 

this watershed segmentation result did not yet enclose all cell lacunae ‘belonging’ to a given 

tessera, but rather partially lacked those lacuno- canalicular passages open to the background, 

thus requiring additional steps described below. 
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Fig. 2. Pipeline for tesserae segmentation. (A) Input μCT slice, (B) seed markers, (C) separated tesserae 

after applying the watershed algorithm, (D) volume rendering of a single tessera. Tesserae shown in (A), 

(B) and (D) are mineralized and therefore exhibit higher (lighter) intensity values; the joints between 

tesserae and the cell lacunae inside tesserae are darker. 

 

3.2. Segmentation of cell lacunae 

The segmentation of the tesseral LCN and its subsequent division into individual cell lacunae 

required several steps that are explained in detail below. 

3.2.1. Separation of cell lacunae from background 

To extract the cell lacunae within a tessera, all voxels representing background unmineralized 

tissue (i.e. voxels with lower gray values) were first segmented in the original data set using a 

local threshold, and then stored as a separate label field (Fig. 3 (A)). Subsequently, this 

background label field was subtracted from each tessera’s label field, resulting in a label field 

with the tessera (mineralized material) as foreground and the tessera’s internal spaces 

(including its cell lacunae) and the area external to the tessera as background (Fig. 3 (B)). 

3.2.2. Ambient occlusion field 

As stated above, it is challenging to define all cell lacunae (i.e. background voxels) that ‘belong’ 

to a tessera, due in particular to those regions where the tessera lacuno-canalicular network is 

open to the outside [7]. This problem is akin to that of defining the inside/outside borders of 
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structures with irregular openings (e.g. caves). To avoid ‘losing’ cell lacunae to the surrounding 

background, an ambient occlusion scalar field was calculated from the previous result. In this 

algorithm [16], rays are cast from each background voxel through the label field in all directions. 

The ratio of the number of rays striking the foreground (i.e. the tessera) to the total number of 

rays defines the ambient occlusion value (Fig. 3 (C)). In this way, the algorithm allows the 

identification of background voxels surrounded by foreground voxels (e.g. cell lacunae 

surrounded by mineralized tissue, but open at one end to the background). By applying a 

threshold to the resultant ambient occlusion field that accounts for all cell lacunae (i.e. 

background voxels) belonging to the tessera, a binary cell lacunae label field is generated (Fig. 

3 (D)). 

3.2.3. Connected components 

To divide the single label produced in the previous step containing all lacunae into multiple, 

individual lacuna labels, the connected components algorithm was applied. This algorithm 

searches for regions of contiguous voxels in the binary label field, defining each as an individual 

object (i.e. assigning each to a new label ID). At this point, any isolated cell lacunae (i.e. those 

not linked to other cell lacunae) were identified as individual objects. However, any multi-

lacunae objects (i.e. cell lacunae connected by canaliculi) still required disarticulation (Fig. 3 

(E)). 

3.2.4. Contour-tree segmentation 

The contour-tree segmentation [12] was used for the remaining separation of connected cell 

lacunae. This algorithm used the random-walk distance transform [15] that, for each voxel of 

the result of the previous step, calculated the average length of all random walks from this 

voxel to the background (Fig. 3 (F)). The Random-Walk Distance Transform is implemented as 

a custom Amira module. It takes as input the binary label field of all cell lacunae and outputs a 

scalar field containing the random-walk distance to the background from each voxel of the cell 

lacunae. The module does not require any parameter. The Contour-Tree Segmentation module 

takes as input the random-walk distance field and a single parameter, the persistence value, 

that defines the degree of merging. The contour- tree segmentation using the random-walk 

distance field takes advantage of the ‘string-of-pearls’ appearance of objects comprised of 

multiple cell lacunae connected by canaliculi (i.e. spheroidal objects connected by narrow, 
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short links; [6, 9] ), splitting the multi-lacunae labels at their narrowest points (i.e. their 

canaliculi). The result is shown in Fig. 3 (G). 

 

 

Fig. 3. Segmentation pipeline for cell lacunae. (A) Intratesseral (cell lacunae) and intertesseral space 

(regions outlined in blue), computed using local thresholding (note, the region is zoomed out relative to 

images (B)-(H) to show multiple tesserae), (B) single tessera, excluding its cell lacunae, generated by 

subtracting the label field of (A) from the tessera label generated in the previous tessera segmentation 

step (see Fig. 2 ), (C) ambient occlusion (AO) field, (D) binary label field of AO, generated from AO field 

in (C), (E) separation of disconnected cell lacunae, (F) average length field, (G) contour-tree 

segmentation, (H) removal of objects incorrectly interpreted as cell lacunae. 
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3.2.5. Manual error correction and filtering 

As a final step, the label field was cleaned and refined by removing objects that had been 

wrongly interpreted as cell lacunae in the segmentation (Fig. 3 (H)). First, objects with volumes 

<70 μm3 (far smaller than that of cell lacunae; [6]) were considered as noise and deleted. This 

was performed in Amira using the Label Analysis module followed by application of the Filter 

Analysis module. Additionally, objects considerably larger than cell lacunae were manually 

removed after being verified as errors by comparison with the raw grayscale data. These were 

also readily distinguishable from actual cell lacunae by their morphologies, typically being either 

crack artifacts in the sample or invaginations in the joint face at the tesseral edge (e.g. as 

indicated by the red arrow in Fig. 3 (G) and (H)). We applied a custom Amira module that 

allowed us to select and remove such objects by directly picking the labels either on an 

Orthoslice or the Voxelized Volume Rendering visualization. Alternatively, a somewhat slower 

combination of Arithmetic module and Quick Probe tool could be utilized. Following this, any 

remaining passages (canaliculi) connecting cell lacunae were removed (i.e. isolating individual 

cell lacunae). This was achieved using another custom Amira module that allowed one to 

specify a single label and the number of cell lacunae into which the label should be split. The 

module again exploited distance-based object separation using the random-walk distance 

transform and the contour-tree segmentation. First, the random-walk distance transform was 

computed on the single specified label. Subsequently, the contour-tree segmentation was run 

and an adequate persistence value was automatically identified that separated the label into 

the desired number of cell lacunae. 

 

3.3. Subdivision of tesserae cell lacunae into wedge data sets 

Previous work on tesserae ultrastructure has demonstrated the presence of large, linear arrays 

of collagen fibers linking adjacent tesserae, with cell lacunae following the predominant fiber 

orientation (e.g. [7, 9, 17, 19], Fig. 2(A)). In polarized light microscopy, these fiber arrays appear 

to converge on the center of tesserae [7, 21–23]. As a result, we hypothesized that cell lacunae 

orientation is influenced by neighboring tesserae, particularly the further cell lacunae are from 

the center of their host tessera [6]. In order to investigate this theory—specifically, whether 

cell lacunae are oriented in a direction perpendicular to the joint face with the nearest 

neighboring tessera—the cell lacunae label field resulting from the segmentation workflow 
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(e.g. Fig. 3 (H)) was further subdivided into ‘wedges’ ( Fig. 4 ). These wedges are triangular 

regions, with their vertices at the tessera center and their bases at the tessera edge (see [6]). 

To subdivide the segmented cell lacunae into individual wedges, a semiautomatic custom Amira 

module, Tesserae Wedges , was developed. As input, this module requires the binary label field 

of a single tessera and its corresponding cell lacunae label field. The center of that label field 

and its associated local coordinate system can either be computed directly from the module or 

can be given as optional input. The center of the tessera was calculated from the tessera label 

field by averaging the position of all voxels belonging to the tessera. The local tessera 

coordinate system was calculated from the tessera label field via principal component analysis 

(PCA). From the center point and the first and second principal axes of the PCA, the module 

created sectioning planes (Fig. 4). The number of planes was set in order to divide each tessera 

into as many wedges as the tessera had neighbors (e.g. the tessera in Fig. 4 has six neighbors 

and is divided by six planes); the anatomical justification for this choice is explained in [6]. 

Wedge sectioning planes could be manually rotated; the sectioning planes were positioned to 

pass through the tesserae triple junctions—the intersection points of three neighboring 

tesserae (Fig. 4 (A))—thereby defining the zones of interaction between a tessera of interest 

and its neighbors. Once the sectioning planes were set, the cell lacunae label field was divided 

into wedges accordingly (Fig. 4 (B)). For those cell lacunae bisected by a sectioning plane, their 

wedge assignment was decided by the position of the lacuna center of mass. Lastly, in order to 

facilitate the wedge-wise analysis of cell lacunae, all cell lacunae in each wedge were extracted 

into separate data sets (Fig. 4 (D)). Following this step, the coordinate axes for each wedge 

were calculated and cell lacunae morphology and orientation quantified, as described in the 

Methods in [6]. Calculation of the cell lacunae morphometric variables was accomplished with 

a custom analysis module, combining both common Amira analysis variables and additional 

variables specific to our research questions; see Methods and Table 1 in [6] for more details. 



99 
 

 

Fig. 4. Subdivision of the lacuna label field. (A) A single tessera and its neighbors, with the focal tessera’s 

segmented cell lacunae subdivided into wedges by planes, (B) division of the entire lacunar data set and 

assignment into wedges, (C) extraction of one wedge, (D) generation of new (i.e. wedge-specific) lacuna 

IDs. 
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4. Conclusions 

We have presented an effective segmentation pipeline that makes use of standard 

segmentation methods like the watershed algorithm, but also uses more advanced, newly 

developed tools like the ambient occlusion algorithm and the random-walk distance transform. 

Marker-based watershed segmentation, which we used for the segmentation of the tesserae, 

is a very powerful tool when the segmentation of a small to medium number of objects is 

required. For very large numbers of objects (e.g. in the hundreds to thousands), however, the 

hierarchical watershed algorithm or its kin, the contour-tree segmentation, should be used. We 

exploited the contour-tree segmentation for the separation of the cell lacunae, which we 

applied to the result of the random-walk distance transform of the binary cell lacunae 

segmentation. This new distance transform resulted in a much better initial segmentation 

compared to using the more traditional Euclidean distance transform, leading to fewer 

segmentation errors and, thus, drastically reducing the manual work required for error 

correction. Instead of developing a fully automated segmentation workflow, we favored some 

degree of manual user control over a completely automated solution that would have required 

substantially more time for implementation. For example, we used an interactive approach to 

correct falsely split cell lacunae, rather than spending significant time refining the automated 

segmentation. Furthermore, instead of implementing a fully automated approach for the 

subdivision of tesserae into wedges, we used a semiautomatic approach in which the planes 

separating wedges were manually determined by the user. We believe that such combinations 

of automated and interactive segmentation methods produce efficient and reliable results for 

many analysis problems. These considerations are relevant to the segmentation of many 

complex biological structures, and so are particularly important for investigations of biological 

porosity and network structure, which rely increasingly on high-throughput analyses of large 

data sets (e.g. synchrotron microCT and FIB-SEM tomography volumes; see e.g. [5 , 15]). 
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Abstract 

Tessellated cartilage is a distinctive composite tissue forming the bulk of the skeleton of 

cartilaginous fishes (e.g. sharks and rays), built from unmineralized cartilage covered at the 

surface by a thin layer of mineralized tiles called tesserae. The finescale structure and 

composition of elasmobranch tessellated cartilage has largely been investigated with electron 

microscopy, micro-computed tomography and histology, but many aspects of tissue structure 

and composition remain uncharacterized. In our study, we demonstrate that the tessellated 

cartilage of a stingray exhibits a strong and diverse autofluorescence, a native property of the 

tissue which can be harnessed as an effective label-free imaging technique. The 

autofluorescence signal was excited using a broad range of wavelengths in confocal and light 

sheet microscopy, comparing several sample preparations (fresh; demineralized and paraffin-

embedded; non-demineralized and plastic-embedded) and imaging the tissue at different 

scales. Autofluorescence varied with sample preparation with the signal in both plastic- and 

paraffin-embedded samples strong enough to allow visualization of finescale (≥1 μm) cellular 

and matrix structures, such as cell nuclei and current and former mineralization fronts, 

identifiable by globular mineralized tissue. A defined pericellular matrix (PCM) surrounding 

chondrocytes was also discernible, described here for the first time in elasmobranchs. The 

presence of a PCM suggests similarities with mammalian cartilage regarding how chondrocytes 

interact with their environment, where the PCM acts as a transducer for biomechanical and 

biochemical signals. A posterior analysis of hyperspectral images by an MCR-ALS unmixing 

algorithm allowed identification of several distinct fluorescence signatures associated to 

specific regions in the tissue. Some fluorescence signatures identified could be correlated with 

collagen type II, the most abundant structural molecule of cartilage. Other fluorescence 

signatures, however, remained unidentified, spotlighting tissue regions that deserve deeper 

characterization and suggesting the presence of molecules still unidentified in elasmobranch 

skeletal cartilage. Our results show that autofluorescence can be a powerful exploratory 

imaging tool for characterizing less-studied skeletal tissues, such as tessellated cartilage. The 

images obtained are largely comparable with more commonly used techniques, but without 

the need for complicated sample preparations or external staining reagents standard in 

histology and electron microscopy (TEM, SEM). 
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1. Introduction 

Cartilage is a viscoelastic and resilient connective tissue essential to the mechanics and growth 

of the skeleton of vertebrates. Its gel-like extracellular matrix is composed of water and 

contains embedded cells (chondrocytes) interspersed within a network of mainly collagen type 

II fibers and proteoglycans [1, 2]. Variation in the organization, proportion, and composition of 

extracellular matrix components is reflected in the structural morphology of the tissue, 

affecting its mechanical properties and its physiological functions [3, 4]. Examinations of 

cartilage tissue morphology, therefore, have provided great insights into the biomechanics, 

function and growth of cartilage. Most of this research has focused on mammals, where 

cartilage (as in most vertebrates) forms the greater part of the embryonic skeleton, providing 

a tissue scaffold that guides the growth of and eventually gives way to bone [1]. Cartilage is far 

less predominant in the adult skeleton of most vertebrates, but still performs diverse roles 

including load-bearing (intervertebral fibrocartilage); shaping of resilient structures like noses, 

ears and ribs (elastic cartilage); and reduction of frictional forces between bones (articular 

hyaline cartilage). 

Cartilage is, also, far more diverse and ancient than typically appreciated. It is present even in 

invertebrate taxa [5, 6] and forms an extremely large proportion of the adult skeleton of several 

fish groups, particularly the clade of sharks and rays (elasmobranch fishes) [7] (Fig. 1). However, 

the range of functional roles that cartilage plays in the skeletons of these fishes is still unknown. 

The tissue composition and the cell type of elasmobranch cartilage appear to be similar to the 

hyaline cartilage in mammalian joints [8–10, 11 and references therein]. However, 

elasmobranch cartilage performs many functions more akin to those of bone than mammalian 

hyaline cartilage: providing skeletal shape, body support, and locations for muscle attachment. 

This multi-functionality is believed to be due to a unique structural feature of elasmobranch 

cartilage, wherein the skeleton mineralizes only at the surface, forming an ensheathing layer of 

mineralized tiles called tesserae (Fig. 1B - E).  

The mechanical performance of tessellated cartilage is thought to be related largely to the 

structure and arrangement of its different tissue components, in particular the associations of 

soft (unmineralized) and hard (mineralized) materials [12–15]. However, the difficulties 

associated with characterizing the complex structural arrangements of these heterogeneous 

tissues has limited the definition of clear composition-form-function rules for tessellates 

https://paperpile.com/c/Ce6vV6/wWKhY+RRkmO
https://paperpile.com/c/Ce6vV6/0OoO4+BJZtN
https://paperpile.com/c/Ce6vV6/wWKhY
https://paperpile.com/c/Ce6vV6/X98vK+7ZEBG
https://paperpile.com/c/Ce6vV6/zyAUU
https://paperpile.com/c/Ce6vV6/AwHMg+J6k6L+mEFRN+nAhhM/?suffix=,,,and%20references%20therein
https://paperpile.com/c/Ce6vV6/tWrHp+yS98G+fWgrj+eu5ea
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cartilage. In particular, the close association of mineralized and unmineralized tissues, in 

complex structural arrangements at both large and fine scales, has challenged common 

visualization techniques, such as conventional microscopy, immuno-histological stainings and 

electron microscopy [8, 16]. For example, the mineralized matrix of tesserae is perforated by 

numerous small cavities called lacunae, containing living chondrocytes surrounded by a thin 

layer of unmineralized matrix, with adjacent lacunae linked by short, matrix-filled passages [17, 

18] (Fig.1C - E). This arrangement results in several tissue type transitions over small spatial 

scales (1-10 µm), also challenging proper fixation and sectioning of these regions. The lateral 

margins of tesserae also present a heterogeneous mixture of tissues, associated with the joint 

region between neighbouring tesserae, which comprises a complex combination of 

unmineralized matrix, fibers and cells [8] (Fig.1E).  Additionally, the high water content of the 

unmineralized cartilage, contrasted with the extremely low water content (high mineral 

content) of some regions in tesserae (e.g. the hypermineralized ‘spokes’ reinforcing contact 

zones; [19]) makes tessellated cartilage prone to differential swelling and cracking during 

standard fixation and dehydration protocols [12]. Lastly, the scarcity of antibodies and 

protocols optimized for tissue components (e.g. cell processes, collagen types) in non-model 

organisms makes the characterization of tessellated cartilage tissue components both time-

consuming and costly [20]. 

Label-free imaging —in other words, not using exogenous fluorophores— has recently proved 

successful in the study of cartilage composition and structure, using both confocal (linear 

excitation) and multiphoton (non-linear excitation) microscopy. In label-free imaging, image 

contrast is provided by the tissue’s autofluorescence (AF): the excitation of intrinsic 

endogenous fluorescent molecules (e.g. coenzymes and amino acids, among others) rather 

than by the addition of external labeling or contrast agents (e.g. fluorescent or non-fluorescent 

dyes). These molecules contain aromatic rings with Pi-bonds, with electrons that react to 

specific illumination wavelengths, passing to an excited state before decaying to the ground 

state and emitting energy, including the autofluorescent emission [21]. As tissue AF can be 

diagnostic for particular tissue components, AF imaging has been demonstrated to be a 

powerful resource especially in mammalian systems, for evaluating biological substrate 

structure and composition, from cells to entire organisms, and can provide diagnostic 

information in a minimally invasive approach (reviewed by [22]. Nonlinear optical microscopy 

(NLOM) techniques have been particularly successful in the minimally-invasive examination of 

https://paperpile.com/c/Ce6vV6/AwHMg+cTcYn
https://paperpile.com/c/Ce6vV6/EF19h+VwyFA
https://paperpile.com/c/Ce6vV6/EF19h+VwyFA
https://paperpile.com/c/Ce6vV6/AwHMg
https://paperpile.com/c/Ce6vV6/SbmP4
https://paperpile.com/c/Ce6vV6/tWrHp
https://paperpile.com/c/Ce6vV6/wltSn
https://paperpile.com/c/Ce6vV6/AHUQ2
https://paperpile.com/c/Ce6vV6/7e9SM
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cartilage, using only endogenous fluorophores (e.g. flavoproteins, NAD(H)P, collagens and 

elastin) to characterize the organization and orientation of components within the tissue [23, 

24]. NLOM approaches also allow excitation of multiple endogenous fluorophores with a single 

laser line. By comparison, linear excitation techniques have been less used to study cartilage, 

although they offer broader excitation and emission spectra than NLOM. 

