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Abstract

An integrated metal–organic framework (MOF) and pressure/vacuum swing adsorp-

tion (P/VSA) process design framework is presented for gas separation. It consists of

two steps: adsorbent descriptor optimization, and MOF matching. In the first step,

MOFs are represented as a large set of chemical and geometric descriptors from

which the most influential ones are selected via a multistep screening method and

treated as design variables. The valid design space of the selected descriptors is con-

fined using a tailored classifier model and logic constraints. Based on collected

adsorption isotherms of 471 different MOFs, data-driven isotherm models are devel-

oped. Combining the design space, isotherms, and four-step P/VSA process models,

an integrated MOF and P/VSA process design problem is formulated. MOF descrip-

tors and process operating conditions are optimized to maximize the process perfor-

mance. The obtained optimal descriptors and isotherms can be used to guide the

discovery of high-performance MOFs in a subsequent MOF matching step. This arti-

cle addresses the first descriptor optimization step exemplified by propene/propane

separation.
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1 | INTRODUCTION

Pressure/vacuum swing adsorption (P/VSA) is a widely used tech-

nology for gas separation. It exploits different affinities of gases

on solid adsorbents at different pressures to achieve the separa-

tion. Currently, multiple types of porous materials are used as

adsorbents, such as metal–organic framework (MOF), zeolite, and

activated carbon. Among these, MOFs are formed via the self-

assembly of various molecular building blocks (i.e., metal nodes

and organic linkers) in different topologies. The large variety of

building blocks provide a near-infinite design space for MOFs.1

Additionally, MOFs possess many superior properties such as

ultrahigh porosity, controllable pore geometry, and a functional

pore surface. Thus, MOFs have great potential to achieve remark-

able progress in adsorption-based gas separation.2

MOF-based gas separation can be achieved via four alternative

mechanisms: equilibrium separation, kinetic separation, molecular

sieving, and gate-opening separation. Equilibrium separation, based

on a difference in species equilibrium gas loadings, is the most com-

mon method.3 To date, numerous MOFs with distinct isotherm char-

acteristics have been experimentally synthesized by tailoring the MOF

chemistry and structure (e.g., pore geometry and topology). Clearly,

this trial-and-error experimental approach is time consuming and inef-

ficient. Importantly, many MOFs created in the laboratory cannot lead

to good process performance.4 As depicted in Figure 1, the design of

an MOF for use in P/VSA processes is a multiscale design problem
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that incorporates the inter-linked material, phase, and process levels.

Variations of both material and process operating parameters affect

the adsorption behavior of the gas–solid system and thus jointly

determine the process performance. Bearing this multiscale picture in

mind, a computational approach is highly desirable to expedite the

identification of promising MOF adsorbents that can best serve the

P/VSA process.5,6

In the literature, computational screening methods have been

employed to find suitable adsorbents, including MOFs and zeolites.

The most popular one is high-throughput screening.7–12 A large set of

synthesized or hypothetical adsorbents are first collected and their

adsorption and diffusion properties are computed using molecular

simulation. Then, various performance metrics (e.g., working capacity

and selectivity) are calculated to identify top-ranked candidates for

further process evaluation when applicable. Although this approach

works for a large adsorbent database, those widely used metrics can

neither tell whether separation requirements are satisfied nor rank

the adsorbents correctly in terms of real process performance.13–15

Alternatively, hypothetical adsorption isotherms can be sampled and

used for process optimization. With these results, surrogate models,

which correlate isotherm characteristics with process performance,

can be constructed and used for adsorbent screening.14,16–18 This

method can generate an adsorbent ranking that is more consistent

with process performance. However, like other screening approaches,

it works only for adsorbents with known chemistry and structure.

Besides, the insights from the phase and process levels cannot be

used to guide new adsorbent design.

In addition to screening, the multiscale adsorbent and process

design problem can be formulated as an optimization problem. Each

level is represented by different models so that design variables at

material and process levels can be simultaneously optimized. Such a

strategy has been widely applied for integrated solvent and process

design.19–23 Its success lies in the foundation of the computer-aided

molecular design method, various molecular structure–property

relationship models, structural feasibility rules, and so on. For adsorp-

tion processes, by integrating the phase and process levels, Khurana

and Farooq24,25 simultaneously optimized isotherm characteristics

and VSA operating conditions for carbon capture. Optimal isotherm

shapes achieving the highest process performance are obtained,

which serve as targets for adsorbent design. However, without con-

sidering the valid design space of adsorbent materials, the isotherm

targets may not correspond to any feasible adsorbents. Importantly, it

is unknown which adsorbent chemistry and structure are favorable

for the process. To tackle these issues, material design should be inte-

grated directly into the process optimization framework. Unfortu-

nately, no work has been done on this topic yet. The major challenge

lies in the lack of explicit mathematical models to ensure the structural

feasibility of the adsorbents and to predict the adsorbent properties

(e.g., adsorption isotherm) based on their structures. For the instance

of MOFs, hypothetical MOF materials are usually assembled using

computational tools (e.g., ToBaCCo) and their structural feasibility is

verified via ab initio calculations.26 In addition, as stated above, com-

putationally expensive molecular simulation is typically used to deter-

mine the adsorbent properties.27 Clearly, it is difficult to incorporate

these computations into a mathematical optimization problem.

