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Intermittency in a stochastic birth-death model
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A stochastic model of a population of particles that reproduce, die, and randomly walk over the lattice
is numerically investigated. Simulations show that the spatial population distributions produced by this
system are intermittent. The statistical cluster analysis of the data indicates similarity with the intermit-

tency found in the hydrodynamic turbulence.
PACS number(s): 05.45.+b

Birth-death models appear in a variety of applications
including dynamics of biological populations [1] and
chain chemical reactions [2]. When birth and death rates
vary randomly in space and in time, these systems can
generate intermittent population distributions character-
ized by the presence of narrow spikes with high local
population density separated by large areas where the
population density is much lower. Theoretical investiga-
tions [3-11] of intermittency in population explosions
have been performed for the stochastic differential equa-
tion

n=an+f(x,t)n +DV?n . (1)

Here n (x,t) is the local population density, a is the mean
difference between the reproduction and death rates,
while the Gaussian noise f (x,?) represents the fluctuating
component of this difference, such that

(flx,0)f (x",t)) =28 (x —x")8(t —1") , (2)
S (x)=sgexp(—x2/2rd) . 3)

Equation (1) gives rise to strongly non-Gaussian popu-
lation distributions. The intermittency of these distribu-
tions is revealed in the fast growth of higher statistical
moments and correlation functions. In the long-time lim-

it the correlation functions M, (t,x,,...,x;)
={(n(x,,t) - - - n(xy,t)) have asymptotes [5-7,10]
M, /M¥% ~explk(k—1)sqt —(k —1)(ksoD /r3)' %],
4)
if D <<ks,r3, and
M, /MY ~exp[(7/6)(s3rd/D)k(k*—1)t], (5)

if D >>ksyry. Here M, ={n(x,t)) is the mean popula-
tion density. These asymptotic estimates follow from
general expressions [5-7,10] in the special case when the
noise correlation function is chosen in the form (3).

The multifractal properties of the population distribu-
tions generated by the stochastic differential Eq. (1) were
investigated by means of the replica method [8,9,11].
The individual spikes were further investigated in [7,10]
using the path-integral solution of (1). It was found that
the variational equations describing a typical spike are
closely related to the nonlinear Schrédinger equation; the
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spike solutions correspond to the solitons of the nonlinear
Schrodinger equation.

The lattice realization of stochastic birth-death model
represents a system of cells occupied by particles that
reproduce or die at discrete time steps. In the lattice
model considered in Ref. [12] it is assumed that, at each
step, either all particles in a cell reproduce or all of them
die. If both outcomes are equally probable and initially
any cell is occupied by one particle, the cell’s population
P, after N time steps is

N
¢N=H¢j ’ (6)

i=1

where independent random factors ¢; take values O or 2
with probability ;. Diffusion of particles was neglected
in Ref. [12].

For almost all realizations the product ¢ vanishes and
thus the population disappears. The population in a
given cell persists only if all N independent random fac-
tors ¢; have taken the value of 2, i.e., if the population
number doubled at each time step. The probability
PN=2“N of such a realization is small, but it yields a
large population ®=2". The mean population remains
therefore constant, (®, ) =1. The higher statistical mo-
ments grow with time as

<(‘I’N)k>:2(k_”N. 7

Hence, the population tends to concentrate in increasing-
ly rare still occupied cells [12].

In our numeric simulations we use the above lattice
model modified to include diffusion (this model can also
be viewed as a variant of the probabilistic cellular au-
tomaton introduced in Ref. [13]). We take a chain of L
cells with periodic boundary conditions; the discrete
coordinate x indicates the position of a cell in the chain.
The stochastic evolution of the system is defined as fol-
lows: At each time step ¢, a lattice site x is chosen at ran-
dom. After that a decision is made whether all particles
at this site will participate at the next time step in
diffusion (with probability v) or reaction (with probability
1—wv).