 

Fig. 1. Tessellated skeleton of sharks and rays (elasmobranchs). A) Image of the common stingray 
Dasyatis pastinaca (left) and a microCT scan image of the skeleton (right), with the propterygium 
highlighted in red. B) MicroCT scan of bisected propterygium, showing the inner cartilaginous core (blue) 
surrounded by the tessellated layer (gray). C) Backscatter Scanning Electron Microscopy (BSEM) image 
of a planar section through multiple tesserae, showing spokes (white streaks) and lacunae (black spaces) 
within tesserae. D) Schema of the propterygium cross section from (B), showing also the outermost 
perichondrium layer (red). E) Schema of zoomed region in (D), showing tesserae in vertical section, 
sandwiched between the perichondrial layer and the cartilaginous matrix. The single tessera in the 
center is connected to neighboring tesserae by a joint region (marked with a rectangle). Cells are located 
within tesserae, the cartilaginous matrix and joint regions. Abbreviations: Chondrocytes (C), 
Cartilaginous matrix (CM), Joint (J), Muscle (M), Perichondrium (P), Spokes (Sp), Tesserae (T)  

https://paperpile.com/c/Ce6vV6/MKghj+Co2aA
https://paperpile.com/c/Ce6vV6/MKghj+Co2aA
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In this study, we explore the efficacy of linear, one-photon excitation methods in the imaging 

of tessellated cartilage, examining also whether these effects are altered by standard sample 

preparation techniques. AF imaging techniques have never been applied as a tool to study this 

tissue, however there is some evidence that particular regions of tesserae exhibit a 

characteristic AF [11]. Previous studies have shown that tesserae have distinct and consistent 

structural features and, thus, can be considered as a useful and repeatable unit of study, 

particularly since every skeletal cross-section contains multiple sectioned tesserae for 

examination [18, 25]. Additionally, since tesserae have been shown to grow by accreting 

mineralized material on all their edges and do not appear to remodel their tissue at all, every 

tessera contains a permanent structural record of its growth [25–27]. Therefore, using common 

imaging techniques (e.g. histology, electron microscopy and microCT) and recent 

ultrastructural characterizations of tesserae as reference, we demonstrate that specific tissue 

components have consistent and characteristic AF signals, using confocal laser scanning 

microscopy of thin sections and light sheet microscopy of larger sample blocks providing a more 

macroscopic perspective. In the process, we explore the potential of AF imaging for 

ultrastructural examination of elasmobranch skeletal tissue, especially to clarify aspects of 

fibrous tissue architecture. 

  

https://paperpile.com/c/Ce6vV6/nAhhM
https://paperpile.com/c/Ce6vV6/VwyFA+y6Rl0
https://paperpile.com/c/Ce6vV6/y6Rl0+a21hD+DsWfU
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2. Materials and Methods 

2.1. Specimens and sample preparation 

Skeletal samples were collected in May 2019 from two common stingrays (Dasyatis pastinaca: 

Dasyatidae, Batoidea), a male of 21.3 cm disc width (DW) and a female of 32.7 cm DW. 

Specimens were by-catch captures from trammel net fishery in Alicante and Valencia 

(Valencian Community, Spain), respectively. Samples were harvested from both specimens less 

than one hour after death. 

We compared tissue autofluorescence (see below) for three sample preparation types that 

have been used previously in the study of tessellated cartilage (Fig. 2A): (1) “thawed samples”: 

non-fixed, non-demineralized and non-embedded; (2) “paraffin samples”: fixed, demineralized 

and paraffin-embedded; and (3) “PMMA samples”: fixed, non-demineralized and embedded in 

plastic (PMMA). For the thawed samples, the whole head of the second specimen was frozen 

and sent to the Institute of Photonic Sciences’ facilities (Castelldefels, Spain), where all imaging 

was performed. Immediately prior to imaging, the head was partially thawed in cool water and 

a scalpel was used to remove thin slices (~0.5-1.0 mm) of the propterygium (largest skeletal 

piece supporting the wing). Slices were mounted for confocal imaging on a glass bottom 

MatTek dish in solidified 1%, low-melting agarose, to maintain position and reduce 

dehydration. 

Samples for paraffin and PMMA were obtained from the first animal specimen. The 

propterygium was cut in small pieces and fixed with 4% PFA in PBS 0.1 M at the harbor and 

within 20 minutes of the animal's death to avoid tissue degradation. Samples were kept in the 

fixative at 4ºC overnight and stored in PBS 0.1 M at 4ºC before processing for paraffin 

embedding, PMMA embedding or clearing for SPIM imaging (see next section).  

For paraffin embedding, fixed samples were rinsed in PBS, decalcified with 

ethylenediaminetetraacetic acid (EDTA) at 20 wt-% concentration with pH 7.4 for one week, 

dehydrated with a graded isopropanol and xylene series, and embedded in paraffin using a 

routine histological infiltration processor (Miles Scientific Inc., Naperville, IL, USA). Serial 

vertical sections of 15 µm were made on a HM 355 S microtome (Microm, Walldorf, Germany), 

and mounted on SuperFrost®Plus slides.  
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For PMMA (Polymethylmethacrylate) embedding, fixed samples were dehydrated through 

increasing ethanol concentration (70%, 80%, 96%, 100%), then maintained in xylol for 3 hours, 

and finally embedded in PMMA (Morphisto Technovit® 9100) using the reagents and protocol 

provided by the manufacturer. All embedding steps were performed at 4ºC. Once the 

embedding media was polymerized, samples were microtomed in 10 µm slices, deplastified 

using 2-methoxyethyl acetate, and mounted on DakoFlex® slides. 

To compare AF images with those obtained using more traditional methods and to facilitate 

location of structures of interest, tessellated cartilage samples were also examined using 

histology and Backscatter Electron Microscopy (BSEM). The sample preparation protocols for 

each technique can be found in Section 1 of Supplementary Materials. 

 

Fig. 2. Scheme of the experimental design. A) Different sample preparation methods and microscopes 
used for their analysis. B) Lasers used in the confocal microscope AF analysis. Samples were excited with 
a 405 nm laser (UV) and White Wavelength Laser (WLL: 470-670 nm, in 10 nm excitation steps). The AF 
emitted by the samples was collected by detectors with different spectral ranges (listed on the far right), 
depending on the laser used. 2D and 3D images were generated with the 405 nm laser, whereas 4D 
images were generated with the WLL (see text for explanation of image types). Abbreviations: AF = 
Autofluorescence signal 
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2.2. Confocal imaging of thawed, paraffin and PMMA samples 

Cartilage samples from all three preparation types described above were examined using a 

Leica TCS SP8 STED 3x (Leica, Mannheim, Germany) Laser Scanning Confocal Microscope 

(LSCM) with an HC PL APO CS2 63x/1.40 oil objective. Samples were excited using two lasers 

and imaged in a wide spectral range that allowed a broad spectral analysis of autofluorescence 

signal (Fig. 2B). Three types of images (4D, 3D and 2D images) were generated in each imaged 

region of interest, as described below. 

To generate 4D images, samples were excited with the supercontinuum White Light Laser (WLL) 

in xyΛλ (lambda-lambda scan) acquisition mode in a range of λex = 470 to 670 nm in 21 

excitation steps with 10 nm sampling interval (400Hz scan speed, frame and line accumulations 

= 1). At each step, fluorescence spectra were collected using a HYD SMD detector in a range of 

λem = 490 to 775 nm in 20 emission steps with a 14.25 nm sampling interval. In this way, we 

obtained a fluorescence emission hyperspectral image for every excitation step, resulting in a 

4D excitation-emission fluorescence hyperspectral image (EE-HSI) with two spatial dimensions 

(x- and y- pixel coordinates) and two spectral dimensions (excitation and emission), where each 

pixel was associated with a 2D excitation-emission fluorescence landscape (i.e. quantifying the 

relationship between excitation and emission wavelengths over a broad spectral range) (Supp. 

Fig. 1B).  

Additionally, to generate 3D images, samples were excited with a 405 nm laser in xyλ (lambda 

scan) acquisition mode, with fluorescence spectra collected using a HYD SMD detector in a 

range of λem = 422.5 to 702.5 nm with a 14.74 nm sampling interval (400Hz scan speed, frame 

and line accumulations = 1). Resulting 3D images had two spatial dimensions (x- and y- pixel 

coordinates) and one spectral (λ) dimension, with each pixel associated with an emission 

fluorescence spectrum (i.e. quantifying the autofluorescence produced by the 405 nm laser) 

(Supp. Fig. 1A). 

Lastly, we acquired two types of 2D images as reference images. Firstly, an individual, high-

resolution optical image (pixel size = 171 nm) of each region of interest (see below) was 

acquired using the excitation wavelength found experimentally to produce the strongest AF 

(405 nm laser with 200Hz scan speed, two frame and line average, 20% intensity) and a wide 

detector range (λem = 459 to 602 nm, with the HYD SMD detector). The resultant image was 

two-dimensional, with x- and y-pixel coordinates and an integrated global AF value assigned to 
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each pixel. In order to prevent loss of signal by bleaching and longer dwell-times, analyses were 

always performed in the following order: WLL lambda-lambda scan, followed by the 405 nm 

lambda scan, and then 405 nm high-resolution images. Additionally, 2D transmitted light 

images were acquired simultaneously with the confocal images using the same illumination 

beam, to ensure that images were in registration.  

2D, 3D and 4D images were acquired in three specific regions of interest (ROIs): the tesserae, 

the joints, and the unmineralized cartilage. Additional 2D, 3D and 4D images were made of the 

embedding media (paraffin, PMMA) without samples, to determine if these media contributed 

any AF. We replicated the analyses of each ROI type three times for each sample preparation 

type (i.e. for PMMA, paraffin and thawed samples, scanning three different tesserae, joints, 

and unmineralized cartilage regions each).  

It was challenging in all sample preparations to find a flat region of interest for high 

magnification imaging (63x), especially at the interface between tesserae and unmineralized 

cartilage. Unembedded thawed samples were particularly difficult to prepare and image. As 

this tissue was not embedded, non-uniform sections were cut manually by razor blade and 

therefore were not uniform. Also, evaporation of water from the tissue (e.g. the unmineralized 

cartilage, which has a high water content) caused large shifts in the position and morphology 

of the tissue, making imaging almost impossible at high magnification. Thus, the images of 

thawed tissue were only taken at magnification of 10x, with the exception of one tessera 

sectioned flat enough to be imaged at 63x. 

 

2.3. Analysis of hyperspectral images. Underlying image analysis model and unmixing 

procedure 

Unlike 2D images, where features can be interpreted directly by their global fluorescence 

intensity, 3D and 4D images require dedicated data treatments by unmixing methods to 

disentangle the contributions of the distinct fluorescence signatures in a sample. Indeed, 

natural fluorophores can exist in different concentrations and locations within an analysed 

tissue, which can result in spatially complex variation and/or mixing (co-localization) of 

fluorescence signals, often hindering the interpretation of results. The ability to unmix 

multivariate signals in fluorescence images is particularly important for 3D images and, most 
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importantly, for 4D images, which have the most potential to detect and distinguish biological 

regions with distinct fluorescence signatures, due to the wider excitation range used and 

because differences in both excitation and emission characteristics are considered. 

The unmixing algorithm used in this work is Multivariate Curve Resolution-Alternating Least 

Squares (MCR-ALS), apt for single 3D and 4D images, but also for the treatment of several 

related images analysed together (multiset analysis) [28, 29]. The results provided by MCR-ALS 

are distinct fluorescence signatures (emission spectra or excitation/emission fluorescence 

landscapes for 3D and 4D images, respectively), from either an individual fluorophore (e.g. 

collagens, elastin, flavins) or a consistent mixture of fluorophores found consistently together 

(e.g. in a particular tissue type). The resultant distribution maps produced by the MCR-ALS show 

the spatial distribution of the fluorescence signatures in the 3D/4D source images and 

therefore their associations with tissues and other biological entities [30]. In this work, all MCR-

ALS analyses were performed using in-house implemented routines, programmed in the 

MATLAB environment (v. 2019) [31]. A detailed description of the function and output of the 

MCR-ALS is outlined in Section 2 of Supplementary Materials.  

 

2.4. Light sheet microscopy of fixed samples 

To examine tessellated cartilage in larger samples without the need for thin sectioning, we also 

employed light-sheet fluorescence microscopy (LSFM), also known as Single-Plane Illumination 

microscopy (SPIM) [32], using AF as a contrast mechanism. In contrast to the point-laser 

illumination of the confocal microscope, SPIM relies on the creation of an illumination plane, 

with the laser beam shaped into a rectangle and focused in a thin “sheet of light” using a 

cylindrical lens [32, 33]. The uniqueness of its optical configuration, with uncoupled 

perpendicular illumination and detection axis, combined with fast camera-based detection, 

allows acquisition of 3D images of samples at unprecedented speeds.  

We analyzed the AF signal of D. pastinaca tessellated cartilage using a custom made SPIM 

microscope [34]. The custom microscope achieves magnifications between 2x and 4x (field of 

view 6.65x6.65 mm2 and 3.33x3.33 mm2, respectively), allowing the imaging of samples several 

millimeters thick. This can be combined with image stitching to allow volumetric imaging of 

samples several centimeters thick in each linear dimension. In our study, the examined samples 

https://paperpile.com/c/Ce6vV6/o6y0G+TqvDc
https://paperpile.com/c/Ce6vV6/KzxTn
https://paperpile.com/c/Ce6vV6/9GxcH
https://paperpile.com/c/Ce6vV6/1FmH0
https://paperpile.com/c/Ce6vV6/hcSEp+1FmH0
https://paperpile.com/c/Ce6vV6/cLexw
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were thick cubes of propterygium (5-6 mm thick), fixed as described in the previous section. To 

facilitate the imaging of larger sample blocks of tessellated cartilage, samples needed to be 

clarified (i.e. rendered transparent) to equalize the refractive index throughout the tissue block. 

No protocols exist for clarification of tessellated cartilage; we used ECi (ethyl cinnamate), which 

has proved effective for clearing hard tissues in calvaria and long bones [e.g. 35], while also 

being fast, affordable and non-toxic. For clearing, fixed transverse sections were dehydrated 

with an ethanol series (pH 9.0) 50%-70%-100% (2X), 12 hours per step, at 4ºC. After 

dehydration, samples were transferred to ECi (W243000 Sigma-Aldrich) and incubated while 

gently shaking at room temperature until they became transparent. The excitation and 

emission spectra used in SPIM made it compatible with our analyses made with confocal. 

Samples were excited with several excitation wavelengths (λex = 405, 488 and 561 nm) and the 

emitted fluorescence collected with filters of 482/25, 520/50 nm and 593 long pass, 

respectively. 

  

https://paperpile.com/c/Ce6vV6/GAj8J/?prefix=e.g.
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3. Results 

3.1. General observations of AF signal 

Using AF, it was possible to obtain high resolution optical images of different tissue features of 

tessellated cartilage, including both mineralized (tesserae) and unmineralized elements 

(perichondrium, cells, the unmineralized cartilage matrix), although the degree of detail in the 

images varied with sample preparation (see below). The 405 excitation laser with a broad 

spectrum of acquired emission wavelengths (459-602 nm) produced the clearest imaging 

results with the strongest signal, comparable to other techniques commonly used to image 

tessellated cartilage, such as histology and BSE (Fig. 3). 

 

Fig. 3. Comparison of different imaging techniques for tessellated cartilage. A) Image of unstained sample 
acquired using transmitted light (confocal microscope, 10x objective). B) LM image of a demineralized 
sample, stained with Hematoxylin – Eosin. The zoomed circles in B and C show chondrocytes in the 
cartilaginous matrix. C) Backscatter Scanning Electron Microscopy image showing mineral density 
variation in mineralized regions of the tissue, but no information in non-mineralized areas. The zoomed 
circle shows a higher magnification of spokes laminae, highly mineralized bands located at the contact 
region of two tesserae. D) AF image, excited with the 405 nm laser (confocal microscope, 10x objective). 
All images correspond in scale with A. Abbreviations Chondrocytes (C), Cartilaginous matrix (CM), Joint 
(J), Perichondrium (P), Spokes (Sp)  

 

3.2. Effects of sample preparation 

The structures and tissues visible from their AF in tessellated cartilage differed among PMMA 

samples, paraffin samples, and non-embedded thawed samples (Figs. 4, 5). Examination of the 

AF signal of the embedding media themselves, showed negligible (PMMA) or no (paraffin) AF, 

and so did not contribute to tissue AF signals. The discernibility of particular tessellated 

cartilage features is discussed in detail in the following section, but some general effects of 

sample preparation are worth noting. 
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For unembedded thawed samples, the propterygium was thawed a first time to perform a 

preliminary test of the sectioning and imaging methods, and then a second time months later 

for the final experimental analysis. The preliminary images showed AF signal in perichondrium, 

tesserae, and unmineralized cartilage (both cells and matrix) (Fig. 4A [a, d-g], C). In contrast, in 

the later experimental analysis, only a weak AF signal was visible in the tesserae, being entirely 

lost in the soft tissues (Fig. 4A [b-c], C).  

PMMA samples were non-demineralized and more cleanly sectioned than thawed samples and 

therefore showed both hard and soft tissues in conditions perhaps closest to their native 

configurations (Figs. 5 - 7). Tesserae in PMMA samples, however, often exhibited cracks (Figs. 

5D; 6A), making it difficult to obtain large, intact regions of the tesserae layer. The cracks were 

produced during the preparation of the samples, probably during microtome cutting, oven-

curing, or mounting of slices. Similar cracking has been seen in several previous studies of 

tesserae, particularly associated with high mineral density regions (e.g. tesseral spokes; see 

below) [25]. In contrast, in paraffin samples, demineralization resulted in more intact tesserae, 

not disrupted by preparation artifacts, yet needless to say, mineralized tissue details were 

lacking (Fig. 5).  

 

3.3. Observations by individual feature 

3.3.1. Tesserae 

The tesserae layer could be imaged in all sample preparation methods, with the intensity of the 

signal always higher than in the unmineralized cartilage (Figs. 4 - 8). However, the visible 

features and morphology varied. PMMA samples, for example, showed the most clearly defined 

tesserae morphology and mineralized structures (Figs. 5 - 6).  Within the tesserae, a distinct 

central region delineated by a bright autofluorescent border showed a stronger AF signal than 

the peripheral region at the margin of tesserae (Figs. 5C - D; 6A). These three AF zones —center, 

center border and periphery— were also observed in clarified samples imaged with SPIM (Fig. 

8), yet were not visible in histology samples (Figs. 3B; 5B). In the central region, cell lacunae 

were surrounded by wavy, concentric lines in the mineralized matrix (Fig. 6A, D - E). These lines 

were identified from our histology and BSEM images as Liesegang lines (lines of accretive tissue 

growth; [25]), and were also observed in other tesserae regions (e.g. just interior to and tracking 

https://paperpile.com/c/Ce6vV6/y6Rl0
https://paperpile.com/c/Ce6vV6/y6Rl0
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the contours of the outer margins of tesserae; Fig. 6C), albeit with lower signal intensity (Fig. 

6D - E).  

Cells within tesserae are enclosed in lacunae and surrounded by unmineralized matrix, with 

lacunae connected by small passages (canaliculi). In our examinations, cells within lacunae were 

clearly visible in PMMA and paraffin samples, however, in contrast with cells in the 

unmineralized cartilage and joints, appeared more shrunken (e.g. damaged during fixation), 

and therefore their morphologies could not be properly visualized. Using the AF signal, it was 

often difficult to distinguish cells from the thin layer of matrix surrounding them, and from the 

mineralized margins of their lacunar spaces (Fig. 6B). A brighter haze of AF was often seen 

surrounding and connecting the cells within tesserae (Fig. 6B), but it was unclear whether this 

corresponded to the unmineralized matrix filling the cavities surrounding and linking cells 

(lacunae and canaliculi, respectively) or to the mineralized tissue that bordered these cavities, 

or some combination of the two. Similarly, the interface between tesserae and unmineralized 

cartilage (i.e. at the lower/chondral margins of tesserae) was difficult to detect in paraffin 

(demineralized) samples as the two materials had nearly the same gray values in the 405 images 

(Fig. 6F). In contrast, in PMMA samples, the interface was typically a thin, high-brightness rim 

marking the mineralization front, which made it easier to distinguish (Fig. 6D - E).  