In this article, focusing on the equilibrium separation, a novel inte-

grated MOF and P/VSA process design framework is proposed in

Figure 2 to tackle the above challenges. It consists of two steps:

descriptor optimization, and MOF matching. Because of the vast num-

ber of MOF building blocks, it is hard to build mathematical models to

predict adsorption isotherms directly from building blocks. Thus, in

the first step, an MOF is denoted by a set of descriptors. Several data

science techniques are adopted to select proper descriptors, define a

valid design space, and build data-driven models for predicting the

adsorption isotherms. This enables an explicit formulation of the inte-

grated design problem where MOF descriptors and process operating

conditions are simultaneously optimized to maximize the process per-

formance. The optimal results are then used to guide the discovery of

high-performance MOFs in the second step. This work addresses the

first step, while the second step will be elaborated in a subsequent

article. The entire framework is demonstrated on the separation of

propene (PE) and propane (PA), which is currently achieved with

energy-intensive cryogenic distillation. An optimal design of the MOF

and P/VSA process is of great significance for energy-saving. The rest

of the article is organized as follows: First, the specific workflow of

the descriptor optimization step is introduced in detail. Afterward, the

resulting optimization problem is solved for the PE/PA separation.

2 | WORKFLOW OF DESCRIPTOR
OPTIMIZATION

Figure 3 illustrates the workflow of the descriptor optimization step.

First, MOFs are represented by a large set of descriptors. With the

collected single-component adsorption isotherm data, a much smaller

subset of representative MOF descriptors is selected to serve as

design variables. Meanwhile, these selected descriptors are used to

F IGURE 1 Multiscale structure of the pressure/vacuum swing
adsorption process
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develop data-driven models for predicting the single-component equi-

librium adsorption loadings. Then, the data-driven models are

employed to derive multicomponent dual-site Langmuir (DSL) iso-

therm models. In addition, based on the generated descriptor dataset,

specific models are developed to define the valid design space of

descriptors. Afterwards, by integrating the design space model, the

DSL isotherm model, and the P/VSA process model, the integrated

MOF and P/VSA process design task is formulated as a nonlinear pro-

gramming (NLP) optimization problem. This problem is solved to iden-

tify the optimal descriptor values and process operating conditions.

The detailed procedures and models are elaborated next.

2.1 | MOF representation

As a porous material, every MOF has a unique chemical composition

(metal node and organic linker) and/or structure (pore geometry and

topology). For adsorption, MOF chemistry greatly influences the

interaction with the adsorbate. For instance, some metals (e.g., copper

and zinc) can form open metal site (OMS) that leads to a stronger

interaction with olefins than with paraffins.28,29 In addition, since

adsorbates tend to occupy the void spaces of an MOF during adsorp-

tion, pore geometry plays a crucial role in determining the adsorption

capacity. Therefore, chemical and geometric descriptors are required

to account for the effects of MOF chemistry and pore geometry on

the adsorption properties.30 For differentiating MOF topologies, topo-

logical descriptors can be computed. However, these descriptors are

hard to interpret and trace back to specific topology.31 Additionally,

only a small number of frequently used topologies can be found from

the synthesized MOFs.1,32 Considering the low interpretability and

limited topology variations, topological descriptors are thus not

included as design variables here.

In this work, 14 widely used geometric descriptors are consid-

ered, including void fraction, volumetric surface area, largest cavity

diameter, and unit cell size. It has been found that these descriptors

can capture the important geometric characteristics of crystalline

porous materials such as MOFs.33 Moreover, Gharagheizi et al.34

recently defined 5009 chemical descriptors to describe MOF chemis-

try. The definitions of these chemical descriptors are adjusted from

molecular descriptors that have been widely used in cheminformatics.

The current study employs these 5009 chemical descriptors directly.

For easy reading, the symbols and definitions of all the 5023 descrip-

tors are given in Appendix S1.

After specifying MOF descriptors, a set of real MOFs need to be

selected and their corresponding descriptors can be calculated. The

obtained descriptor data can then be used to develop data-driven

models for predicting MOF adsorption isotherms. Here, 471 different

MOFs are selected from the CoRE MOF database where stable and

synthesizable MOFs with available atomic coordinates are collected.35

These 471 MOFs include considerable diversity of chemistry, geome-

try, and topology. For each MOF, the 14 geometric descriptors are

computed using the open-source package Zeo++ with a probe radius

of 1.86 Å.33,36 Additionally, the molecular graph of MOFs containing

atom positions and connections is read using the cheminformatics

package RDkit,37 and 5009 chemical descriptors are derived accord-

ingly. As a demonstration, the calculated 5023 descriptors of the

471 MOFs are listed in Appendix S1.34

F IGURE 2 General methodology for integrated metal–organic framework and pressure/vacuum swing adsorption process design

F IGURE 3 Workflow of the descriptor optimization step
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2.2 | Data-driven model for single-component
adsorption isotherm

Data-driven models are developed to predict single-component equi-

librium adsorption loadings using MOF descriptors as input. Clearly, a

series of experimental or simulated adsorption isotherm data are

required for model regression. The pure-species adsorption isotherms

of PE and PA on the aforementioned 471 MOFs have been predicted

by Tang et al.38 using grand canonical Monte Carlo (GCMC) simula-

tions at 300 K over the pressure range 0.1–156 bar. For easy refer-

ence, all the isotherm data are tabulated along with the MOF

descriptors in Appendix S1.