Small autofluorescent globular features (~1-2 µm) were often visible in PMMA samples at 

interfacial locations in tesserae: at the border between the central and peripheral regions of 

tesserae (Fig. 6A), along the interior walls of cell lacunae (Fig. 6B) and surrounding cells that 

were in the process of being engulfed by tesserae at the interface with the unmineralized 

matrix (Fig. 6D). These globules corresponded in size and location to mineralized globular 

features observed in BSE, but were not seen in other techniques where tissue had been 

demineralized (e.g. paraffin). 

 

3.3.2. Joints 

The features of joints (i.e. the structures and tissues between tesserae) were not visible in 

thawed samples, likely associated with the difficulty of producing samples flat enough for high 

magnification imaging (Fig. 4A). In PMMA, paraffin and clarified samples, however, the 

ultrastructures of multiple joint-associated features could be identified using AF (Fig. 5). 
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Depending on the particular plane in which neighboring tesserae were sectioned, two local 

morphologies were possible, often with both present in a single joint ROI: (1) the tesserae 

margins separated by a space containing unmineralized matrix, cells and fibers (Figs. 5F; 6A, 

8B) or (2) the tesserae margins in direct contact (Fig. 5G). When tesserae were in direct contact, 

laminated, highly mineralized features called spokes were visible in PMMA samples, radiating 

from contact points between neighbouring tesserae [19, 25]. These structures exhibited high 

AF signal and showed a similar morphology to spokes seen in BSE images (Fig. 5G). In 

demineralized samples (in both histology and AF of paraffin samples), spokes were only 

represented by gaps in the tissue where high mineral density laminae had been (Fig. 5C, 5E).  

In zones where neighboring tesserae were separated by soft material, cells and fibers 

connecting tesserae were typically visible. Cells located in the joint space were flattened and 

arranged in series, passing between neighboring tesserae (Figs. 5E - F; 6A; 8B). In our histology, 

these cell arrays occupied horizontal gaps between the fiber bundles linking tesserae; using the 

AF signal, these fibers were often visible as parallel streaks, connecting tesserae and framing 

cell arrays (Fig. 6A; 8B). 

 

3.3.3. Unmineralized cartilage 

The unmineralized cartilage comprises cells embedded in copious amounts of extracellular 

matrix, as visible in our histological samples (Figs. 3; 5H). This basic tissue arrangement was also 

visible in AF imaging of all sample preparations, where cells emitted a brighter AF signal than 

the surrounding matrix (Figs. 3D; 5I - J; 7; 8A, C). Cells in the unmineralized cartilage also 

appeared more intact than cells within tesserae (see above), allowing observation of some local 

variation in cell morphology and arrangement across different zones (Fig. 7). In the 

unmineralized matrix directly beneath tesserae, cells were either well separated or formed 

twins (closely-associated, isogenous pairs, indicating recent separation by mitosis; Fig. 7D - F). 

In this zone, the cells exhibited a variety of cross-sectional morphologies, spheroidal (typical of 

chondrocytes), but also flattened or elongated (Figs. 5I - J; 7F). In contrast, further from the 

interface with tesserae (i.e. deeper into the unmineralized matrix), cells always presented 

spheroidal morphologies and often formed isogenous groups (clusters of sister cells) of two or 

four chondrocytes (Figs. 5H - J; 7D - F; 8C). 

https://paperpile.com/c/Ce6vV6/y6Rl0+SbmP4
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Among the sample preparation methods, cells differed in their morphology and the 

fluorescence signal emitted. In the preliminary analysis of thawed samples, cells emitted a 

strong AF signal, in comparison to the very low signal of the surrounding matrix (Fig. 4A); both 

sources of AF were completely lost in the final experimental analysis. Cells in PMMA and 

paraffin samples exhibited different degrees of shrunkenness, where the cell appeared 

collapsed away from the walls of its lacuna and surrounded by an empty (black) space [36] (Fig. 

7A). Better preserved cells exhibited different appearance and cell structure depending on the 

sample preparation method. In paraffin samples, these cells were bright ovoids with a darker 

rounded nucleus and relatively homogeneous cytoplasm (Fig. 7C). In PMMA samples, these 

cells showed a thin, bright surrounding border and a bright nucleus, but the intracellular 

compartment had a loose foamy appearance (Fig. 7B, E). Outside the cell, a distinct pericellular 

region was often visible, typically with a lower grayscale value and different matrix texture (Fig. 

7B, E). 

 

 

  

https://paperpile.com/c/Ce6vV6/32n3f


122 
 

 

Fig. 4. AF signal of thawed (unfixed) tessellated cartilage. A) AF signal of tesserae and cartilaginous matrix 
(CM) after one freezing-thawing cycle (preliminary analysis) (a, d - g) and two freezing-thawing cycles 
(experimental analysis) (b,c). CM was imaged first using bright field (d) and then by exciting the AF signal 
(e-g) using different excitation and emission wavelengths, specified at the bottom of each image. B) 
Results of MCR-ALS analysis of the tesserae from preliminary analysis. Middle images: the location of 
the different fluorescence signatures in the tesseral layer. Graphs: emission spectra for the observed 
fluorescence signatures (left: 405 nm excitation; right: 470 and 520 nm excitation wavelengths). C) 
Comparison of AF emission between preliminary and experimental analyses for 470 nm excitation 
wavelength, showing a clear loss of AF signal after two thawing-freezing cycles. Note: the patchy AF 
observed in the tesserae is a function of the difficulty of generating planar sections from fresh/thawed 
tissue. All scale bars = 20 μm. Abbreviations:  Bright field (BF); Cartilaginous matrix (CM) 
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Fig. 5. Comparison of AF images of two sample preparation techniques with histological samples. A) 
Overview of a propterygium cross-section, stained with hematoxylin-eosin (left) and a non-stained 
sample imaged with AF (right). The zoomed region shows a closer view of tesserae. Both samples were 
demineralized and paraffin-embedded. These very large field-of-view images of the entire skeletal cross 
section are composites, stitched together from multiple 10x images using the built-in Leica Auto 
Stitching function. B, E, H show regions from decalcified samples, EPON-embedded and stained with 
toluidine blue. C, F, I show regions from decalcified samples, paraffin-embedded and imaged using AF 
(ex: 405 nm laser; em: 422 - 702.5 nm). D, G, J show regions from mineralized samples, PMMA 
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embedded and imaged using AF (ex: 405 nm laser; em: 422 - 702.5 nm). In PMMA, central region (black 
pushpin), peripheral region (grey pushpin) and outer border (white pushpin) can be distinguished, 
whereas in paraffin only the central and peripheral region can be seen. Banded patterns observable in 
some images (e.g. C, I, J) are artifacts generated by the reflection of the light; we verified that these did 
not affect the MCR analysis and elected not to remove them in post-processing (their removal modified 
the signal and morphology of imaged tissue structures). All scale bars from B-J = 20 μm. Abbreviations: 
Chondrocytes (C), Cartilaginous matrix (CM), Joint (J), Perichondrium (P), Pericellular matrix (PCM), 
Spokes (Sp), Toluidine Blue (TB) 

 

 

Fig. 6. Several ultrastructural features of tesserae, observable with the AF signal. A) A portion of a single 
tessera (left) and its joint (right). Within the tessera, the peripheral region (grey pushpin) shows a lower 
AF signal than the central region (black pushpin) and the outer border (white pushpin). Variations in the 
signal intensity of the central region are observable, such as the globular mineralized features 
(calcospherites; white arrow in the circle) at the border of the central region and the tessera’s outer 
edge (white arrow). B) Cells within lacunar spaces in tesserae. The lacunar spaces presented a brighter 
signal than the surrounding mineralized tissue. Calcospherites can also be observed within the lacunae 
space (white arrow). C) For comparison with (B), a BSE image of a similar tessera region, but showing 
only the mineralized tissue; the cells aren’t visualized and so lacunae appear empty (note the short 
canalicular passages connecting adjacent lacunae). Note that finescale features (e.g. Liesegang lines, LL) 
can be visualized similarly in BSE and with the AF signal. D-E) AF images showing the border region 
between tesserae and unmineralized cartilage matrix. Several features can be observed, such as cells 
being incorporated into the tesserae, surrounded by calcospherites (white arrow in D), as well as the 
bright tesseral outer border and LL. F) AF image of a similar chondral border region, but from decalcified, 
paraffin-embedded samples. Note the decreased contrast and less defined structures relative to the 
mineralized, PMMA-embedded samples. All scale bars = 5 μm. Abbreviations: Chondrocytes (C); 
Backscatter Electron Microscopy (BSE); Lacunae (L); Liesegang lines (LL); Paraffin (Para) 
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Fig. 7. Chondrocytes from the unmineralized matrix, imaged with AF signal and compared with 
histological preparations. A-C Highlight the appearance of individual chondrocytes, while D-F compare 
the appearance of chondrocyte twins from different sample preparations.  A) Shrunken chondrocytes, 
where cells are entirely collapsed within their lacunae. Such chondrocytes were observed in both 
PMMA-embedded samples (as here) and paraffin-embedded samples. B) AF-imaged chondrocyte 
imaged in PMMA-embedded samples, where the nucleus (N), the cell border (asterisk) and the 
pericellular matrix (PCM) can be distinguished. C) AF-imaged chondrocyte from paraffin-embedded 
samples, where the nucleus emits a less intense signal than the surrounding cell. D) Two pairs of 
chondrocytes, stained with toluidine blue, where the nucleus and cytoplasm can be appreciated. E) Two 
pairs of chondrocytes in PMMA samples, showing a bright nucleus and a clear PCM surrounding them. 
F) Pair of chondrocytes in a paraffin-embedded section, where the cell and the nucleus present a flat 
morphology. These morphologies were also seen in PMMA-embedded samples, exclusively located in 
the cartilaginous matrix directly beneath the tesserae. All scale bars = 2.5 μm. Abbreviations: Nucleus 
(N), Pericellular matrix (PCM); Paraffin (Para), Toluidine Blue (TB)  
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Fig. 8. AF images of tessellated cartilage using SPIM. A) 2D AF image of an excised piece of tessellated 
cartilage, illustrating the large uncalcified cartilage matrix component relative to the tesserae. B) 2D AF 
image of several tesserae with intervening joint regions. The three distinct anatomical regions often 
observed in AF images of tesserae are distinguishable, with the center (black pushpin) and the outer 
border (white pushpin) presenting brighter signals than the periphery (grey pushpin). Chondrocytes can 
be appreciated organized in series within the joints. Black and white image settings: λex= 488 nm / λem = 
520/50 nm.  C) AF image of multiple tesserae in series. The central region and outer border share the 
same green fluorescence (λex= 488 nm; λem= 520/50 nm), which differs from the red fluorescence signal 
of the peripheral region (λex= 405 nm, λem= 482/25 nm), also appreciated in the zoomed tessera (circle). 
Regions throughout the tissue also show a vague blue AF (λex= 561 nm, λem= 593LP), but this did not 
appear to be associated with specific structures. Chondrocytes in the unmineralized cartilage matrix 
presented AF with λex= 488 nm and λem= 520/50 nm. D) AF image of the unmineralized cartilage matrix. 
Groups of chondrocytes can be observed surrounded by a pericellular matrix (PCM), darker than the 
interstitial extracellular matrix intervening between chondrocyte groups. All scale bars = 300 µm. 
Abbreviations: Chondrocytes (C), Unmineralized cartilage matrix (CM), Pericellular matrix (PCM), 
Perichondrium (P), Tesserae (T) 
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3.4. Analysis of hyperspectral images 

For both 3D and 4D fluorescence hyperspectral images, three separate multisets were created 

(one per sample preparation method), formed by combining preprocessed fluorescence 

images from all ROIs (tesserae, joints and UC) for a given sample preparation method (see Fig. 

9 - 11; Suppl. Fig. 1- 4). MCR–ALS was then applied to the 3D and 4D multisets to elucidate the 

sample constituents present in the analyzed sections of cartilage tissue. The primary 

parameters and model results of MCR-ALS, as applied to the different multisets analysed, are 

summarized in Table 1, including the number of images analyzed per multiset, the number of 

fluorescence signatures resolved by MCR-ALS, and estimates of model quality parameters: lack 

of fit (LOF) and explained variance. The variance explained by the MCR-ALS models is 

satisfactory considering the noise level of the spectra analysed. The lower variance explained 

by 4D images compared with 3D images is explained by the lower signal-to-noise ratio of these 

data.  

The unmixed fluorescence signatures detected in our samples by the MCR-ALS were 

characterized by distinct pure excitation-emission spectra and distribution in the tissue. To 

facilitate description and reference in our analysis, we designate the observed unmixed 

fluorescence signatures “Fluorophores”, however, it is important to note that these AF 

signatures can be produced either by a single fluorophore (e.g. from elastin or a particular 

collagen or flavin) or a combination of them. We number the fluorophores arbitrarily for 

reference (e.g. Fluorophore 1, 2, 3) and in the text below provide general summaries of their 

excitation/emission ranges; these data are listed in more spectral detail and according to tissue 

associations, sample preparation and imaging multiset (3D or 4D) in Table 2.  

4D images showed a higher number of distinct signatures than 3D images, likely due to the 

wider excitation range. Regarding the preparation method, PMMA samples showed a higher 

number of distinct signatures, followed by paraffin. Thawed samples presented a weak AF 

signal and only preliminary samples exhibited a signal-to-noise ratio that allowed identification 

of distinct AF signatures. 
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Table 1. Summary of image multisets analyzed, MCR-ALS model parameters, and primary results (number 
of unmixed fluorescence signatures resolved). Multisets are organized by image type (3D = 405 nm, 4D 
= WLL) and sample preparation methodology (paraffin, PMMA or thawed samples), with the number of 
images comprising each multiset listed and the number of images per ROI in each multiset detailed in 
parentheses immediately below (in the order: Tesserae/Joint/UC). The number of unmixed fluorescence 
signatures identified by SVD for each multiset and estimates of model quality parameters (LOF and 
explained variance) are also listed. No images could be analyzed for the tesserae ROI in the paraffin 4D 
multiset, since the image settings were not comparable with the other multisets. Tesserae information, 
however, was available and analyzed from joint ROI images (see Fig. 9). The most relevant ROIs analyzed 
can be found in Fig. 9 - 11; Supp. Fig. 3 - 4. 

 

Type of image 
Embedding 

medium  
Nr. of images  

Nr. of unmixed 
fluorescence 

signatures 
LOF (%) 

Explained 
variance (%) 

3D 

Paraffin 
10 

(5/2/3) 
1 13.85 98.08 

PMMA 
9 

(3/3/3) 
2 13.62 98.14 

Thawed  
1 

(1/0/0) 
2 8.68 99.25 

4D 

Paraffin 
6 

(0/3/3) 
3 26.31 93.08 

PMMA 
11 

(3/3/5) 
3 25.39 93.55 

Thawed 
3 

(1/0/0) 
2 24.25 94.12 
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3.5. Paraffin sample analysis 

In paraffin samples, four fluorescence signatures were detected with MCR-ALS, one with 3D 

images (Fluorophore 1) and three with 4D images (Fluorophore 2, 3 and 4). Fluorophore 1 was 

excited by the 405 laser (3D multiset: Table 2), observed in the perichondrium, tesserae, joints 

and cartilage matrix, although with intensity variations across the regions (Fig. 9A). The highest 

intensities were seen in the perichondrium and within the tesserae.  

The tesserae —with this fluorophore, but also others below— presented distinct spatial 

variation in signal intensity, allowing three distinct tesseral regions to be easily discerned from 

each other: a center region, a peripheral region surrounding the center concentrically, and a 

thin edge at the extreme outer border of the tesserae (~1 μm thick). These three regions —

center, center border, and periphery— were similar in general appearance to those identified 

in 2D AF images and SPIM (Fig. 8C; Fig. 9). The AF of the central region and the tesseral outer 

edge (especially where it bordered the joint region) was more intense than in the peripheral 

region. In the joints and unmineralized cartilage, this AF signature was weak in the extracellular 

matrix, but stronger within the cells. Some cells presented local areas of higher intensity, 

apparently in the cytoplasm. 

Fluorophores 2, 3 and 4 (4D fluorescence images) were excited with the WLL in a broad 

excitation range from 470 to 670 nm. Fluorophore 2 and Fluorophore 3 presented similar 

excitation-emission profiles, however, the MCR-ALS algorithm could unmix them based on their 

spectral shape differences (Table 2; Fig. 9B).  

Fluorophore 2 was associated with soft tissues, in the extracellular matrices and cells of joints 

and unmineralized cartilage, but absent in tesserae and perichondrium. The highest signal 

intensities were seen within the cells of the joints, followed by the cells of the unmineralized 

cartilage. In the tesserae, some lacunar spaces of the central region also exhibited signals of 

relatively high intensity.  

Fluorophore 3 had a wide distribution, in the perichondrium, the laminae of spokes in tesserae, 

the cartilage matrix, and in all the cells (except those of the central region in tesserae). Whereas 

the extracellular matrices of both joints and cartilage display Fluorophore 2, Fluorophore 3 was 

only located within the cartilage matrix. 
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Fluorophore 4 was the only fluorescence signature in this multiset located in the mineralized 

tissue of tesserae: in the border between the central and peripheral regions of the tesserae 

and in the outer edge surrounding the tesserae. Fluorophore 4 was also located within the cells 

of all regions (tesserae, joints and unmineralized cartilage). Although Fluorophores 2, 3 and 4 

of this multiset were localized in cells, Fluorophore 4 showed the highest cellular AF and was 

absent in the extracellular matrices of the joints and unmineralized cartilage.   

 

3.6. PMMA sample analysis 

In PMMA samples, five fluorescence signatures were detected with MCR-ALS, two in 3D images 

(Fluorophores 1 and 2) and three in 4D images (Fluorophores 3, 4 and 5). Fluorophores 1 and 

2 were excited by the 405 laser, (Table 2; Fig. 10). Fluorophore 1 was homogeneously 

distributed in the mineralized matrix of the tesserae, and in the extracellular matrix of the joints 

and unmineralized cartilage, but absent in all cells. Within the tesserae, this fluorescence 

signature was more intense in the laminae of spokes. The localization within the tissue of this 

fluorophore correlates with the distribution pattern of Coll2 observed in IHC (Supp. Fig. 5). 

Fluorophore 2 had an intense signal in the muscles, perichondrium, center region and outer 

edge of the tesserae and in the cells within the joints and cartilage.  

Fluorophores 3, 4 and 5 were excited with the WLL (4D images) in a broad excitation range 

from 470 to 670 nm (Table 2, Fig. 11). Fluorophore 3 was most intense in muscle, 

perichondrium, and spokes’ laminae, exhibiting lower intensities within the cells and 

extracellular matrix of the unmineralized cartilage. In the extracellular matrix, this fluorescence 

signature had a homogeneous distribution, albeit forming higher intensity halos immediately 

surrounding cells. Fluorophore 3 was lacking in joints and the majority of tesserae cells. 