Notably, although it is somehow useful to include a large number

of descriptors, this brings difficulties in developing data-driven models

and solving the descriptor optimization problem. Obviously, the effect

of each descriptor on deciding the adsorption selectivity and capacity

varies. For this reason, the most influential descriptors can be selected

to build simple but reliable data-driven models.39 Figure 4 shows a

systematic procedure for descriptor selection.

• In Step 1, the descriptors whose values are equal to zero for more

than 95% of the 471 MOFs are removed. After this operation, a

combination of 83 descriptors remains.

• In Step 2, the remaining descriptors are normalized into the range

[0, 1]. Those descriptors whose variances are less than 0.02 are

removed. This is because a descriptor usually has little predictive

capability when it does not vary much. Fifty-two descriptors remain.

• When two descriptors are highly correlated, only one is worth

retaining. In Step 3, if the correlation coefficient between any two

descriptors exceeds 0.9, the descriptor having a larger total correla-

tion coefficient with other descriptors is eliminated. After this step,

43 descriptors are left.

• In Step 4, the recursive feature elimination approach is applied to

further reduce the number of descriptors.40 Considering the

43 descriptors as input and equilibrium adsorption loadings as out-

put, the sensitivity or importance of each descriptor is first com-

puted using the random forest algorithm. Note that for different

gas adsorbates, the descriptor sensitivities can be different. For

instance, based on the PE adsorption loadings at 0.16 bar, the

importance of the 43 descriptors is calculated and listed in

Table S1. For predicting the PA adsorption loading at 0.10 bar, a

different ranking of the descriptor importance is obtained

(Table S1). After determining the relative importance of the

descriptors, the least important descriptors are recursively

removed and the remaining ones are sent to train artificial neural

network (ANN) models to predict the isotherm data. For each trial,

fivefold cross-validation is performed to tune the hyperparameters

(number of layers and neurons). Figure S1 shows the evolutions of

coefficient of determination (R2), mean absolute error (MAE), and rel-

ative absolute error (RAE) of the ANN models for the prediction of

PE and PA isotherm data. As expected, for both cases the model

accuracy decreases when reducing the number of descriptors. To

ensure R2 larger than 0.95, two sets of the top-ranked 16 descriptors

in Table S1 are selected for PE and PA, respectively. Within these

two sets, 13 descriptors are repeated. Thus, in total 19 different

descriptors (marked in blue in Table S1) are finally identified. As

shown in Figure 4, they consist of 9 geometric and 10 chemical

descriptors.

Based on the 19 descriptors, two new ANN models are trained for

predicting the single-component equilibrium loadings of propene (qsE)

and propane (qsA) at 300K and different pressures, respectively.

Again, fivefold cross-validation is carried out to find the optimal

hyperparameters. As a result, each model has one input, one hidden,

and one output layer while the tansig and purelin activation functions

are applied in the hidden and output layers, respectively. The number

of neurons in the hidden layer is 25 for the qsE model and 30 for the

qsA model. The detailed model parameters are provided in

F IGURE 4 Detailed procedure for metal–organic framework descriptor selection
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Appendix S1, and the two data-driven models are summarized as

follows:

qsE ¼ANN1 y1,…,y19,Pð ÞatT¼300K, ð1Þ

qsA ¼ANN2 y1,…,y19,Pð ÞatT¼300K, ð2Þ

where y1 – y19 are the 19 descriptor values, and P denotes the pres-

sure. Figure 5 presents the histogram of prediction errors of these

two models. For both models, over 80% of the deviations fall

into the [�1, 1] interval. For better assessment, R2 and MAE are

determined and given in Figure 5. As shown, the R2 and MAE of

both models are >0.95 and <0.6, respectively. This indicates

that the two models can generally provide reliable predictions

on the single-component adsorption isotherms of propene and

propane.

2.3 | Multicomponent dual-site Langmuir isotherm
model

Adsorption-based gas separation occurs in a multicomponent environ-

ment. To predict the multicomponent adsorption equilibria, the DSL model

is applied using pure-component model parameters (i.e., saturation capac-

ity and adsorbent affinity) that are fitted from single-component adsorp-

tion loading data. It has been found that this type of DSL model can

provide good predictions for many systems including PE/PA.41

In this work, the DSL model parameters are derived as follows:

Given four pressures Pi ¼ 0:01,0:1,1,10f g bar, the corresponding

single-component PE and PA adsorption loadings are predicted by

qsE,i ¼ANN1 y1,…,y19,Pið ÞatT¼300K: ð3Þ

qsA,i ¼ANN2 y1,…,y19,Pið ÞatT¼300K: ð4Þ

Meanwhile, the equilibrium adsorption loadings of PE and PA (qeqE,i and

qeqA,i) at pressure Pi can be calculated from the multi-component DSL

model by assuming that only one component exists:

qeqE,i ¼
Q1

E �b1E �Pi �yE
1þb1E �Pi �yEþb1A �Pi �yA

þ Q2
E �b2E �Pi �yE

1þb2E �Pi �yEþb2A �Pi �yA
yE ¼1, yA ¼0,

ð5Þ

qeqA,i ¼
Q1

A �b1A �Pi �yA
1þb1E �Pi �yEþb1A �Pi �yA

þ Q2
A �b2A �Pi �yA

1þb2E �Pi �yE þb2A �Pi �yA
yE ¼0, yA ¼1,

ð6Þ

where yE and yA are the molar fractions of PE and PA in the gas phase,

respectively. Equations (7) and (8) ensure that the adsorption loadings

calculated from the two models match each other. With these, the

eight DSL model parameters (Q1
E , b

1
E , Q

2
E , b

2
E , Q

1
A, b

1
A, Q

2
A, and b2A) can be

obtained.

qeqE,i�qsE,i
� �2

≤0:005: ð7Þ

qeqA,i�qsA,i
� �2

≤0:005: ð8Þ

2.4 | Descriptor design space

Nineteen MOF descriptors are selected and two ANN models are

developed from pure adsorption data without incorporating any ther-

modynamic basis. In this case, additional constraints should be added

to confine the design solutions inside the valid design space of the

models. In general, data-driven models are valid within the region that

is densely covered by the training data, namely the validity domain.42

Consequently, any predictions outside the validity domain should be

prevented. Usually, the convex hull of training data is approximated as

the validity domain. However, the construction of such a convex hull is
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F IGURE 5 Prediction error distribution of the data-driven
models for (A) qsE and (B) qsA at 300K for 471 real metal–organic
frameworks
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computationally demanding for high-dimensional dataset, such as the

19-dimensional one in this work. An alternative approach is to build a

one-class classifier. A suitable kernel function is used to map the original

dataset into a new feature space where the boundary of the data points

can be easily identified. Any points inside this boundary are considered

as valid.43 In this work, a one-class support vector machine (SVM) classi-

fier is built to quantify the validity domain, where the radial basis func-

tion is selected as the kernel function. After importing the descriptor

dataset, the kernel coefficient β is manually tuned to 2�10�9 to

ensure that more than 99.5% of the training data are located inside

the validity domain. The resulting classifier or boundary is written as

f yð Þ¼
XN

j¼1
wj �ϕj yð Þþρ>0 y¼ y1,…,y19½ �, ð9Þ

ϕj yð Þ¼ e�β� y�SV jk k2

SV j ¼ SV1,j ,…,SV19,j

� � ð10Þ

where N is the total number of fitted support vectors, ρ is the model

intercept, andwj is the coefficient of the jth support vector SV j. All

these parameters were automatically fitted and are given in Appendix S1.

In order to generate valid design solutions, certain logic con-

straints have to be satisfied as well. Equation (11) ensures that each

descriptor is within its lower and upper bounds, which are set as the

minimal and maximal descriptor values in the training dataset:

yL ≤ y ≤ yU y¼ y1,…,y19½ �: ð11Þ

In addition, the largest cavity diameter (y3) should be larger than the

pore limiting diameter (y2) based on their definitions.33 The volume of

a single unit cell (y9) must be smaller than the cubic cell volume

(i.e., y6 �y7 �y8). Besides, the number of atoms (y10) should be larger

than the number of non-hydrogen atoms (y11), and the number of

metal atoms (y12) must be larger than the number of transition-metal

atoms (y13). Finally, since the valency of one metal atom is typically

less than 6, the total number of bonds linked to metal atoms (y16) can-

not exceed 6 times the number of metal atoms:

y3 ≥ y2: ð12Þ

y9 ≤ y6 �y7 �y8: ð13Þ

y10 ≥ y11: ð14Þ

y12 ≥ y13: ð15Þ

6y12 ≥ y16: ð16Þ

2.5 | P/VSA process model

Figure 6 depicts a one-bed, four-step P/VSA process for PE/PA sepa-

ration. A complete process cycle consists of pressurization,

adsorption, rinsing, and desorption.44 For pressurization, the feed gas

is compressed to a high pressure (if necessary) and fed into the bot-

tom of the column. The top is closed so that the internal pressure

gradually increases. At the adsorption stage, the supply of feed gas is

continued, where PE is selectively adsorbed and a PA-rich stream

leaves from the top. Then, a small portion of the purified PE stream is

re-pressurized and fed to the column to rinse the PA-rich gas in the

void space. Note that at the rinsing step, the input gas compositions

are presumably constant and equal to the average compositions of

the purified PE stream. Afterward, a constant low pressure is enforced

at the bottom of the column and the bed undergoes a desorption step

where the pressure within the column is gradually reduced to a lower

level and the released PE is collected at the bottom. In the end, the PE

output is terminated and a new cycle can start. Note that the pressure

history diagram in Figure 6 is used only for illustration and no specific

pressure history is enforced at any step. For simplification, the follow-

ing assumptions are made45,46:

• The process is constantly operated at 300 K.