Fluorophore 4 had the highest intensity in muscle. It was also present in the perichondrium, in 

the border between central and peripheral regions in tesserae, and in the outer edge of 

tesserae. In the unmineralized cartilage, it was only present within the cells, being completely 

absent in the extracellular matrix. Fluorophore 5 was most intense in the muscle and 

perichondrium, in the center, center border and outer edge of the tesserae and, to a lesser 

degree, in the unmineralized cartilage matrix. A weak signal could be seen within the cells of 

the unmineralized cartilage, but was absent in the rest of the cells.  
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Consolidating the information from all fluorescence signatures observed in PMMA samples, it 

can be noted that the cells differ in signal according to their location: whereas cells of the 

unmineralized matrix present a combination of Fluorophores 3, 4 and 5, cells of the joints and 

tesserae exhibit only Fluorophore 4, whereas in cells of the tesserae body zone Fluorophore 3 

dominates.  

 

3.7. Thawed samples analysis 

For comparison of the AF signals of preliminary and experimental thawed samples, the different 

instrumental settings (e.g. bandwidth and pixel size) of the two experiments were standardized 

by binning to unify pixel size and by selecting only common spectral excitation wavelengths 

(470 and 520 nm). For both of these excitation wavelengths, the AF found in preliminary 

samples was nearly absent in the experimental thawed samples (Fig. 4C). 

In contrast, the MCR-ALS analysis of preliminary thawed samples excited by the 405 nm laser 

(3D multiset) and by the 470 and 520 nm lasers (4D multiset) allowed tissue features to be 

distinguished. Following binning of the hyperspectral images by a factor of seven to increase 

spectral quality (increasing pixel size from 1.06 μm to 7.44 μm), two different fluorescence 

signatures were detectable, excited by the 405 nm laser (Fig. 4B, Table 2). Fluorophore 1 was 

generally located in the peripheral region of tesserae, whereas Fluorophore 2 was constrained 

largely to the central region. In this case, we excited the tissue with individual 470 and 520 nm 

lasers instead of a broader range, but this was still considered as a single excitation range. With 

these excitation wavelengths, two fluorescence signatures (Fluorophore 3 and 4) with different 

emission spectra were associated with each excitation wavelength (Table 2, Figure 4B). Both 

fluorescence signatures were associated with the tesserae, presenting distinct spatial locations; 

Fluorophore 3 was generally associated with the peripheral region of the tesserae, whereas the 

Fluorophore 4 was associated with the central region. The detection of fluorescence signals in 

thawed samples indicates the presence of natural fluorophores associated with distinct spatial 

locations of the tissue. 



132 
 

 

Fig. 9. Distribution maps and EEM of fluorescence signatures detected by MCR-ALS in decalcified, paraffin 

embedded samples. A) 2D (grayscale) images acquired with 405 nm and wide wavelength emission filter 

provide reference for overall tissue appearance. The 3D images below show the single detected 

fluorescence signatures, excited with the 405 nm laser (Fluo. 1). The fluorescence signature’s spectral 

signature is shown to the right. B) 4D images, excited with the WLL, showing three detected 

fluorescence signatures (Fluo. 2-4); color bars indicate intensity. Merged distribution maps at the 

bottom overlap all fluorescence signatures in the same image. Excitation-emission (EEM) landscapes for 

each fluorescence signature are shown to the right. Abbreviations: Chondrocytes (C), Unmineralized 

cartilage matrix (CM), Joints (J), Perichondrium (P), Tesserae (T) 
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Fig. 10. Distribution maps and pure spectrum of fluorescence signatures detected by MCR-ALS in PMMA 
samples excited with 405 nm laser. The 2D (grayscale) images (top row) acquired with a 405 nm 
excitation laser and a wide wavelength emission filter provide reference for overall tissue appearance. 
The 3D images below show all fluorescence signatures detected with MCR-ALS (Fluo. 1 - 2), with their 
corresponding spectral signature at the right. Color bars in each image indicate intensity. Merged 
distribution maps at the bottom overlap both fluorescence signatures in the same image.  Abbreviations: 
Chondrocytes (C), Unmineralized cartilage matrix (CM), Joints (J), Perichondrium (P), Tesserae (T) 
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Fig. 11. Distribution maps and EEM of fluorescence signatures detected by MCR-ALS in PMMA samples 
excited with WLL. The 2D images (grayscale) images (top row) acquired with a 405 nm excitation laser 
and a wide wavelength emission filter provide reference for overall tissue appearance. The 4D images 
below show the distribution maps of each fluorescence signatures (Fluo. 3 - 5) identified (color bars 
indicate intensity). Excitation-emission (EEM) landscapes for each fluorescence signatures are shown to 
the right. At the bottom, merged distribution maps overlap both fluorescence signatures in the same 
image. Abbreviations:  Chondrocytes (C), Unmineralized cartilage matrix (CM), Joints (J), Perichondrium 
(P), Tesserae (T) 
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Table 2. Summary of excitation and emission wavelengths of each fluorescence signature and their tissue 
associations. Fluorescence signatures (identified with MCR-ALS) were denominated Fluo. 1, 2, 3, etc and 
are classified by sample preparation (paraffin, PMMA, thawed, or clarified samples) and image type (3D 
= 405 nm, 4D= WLL, SPIM). The emission and excitation wavelength range and peaks for each 
fluorescence signature are specified, with the equivalent color code bar illustrated below. The emission 
ranges listed for SPIM fluorescence signatures represent the emission filters used (see text). The 
presence of each fluorescence signature in specific tissue structures is annotated in the ‘Distribution’ 
column, organized by ROIs: Tesserae, Joints and Cartilaginous matrix [CM].  

Sample 

preparation 

Image 

type 

Fluorescence 

signals 

λex (nm) λem (nm) 

Distribution 

range (peak) range (peak) 

Paraffin 

3D Fluo. 1 405 - 425 - 700 (480 – 500) 

Perichondrium  

Tesserae: central 

region + outer edge 

Joints: cells 

CM: cells 

4D 

Fluo. 2 470 -  570 (470) 475 - 650 (525 – 575) 
Joints: matrix + cells 

CM: matrix + cells 

Fluo. 3 480 - 570 (530 – 560) 500 - 620 (540 – 575) 

Perichondrium  

Tesserae: spokes 

CM: matrix  

 

Fluo. 4 470 - 670 (470 – 500) 490 - 700 (500 – 590) 

Tesserae: peripheral 

region + central 

border 

CM: cells 

PMMA 

3D 

Fluo. 1 405 - 421 - 680 (480 – 500) 

Tesserae: matrix + 

spokes 

Joint: matrix 

CM: matrix 

 

Fluo. 2 405 - 421 - 700 (495 – 500) 

Muscle 

Perichondrium 

Tesserae: center 

region + outer edge 

Joint: cells 

CM: cells 

4D Fluo. 3 470 -  600 (470 – 550) 490 -  640 (500 – 590) 

Muscle 

Perichondrium 

Tesserae: spokes + 

cells 

CM: matrix + cells + 

PCM 
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Fluo. 4 470 -  600 (470 – 540) 490 - 670 (540 – 580) 

 

Muscle 

Perichondrium 

Tesserae: center 

border + outer edge 

Joint: cells 

CM: cells 

 

Fluo. 5 470 -  570 (470 – 480) 490 -  640 (510 – 560) 

Muscle 

Perichondrium 

Tesserae: center + 

center border + outer 

edge 

CM: matrix 

Thawed 

3D 

Fluo. 1 405 - 420 - 580 (460 – 480) 
Tesserae: peripheral 

region 

Fluo. 2 405 - 420 - 580 (480 – 500) 
Tesserae: central 

region 

4D 

Fluo. 3 

470 - (500 – 620) (520) 
Tesserae: central 

region 

520 - (500 – 620) (545 - 580) 
Tesserae: central 

region 

Fluo. 4 

470 - (500 – 620) (540) 
Tesserae: peripheral 

region 

520 - 530 -  640 (530) 
Tesserae: peripheral 

region 

Clarified SPIM 

Fluo. 1 405 - 482/25 - 
Tesserae: peripheral 

region 

Fluo. 2 488 - 520/50 - 

Perichondrium 

Tesserae: central 

region + outer edge 

Joints: cells 

CM: cells 

Fluo. 3 561 - 593LP - 
Joints: matrix 

CM: matrix 
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3.8. Tissue AF imaging at larger scales 

In thick samples imaged by SPIM, muscle, cells, tesserae and perichondrium all emitted distinct 

AF signals, which differed in their excitation and emission wavelengths. The strongest 

excitation/emission pairings for each tissue are listed in Table 2. The perichondrium was the 

tissue with the strongest AF (Fluorophore 2; Fig. 8A), and needed to be saturated in image post-

processing to allow other features to be visualized. 

Tesserae were clearly visible beneath the perichondrium (Fig. 8A - D), exhibiting three spatially 

distinct regions, similar to those described above for PMMA samples, with distinctive AF 

wavelengths and intensities. The peripheral region of tesserae showed AF in the 482/25 nm 

filter window when excited with the 405 nm laser (Fluorophore 1, red in Fig. 8C). This region 

was encapsulated by a thin outer border delineating the edge of tesserae (~15 - 30 μm), which 

emitted a very localized AF signal in the 520/50 window (Fluorophore 2, green in Fig. 8C), when 

illuminated with a 488 nm excitation laser. The center region of tesserae emitted a signal with 

the same intensity and wavelength as the outer edge, forming a small, hazy autofluorescent 

region approximately the same cross-sectional shape as the tessera (in vertical and planar 

sections). 

The unmineralized matrix emitted AF in the 593LP window when excited with the 561nm laser 

(Fluorophore 3 - dark blue in Fig. 8C), with low signal intensity in comparison with the cells and 

tesserae. However, even with low signal strength, local intensity differences could be 

appreciated. In particular, individual cells and cell groups were haloed by a zone of AF of lower 

intensity than that of the bulk cartilaginous matrix. Cells within the cartilaginous matrix and 

joints exhibited a strong AF (Fluorophore 2), whereas those within tesserae exhibited no visible 

signal. Although the resolution was not high enough to distinguish cellular form or structures 

(e.g. nucleus) to any degree, it was possible to visualize the large-scale, 3D arrangements of 

cells within the unmineralized matrix. For example, cells located directly beneath the tesserae 

tended to be isolated, yet with increasing distance into the cartilaginous core, tended to be 

organized into groups of two and then four.  
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4. Discussion 

All major structural components of tessellated cartilage are autofluorescent, sensitive to a 

broad range of excitation wavelengths (405 - 600 nm). In particular, these components strongly 

reacted when excited with UV (405 nm), emitting AF with a diversity of tissue-specific green-

yellow (i.e. within the 480 - 580 mm range). We show that it is possible to image both soft and 

hard tissue elements of tessellated cartilage by exciting tissue AF with confocal and SPIM 

microscopes, resolving tissue components at a broad range of size scales, from millimeter- 

down to subcellular spatial resolution (1 μm).  

 

4.1. Effect of preparation methods (PMMA, paraffin and thawed) on AF 

The specific fluorescence signatures we observed —although all within the excitation/emission 

ranges mentioned in the previous paragraph— were not consistent among the different sample 

preparations studied, differing in the number of fluorescence signatures detected, their 

spectral features, and where they were expressed. The reasons for these differences are 

unclear, but variation in autofluorescence is known to be linked to multiple aspects of sample 

preparation, as well as tissue composition. For example, the loss of AF in thawed samples could 

be related to the destructive influence of freezing and thawing on cartilage, which causes 

disruption of chondrocytes [37, 38] and proteolytic degradation of fibers (e.g. collagens, actin) 

in the extracellular matrix [39–41]. The AF signatures evident in preliminary thawed samples of 

tesserae, however, are promising for future research, indicating that neither embedding media 

nor fluorescent markers are required for the study of this tissue. Cryosectioning of samples will 

ensure more uniform samples (i.e. resulting in more features in-plane) to facilitate AF imaging 

in this regard. 

With regard to embedded samples, the spectral differences between paraffin and PMMA 

multisets were not due to fixative effects, as both were fixed following the same protocol. 

Additionally, although tissue fixation with aldehydes (PFA, glutaraldehyde) can induce tissue AF 

due to the formation of chemical ring structures, the AF generated by PFA is generally low and 

hardly detectable with spectroscopy [42, 43]. Paraffin samples presenting fewer fluorophores 

could be related to the demineralization process. Decalcification using EDTA has been 

demonstrated to increase AF or produce changes in fluorophores location and/or spectra 

during mineral removal [44–46]. On the other hand, the capacity for AF from the mineral itself 

https://paperpile.com/c/Ce6vV6/558vq+65Pnf
https://paperpile.com/c/Ce6vV6/6LSNJ+z6E98+yJvBU
https://paperpile.com/c/Ce6vV6/DPg0X+UMERK
https://paperpile.com/c/Ce6vV6/Zva7u+7MW7r+L9VT6
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—carbonated apatite in tesserae, as well as mammalian calcified cartilage and bone [40]— is 

still under debate, yet several studies showed that it is not autofluorescent [44–49]. It should 

be noted though that apatite AF has not been investigated at the excitation-emission 

wavelengths used in this study and should be explored. Additionally, several studies have 

demonstrated that high temperatures can quench tissue AF and, in our study, paraffin 

embedding was carried out at higher temperatures (60ºC) than PMMA (4ºC). Lastly, we are 

confident that AF differences among preparation types were not due to the embedding media 

themselves: we verified that both paraffin and PMMA exhibited negligible AF (the latter 

supported by other studies; e.g. [50, 51]) and moreover, the embedding media were removed 

from sections prior to imaging. 

 

 4.2. Tissue biology insights from AF imaging 

Our demonstration of tissue-specific AF in tessellated cartilage opens new opportunities for 

high-resolution optical imaging and characterization of this tissue. This is particularly true for 

PMMA samples, which resulted in the highest quality images of tessellated cartilage, with well-

defined mineralized and non-mineralized structures (e.g. mineralization fronts, Liesegang lines, 

spokes, cell nuclei), many not seen in other preparation methods.  

 

4.2.1 Tesserae 

The mineralized tissue (tesserae) in stingray cartilage exhibited consistent and strong AF, similar 

to mammalian calcified cartilage, which exhibits a strong two photon fluorescence signal [52]. 

Tesserae AF was typically partitioned into three discrete regions: a center region, peripheral 

region and a narrow border at the outer margin of the tesserae. Curiously, this regional 

partitioning differs from that typically used to describe tesserae structure, especially in 

histology, where tesserae are divided into upper “cap” and a lower “body” zones (sensu [10]).  

In contrast, the three-zone AF we observed in tesserae shows no correspondence with any 

published histological work that we know of, although some images suggest the center can in 

fact stain differently than both cap and body (e.g. Fig. 9b in [8]). AF images of tesserae from 

another stingray species (Urobatis: [11]), however, suggest a similar three-zone pattern. In 

studies of shark species where calcium-binding dyes had been injected to study skeletal growth 

https://paperpile.com/c/Ce6vV6/7MW7r+L9VT6+Zva7u+pi2iC+h4Dpw+f4XNb
https://paperpile.com/c/Ce6vV6/m7x4X+jNHIW
https://paperpile.com/c/Ce6vV6/XNtLD
https://paperpile.com/c/Ce6vV6/mEFRN
https://paperpile.com/c/Ce6vV6/AwHMg
https://paperpile.com/c/Ce6vV6/nAhhM
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[53, 54], fluorescence was also observed in central and outer border regions of tesserae, but 

attributed to areas of active mineralization and/or material turnover, with AF never considered 

[11]. For such skeletal age and growth work, our study underlines the importance of 

characterizing tissue AF to avoid erroneous conclusions, particularly in tissues where growth 

mechanisms are poorly known. The observations supporting the bipartite (histology-based) and 

tripartite (AF-based) schemes of tesserae organization argue that both represent real —but 

different— aspects of tissue composition and architecture.  

Whereas differences in collagen and proteoglycan type could, for example, explain cap and 

body histological staining variation, differences in AF signal must be due to other factors (e.g. 

density variation of an autofluorescent component), perhaps linked to tesserae development 

and mineralization (e.g. the growth of tesserae at their margins). For example, the center region 

exhibits several distinctive characteristics, having comparatively high mineral density [19], 

association with acid-based stainings [8], and larger and more spherical cells than the 

remainder of the tessera [18]. We propose that these aspects and the center’s AF are also 

linked to a specific early developmental stage of the skeleton, with the center’s AF reflecting 

the size and shape of tesserae from that ontogenetic stage. Tesserae first form in the 

unmineralized cartilage, some distance from the perichondrium and not yet in contact with 

each other [8, 55], gradually increasing in size during ontogeny by accreting mineral on their 

margins until they come into contact and approach the perichondrium. The ontogenetic 

transition from isolated tesserae to abutting, perichondrally-associated tesserae therefore 

correlates with new tissue associations and perhaps the incorporation of different 

autofluorescent components, and so could be signified by the shift in fluorescence 

characteristics between the central and peripheral regions.  

In contrast, the distinctness of outer border AF relative to that of the periphery could be related 

to the tesseral edge being an active site of mineralization [9, 25, 26], since mineralization fronts 

in osteonal bone also show defined autofluorescent bands [47]. In this regard, however, the 

multiple fluorophores shared between the center and outer border are more difficult to 

reconcile, as the center is believed to be a mineralization hub only earlier in skeletal 

development (see above). In the case of the center region, perhaps the AF signal is related to 

tissue age and degree of mineralization, as in bone [56]. The tissue properties and components 

at the root of the AF differences among the center, peripheral and outer border regions require 

https://paperpile.com/c/Ce6vV6/uK8oR+WTxkD
https://paperpile.com/c/Ce6vV6/nAhhM
https://paperpile.com/c/Ce6vV6/SbmP4
https://paperpile.com/c/Ce6vV6/AwHMg
https://paperpile.com/c/Ce6vV6/VwyFA
https://paperpile.com/c/Ce6vV6/AwHMg+uIlG3
https://paperpile.com/c/Ce6vV6/J6k6L+a21hD+y6Rl0
https://paperpile.com/c/Ce6vV6/pi2iC
https://paperpile.com/c/Ce6vV6/BRyRw
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characterization; however, their autofluorescent characteristics and the accretionary growth 

of tesserae argue these differences are linked to the regions having specific developmental 

roles and/or representing important turning points in the mineralization of the skeleton. 

The potential for AF imaging to inform our understanding of mineralization processes is further 

supported by the observation of mineralized spheroids in several regions of the tesserae in 

PMMA samples. These “calcospherites” have been observed by multiple authors at 

mineralization fronts in elasmobranch skeletons [10, 26, 57–59], but also in mammalian 

calcified cartilage and bone [60–63], where they are believed to act as accretive building blocks 

for mineralized tissue. In tessellated cartilage, such calcospherites have been demonstrated 

predominantly at interfaces between unmineralized cartilage and mineralized tissue, 

particularly those associated with cells: forming enclosures around chondrocytes in incipient 

tesserae in young animals or along the chondral border of established tesserae [9, 10, 25, 64]. 

In our study, AF images highlighted calcospherites in similar locations, but also lining the walls 

of lacunae in tesserae and additionally at the border between the center and peripheral 

regions, deeply embedded within the mineralized matrix of tesserae. This visible record of a 

past mineralization front supports our hypothesis of the autofluorescent center region as a 

snapshot of a specific developmental period in tesserae, while underlining AF as a useful tool 

to locate both active and former globular mineralization fronts.  