• Adsorbent properties (e.g., particle size and porosity) are uniform

throughout the column.

• Both PE and PA follow the ideal gas law, and the gas viscosity is

assumed to be constant.

• Axial dispersion in the packed adsorber bed is neglected. In the

radial direction, there are no variations of pressure and gas concen-

trations in both gas and solid phases.

• Regarding kinetics, the adsorption rates are approximated by linear

driving force models. Since only the equilibrium separation of

PE/PA is studied, lumped mass-transfer coefficients are considered

and prespecified.

• The axial pressure drop is calculated from the Ergun equation.

Based on these assumptions, the mathematical model for the four-

step P/VSA process is given in Appendix S1. It includes the compo-

nent mass balances, the total mass balance, the mass-transfer kinetics,

F IGURE 6 Schematic diagram of the four-step pressure/vacuum
swing adsorption process
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the pressure drop correlation, the cyclic steady-state conditions, and

the boundary conditions (see Equation (A1)�(A11)). Note that energy

balances are not considered since isothermal process operation is

assumed. Six operating conditions are treated as design variables at

the process level. They are the durations of the four steps (tPR, tAD,

tRI, and tDE) and two operating pressures (Plow and Phigh). Since the

energy consumption is a critical factor for assessing the process per-

formance, the objective function is defined to minimize the total

energy consumption per ton of the purified PE product:

minE¼ EPRþEADþERIþEDE

FoutE

, ð17Þ

where EPR, EAD, ERI, and EDE are the energy consumption for pressuri-

zation, adsorption, rinsing, and desorption, respectively. FoutE is the

weight of purified PE produced in one process cycle. The equations

for calculating these variables are given in Equations (A13)�(A21).47

Moreover, the purity and recovery of each gas can be calculated.

Equation (18) shows that the purity of PE is equal to the average PE

molar fraction (youtE ) in the outlet stream of desorption. In addition, the

recovery of PE is expressed by Equation (19). In Figure 6, the bottom

and top of the column are defined as z¼0 and z¼ L, respectively,

where L denotes the column length. u is the interstitial velocity,

P represents the total pressure, and yinE is the molar fraction of PE in

the feed gas.

ξE ¼ youtE ¼
Ð tDE

0 u �P �yEð Þjz¼0dtÐ tDE

0 u �Pð Þjz¼0dt
: ð18Þ

θE ¼
Ð tDE

0 u �P �yEð Þjz¼0dt�PhighyoutE

Ð tRI
0 ujz¼0dt

PhighyinE
Ð tPR
0 ujz¼0dtþ

Ð tAD
0 ujz¼0dt

� � : ð19Þ

With these, the purity and recovery of PA can be simply calculated

based on the overall input–output mass balances.

2.6 | Integrated design formulation

As indicated in Step 1 of the design framework (Figure 2), the inte-

grated MOF and P/VSA process design problem is formulated and

solved as a nonlinear optimization problem. Nineteen MOF descrip-

tors denoting the variations of MOF chemistry and structure as well

as 6 process operating conditions are simultaneously optimized to

minimize the energy consumption. One-class SVM model and logic

constraints account for the valid design space of descriptors. Two

ANN models are built to predict the single-component adsorption iso-

therm and then used to fit the parameters of the multicomponent

DSL isotherm model. At the process level, given prespecified equip-

ment sizes, the energy consumption as well as product purity and

recovery are calculated from the P/VSA process models. The recovery

and purity of PE should be constrained according to industrial

requirements.

min
x,y

E¼ EPRþEADþERIþEDE

FoutE

Objective function: ð20Þ

s.t. Equation (9)–(16) Descriptor design space

Equations (3)�(8) Multi-component DSL isotherm model

Equations (18) and

(19), (A1)�(A21) P/VSA process model

θE ≥ θ
L
E ξE ≥ ξ

L
E Separation specifications

x¼ tPR,tAD,tRI,tDE,Phigh,Plow
� �

Process operating conditions

y¼ y1,…,y19½ � Representative MOF descriptors

Note that the optimization problem stated above cannot be solved

directly since it contains both partial differential equations (PDEs) and

algebraic equations. Here, a complete spatial and temporal dis-

cretization of PDEs is carried out for performing equation-oriented

P/VSA process optimization. The entire column is divided into 20 identi-

cal sections, and the finite volume method with the upwind difference

scheme is applied for spatial discretization. In addition, the backward

Euler's scheme is used for temporal discretization. The durations of the

pressurization and rinsing steps are discretized into 10 identical time

intervals, while those of the other two steps are divided into 20 identical

time intervals. By doing so, optimizing the durations of the four steps

(i.e., tPR, tAD, tRI, and tDE) is equivalent to the optimization of the

corresponding time-interval duration (i.e., ΔtPR, ΔtAD, ΔtRI, and ΔtDE).

After the discretization, the P/VSA process model can be described

by a branch of algebraic equations that are directly coded in GAMS

for NLP optimization. For an easy understanding, the details on how

discretization is performed are elaborated in Appendix S1.

3 | SEPARATION OF PROPENE/PROPANE
FROM CATALYTIC CRACKING

As an example, the separation of a PE/PA mixture produced from the

fluid catalytic cracking unit of a refinery is studied. Referring to the

industrial conditions, the feed gas mole fraction of PE is set to 85%

and the feed gas is at a pressure level of 2 atm.44 It is assumed that

the feed gas has already been cooled to 300 K, since our isotherm

models are fitted at 300 K. Moreover, as an important raw material

for polypropylene production, the purity of PE must be higher than

99%, which is set as a target for the adsorptive separation. Addition-

ally, it has been observed that PE recovery is usually less than 30%

when 99% PE is produced using P/VSA processes with not more than

five steps.48 Thus, the minimal PE recovery is set to 30%. The P/VSA

process is modeled on a pilot-plant basis. Table 1 lists the input

parameters including gas and adsorbent properties, equipment specifi-

cations, as well as limitations of operating conditions. Note that the

lumped mass-transfer coefficients k are calculated by k¼ 15D0

r2p
e
�EA
RT ,

assuming that adsorbent particles are spherical and micro-pore diffu-

sion is the rate-controlling step. For a certain gas, every MOF can

have a different pre-exponential factor D0 and activation energy EA.
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Here, the D0 and EA representing PE and PA adsorptions in Cu-BTC

are considered for simplicity, whose values have been reported by

Wehring et al.49 In addition, the micro-pore radius rp is assumed as

56 μm. With all the above conditions, the lumped mass-transfer coef-

ficients of PA and PE are calculated as 0.83 and 0.61, respectively.

3.1 | Benchmark process using Cu-BTC

The copper-based Cu-BTC (i.e., FIQCEN in the 471 MOFs), namely

Cu3(BTC)2 (BTC: benzene-1,3,5-tricarboxylate), has been recognized

as one of the suitable MOFs for PE/PA separation due to its large

adsorption capacity for PE.50 Here, a benchmark P/VSA process using

Cu-BTC as the adsorbent is optimized and used for comparison. The

multicomponent DSL model of Cu-BTC is fitted using the reported

experimental pure-component isotherm data,51 and the resulting

model parameters are listed in Table 2. For easy illustration, the

single-component equilibrium isotherm curves are plotted in

Figure 7A. For Cu-BTC, the six process operating conditions are opti-

mized to minimize the energy consumption. Because of the significant

model complexity, the optimization problem is solved in GAMS 27.2

using the local NLP solver CONOPT4. Different initializations are

offered to obtain high-quality solutions. The best local optimum found

is given in the second column of Table 3. The high pressure for

adsorption is 1 atm when the initial selectivity SPE=PA is equal to 6.6

calculated with the parameters in Table 2. The low pressure for

desorption is optimized to 0.011 atm and the minimum energy con-

sumption is 505 kWh electricity per ton of PE.

Figure S2 shows the axial profiles of PE gas composition in the

Cu-BTC process. As indicated, for pressurization, the PE composition

tends to be lower than the initial composition 0.85 since a sudden

high pressure drives the unsaturated Cu-BTC to selectively adsorb

PE. As the adsorption continues, the adsorbent gradually becomes

saturated until the PE gas composition reaches 0.85. Then, as the

purified PE is fed into the column, its composition gradually increases

at the rinsing step. Finally, by reducing the pressure at the desorption

step, the captured PE is released and its gas composition further

increases to 0.99.

3.2 | Optimal MOF and process from integrated
design

Under the same requirements on PE purity and recovery, the inte-

grated design problem in Equation (20) is solved. Again, the solver

CONOPT4 and different initial values are used. The problem contains

10,800 single variables, 11,404 equations, and 58,831 nonlinear

matrix entries. It takes about 150 s to find the optimal solution, as

listed in the third column of Table 3. For convenience, the optimal

MOF refers to a hypothetical MOF (h-MOF). Clearly, the process

operating conditions are different from those of the benchmark pro-

cess, particularly the two pressures. The high pressure is 2 atm, which

is exactly equal to the initial pressure of the feed gas. The desorption

occurs at 1 atm. Under such pressures, no gas compression is needed

TABLE 1 Input parameters for the pressure/vacuum swing adsorption-based PE/PA separation