 

4.2.2. Extracellular matrices 

Cartilages are composed of a combination of several organic components (e.g. different 

collagen types, elastin, glycosaminoglycans), where their variation determines the mechanical 

properties and function of the tissue [2, 65]. In contrast to mammalian cartilage, the 

composition of elasmobranch cartilage is not well characterized, with only a few major 

components identified, such as the primary structural collagens (e.g. Coll1, Coll2). This lack of 

information is mainly related to the difficulty in identifying tissue components unequivocally, 

as their identification requires protocols that are either time-consuming/costly (e.g. 

development of elasmobranch-specific antibodies) or involve steps that can even hamper 

component identification or ultrastructural investigation (e.g. degradation of surrounding 

matrices). In comparing our AF data to existing information on tessellated cartilage structure 

and composition and our own data from other imaging modalities (histology, BSE), we propose 

https://paperpile.com/c/Ce6vV6/uO3CO+a21hD+mEFRN+oVH41+OEKMd
https://paperpile.com/c/Ce6vV6/EiQ96+2aZCo+p8jZS+IRlMc
https://paperpile.com/c/Ce6vV6/mEFRN+y6Rl0+SGt4M+J6k6L
https://paperpile.com/c/Ce6vV6/RRkmO+M0jWK
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likely sources for some observed fluorophores, particularly those associated with tissues of 

known collagen composition.  

Coll1 and Coll2 are well-known fluorophores in skeletal tissue [2]. In the elasmobranch 

skeleton, Coll1 is known to be present in both muscles and perichondrium [8]. Among the 

diverse fluorophores we observed associated with both the perichondrium and muscle (Table 

2), the one with the highest intensity is likely associated with Coll1, having also a similar spectral 

profile of Coll1 in other taxa [4, 63-65] (Fig. 12A). Surprisingly, this fluorophore was also 

associated with chondrocytes of the unmineralized matrix, which are not known to express 

Coll1 [66, 67]  

Additionally we propose, based on correspondence with immunostained samples, that the two 

fluorescent signals associated with the extracellular matrix (ECM) of joints and uncalcified 

cartilage represent or are linked to Coll2 (Fig. 12B). This collagen, in addition to being 

autofluorescent [41, 68], is indeed a primary component of the ECM of joints, unmineralized 

cartilage and tesserae [8, 66, 69] (see also Supp. Fig. 5). The specific distribution of these 

putative “Coll2 fluorophores” raises several interesting points relevant to growth and 

patterning of tessellated cartilage. First, the relatively homogeneous signal of the two 

fluorophores, seen throughout the ECM of joints, uncalcified cartilage and tesserae, supports 

the hypothesis that tesserae arise in and are predominantly composed of Coll2, despite some 

local variation of other materials (e.g. the mineral in tesserae or the Coll1 Sharpey’s fibers that 

insert into the cap from the perichondrium). Additionally, the localization of these two 

fluorophores in the tesserae indicates a potential advantage of AF imaging of tesserae over 

immunohistochemistry, where Coll2 antibody reactivity in tesserae was only possible after 

stringent digestion techniques [8]. Lastly, one of the “Coll2 fluorophores” presented an 

extremely high signal in the laminae of spokes, suggesting the composition of these distinct 

features, which have otherwise proved challenging to characterize [8, 19]. The factors driving 

the formation and periodicity of spokes are unknown, but their strong AF signal suggests spoke 

laminae are formed by packing Coll2 fibrils in particularly high density. 

Given the limited data on tessellated cartilage tissue composition, the remaining fluorescence 

signatures are more difficult to assign to specific tissue components (Fig. 12C - F). In 

vertebrates, skeletal tissues contain a variety of fluorescent structural proteins and so, 

additional collagens or proteins like elastin may also be present in tessellated cartilage. Our 

https://paperpile.com/c/Ce6vV6/RRkmO
https://paperpile.com/c/Ce6vV6/AwHMg
https://paperpile.com/c/Ce6vV6/l7K1t+iZC8Q
https://paperpile.com/c/Ce6vV6/J7jLO+yJvBU
https://paperpile.com/c/Ce6vV6/JGKR7+l7K1t+AwHMg
https://paperpile.com/c/Ce6vV6/AwHMg
https://paperpile.com/c/Ce6vV6/AwHMg+SbmP4
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results, therefore, offer guides for future targeted characterization of tessellated cartilage 

structures, whose tissue compositions have yet to be determined.  

 

Fig. 12. Summary of tessellated cartilage fluorescence signatures localized, classified according to EEM, 
tissue location, and potential source. Each fluorescence signature’s tissue associations are summarized 
visually in a color-coded tesserae schematic (see Figure 1). Fluorescence signatures are listed according 
to assigned numbers from Table 2, their sample preparation, and imaging modality (e.g. Fluo. 2, PMMA, 
4D) and excitation (Ex) and emission (Em) values listed are the peak wavelengths associated with the 
strongest signal for that fluorescence signature. A) Fluorescence signatures associated potentially with 
Coll1 (in perichondrium and muscle). In contrast, the AF source associated with the border of the 
tesserae center, peripheral regions (arrowhead), the outer tesseral border (arrow) and the cells are 
unknown. B) Several fluorescence signatures likely related with Coll2, based on comparisons with 
immunostaining. The source of the AF in the pericellular matrix (PCM; Fluo. 1, PMMA, 4D) is unknown 
(in mammal cartilage, the PCM is comprised of Coll6). C) Unknown Fluorescence signatures distributed 
in muscle, perichondrium tesserae and matrix of joints and unmineralized cartilage, but absent in cells. 
D) Unknown fluorescence signatures observed in muscle, perichondrium, center-periphery border, and 
the outer margin of tesserae (arrow and arrowhead in A), and within cells. E) The source of this 
fluorescence signature is unknown, found in tesserae and cells. F) Unknown fluorescence signature in 
tesserae and all cells. Abbreviations:  Pericellular matrix (PCM), Collagen type I (Coll1), Collagen type II 
(Coll2) 
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4.2.3. Cells 

The AF signal provided information on cellular morphology, for example, demonstrating a clear 

pericellular matrix (PCM) region, a narrow tissue zone haloing chondrocytes in the 

unmineralized cartilage. In mammalian cartilage, the PCM acts as an interface between the cells 

and their environment and is crucial in determining how chondrocytes interact both 

mechanically and physicochemically with the surrounding matrix [70–72]. A factor in mediating 

these behaviors is the distinct composition of the PCM which, for example, has a higher 

proteoglycan content than the surrounding cartilage and is composed uniquely of collagen type 

VI [73, 74]. Indeed, the proteoglycan aggrecan is considered a potential source of pericellular 

AF in TPF [75, 76]. Despite its importance in mammalian cartilage, a defined PCM has never 

been described in elasmobranchs, neither with histology nor electron microscopy. Although we 

cannot yet identify the source of PCM AF, its defined signal in elasmobranch cartilage suggests 

it may have distinct compositional, architectural and/or mechanical characteristics, as in 

mammalian cartilage.      

Despite fluorophores having different tissue associations, nearly all fluorophores observed 

were associated with chondrocytes. Cell AF is typically due to NADH, FAD+ (flavins) and 

lipofuscins (lipopigments), cytoplasmic components with distinct spectral profiles [22, 77–79]. 

Among these components, flavins are the only ones with a spectral signature located within 

the spectra used in this study (𝝺em = 440 - 470 nm / 𝝺ex = 480 - 540 nm; [22]), whereas the other 

components are associated with lower wavelengths (<405 nm). Although the source(s) of 

cellular AF cannot be identified in this study, we note that chondrocytes emitted different 

signals depending on their location in the tissue. This may be indicative of cells’ production of 

different components and, ultimately, variation in cell function. This hypothesis is supported by 

the cells in the upper part of the joint emitting a brighter AF signal than other cells, reinforcing 

the findings of Marconi et al. [67], where joint cells exhibited higher production of Coll2.  

  

https://paperpile.com/c/Ce6vV6/UkHWA+Hzhut+lcJUD
https://paperpile.com/c/Ce6vV6/fA0wu+qvqOP
https://paperpile.com/c/Ce6vV6/QrHdN+OpOT9
https://paperpile.com/c/Ce6vV6/7e9SM+yYq8Z+O0Wuy+GxA0r
https://paperpile.com/c/Ce6vV6/7e9SM
https://paperpile.com/c/Ce6vV6/iZC8Q/?noauthor=1
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5. Conclusions 

Tessellated cartilage contains a diversity of fluorophores that emit a native AF signal which, 

particularly after fixation, embedding and sectioning, is strong enough to image the tissue at a 

level of detail rivaling backscatter electron microscopy and histology. The AF signal was affected 

by sample preparation, which should be more deeply explored to clarify how tissue 

architectures and composition are distorted through common investigation techniques. Images 

of samples prepared for PMMA showed exceptional preservation of tissue morphology, 

especially mineralized parts, even allowing identification of active and former mineralization 

fronts through the localization of calcospherites. AF in tessellated cartilage is mainly emitted in 

the green - yellow region of the spectrum (480 - 580 nm), excited with a broad range of 

wavelengths (405 - 600 nm), but reacting most strongly to 405 nm excitation (UV). Several 

fluorophores could be associated with Coll1 and Coll2, the main structural collagens of 

tessellated cartilage; the diverse and specific distributions of other unidentified fluorophores, 

however, suggest the presence of additional collagens and/or other autofluorescent molecules 

yet to be characterized in elasmobranch cartilage. The localization of the varied fluorescent 

signatures allowed description of several tissue morphologies, including a novel organizational 

scheme of three concentric autofluorescent regions in tesserae and a pericellular matrix 

surrounding chondrocytes. Tissue AF is therefore demonstrated to be a powerful diagnostic 

tool to image tessellated cartilage that, with further studies and standardized methods, will 

allow us to generate composition maps without the need of more demanding preparation 

techniques.   
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Supplementary Materials  

1. Sample preparation for histology, immunohistochemistry and electron microscopy 

To compare the images obtained using AF signal with images obtained using more traditional 

methods and to facilitate location of structures of interest, tessellated cartilage samples were 

also examined using histology, immunohistochemistry and Backscatter Electron Microscopy 

(BSEM).  

For histology, paraffin sections were stained with haematoxylin and eosin (HE) using a Shandon 

Varistain 24-4, Histocom (Vienna, Austria) automatic slide stainer. For toluidine blue staining to 

visualize distribution of proteoglycans, sections fixed with glutaraldehyde 2.5% and PFA 2.5%, 

were decalcified, EPON-embedded and manually stained.  

Immunohistochemistry was performed for collagen type II (Coll2) on demineralized paraffin 

sections (7μm) using the Ventana Discovery XT research platform (Ventana, Strasbourg, 

France). The samples were previously fixed with 4% PFA during 6 hours. After deparaffinization 

of the sections, proteolytic induced antigen retrieval with Proteases 3 (Ventana, Strasbourg, 

France) was performed for 4 minutes. The subsequent protocol comprised incubation with a 

rabbit anti Coll2 primary antibody (1:200) (catalogue # CL50211AP, Cadarlane, Ontario, Canada) 

for 60 minutes, followed by incubation with the OmniMap anti-rabbit HRP (horseradish 

peroxidase) secondary antibody (ready to use) for 32 minutes. Visualization of the antigen-

antibody complex was performed with a DAB (diaminobenzidine) detection kit for 8 minutes. 

Afterwards the sections were counterstained with haematoxylin. The cartilaginous long bones 

(femur, tibia) of an eight-day-old mouse served as a positive control. A negative control was 

obtained by substituting the primary antibody with antibody diluent. The negative control 

yielded no labelling.  

For BSEM, samples embedded in PMMA blocks were cut to expose a transverse cross section 

of the sample and then polished with sandpaper plates of descending grain sizes, ending with 

the softer polishing plate (0.25 μm) with diamond spray. Polished samples were imaged with 

the backscatter electron detector in a Field Emission-Environmental Scanning Electron 

Microscope (FE-ESEM, FEI Quanta 600F), in environmental mode (low vacuum and without 

sputtering) and at an accelerating voltage of 15 kV.  
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2. Analysis of the hyperspectral images 

The unmixing algorithm used in this work, the Multivariate Curve Resolution-Alternating Least 

Squares (MCR-ALS), provides distinct fluorescence signatures formed by an individual 

fluorophore or by a consistent mixture of fluorophores associated with biological entities such 

as, for example, tissues (emission spectra or excitation/emission fluorescence landscapes for 

3D and 4D images, respectively) and their related distribution maps (i.e. their spatial 

distribution in the 3D/4D source images) [22]. In fact, MCR-ALS recovers the information 

associated with the well-known Beer-Lambert law, obeyed by 3D and 4D fluorescence images, 

where the signal of any pixel spectrum is the concentration-weighted sum of the signal 

contributions of the pure distinct fluorescence signatures present in that pixel, as expressed in 

Equation (1). All PCA, MCR-ALS and NMF are methods of bilinear decomposition of data tables, 

i.e., they describe the variation of the raw data set (spectra in an image for instance) with a 

small number of component contributions, related to spectral signatures and concentration 

profiles. They differ in the way the components are calculated. In the case of PCA, components 

are calculated using the constraint of orthogonality and they cannot be interpreted as 

meaningful spectra or concentration maps (e.g., some spectra show negative parts). Instead, 

NMF and MCR-ALS use constraints naturally obeyed by the components to provide spectra and 

maps. NMF makes non-negativity mandatory to recover maps and spectra, whereas MCR-ALS 

is a more flexible algorithm that can optionally apply any constraint, for instance non-negativity, 

but also other conditions related to spatial map properties or spectral shapes. Additionally, 

MCR-ALS can work with a single image or with image multisets, whereas NMF is usually applied 

to single images.  

MCR-ALS and most unmixing methods are typically applied to data organized into tables or 

matrices and, therefore, applying them to 3D and 4D images requires reformatting of datasets. 

With 3D fluorescence images, the initial image cube, sized (x,y,l) is unfolded as shown in 

Supplementary Figure 1A into a matrix D, sized (x × y, l) that contains all pixel spectra stacked 

one under the other (i.e. each row contains an individual pixel spectrum). In Equation 1, si
T 

represents the pure spectrum of the ith spectral signature and ci the related concentration 

profile, quantifying the contribution of this signature to the signal of each pixel spectrum. The 

bilinear model in Equation 1 can be expressed in compact form, as shown in Equation 2 (Supp. 

Fig. 1A), where ST is the matrix that contains the distinct fluorescence signatures of all 
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fluorophores and the matrix C the related concentration profiles. The residuals of the model 

are expressed by the matrix E, which has the same dimensions as D. As can be seen in 

Supplementary Figure 1A, every concentration profile vector ci can be refolded into the original 

2D image spatial structure to render the distribution map associated with each fluorescence 

contribution.  

D = ∑icisi
T + E Eq. 1 

D = CST + E  Eq. 2 

Similarly, 4D fluorescence images can also be expressed as a bilinear model based on the Beer-

Lambert. In this case, the 4D hyperspectral image, sized (x,y,lex,lem) is transformed into a data 

matrix D, sized (x × y, lex × lem) by concatenating, in each row of matrix D, the emission spectra 

collected at all tested excitation wavelengths for a particular pixel (Supp. Fig. 1B). As in 3D 

images, the distribution maps of compounds can be obtained by refolding their related 

concentration profiles and the pure 2D EEM (excitation-emission) landscapes for each distinct 

fluorescence signature can be retrieved by refolding the related extended profile in matrix ST 

(Supp. Fig. 1B). 

When several images have similar information (e.g. they share some or all the unmixed 

contributions), a multiset structure can be built by appending the blocks of pixel spectra of the 

different images one under the other, as shown in Supplementary Figure 3C, to build an 

augmented data matrix, Daug. Multiset analyses help MCR-ALS to extract more accurate pure 

spectra profiles and distribution maps, since more information is added to the model and the 

profiles recovered satisfy the variation in all images used. Multisets can be built by combining 

3D or 4D images, once they are in matrix form, as shown in Supplementary Figure 1C [30]. The 

only requirement to build a multiset is that the spectral range of the different images be 

common. The multiset configuration provides a single global bilinear model for all images 

analyzed together: the model has a single matrix ST, containing the distinct fluorescence 

signatures found in the included images, and an augmented matrix Caug, which contains 

concentration profile submatrices linked to the different images analyzed. The concentration 

profiles of each submatrix in Caug can be refolded to provide the related distribution maps for 

https://paperpile.com/c/Ce6vV6/KzxTn
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each image analysed. The pure spectra signatures in ST are left as such for 3D image multisets, 

but are refolded into 2D EEM landscapes for 4D multiset images.  

 

Supp. Fig. 1. Analysis of hyperspectral 

images, illustrating underlying models 

of spectroscopic measurements and 

unmixing procedures. Moving from left 

to right, each panel graphically 

illustrates the original image type or 

multiset, the unmixing of its spectral 

signatures (i.e. individual fluorescence 

signatures), and subsequent 

visualization/analysis. A) Bilinear 

model for 3D image B) for 4D images 

and C) multiset configuration in 

column-wise augmented direction. 

See text for explanations of image 

types. 

 

 

 

 

For any of the image data configurations described above, MCR-ALS recovers the bilinear model 

in Equation 2 through an alternating least squares optimization of matrices C and ST under 

applied constraints (e.g. non-negativity), which help to ensure chemically meaningful 

concentration profiles and spectral signatures for the sample constituents [80, 81]. Once image 

datasets are properly configured, the application of MCR-ALS requires an estimation of the 

number of distinct fluorescence contributions, n, needed to describe the variation in the image 

dataset D. This is usually done by Singular Value Decomposition (SVD) [82] although, when in 

doubt, several MCR models with different numbers of components may be tested and the final 

https://paperpile.com/c/Ce6vV6/zTXGs+Xixr2
https://paperpile.com/c/Ce6vV6/0g44v


150 
 

choice can be guided by the model fit and the biological relevance of the retrieved profiles. To 

begin the iterative optimization, initial estimates of ST or C are required.  

Images collected in the same experimental conditions (e.g. all images of ROIs from PMMA-

embedded samples acquired with the same spectral range) were combined into different 

multisets for analysis, as detailed in Table 1. A method based on the SIMPLISMA (simple-to-use 

interactive self-modelling analysis) algorithm [83] was used to select the n spectra of the image 

data set D, which are most dissimilar (i.e., which exhibit the most distinct shapes), to be used 

as spectral initial estimates. The constraints applied during the optimization were non-

negativity in the concentration profiles and pure spectra signatures. Note that, when needed, 

different constraints can be used for profiles in C and ST and for the related submatrices 

multiset analysis, in order to adapt to the natural properties of images and spectroscopic 

techniques.  

The iterative optimization was continued until the difference in fit between consecutive 

iterations was lower than 0.1%. Once this convergence criterion was satisfied, the algorithm 

stopped, resulting in the final solutions for C and ST. In our study, to assess model fit, two 

parameters were considered:  

the lack of fit 

𝐿𝑂𝐹 (%)  =  100 𝑥 √
𝛴𝑖𝑗 𝑒𝑖𝑗

2

𝛴𝑖𝑗 𝑑𝑖𝑗
2   Eq. 3 

 and the variance explained by the model 

𝑟2 =  100 𝑥 (1 −
𝛴𝑖𝑗 𝑒𝑖𝑗

2

𝛴𝑖𝑗 𝑑𝑖𝑗
2 )  Eq. 4 

 

Where dij refers to the element of the original matrix D of row i and column j, and eij refers to 

the related residual value obtained from the difference between the initial data set D and the 

reconstructed matrix by using the bilinear MCR model, CST. Once the final bilinear model 

formed by C and ST was obtained, the distribution maps were recovered by refolding the 

https://paperpile.com/c/Ce6vV6/3xbpE
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concentration profiles in C (as in Supp. Fig. 1A and 1B). Unmodified ST profiles provided the 

pure spectral signatures directly for 3D fluorescence images, whereas for 4D images, the 2D 

EEM pure landscapes was recovered by refolding each of the profiles in ST (as in Supp. Fig. 1B). 