Gas properties

Molecular weight of PE (g/mol) 42.1 Molecular weight of PA (g/mol) 44.1

Gas viscosity (kg/m/s) 8 � 10�6 Isentropic coefficient of gas 1.15

Adsorbent properties

Adsorbent particle density (kg/m3) 703 Adsorbent particle radius (m) 5 � 10�3

Mass-transfer coefficient for PA (1/s) 0.83 Mass-transfer coefficient for PE (1/s) 0.61

Equipment specifications

Bed porosity 0.43 Vacuum pump efficiency 0.75

Bed length (m) 2 Compressor efficiency 0.75

Bed diameter (m) 0.4

Bounds of operating conditions

Pressurization duration (s) 1–50 Adsorption duration (s) 1–200

Rinsing duration (s) 1–100 Desorption duration (s) 1–600

High pressure (bar) 1–10 Low pressure (bar) 0.01–1

TABLE 2 Parameters of the dual-site Langmuir isotherm model
for Cu-BTC and optimal h-MOF

Cu-BTC h-MOF

Q1
E

4.202 4.765

b1E 96.17 1.556

Q2
E

4.059 0.100

b2E 96.17 1000

Q1
A

4.511 2.093

b1A 15.083 0.100

Q2
A

3.504 1.093

b2A 15.083 6.700
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at the pressurization and adsorption steps and no evacuation is

required for desorption. Only a small amount of electricity is con-

sumed at the rinsing step to re-compress the low-pressure PE to the

high pressure. The overall energy consumption is 12.8 kWh electricity

per ton PE. Obviously, this is much lower than that of the benchmark

process.

Figure S3 shows the axial profiles of PE compositions in a typical

process cycle for the optimal h-MOF. Comparing with Figure S2, it

can be found that the axial profiles in the two processes have similar

shape and trend, in particular at the rinsing step. The major differ-

ences occur at the pressurization and desorption steps. For instance,

because of the higher operating pressure, the releasing gas velocity is

larger and thus the PE composition reaches 0.99 much faster in the h-

MOF-based process. As indicated in Figures S2 and S3, the PE com-

position in the entire column at the beginning of pressurization is

equivalent to that at the end of desorption, demonstrating the cyclic

steady-state condition.

The large process variations are attributed to the significant dif-

ferences of adsorption isotherms. As shown in Figure 7A, Cu-BTC has

a poor PE desorption capability. A tough vacuum condition

(i.e., 0.011 atm) is needed to meet the purity and recovery require-

ments. This directly leads to a large energy consumption at the rinsing

and desorption stages (see Table 3). For the h-MOF in Figure 7B, the

isotherms can provide a much better condition for adsorption and

desorption. The PE loading difference between 1 and 2 atm reaches

0.7 mol/kg. Such a large gap at desirable pressures greatly facilitates

PE desorption and recovery. In addition, Table 2 lists the fitted DSL

model parameters for h-MOF. Note that three DSL model parameters

of h-MOF reach the lower or upper limits, and the affinity parameters

(e.g., b1E and b2E ) show a large energetic heterogeneity. Considering

these, there is probably no real MOF that has exactly the same param-

eters or isotherms as h-MOF. However, the results can well reflect

the characteristics that promising MOFs should possess. For PE, the

saturation capacity at site 1 is much larger than that at site 2 (4.765

vs. 0.100). This suggests that for new MOFs, site 1 should play a domi-

nant role on PE adsorption, regardless of the affinity difference. In addi-

tion, comparing the parameters of PE and PA at site 1, it is found that

both the capacity and affinity of PE are larger than those of

PA. Obviously, the new MOFs should provide a PE-selective site 1. For

site 2, the capacity of PE is unfortunately smaller than that of PA (about

10 times difference) but not as significant as 47 times for site 1. In this

case, the affinity of PE on site 2 should be as large as possible in order

to compensate its relatively low capacity and try to compete against the
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F IGURE 7 Adsorption isotherms at 300 K for (A) the benchmark
Cu-BTC and (B) the optimal h-MOF

TABLE 3 Optimal operating conditions and performance of the
Cu-BTC-based benchmark process and the h-MOF-based process

Benchmark

process

Optimal

process

PR duration (s) 22.5 13.0

AD duration (s) 71.5 22.1

RI duration (s) 77.0 5.6

DE duration (s) 600 600

High pressure (atm) 1 2

Low pressure (atm) 0.011 1

PE purity 0.99 0.99

PE recovery 0.34 0.30

PE production rate (mol/s) 0.16 0.06

Initial selectivity at high pressure 6.6 33.9

Energy consumption at pressurization

(kWh/ton PE)

0 0

Energy consumption at adsorption

(kWh/ton PE)

1.2 0

Energy consumption at rinsing (kWh/ton

PE)

184.3 12.8

Energy consumption at desorption

(kWh/ton PE)

319.3 0

Total energy consumption (kWh/ton PE) 504.8 12.8

Abbreviation: PE, propene.
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adsorption of PA on site 2. Clearly, the result is a kind of compromise

optimal solution under both material and process constraints.

With the parameters of h-MOF in Table 2, the initial selectivity at

the adsorption condition (2 atm and 300 K) is calculated to be 33.9.