All images were preprocessed before applying the MCR-ALS analysis, by removing spectral 

zones affected by Rayleigh scattering in 4D images, and by spatial binning fluorescence spectra 

in both 3D and 4D images. Binning compensated for low per-pixel emission fluorescence due 

to the high pixel spatial resolution (0.481 μm × 0.481 μm) and the possible low quantum yield 

of natural fluorophores. To improve the signal quality, spectra of adjacent pixels were summed 

to create a new larger pixel with a single spectrum of higher intensity and less noise. A 5×5 (x × 

y) binning was applied, resulting in a pixel size of 2.405 μm × 2.405 μm, improving both 

morphological features and spectral shape (Supp. Fig. 2). 

Supp. Fig. 2. Binning effects on images and spectra. On the left, before binning. On the right, after 

binning. The quality of spectra is increased, while tissue regions are still observable and often more 

clearly discerned with less noise 
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Supp. Fig. 3. Distribution maps of fluorescence signatures of decalcified, paraffin-embedded samples for 
all regions analyzed. The 2D images (grayscale) images (top and bottom of figure) acquired with a 405 
nm excitation laser and a wide wavelength emission filter provide reference for overall tissue 
appearance. 3D images (row 2) show the distribution maps of the fluorescence signature detected when 
the sample was excited with the 405 nm laser. 4D images (rows 3-5) show the three different 
fluorescence signatures detected when excited with White Light Laser (WLL), with their corresponding 
distribution maps. The distribution maps shown here combined with those in Fig. 10, 11 and 12 
comprise all paraffin maps included in the MCR-ALS analysis (with the exception of two additional cap 
zone distribution maps included in the analysis). Fluorescence signatures differ in emission-excitation 
wavelengths (shown in Fig. 10) and tissue distribution. See Table 2 and Figure 13 for summary 
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Supp. Fig. 4. Distribution maps of fluorescence signatures of mineralized, PMMA-embedded samples for 
all regions analyzed. The 2D images (grayscale) images (top row) acquired with a 405 nm excitation laser 
and a wide wavelength emission filter provide reference for overall tissue appearance. 3D images (rows 
2-3) show the distribution maps of the two fluorescence signatures detected when the sample is excited 
with the 405 nm laser. 4D images (rows 4-6) show the three different fluorescence signatures detected 
when excited with a White Light Laser (WLL), with their corresponding distribution maps. Fluorescence 
signatures differ in emission-excitation wavelengths (shown in Fig. 11) and tissue distribution. See Table 
2 and Figure 13 for summary. The distribution maps shown here combined with those in Fig. 10, 11 and 
12 comprise all PMMA maps included in the MCR-ALS analysis 
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Supp. Fig. 5 Comparison of AF and immunohistochemistry (IHC) techniques showing collagen type II in 
tessellated cartilage. In AF images of tesserae (left and central images: Fluo. 1, PMMA, Ex: 405), the 
spokes (Sp), cartilage matrix in intratesseral lacunae, and the bulk unmineralized cartilage matrix (the 
latter out-of-plane here) exhibit a similar AF (pseudocolored red in the left and center images). With 
immunohistochemistry from Raja clavata (right), we demonstrate that all three of these regions are 
also positive for Coll2 (brown color), suggesting this is the source of the fluorescence signatures  
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VI | DISCUSSION 

Studies of biological structures rely on imaging techniques to measure and characterize 

different physiological parameters of tissues, cells and molecules. As a consequence, the 

development of imaging techniques is often directly correlated with progress and questions in 

the biological sciences, allowing new insights into tissue organization and cell function. In the 

last century, in the study of skeletal biology, imaging techniques have mainly been applied to 

extensively-studied model organisms (e.g. mouse, zebrafish, fruit flies), with the resulting 

knowledge of biological phenomena then extrapolated to other organisms [1]. However, 

organisms are highly diverse, the sum-result of phylogenetic history and the evolution of 

adaptations to survive in different environments; therefore, the information obtained from 

model organisms is not always accurate to describe other taxa. For example, despite being used 

for a host of medical research, the skeletal tissues of mice are by no means directly applicable 

to humans, nor average for vertebrates [2,3]. The broader applicability of fruit flies and 

zebrafish as models can be similarly challenged. That is not to say these models are without 

value, rather that proper context (e.g. in phylogeny, ecology) is necessary for interpretation. In 

order to study a broader range of organisms and their different adaptations to their 

environments, new imaging techniques and mindsets are required, that are not only geared 

toward imaging biology in its native state in ways that are minimally invasive/destructive, but 

also not tethered to assumptions and fluorophores derived from and for model species. 

However, as emerging techniques are often based on a broad range of physical and chemical 

principles and biological context is vital for interpretation and direction, multi-disciplinary 

collaborations between diverse scientists is paramount, requiring cooperation among 

biologists, computational scientists, physicists, chemists, mathematicians and engineers. 

In this dissertation, through a collaboration with scientists from different backgrounds, two 

label-free imaging techniques were optimized to image and characterize elasmobranch skeletal 

cartilage, leading to new information about tissue and cellular structures, composition and 

organization, in 2D and 3D. In the following discussion, the advances and future applications of 

the optimized techniques are described, followed by the discussion of the significant 

discoveries in elasmobranch skeletal biology in this dissertation and how these are determinant 

for the understanding of cartilage biology, the diversity of cartilage in vertebrates and skeletal 

evolution.  
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1. Advances in cartilage imaging techniques 

Two label-free imaging techniques and analysis workflows were optimized to characterize 

elasmobranch skeletal cartilage: 1) high-resolution synchrotron microCT (SR-μCT) imaging 

combined with a morphometric analysis using an Amira custom workflow and 2) 

autofluorescence imaging and tissue characterization using a hyperspectral image analysis 

algorithm (MCR-ALS). Both techniques provided advancements in elasmobranch skeletal 

cartilage imaging, especially regarding non-mineralized structures such as cells and cartilage 

matrix, which are commonly challenging to characterize and image due to the difficulty posed 

by sample processing. As such, to facilitate our imaging goals, this dissertation also developed 

and refined a series of sample preparation protocols geared toward elasmobranch cartilage 

imaging. 

Fixation is the first and one of the most crucial steps to prepare the tissue for imaging and 

characterization. In elasmobranch cartilage, cells happened to be especially difficult to 

preserve, even more than their counterparts in other species, like mammalian chondrocytes. 

During the doctoral period, we developed fixation protocols to optimize cellular and matrix 

preservation, which is usually challenging in field-work conditions. However, to preserve 

cellular morphology and ultrastructure, it is necessary to work with laboratory animals under 

controlled conditions, as it is the only way to correctly perform crucial fixation steps, such as 

keeping post-mortem times short, using freshly prepared fixatives and use of laboratory 

equipment. The presented results represent the best cartilage and cell ultrastructure and 

morphology data obtained for elasmobranch cartilage to date, which allowed a battery of 

studies at different scales (from nm to μm), including ultrastructure imaging in electron 

microscopy and comparison with mammalian chondrocytes. However, although fixation 

conditions and steps were similar to those used to preserve the cell ultrastructure in mammals, 

the obtained cellular ultrastructure is still sub-optimal, with most cells exhibiting a distorted 

appearance, especially for those living within the tesserae. This indicates that different factors 

may be influencing the fixation of cells in elasmobranch cartilage and, although these factors 

are still unknown, it could be argued that they may be related to differences in pH between 

elasmobranch and mammals; elasmobranchs have a more basic pH (7.45 - 7.82)  than mammals 

(7.38 - 7.44), due to the different plasma concentration of carbon dioxide [4]. Additionally, the 

osmolality of elasmobranch tissues and body fluids is considerably different from that of 
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mammals (e.g. containing large amounts of urea and methylamines), which should also 

influence solute behavior during tissue fixation [5,6,7]. These persistent challenges to tissue 

fixation, in fact, are representative of our limited knowledge of tissue structure and 

composition and that there are surely profound differences with mammalian tissues that 

remain to be characterized. Further studies need to focus on developing protocols optimized 

more specifically for elasmobranch tissue fixation, which is usually not considered as a crucial 

step in most studies in elasmobranch research, which often erroneously assume the tissue will 

behave like mammalian cartilage.  

In fact, in previously published work, tesserae cells always present a shrunken appearance 

[8,9,10], making the characterization of their morphological aspects and ultrastructure 

impossible. As a result, tesserae cells are less known than other components of the tessellated 

skeleton, despite being probably essential units of tesserae biomechanics, mineralization and 

function. To sort out the preservation handicap, we developed a label-free imaging technique 

to study tessellated cartilage cells that does not require a well-preserved tissue, using, instead, 

the lacunae (spaces where cells reside) morphology as a proxy to characterize the morphology, 

orientation and organization of the tesserae cells [11,12]. Lacunae were imaged using SR-μCT, 

obtaining 3D images of several tesserae with a high contrast between denser materials 

(mineralized) and less dense materials (lacunae spaces). The custom workflow we developed 

and applied in Amira for quantitative and statistical analysis [12] offers a standardized protocol 

to analyze tesserae datasets, which can be used to compare lacunae organization and 

orientation from different skeletal elements, species and ages. The information obtained from 

these comparisons can be used to analyze tesserae ultrastructure across different body regions 

and developmental stages, to build broader hypotheses of cellular roles in mineralization, 

development and biomechanics. Until now, there has been no exploration of regional variation 

in tessellated cartilage (e.g. how mineralized and unmineralized tissues vary throughout the 

skeleton, according to skeletal shape or role); our technique makes this more tractable, by 

facilitating high-throughput analysis of morphology. Also, our workflow can be used to study 

other species and porosities in the tissues of other taxonomic groups, being highly valuable for 

delicate samples like museum specimens since it is a label-free and non-destructive technique 

that does not require well-fixed samples (e.g. samples that have lost their soft tissues like 

fossils, and less-well preserved samples such as, for example, the myriad museum specimens 

preserved in formalin and ethanol). Our workflow therefore helps to advance morphological 
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research in general, at a variety of scales, by facilitating anatomical analyses of physiologically-

relevant structural features in large digital datasets (e.g. from synchrotron tomography or lab-

based microCT). As more and more organismal CT scan data is made freely available online, 

through museum digitization services and web-based scan databases (e.g. OVert, 

MorphoSource), such workflows have increasing utility. 

Despite SR-μCT being a convenient technique to image the tesserae cells indirectly, it is not 

suitable to directly image non-mineralized structures (e.g. cells, matrix) with enough contrast 

for their characterization. Usually, in elasmobranch skeletal cartilage, non-mineralized 

structures are imaged using techniques such as classical histology or immunohistochemistry, 

which require external reagents to highlight specific components. To avoid the use of external 

reagents, we optimized a label-free imaging technique based on detecting the 

autofluorescence signal of the tissue [13]. Despite tissue fluorescence being a key tool in 

determining animal age and growth studies (through the use of fluorescent markers to label 

growing tissues; [14]), the native fluorescence of tessellated cartilage had never been 

characterized, although there were hints in the literature that it might be autofluorescent [4]. 

The images resulting from Paper 3 show that the tissue indeed has a rich inherent fluorescence, 

strong enough to visualize well defined structure of both mineralized and non-mineralized 

components, structures that usually are challenging to image simultaneously and rather require 

a combination of different techniques catering to each tissue phase, such as SEM (mineralized 

tissues) and histology (unmineralized tissues). The possibility to image both structures using 

one single technique offers the advantage of studying the tissue as a single complex composite, 

analyzing the interactions and arrangement of all structures in the same image and at different 

scales (from μm to cm).  

In addition, as the autofluorescence signal is an intrinsic property of the molecules, it is not 

necessary to know the tissue components (or target molecules) beforehand, as is the case with 

immunohistochemistry or in situ hybridization, where targeted probes need to be used. 

Therefore, autofluorescence is a powerful tool to localize species-specific tissue components 

and the structures they can form (e.g. matrix, canals), while also acting as an exploratory tool. 

For example, in our study, we identified a pervasive but unknown autofluorescent component 

located in the cartilage matrix of elasmobranchs, different from the Col2 known to pattern the 

majority of the matrix [13]. Although this component remains unidentified, it may be an 
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elasmobranch-specific molecule forming the cartilage matrix, similar to myxinin and lamprin, 

species-specific structural proteins forming the cartilage matrix of hagfishes and lampreys, 

respectively [15,16,17]. This demonstrates that autofluorescence signal is a useful technique 

to spotlight unexpected features in tissues by not being tied to image a specific fluorophore. 

Lastly, as the images were obtained using the intrinsic autofluorescence of the tissue, this 

technique is not limited to image elasmobranch skeletal cartilage, being suitable to image any 

tissue as long as it has autofluorescent components. This approach can be highly useful for 

studies that require a comparative study among different species, especially those including 

non-model organisms whose non-mineralized tissues cannot be properly imaged using 

conventional staining techniques. As studies like Paper 3 allow the elucidation of specific 

spectral signatures for tissue components, increase in the use of autofluorescence as an 

imaging tool in non-model organisms can lead to the building of a rich database or ‘look-up 

table’ for spectral properties and the tissues associated with them (resources common for 

techniques like Raman spectroscopy or FTIR), valuable as both a diagnostic and exploratory 

tool. 

 

2. Advances in cartilage biology 

The preparation, imaging and analysis techniques used were demonstrated to be efficient and 

accurate to study elasmobranch skeletal cartilage, providing new information about cartilage 

structure, composition, cell biology and biomechanics. In this way, the results obtained 

indicated that the two primary structural components of the elasmobranch skeleton —the 

tesserae and the unmineralized matrix— differ in tissue composition and cell morphology and 

organization, an observation that demonstrates how evolution can how evolution can play with 

the basic cartilage model to adapt the tissue for novel functional roles. 

Tesserae are a distinct skeletal structure of elasmobranchs, having a peculiar tissue 

organization and material composition that is believed to play a crucial role in skeletal 

biomechanics by making the skeleton stiff and flexible at the same time [18,19]. Among other 

particularities, such as their organization based on polygonal tiles joined together [20,21], the 

cellular organization also appears to be a distinct adaptation of the elasmobranch group. These 

cells have been described by several authors as chondrocytes (e.g. [8,10,20]); however, while 
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they are in appearance similar to chondrocytes, their organization within the tesserae suggest 

that the cellular origin, lifespan and function during both mineralization and within the tesserae 

may differ from what is known for chondrocytes in other vertebrates. As such, the data from 

this dissertation suggest that elasmobranch chondrocytes differ from other vertebrate 

chondrocytes in several aspects.  

First, elasmobranch chondrocytes survive the mineralization process without any variation in 

their morphology, volume and density (i.e. they do not appear to be altered by the 

mineralization of the surrounding matrix). Once they have been enclosed in the tesserae, the 

variation in their morphology and orientation depends on their position within the tesserae, 

suggesting the tissues they arose in (perichondrium or unmineralized cartilage) may dictate 

their shape and perhaps function in tesserae (see below; Paper 1; [11]).  

Second, the chondrocyte lacunae are connected by small passages (canaliculi) forming a 

lacuno-canalicular network (LCN) [11, 22]. The function of the chondrocyte LCN in tessellated 

cartilage remains unknown, however, a similar network is seen linking osteocytes (bone cells) 

in bone which, like chondrocytes in elasmobranchs, survive surrounded by mineralized matrix 

enclosed in lacunae [23,24]. The fact that two different cell types have a similar organization in 

mineralized tissues suggests that the LCN is an analogous adaptation for the cells to survive –

and perhaps communicate– within mineralized tissues, likely allowing nutrient transport from 

the surrounding, non-mineralized regions. In addition to maintaining living cells, many other 

adaptations have been attributed to LCN in bone such as mechanosensing, bone remodeling, 

communication with other organs and endocrine functions [23,25,26,27]. This broad range of 

adaptations in the osteocytes LCN can give insights into potential functions of tesserae cells 

and, although none of these functions have yet been attributed to the LCN of elasmobranch 

chondrocytes, the results of Paper 1 [11] —showing cell arrangements linked to the tesseral 

loading environment [19] and converging on each tessera’s population of central cells— 

support the elasmobranch LCN having some role in mechanosensing. Additionally, if indeed the 

elasmobranch LCN can be shown to be involved in the cycling and exchange of mineralization 

ions (i.e. local breaking down and building up of tesserae), this would argue that chondrocytes, 

like osteocytes, are capable of tissue remodeling, pointing to an ancient functional convergence 

in the biology of skeletal tissue cells.  
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Third, we found that chondrocytes present different morphologies and orientations depending 

on their location within tesserae, which can be correlated with the morphology of cells in the 

surrounding tissues. This is apparently the result of the accretionary growth of tesserae 

resulting in nearby cells being incorporated into the mineralized tissue [8,10,28]. Specifically, 

round cells from the tesserae body zone were previously located in the unmineralized cartilage 

matrix (where chondrocytes are round), flat cells from the cap zone were previously located in 

the perichondrium, and elongated cells from the radial zone were previously located in the 

intertesseral joint. It has been demonstrated that the cells in each of these surrounding tissues 

express different genes, indicating different cell function. For example, the cells in the 

unmineralized cartilage matrix behave (in principle) as “common” (mammalian) chondrocytes 

synthesizing Col2 and GAGs [29,30]. In contrast, the cells in the perichondrium appear to be 

involved in more diverse functions, suggesting the presence of multiple cell types. For example, 

some perichondrial cells appear to be immature chondrocytes that give way to mature 

chondrocytes of the unmineralized matrix [30], while others appear to produce Col1 [31], a 

function mainly related with fibroblasts that maintain the perichondrial matrix in mammalian 

skeletons [16,32]. The function of intertesseral joint cells is more uncertain. Marconi et al. [30] 

suggested that these cells correspond to newborn chondrocytes from the perichondrium that, 

to reach the unmineralized matrix, migrate through the joints. However, this theory is not 

compatible with the way that these cells are organized: rather than being randomly distributed 

through the joint matrix, as might be expected for migrating cells, joint cells are disposed 

discretely in rows, enclosed between parallel fibers that connect two tesserae [10]. Based on 

this organization, we suggest that these cells act as biomechanical sensors, being aligned to the 

principal axes of the forces and sharing loads between tesserae. Analyzing the genetic 

expression of joint cells during tesserae development (e.g. before and after tesserae grow into 

contact) would provide support for this hypothesis. 

The demonstrated diversity of chondrocyte function indicates that tesserae are composed of 

cells that differed in function before they were enclosed within tesserae. Once elasmobranch 

chondrocytes are enclosed in tesserae, their function is unknown, but two possibilities seem 

reasonable: First, when the chondrocytes are enclosed in tesserae, the cells do not change their 

previous function, which could mean that cells with different functions are coordinated within 

tesserae via canaliculi communication. In this way, tesserae would represent multi-functional 

organs (like bones) characterized by several cell types, with their diverse cellular capacity built 
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by ‘recruiting’ cells from other tissues. Alternatively (or, perhaps, in addition) elasmobranch 

chondrocytes could change and align their roles once they are enclosed in tesserae, which 

would mean that the cells maintain different morphologies, but converge on similar function. 