This is much larger than that of Cu-BTC, mainly due to its much less

PA adsorption capacity. Such a large selectivity helps achieving a high

PE purity. On the other hand, because of the large PE adsorption

capacity of Cu-BTC, the benchmark process has a higher PE produc-

tion rate than our optimal process, although it needs a longer duration

for one process cycle. Based on the above analysis, several adsorbent

design guidelines can be extracted. First, a large selectivity and small

PA adsorption capacity are beneficial for increasing the PE purity and

recovery. Second, the PE adsorption capacity has a substantial effect

on its production rate. This agrees well with previous findings.24

Finally, to enable an energy-efficient separation, the adsorbent should

offer a good adsorption–desorption balance that can better match the

feed gas conditions.

Table 4 lists the optimal MOF descriptor values. Important infor-

mation can be drawn and used for the subsequent MOF matching.

For the pore geometry, a relatively small cavity diameter and volumet-

ric surface area are preferred. It has been found that the former

improves the selectivity of PE over PA, and the latter may result in a

small adsorption capacity of PA, helping to increase the selectivity as

well.2,10 For MOF chemistry, using transition metals is desirable. As is

widely known, transition metals (e.g., copper and zinc) can introduce

OMS and π-complexation, which lead to stronger interactions with PE

than with PA.29 Regarding the organic linker, it is better to use groups

consisting of rings and double bonds as well as C N bonds. Finally, it

is not recommended to use organic linkers forming C O pairs at topo-

logical distance 2 (i.e., with C X O chains), such as benzoic acid and

furan.

4 | REMARK FOR MOF MATCHING

In this work, the optimal MOF descriptors and isotherms were identi-

fied within the confined design space. In the subsequent MOF

matching step (see Figure 2), our aim is to find new, promising MOFs

matching the optimal descriptors and isotherms. First, based on the

information drawn from the optimal descriptors, a set of MOF build-

ing blocks will be identified and utilized for the computer-aided syn-

thesis of new hypothetical MOFs. Second, the descriptors of the

synthesized MOFs will be calculated to predict the corresponding iso-

therms via the established ANN model. Afterward, based on the opti-

mal isotherms, certain isotherm–process performance relationships

will be explicitly studied to serve as a preliminary tool for fast screen-

ing of the MOFs. Then, the screened MOFs will be ranked according

to the magnitude of the difference between their descriptors and the

optimal ones. Finally, the process performance of the top candidates

will be evaluated to identify the real optimal MOF.

5 | CONCLUSION

This paper presented a new two-step framework for integrated MOF and

P/VSA process design. In the first step, MOFs were denoted as a set of

selected descriptors serving as design variables. With these descriptors,

data-driven models were developed to describe the valid descriptor

design space and to predict the adsorption isotherms. Combining the

design-space validity model, isotherm model, and P/VSA process model,

the integrated design problem was explicitly formulated as an NLP prob-

lem where MOF descriptors and process operating conditions were

simultaneously optimized to maximize the process performance. The pro-

posed methodology was demonstrated on a PE/PA separation example.

The results showed that the identified optimal process could significantly

reduce the energy consumption compared to a benchmark process, using

the Cu-BTC as the adsorbent. The obtained optimal descriptors and

corresponding isotherm curves can serve as design targets for the discov-

ery of new, promising MOFs in a subsequent matching step.

The largest novelty of the present work is the use of a multiscale

modeling approach to integrate the variations of MOF chemistry and

structure into P/VSA process design. This provides a reliable and effi-

cient way for computational adsorbent design to maximize the practi-

cal adsorption process performance. Despite this large progress, the

current work still has some limitations. For instance, because of the

lack of relevant data, the impact of the heat of adsorption is neglected

and thus isothermal processes are assumed. Note that the heat of

adsorption can be estimated using GCMC simulations. Given a series

TABLE 4 Optimal metal–organic
framework descriptors

Descriptor Value Descriptor Value

Bulk density (g/cm3) 1.9 Number of atoms 230

Pore limiting diameter (Å) 5.9 Number of metal atoms 46

Largest cavity diameter (Å) 7.0 Number of transition metal atoms 46

Volumetric surface area (m2/cm3) 279.4 Number of double bonds 14

Void fraction 0.82 Number of ring bonds 332

Unit cell length a (Å) 7.2 Number of bonds to metal atoms 18

Unit cell length b (Å) 11.0 Number of alkyl groups 5

Unit cell length c (Å) 7.5 Frequency of C-N at distance 1 0.45

Volume per unit cell (Å3) 589.1 Frequency of C-O at distance 2 0

Number of non-H atoms 230
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of training data, it is possible to develop another data-driven model to

predict the heat of adsorption. Integrating this model will help

describe the effect of the heat of adsorption on adsorption loadings

and consequently on process performance. Moreover, a simple one-

bed, four-step P/VSA process is considered. In future, more sophisti-

cated adsorption processes with multiple beds and more steps can be

applied to further enhance the product recovery. In that case, the

development of surrogate models for substituting the complex P/VSA

processes can be a viable option.52
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