The possibility of chondrocytes changing their function once they are enclosed in a mineralized 

matrix is also seen during bone development (endochondral ossification) where some 

chondrocytes, instead of dying, transdifferentiate into osteocytes [33,34]. If a similar 

transdifferentiation occurs in elasmobranch tesserae cells, it could indicate that mineralization 

in elasmobranchs is also a trigger for a shift in function. Fine scale evaluation of cell gene 

products, morphology and composition across mineralization fronts (e.g. taking advantage of 

the tissue preparation and label-free imaging approaches developed in this dissertation) would 

help to clarify whether there is any cascade of cellular alterations during mineralization in 

tesserae, perhaps echoing some of the shifts known for chondrocytes in mammalian growth 

plates. Whether tesseral cells show shifts in function or not, the demonstrated variation in cells 

in tessellated cartilage (and the differences in function suggested by their varying 

autofluorescence signatures) support the notion that referring to these cells simply as 

“chondrocytes” may be limiting or even inaccurate.  

Variations in cellular morphology can also be related to skeletal developmental stages. For 

example, the cells located in the central area of the tesserae (central cells) differ in morphology 

from the other cells in tesserae and cells in the surrounding tissues (e.g. perichondrium, 

cartilage matrix): tesserae central cells form clusters, are rounder and larger than other 

tesserae cells, and the surrounding mineralized matrix has a distinct autofluorescence signal. 

These features suggest that the central area of tesserae may be a print of the first 

developmental stages of the skeleton, when tesserae first appear and start growing [13]. During 

these embryonic stages, the cartilage matrix is characterized by a high cellular density, with the 

cells organized in twins due to the high cell division [35]; therefore, the organization of round 

and large cells in clusters appears to be a consequence of tesserae having formed (and first 

incorporated cells) during those stages. As such, the distinct autofluorescence signal may also 

be indicative of a specific cartilage matrix composition at this stage, perhaps related with 

skeletal demands during embryonic development or matrix factors involved in initial tesseral 

formation. Although it is still unclear how the composition of the cartilaginous matrix varies 

across ontogeny in elasmobranchs, the characterization of cartilage matrix composition and 

organization at different developmental stages will shed light on different mechanical functions 
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through development, while also perhaps providing clues to the hallmarks of ageing in 

elasmobranch cartilage, which are yet unstudied. Since elasmobranch cartilage persists for far 

longer than human cartilage, this knowledge could also have important implications for 

cartilage treatments of degenerative pathologies like osteoarthritis.  

The fact that the central cells were enclosed during the first developmental stages and maintain 

a similar morphology raises important biological questions. First, to maintain those cells at the 

deepest point within tesserae, in order to transport nutrients and metabolic waste products, 

there should be a fluid transport between the cells and nutrient sources  (e.g. blood vessels) 

outside of the tesserae. This may be performed by the LCN, which can act as a transport conduit 

between cells and the environment surrounding tesserae (although the flow and exchange of 

matrix components through the tesserae LCN has yet to be shown or simulated). Second, the 

fact that central cells maintain the same structure as in the young skeleton indicates the 

inability of these cells to divide and be replaced once encased in mineral. These cells offer 

therefore interesting opportunities to investigate if they suffer any ultrastructure variations 

across their lifespan as a result of their anatomical ‘isolation’. Lastly, the fixed location of central 

cells in tesserae also makes them useful developmental models to compare with younger cells 

arrayed more peripherally. Given that some elasmobranchs can live for more than 400 years 

(the Greenland shark; [36]), further studies could use elasmobranchs to explore chondrocyte 

senescence, using the consistent cellular arrayment in tesserae to untangle how chondrocytes 

vary in ultrastructure and function across (even extreme) lifespans. 

Lastly, the round morphology and clustering organization obtained as a consequence of being 

encapsulated during an early developmental stage, may have crucial implications on tesserae 

biomechanics. In bone, osteocytes with round morphologies can receive mechanical forces 

isotropically and respond with chemical signaling [37]. Like osteocytes, chondrocytes are 

mechanosensing cells, where cellular morphology and organization can dictate the cell’s (and 

its tissue’s) ability to respond to its environment, and therefore also provide an indication, via 

their shape, of the forces experienced by a tissue [37,38,39]. In elasmobranch tesserae, the 

round morphology and clustering organization of the central cells could therefore indicate that 

they act as a ‘switchboard’ in the skeleton, a multi-directional reception and distribution center 

for forces, with access through the canaliculi network to the other cells from the surrounding 

tesserae regions (cap, body and radial) and, lastly, crossing the intertesseral joints to reach 
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neighboring tesserae. In this way, the cellular nodal network in the tessellated layer —involving 

a combination of canaliculi passages and lacunae spaces— could provide channels to 

communicate even among separated (non-neighboring) tesserae. Cellular networks have been 

described in other tissues such as among osteocytes in bone and neurons in the brain, but it 

never has been attributed to cartilage, which is usually composed of isolated chondrocytes that 

function independently from one to another (but see [40]). This cell organization may have 

crucial implications in maintaining tesserae structural integrity in terms of tesserae repair and 

matrix remodeling, allowing communication and coordination among chondrocytes from 

different skeletal regions.  

The demonstrated diversity of the chondrocytes living within tesserae adds a new dimension 

to the concept that tesserae are a distinct tissue of elasmobranchs [41,42,43], adapted for 

skeletal performance at different size scales. Whereas most previous studies have focused on 

anatomical, structural and material aspects of the mineralized tissue [10,20,28,44], this 

dissertation’s work illustrates that organization and function of tesseral cells should also be 

considered. Curiously, similarly distinct features have yet to be observed in the unmineralized 

cartilaginous matrix, which constitutes the bulk of the elasmobranch skeleton. Our 

autofluorescence data, combined with the results obtained in other studies, showed that the 

elasmobranch unmineralized cartilage resembles other vertebrate cartilages in terms of matrix 

composition (based in Col2 and GAGs) and chondrocyte organization, morphology and function 

[13,28,29,30]. That being said, the fact that the chondrocytes living inside tesserae differ from 

the chondrocytes of the unmineralized matrix is indicative of the plasticity of these cells in 

elasmobranch cartilage, where cells of ostensibly the same cell type are able to form and 

maintain, by modifying cell morphology, organization and function, both non-mineralized and 

mineralized skeletal structures such as the tesserae and unmineralized cartilage matrix, the 

various tissues forming vertebrae (fibrous, lamellar and areolar mineralization), and likely also 

articular joints (unknown cartilage type) [21,45,46,47].  

In fact, chondrocytes also appear to exhibit a high and under-appreciated degree of versatility 

in other vertebrates, forming and maintaining myriad different skeletal tissue structures among 

different species, but also within the same skeleton. For example, beyond forming and 

maintaining the entire adult skeleton of lampreys and hagfishes (in addition to chondrichthyes), 

chondrocytes are responsible for forming and maintaining the embryonic cartilaginous 
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skeleton during early development; for degrading the cartilage matrix during endochondral 

ossification (as hypertrophic chondrocytes) to form bony skeletons (fishes and tetrapods); and, 

in adult skeletons, for forming various cartilaginous structures such as elements of the 

respiratory system (both terrestrial and aquatic), intervertebral discs, bone-tendon 

intersections, articulations, noses, ears and ribs (e.g. [16,48,49,50,51,52]). Although 

chondrocytes (and the tissues they produce) are commonly attributed only to deuterostomes 

(chordates, echinoderms and hemichordates), a type of cellular cartilage has been also 

described in five groups of protostomes (annelids, mollusk, brachiopods and arthropods) 

forming, for example, tentacles, jaws, odontophores, respiratory systems, and complex optic 

structures (in case of cephalopods) [16,53,54]. This invertebrate cartilage is based on a different 

collagen type, Collagen A, but is histologically similar to vertebrate cartilage in terms of matrix 

organization and cell morphology [16,54,55]. Whether the cells building and residing in these 

“cartilages'' are true chondrocytes is uncertain. However, the presence of “chondrocytes” and 

“cartilages” in such hugely divergent modern taxonomic groups suggests that cartilage evolved 

multiple times in bilaterians, either through multiple cell lineages converging on the production 

of cartilage-like tissue or a single ancient cell lineage co-opting a shared gene regulatory 

network (SoxD/E) that was present in a common ancestor of bilaterians [54,55,56]. 

In either case, tools for making cartilage —either a cartilage-relevant gene regulatory network 

or a ‘proto-chondrocyte’— would have preceded the divergence of deuterostomes and 

protostomes, allowing these systems ~555 million years to adapt and evolve to different 

lineages’ skeletal pressures, to give rise to the abundant cartilaginous skeletal tissues seen 

today [55,57]. Further comparative studies of cartilage biology are needed to characterize 

chondrocyte diversity, and whether their function is encoded genetically or, on the other hand, 

triggered by the varying environmental factors (e.g. chemical, mechanical) experienced by 

different taxa. Given that bone and cartilage cells in fishes have been shown to perform roles 

typically attributed to other cells in mammals [58], it is reasonable and exciting to suppose that 

there are new cartilage cell lineages, to date classified as chondrocytes purely from 

appearance, that have functions yet to be described.  
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APPENDIX 

Protocols 

In the following pages are enclosed all protocols optimized to prepare elasmobranch skeletal 

cartilage during this dissertation. The protocols that did not required additional steps for this 

particular tissue are not included.  

-  Fixatives 

1. Ethanol 

2. PFA 

3. GA 

-  Embedding: 

1. PMMA 

2. Clarification 

-  Histology: 

1. Alcian blue 

2. Sirius red 

-  Fluorescent dyes: 

1. Green phalloidin + DAPI 

-  Immunohistochemistry: 

1. Sox9 

-  Electron microscopy 

1. Osmium tetroxide + Uranyl Acetate + Lead Citrate 
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Fixatives 

Ethanol 

Consecuitve steps to fix elasmobranch cartilage using increasing ethanol concentrations: 

Concentration Time 

1. 30% ETOH 20 min at RT 

2. 50% ETOH 20 min at RT 

3. 70% ETOH 20 min at RT 

4. 80% ETOH 20 min at RT 

5. 90% ETOH 20 min at RT 

6. 100% ETOH 20 min at RT 

 

PFA 4% 

Consecuitve steps to fix elasmobranch cartilage using increasing concentrations of PFA 4% in 

PBS: 

Concentration Time 

1. 4% PFA 6h at RT or overnight at 4°C 

2. Wash in PBS 20 min at RT 

3. Wash in PBS 20 min at RT 

4. Wash in PBS 20 min at RT 
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2%GA + 2%PFA 

Steps to fix elasmobranch cartilage using 2%GA +2%PFA 

Concentration Time 

1. 2%GA+ 2%PFA Until sample embedding 
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PMMA embedding 

1. Fixation 

- 4% PFA buffered in PBS – Overnight 

- Wash the PFA with PBS x3 during 20 min at RT 

- Place the samples in the embedding cassettes pre-labeled in pencil.  

2. Dehydration 

- ETHO 30% - 1 day at 4ºC on the rotator (+10 min vacuum) 

- ETHO 30% - 1 day at 4ºC on the rotator (+10 min vacuum) 

- ETHO 50% - 2 days at 4ºC on the rotator (+10 min vacuum) 

- ETHO 80% - 2 days at 4ºC on the rotator (+10 min vacuum) 

- ETHO 95% - 2 days at 4ºC on the rotator (+10 min vacuum) 

- ETHO 100% - 3 days at 4ºC on the rotator (+10 min vacuum) 

3. Rhodamine staining (optional) 

- Rhodamine/ETOH 1 – 1.5 days at 4ºC on the rotator (+10 min vacuum) 

- Rhodamine/ETOH 2 – 1.5 days at 4ºC on the rotator (+10 min vacuum) 

4. Pre-infiltration and polymerization 

- Xylol – 3 hours at RT (+10 min vacuum) – under the fume hood (toxic) 

- Xylol – 3 hours at RT (+10 min vacuum) – under the fume hood (toxic) 

- See before start section 

- Pre-infiltration – 3 days at 4ºC (+10 min vacuum) – under the fume hood (toxic) 

- Infiltration 1 – 3 days at 4ºC (+10 min vacuum) – under the fume hood (toxic) 

- Infiltration 2 – 4 days at 4ºC (+10 min vacuum) – under the fume hood (toxic) 

- Embedding – RT (+10 min vacuum) – under the fume hood (toxic) 

- Polimerization – 3-4 days at -20ºC (freezer) 

Specimen polymerisation/embedding protocol - Before start  

1. Place the specimens (still inside the embedding cassettes) in a metal tray inside the hood and 

keep them submerged in PMMA infiltration solution (do not let tissue dry out). Position the 

specimens in the order you want to embed them and open the lid of the embedding cassettes 

to facilitate access to the specimen-tissue.  
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2. Place embedding molds in the plastic container boxes which can fit in the freezer and have a 

lid. Pre-cool the container+molds inside for about 30min at -20°C. Position the paper label 

inside the molds in the same order as before. Paper label length should be about 3⁄4 of the 

mold perimeter (either 25mm or 25 mm), width no more than 5 mm. Position the label slightly 

above the specimen (approx.)  

3. Prepare forceps, towel paper, cut parafilm squares, all ready to use inside the hood.  

4. Pre-cool stock solutions A and B and embedding-molds before start (30 min, -20°C). 

- Prepare polymerisation mixture for 5-10 specimens at a time, depending on how fast you 

perform.  

- Avoid specimens drying out at all times 

- All steps should be conducted under the fume hood.  

  5. Pre-cooled stock solutions A should look viscous, transparent and without bubbles. Pre-cooled 

stock solutions B should look transparent and similar consistency as water.  

- Stock solutions A and B must be mixed while they are still cooled in a graduated cylinder in a 

9:1 ratio (e.g. 9 ml stock solution A + 1 ml stock solution B).  

- Bring stock solutions A and B back to the freezer.  

- Double-parafilm the graduated cylinder and mix the solutions by doing oscillating the cylinder 

very gently to avoid bubble formation.  

- After 2-4 minutes of gentle mixing, the polymerisation solution should look homogenous in a 

single phase, with slightly yellowish colour. Then, it is ready to use.  

6. Place the infiltrated tissue into the embedding-mold in the desired reference position for 

embedding (e.g. for mouse femur place the knee condyles facing downwards). Avoid changing 

the position of the embedded sample (avoid rapid movements). 

7. Pour carefully the polymerisation mixture to the embedding-molds until the mold is almost (1 

mm margin) completely filled to allow enough space for the lid to seal the mold later on. 

8. Vacuum 10 min at RT. Bubbles that come to the mold surface can be eliminated with a pipette  

9. Check if the sample maintains the correct position. If not, reposition very carefully avoiding 

bubble formation.  

10. Hermetically seal the embedding -mold or insert. Polimerisation will take place at -20°C for 3-4 

days. Do not open the containers during polymerisation.  
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Repeat steps 1-6 for the next batch of specimens. 

Preparation of the reagents 

Rhodamine solution 0.00417% (w/v) 

1. Add 250 ml 100% ETOH in a transparent glass bottle with a stirrer 

2. Add 1.25g Rhodamine 6G slowly while stirring 

3. Stir for 30 min and top up with 100% ETOH to a final volume of 300 ml 

*Store in a dark container at RT until next use 

*Rhodamine solution is toxic for the environment and should be discarded appropriately 

 

 

 

 

 

Destabilization of the basic solution – processing the components 

Technovit 9100 basic solution can be used when stabilized and unstabilized. The applications of 

destabilized basic solution guarantees that the results for all immunohistochemical studies are 

analogous to the paraffin histology. 

1. Fill chromatography column with approx. 50 g of Al2O3 (active, alkaline, 90) 

2. Slowly flow Technovit 9100 basic solution (material number 1) through it. A column filling with 

Al2O3 is able to destabilize. 3-4 liters of basic solution.  

The destabilized solution is stable for 4 weeks at +4ºC o ½ year at -20ºC. Store inn glass bottles. With 

metal lids (duran bottles blue lids are not resistant to destabilized solution).  

Pre-infiltration solution 

1. Prepare 200 ml of destabilized basic solution with a magnetic stirrer in a volumetric flask (200 

ml Erlenmeyer) under the fume hood 

2. Add 1 g of Hardener 1 and stir for 30 min 

3. Store at +4ºC to cool down before use 

Pre-infiltration solution is stable at for 2 weeks at +4ºC or ½ years at – 20ºC 
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Infiltration solution 

1. Prepare 200 ml of destabilized basic solution in a volumetric flask (250 ml Erlenmeyer) with a 

magnetic stirrer under the fume hood 

2. While stirring, slowly add 20 g PMMA powder 

3. Add destabilized basic solution to reach a final volume of 250 ml 

Note: dissolving the PMMA powder will increase the density (and volume) of the solution. If 

you prepare more than 200 ml, it will take longer to dissolve. 

4. Stir for 2 hours until the solution becomes clear under the fume hood 

5. Add 1 g of Hardener 1 and stir for 20 min 

Pre-infiltration solution is stable at for 2 weeks at +4ºC or ½ years at – 20ºC 

Specimens embedding and polymerization 

Stock solution A: 

1. Prepare 350 ml of destabilized basic. Solution in a volumetric flask (500 ml Erlenmeyer) with a 

magnetic stirrer under the fume hood 

2. While stirring slowly add 80 g PMMA powder 

3. Add destabilized basic solution to reach a total volume of 500 ml 

4. Stir for 2 hours until the solution becomes clear 

5. Add 3 g of Hardener 1 and stir for about 20 minutes 

6. While stirring, slowly add 20 g PMMA powder 

Stock solution A is stable at for 2 weeks at +4ºC or ½ years at – 20ºC 

Stock solution B: (prepare fresh each time) 

1. Prepare 44 ml of destabilized basic solution in a volumetric flask (50 ml) with a magnetic 

stirrer under the fume hood 

Note: pre-cooling the destabilized basic solution will help to cool down Stock Solution B faster 

2. While stirring, add 4 ml of Hardener 2 

3. While stirring, add 2 ml of polymerization regulator 

4. Allow to dissolve during 2 minutes before use 
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Material cleaning and disposal 

- After use, rinse thoroughly (3-4x) all glassware with 70% EtOH and keep overnight under the 

fume hood to avoid air contamination in the lab. Next day clean normally (out of the fume 

hood) or bring to the dishwasher.  

- Solution waste should be placed in the PMMA waste bottle in the fume hood to be brought to 

the special-waste treatment deposit.  

- Polymerisation occurs in the range of -2°C to -15°C. For example: 

Embedding mold of 25 mm diameter requires 10 ml of polymerisation solution. Embedding 

mold of 15 mm diameter requires ml of polymerisation solution  

- The polymerisation times depend on the polymerization volume and the temperature. The 

greater the volume of the embedding form, the lower the temperature must be, and the 

longer it will take.  
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Clarification protocol for elasmobranch cartilage 

1. Fixation 

- 4% PFA buffered in PBS – Overnight 

- Wash the PFA with PBS x3 during 20 min at RT 

- Store the sample at 4ºC in PBS before use  

*Do not fix the samples with glutaraldehyde, since it is highly autofluorescent.  

2. Dehydration 

- ETHO 30% - 12 h at RT 

- ETHO 50% - 12 h at RT 

- ETHO 70% - 12 h at RT 

- ETHO 100% - 12 h at RT 

*As we are dehydrating entire skeletal pieces, the dehydration steps take longer than for thin samples. 

3. Clarification with ethyl cinnamate (ECi) 

Product: Ethyl cinnamate – W243000 Sigma-Aldrich.  

- Transfer the sample in a tube with ECi. The sample should be covered by the reagent 

- Incubate while gently shaking at RT until the sample become transparent  

- The sample can be maintained in the reagent for months.  

*The sample is transparent as long as it is in the reagent. Once it is taken out, it won’t be transparent 

anymore.  
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Alcian blue staining for PMMA sections 

1. Deplastification 

- 2-Mea (A) – 20 min – Under fume hood  

- 2-Mea (B) – 20 min – Under fume hood 

- 2-Mea (C) – 20 min – Under fume hood 

- 100% ETOH (A) – 2 min – Under fume hood 

- 100% ETOH (B) – 2 min – Under fume hood 

- 96% ETOH (A) – 2 min – lab bench 

- 96% ETOH (B) - 2 min – lab bench 

- 80% ETOH (A) – 2 min – lab bench 

- 80% ETOH (B) - 2 min – lab bench 

- 70% ETOH (A) - 2 min – lab bench 

- 70% ETOH (B) - 2 min – lab bench 

- Distilled water - 2 min – lab bench 

*Safety note: 2-MEA is harmful in contact with skin or if inhaled. Handle only under the fume hood. 

2. Weigert’s Hematoxylin staining (15’): 

- Prepare working solution fresh every time 

- Mix equal volumes of Weigert’s Haematoxylin A and B solutions. Calculate the required 

volume as 0.5-1ml/slide 

- Apply on the slides laying. On the staining tray with a Pasteur pipette and incubate for 10 min. 

Make sure all sections are well covered 

- Place slides back in staining rack and wash in running distilled water. Do not expose the 

sections directly to the running water 

- Dip the rack of slides 3-4 times in the jar of Acid/Alcohol (1% HCL in 70% ethanol) to remove 

hematoxylin excess 

- Wash slide-rack in a crystal jar with distilled water for 2-5 min and drain 

*Safety note: Weigert´s Hematoxylin is flammable and corrosive. Avoid exposure to skin and eyes 

3. Alcian Blue (15’) 

- Immerse slides in the staining rack in Alcian Blue staining solution for 8 min. 

- Wash slides in a crystal jar with distilled water to remove excess of staining 

- Rinse slide-rack in running distilled water for 2-3 min and drain 
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*The sample is transparent as long as it is in the reagent. Once it is taken out, it won’t be transparent 

anymore.  

If we want to combine Alcian blue with Sirius Red, start Sirius Red protocol from here. 

4. Mounting 

Mounting can be done with Vitroclud (xylol-based), Mowiol (aqueous based) or Vectashield (aqueous 

based). For xylol-based mounting media, the samples have to be dehydrated by consecutive ethanol 

steps and infiltrated with xylol to make them soluble with the mounting media.  To avoid these steps, 

however, it is preferable to use the aqueous media which, in addition, avoid photobleaching and are 

optimal to visualize fluorophores.  

Protocol for xylol-based Media (Vitroclud) 

- 100% (C) ETOH – 2 min (lab bench) 

- 100% (D) ETOH – 2 min (lab bench) 

- 100% (E) ETOH – 2 min (lab bench) 

- Xylol (A) – 3 min fume hood 

- Xylol (B) – 3 min fume hood 

- Mount sections using xylol-based mounting media (Vitroclud) in the fume hood 

*Safety note: Xylol is highly flammable liquid and vapor. Very harmful to skin and respiratory tract. 

Handle under the fume hood only.  

5. Color legend 

- Proteoglycans – Blue 

*All staining solutions should be placed back into the original bottles, labelled with the solution date. 

*Unless otherwise stated, all procedures are conducted at RT and all reagents are dissolved in distilled 

water.  

 

Preparation of the reagents 

Weigert’s Haematoxylin 

- 50% (v/v) Weigert’s Haematoxyllin Part A – 5 ml 

- 50% (v/v) Weigert’s Haematoxylin Part B – 5 ml 

- Final volume – 10 ml 
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*Make fresh every time, 0.5-1ml/ slide to calculate the total volume required. Make sure all sections 

are fully covered.  

Acid Alcohol – 1% HCL in 70% ETOH 

- HCL – 3 ml 

- Absolute ETOH – 207.9 ml ~208 ml 

- Distilled water – 89 ml 

- Final volume – 300 ml  

*Return solution to Duran bottle when is not in use  

Alcian Blue (keep up to 4 weeks) 

- 0.5 % (v/v) Alcian blue 8GX – 1.5g 

- 1% (w/v) Glacial acetic acid – 3 ml 

- 99% (v/v) Distilled water – 300 ml 

- Final volume – 303 ml  

*Prepare solution in an Erlenmeyer flask with a magnetic stirrer, agitate until powder is dissolved and 

filter before use. Return solution to Duran bottle when is not in use 

Info: 

Alcian blue staining ca be combined with H&E staining, PAS staining, Sirius Red staining and Van 

Gieson staining methods.  
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Sirius red staining for PMMA sections 

1. Deplastification 

- 2-Mea (A) – 20 min – Under fume hood  

- 2-Mea (B) – 20 min – Under fume hood 

- 2-Mea (C) – 20 min – Under fume hood 

- 100% ETOH (A) – 2 min – Under fume hood 

- 100% ETOH (B) – 2 min – Under fume hood 

- 96% ETOH (A) – 2 min – lab bench 

- 96% ETOH (B) - 2 min – lab bench 

- 80% ETOH (A) – 2 min – lab bench 

- 80% ETOH (B) - 2 min – lab bench 

- 70% ETOH (A) - 2 min – lab bench 

- 70% ETOH (B) - 2 min – lab bench 

- Distilled water - 2 min – lab bench 

*Safety note: 2-MEA is harmful in contact with skin or if inhaled. Handle only under the fume 

hood. 

2. Phosphomollybdic acid staining (15’): 

- Make up the working solution fresh each time 

- Immerse slides in the staining rack in Phosphomolybdic acid staining solution for 15 min 

- Dip the slide-rack 3x in a crystal jar with distilled water to remove excess of staining 

*Excessive washing is counterproductive as Phsophomolybdic acid prepares the specimen-section for 

Sirius Red staining (Holde & Isler, 1958) 

3. Sirius Red staining (1h): 

- Immerse slides in the staining rack in Sirius Red solution for 45 min. It can be extended up to 

60 min if necessary 

- Wash slides in a crystal jar with distilled water to remove excess of staining 

- Rinse slides in running distilled water for 1-2 min and drain 

*Safety note: Picric acid is toxic in contact with skin or if inhaled. Explosion hazard when dry. 
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4. Mounting 

Mounting can be done with Vitroclud (xylol-based), Mowiol (aqueous based) or Vectashield (aqueous 

based). For xylol-based mounting media, the samples have to be dehydrated by consecutive ethanol 

steps and infiltrated with xylol to make them soluble with the mounting media.  To avoid these steps, 

however, it is preferable to use the aqueous media which, in addition, avoid photobleaching and are 

optimal to visualize fluorophores.  

Protocol for xylol-based Media (Vitroclud) 

- 100% (C) ETOH – 2 min (lab bench) 

- 100% (D) ETOH – 2 min (lab bench) 

- 100% (E) ETOH – 2 min (lab bench) 

- Xylol (A) – 3 min fume hood 

- Xylol (B) – 3 min fume hood 

- Mount sections using xylol-based mounting media (Vitroclud) in the fume hood 

*Safety note: Xylol is highly flammable liquid and vapor. Very harmful to skin and respiratory tract. 

Handle under the fume hood only.  

5. Color legend 

- Cell Nuclei – Black  

- Collagen – Pink/red 

*All staining solutions should be placed back into the original bottles, labelled with the solution date. 

 

Preparation of the reagents 

Phosphomolybdic acid (last 2-3 days) 

- 1% (w/v) Phosphomolybdic acid – 3 g 

- 100% (v/v) Distilled water – 300 ml 

- Final volume – 300 ml 

*Prepare solution directly in a glass jar.  Solution should become completely clear (yellow color) few 

minutes.  

*Return solution to Duran bottle when not in use 

*Safety note: Phosphomolybdic acid causes skin, eye and respiratory irritation  
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Sirius red (keep up to 3 weeks) 

- 0.1% (w/v) Sirius red – 0.3g 

- 33.3% (v/v) Saturated picric acid (toxic) – 100 ml 

- 66.6% (v/v) distilled water – 200 ml 

- Final volume – 300 ml  

*Safety note: Picric acid is toxic, and also explosive when dry  

*Take care when adding water to saturated Picric acid solution with staining powder (i.e. avoid 

splashing) 

*Prepare solution in an Erlenmeyer flask with a magnetic stirrer, agitate until powder is dissolved and 

filter before use 

*Return solution to Duran bottle when not in use 
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Green phalloidin + DAPI 

1. Deplastification 

- 2-Mea (A) – 20 min – Under fume hood  

- 2-Mea (B) – 20 min – Under fume hood 

- 2-Mea (C) – 20 min – Under fume hood 

- 100% ETOH (A) – 2 min – Under fume hood 

- 100% ETOH (B) – 2 min – Under fume hood 

- 96% ETOH (A) – 2 min – lab bench 

- 96% ETOH (B) - 2 min – lab bench 

- 80% ETOH (A) – 2 min – lab bench 

- 80% ETOH (B) - 2 min – lab bench 

- 70% ETOH (A) - 2 min – lab bench 

- 70% ETOH (B) - 2 min – lab bench 

- Distilled water - 2 min – lab bench 

*Safety note: 2-MEA is harmful in contact with skin or if inhaled. Handle only under the fume 

hood. 

2. Permeabilize the sample  

- Wash the sample in PBS+Triton during, at least, 1h at RT 

3. Staining with DAPI + Phalloidin 

- Staining with Pha (1:100 / 1:250) – 1h at RT in dark conditions (Pha is photosensitive) 

- Wash in large volumes with PBSTw (5 min x2) 

- Stain with DAPI (1:200) – 5 min at RT in dark conditions 

- Wash in large volumes with PBSTw (5min x2) 

Prepare Phalloidin and DAPI solution 

[DAPI] = 1:500 (1 L DAPI in 500 L PBS).  

To prepare the solution, first think how much volume of solution we need. Each sample (slice) needs to 

be covered with 1 drop of solution (drop  100 L). So, if we have 5 samples, we will need 500 L. 
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4. Mounting 

Mount with a glass cover using Fluoroshield mounting media 

- Add 1 drop of mounting media on the sample, without bubbles 

- Cover with the cover slip genteelly  

- Leave the samples dry overnight in a flat surface and protected from light  

If we aim to analyze the samples in high resolution microscopes, we have to use coverslips of 1.5 

(check in the box). 
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Sox9 - Immunohistochemistry 

This protocol was optimized in demineralized and paraffin embedded samples. 

1. Deparaffinize sections: 

. Wash in xylene – 5 min (3x) – Under fume hood.  

. Wash in 100% ethanol – 5 min (1x) 

. Wash in 90% ethanol – 5 min (1x) 

. Wash in 70% ethanol – 5 min (1x) 

. Wash in PBS – 5 min (3x) 

 

*If we want to stain samples that are already mounted in glass slides and covered with coverslips, the 
mounting media should be removed. To do so, the samples need to be during, at least, 24h in xylene. If 
after 24h the coverslip cannot be removed, leave the samples during other 24h more.   

 

2. Immuno 

 

Rehydrate 

- The samples were in ddH2O, so we put them PBS.  

Eg: 1,5 ml PBS + 3 um DAPI + 3 um PH.  

Block Solution and Primary Antibody (Sox 9) 

- Wash the samples in block solution during, at least, 1h at Room Temperature (the longer the 

better).  

- Incubate the samples with the Primary Antibody (Sox 9) diluted in block solution (1:400) 

overnight.  

1:400 Sox 9: 200 um for embryo + 150 um + 3 slices = 800 um.  

800 um of solution, where 2 um will be Sox9 (1:400).  

Secondary antibody 

- Wash the samples (x2; 5- 10 min) with block solution at Room Temperature.  

- Incubate the samples with Secondary Antibody (FITC; 1:500) + DAPI (1:200) at 4ºC in dark 

conditions overnight or 1h at room temperature.  

- Wash the samples in large volumes of PBSTw 
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3. Mounting 

Mount with a glass cover using Mowiol and nail polish.  

- Add 1 drop of Mowiol on the sample, without bubbles. 

- Add 4 drops of nail polish surrounding the sample, to stick the coverslip on the glass-slide. 

- Add the glass – slide and fix it adding nail polish at the surroundings.  

If we aim to analyze the samples in high resolution microscopes, we have to use coverslips of 1.5 

(check in the box). 

 

Preparation of reagents 

Blocking buffer solution: 

1 PBS + 1 % BSA + SDS 0.02% + Triton 1:1000 

 Triton is light sensitive. 

20 ml PBS + 20 um Triton + 200 um SDS + 2 g BSA (solution calculated for Sox9) 

Concentrations: 

- Sox9 (Primary antibody): 1:400 

- Secondary Antibody (FITC): 1:500 

- Triton: 1:1000 

- DAPI: (1:200).  

 

Calculations: 

1.2 ml of block solution + 0.6 um DAPI  

(it will be 1 um cos 0.6 is too small) 

 

 

 

 

 

 

 

 

 

200um block sol + Phalloidin 

(1:100) 

We stained some samples with 

DAPI + Pha  

1 ml block sol + 2n antibody (20 

um)  
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Controls 

- Negative control: it is used to check if the secondary antibody works. For that, we treat a 

“control” slices in the same way than our test slices but without using primary antibody. Doing 

that we will check if the secondary antibody does not bind in other places than primary 

antibody.  

- Positive control: to check if the antibody works. For that, we test it using a tissue / animal that 

we know the antibody works. In this case, we used an embryo (stage 19 – 22) of Cat shark.  
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TEM + FIB-SEM sample preparation 

1. Fixation 

- Keep the postmortem time as short as possible (less than 20 min) 

- 2% Glutaraldehyde + 2% PFA buffered in PBS (0.1M) – 24h at RT in a rotator 

*The samples can be maintained in the pre-fixative for several weeks. However, make sure that the 

solution stays clear. If not, change this solution for freshly prepared one.  

*This solution has to be done in PBS.  

2. Post-fixation 

Osmium tetroxide preparation: 

- Prepare 1% Osmium tetroxide (OsO4) in distilled water or MiliQ one day after starting the 

protocol (see page 243). 

- To prepare the OsO4 solution, prepare a glass bottle with MiliQ covered by silver foam (OsO4 

is photosensitive) 

- Break the OsO4 ampullae and immediately place it in the glass bottle with MiliQ and close it. – 

under the fume hood with the glass closed until the end.  

- Place the glass bottle in the rotator during 5 minutes 

- Place the glass bottle in the fridge at 4ºC overnight  

*OsO4 is highly toxic and volatile. All steps should be done under the fume hood, wearing lab coat, lab 

googles and gloves.  

Optional: add 1% Kaliumhexacyanidoferrat to the osmium solution. For fish samples, Michael uses 

0.5% OsO4 + 1% Kaliumhexacyanidoferrat in distilled water.  

 

Post-fixation: 

 

- Wash the sample in PBS (0.1 M) at RT during 20 min (x3) 

- Before using OsO4, shake it during 5 minutes in the ultrasound machine 

- Add the OsO4 in the samples and leave it 24h (or overnight) at 4ºC 

*The samples should be wrapped in silver foam during all the protocol.  
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3. Dehydration 

- Wash the samples in MiliQ during 20 min in the rotator (x3). The MiliQ should be clear after 

the third washing. If not, continue washing until the MilliQ is clear 

- 30% acetone – 1-2h at RT in the rotator (x2) 

- 40% acetone – 1-2h at RT in the rotator (x2) 

- 50% acetone – 1-2h at RT in the rotator (x2) 

- 70% acetone – 1-2h at RT in the rotator – samples can be maintained several weeks in the 

fridge in this solution 

- 90% acetone – 1-2h at RT in the rotator (x2) 

- 100% acetone – 1h at RT in the rotator (x2) 

- Stain with UA during 2 h and wash the samples with 100% acetone during 20 min (x3) 

- 100% acetone – overnight at 4ºC  

*Instead of acetone could be ethanol. If so, after 100% etanol the samples have to be washed in 100% 

acetone during 1h at RT in the rotator (x2) 

*For UA preparation, see page 4 

4. Infiltration 

EPON resin preparation: 

- Resin 8 g 

- DDSA 5.34 g 

- NMA 3.34 g 

- BDMA 0.33 g 

* Depending on the quantities needed, this recipe can be cut in half or doubled. See page 244 

 

- 10% resin in acetone – 2h at RT in the rotator 

- 20% resin in acetone – 2h at RT in the rotator 

- 30% resin in acetone – 2h at RT in the rotator (or overnight at 4ºC) 

- 50% resin in acetone – 2h at RT in the rotator 

- 70% resin in acetone – 2h at RT in the rotator 

- 90% resin in acetone – 2h at RT in the rotator 

- 100% resin – 3h at RT in the rotator 

- 100% fresh prepared resin – 4ºC overnight 
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5. Embedding 

- Prepare fresh resin 

- Wash the molds with water and soap and pre-heat them in the oven at 60ºC 

- Replace the resin with fresh 100% resin and transfer to the molds 

- Place the samples to the molds in the desired position. Although the resin is toxic, this step is 

recommended to be done under the scope, which is  outside of the hood. 

- Pre-head the oven at 40ºC 

- Place the molds with the samples in the oven. First during 2h at 40ºC 

- Then at 60ºC for 2-4 days. 

 

Preparation of the reagents 

Osmium tetroxide: 

1. Prepare the workspace under the fume hood: clean it using ETHO, cover everything with clean 

papers, put a special trash for the pipettes/gloves/vials waste (OsO4 + PFA + UA waste). Keep 

the liquid waste in Falcon tubes inside the hood until we finish the protocol.  

2. Prepare the Osmium solution. Commercially, OsO4 comes as solid in little glass and closed 

bottles (ampullae), with a constant weight of 0.25 g. The concentration that we need is 1% OsO4 

in distilled water. For the conversion we need: 

 

1% =
1𝑔𝑟

100 𝑚𝑙
 

So, our formula will be: 

1 % --- 1 gr --- 100ml 

0.25 gr ---- x  

X = (100 * 0.25 ) / 1 = 25 ml 

 

To get a solution of 1 % OsO4 we need to dissolve the 0.25 g OsO4 in 25 ml of distilled water.  

 

3. We put 25 ml of MiliQ or distilled water in a glass bottle. OsO4 is photosensitive, so wrap the 

bottle with silver foam.  

4. Close the hood until the end, keeping just your arms inside (Osmium is toxic and volatile). Break 

the glass bottle with OsO4, put all inside the glass bottle (broken bottle, both parts) with Des. 

Water. And close it quickly to avoid the Osmium volatilize.  

5. Label the bottle (date, OsO4 and buffer we used: des. Water or MiliQ). 

6. Leave it in the shaker during 5 minutes.  
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7. Leave the solution in the fridge.  

8. Before using it, shake it during 5 minutes at ultrasound machine. 

 

*Osmium tetroxide toxicity (OsO4). Osmium is highly toxic. Low 

concentrations in air can cause lung congestion, skin damage 

and severe eye damage. Osmium tetroxide is highly volatile, it 

can be absorbed into the body by inhalation of its vapor, by 

inhalation of its aerosol and by ingestion.  

 

Uranyl acetate: 

Staining medium: 9.9 – 9.8 ml of ANHYDROUS acetone supplemented with 100 – 200 µl of uranyl 

acetate 20% (0.2-0.4 % final). The stock solution of uranyl acetate (UA) is made of 20% UA dissolved in 

pure methanol, therefore the FSM contains 1% methanol(!!!) 

Preparation of 20% UA (weight/volume ratio 50mg in 250ul): 

1. Weigh 50 mg UA powder 

2. Add 250 μl Methanol to the powder and shake them for ten minutes to dissolve it. 
 
 
*Uranyl acetate toxicity (UA): Uranyl acetate is both radioactive 

and toxic. UA is very toxic if ingested, inhaled as dust or by skin 

contact if skin is cut or abraded. 

  



207 
 

  



208 
 

 