If diffusion is chosen, each particle independently de-
cides whether it remains at the next step ¢ +1 at the old
site x (with probability p,) or moves to one of the two
neighboring sites x+1 [with probabilities (1—p,)/2].
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The diffusion rate is characterized by the parameter
v(1—pg)
" 201w
If reaction is chosen, it is further decided whether the
whole population in a given site will undergo annihilation

or reproduction. The annihilation is chosen with proba-
bility

A (8)

_ p+H(1—2p)Q/Qq

= 9
P Q=T 120070, ° ®)

which depends on the total population
L

Q(t)= 3 n(x,t) . (10)

x=1

The parameter Q, in (9) is the initial total population in
the system and the positive coefficient p is smaller than 1.
The reproduction probability is p, =1—p,.

According to (9), if the total population in the system
becomes significantly larger than Q, the annihilation
probability approaches 1 and is larger than the reproduc-
tion probability p,. If the population becomes much
smaller than Q,, this probability decreases to p, =p, i.e.,
it becomes less than the reproduction probability. When
Q=Q, we have p, =p,=1. Therefore, this choice of the
annihilation probability guarantees that the total popula-
tion remains approximately constant, while not prevent-
ing formation of strongly nonuniform spatial distribu-
tions. Initially each cell is occupied by one particle.

In the continuous limit the considered lattice model
transforms into a model of a population whose members
diffuse with the diffusion constant D=(1)w(1—p,)/L
and reproduce (or die, depending on the sign of a) at the
rate a=(1—v)(1—2p,)/L. Thus, the diffusion parame-
ter A defined (8) represents a characteristic diffusion
length. Note, however, that the model is not equivalent
in this limit to the stochastic differential Eq. (1). The sto-
chastic behavior in Eq. (1) is due to random variations of
“external” parameters (i.e., of the deterministic birth and
death rates) while in the considered model the fluctua-
tions are “internal” and result from the probabilistic na-
ture of the individual birth, death or diffusion events.
Generally, the internal noise is known to have other sta-
tistical properties than the fluctuations of the external
origin (see [6]).

We performed numerical simulations of the stochastic
lattice model with L =512 at different values of the
diffusion parameter A. The typical evolution of popula-
tion distributions is shown in Fig. 1. Here the hollow
dots indicate the sites with the population »n(x,?)> 50,
the filled dots show the sites where 50> n(x,t)> 10.
Note that the threshold n =50 corresponds to about 10%
of the total population concentrated in a single site. The
strong spatial nonuniformity of the population distribu-
tions is evident. As diffusion becomes faster for the
larger values of A, the width of the spikes increases and
they begin to move through the system. The spikes have
finite lifetimes and new spikes are occasionally produced.
This qualitatively agrees with the results of the analysis
of the model (1), but the detailed comparison is not possi-
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ble because of the above-mentioned difference in the ori-
gin of fluctuations in this model.

To study the statistical properties of population distri-
butions we use the method of cluster statistics proposed
in Ref. [14]. For any threshold A a cluster is defined as a
connected region inside which the local population densi-
ty n(x,t) exceeds h. The number of clusters m (h) is sim-
ply the total number of such clusters in the system. The
volume ratio v(h) is the fraction of the total volume of
the system occupied by the clusters exceeding the thresh-
old A. The population ratio s(h) is the fraction of the to-
tal population concentrated in these clusters. Since these
three quantities depend on the threshold 4 they can be
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FIG. 1. Intermittent population distributions obtained for
L=512, p=0.1 and (a) A=0.3, v=0.90; (b) A=1.0, v=0.91;
(c) A=3.0, v=0.98.
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FIG. 2. The dependence of the number of clusters m on the
volume ratio v for three different values of the diffusion parame-
ter A.

plotted parametrically, i.e., as functions of one another.
It was suggested in Ref. [14] that the properties of such
plots might be used to characterize the intermittent dis-
tributions of various origins.

Figure 2 shows the computed dependence of the num-
ber of clusters m on the volume ratio v for three different
values of the diffusion parameter A. The distributions
were taken after a transient of 3X10° time steps. The
data is summed over 500 independent realizations for
A=0.3 and 1.0 and over 300 realizations for A=3.0. Fig-
ure 3 shows the respective dependence of the population
ratio s on the volume ratio v. Since large volume ratios v
are found when the threshold 4 is taken to be low, the
upper right corner in these plots characterizes the prop-
erties of the background small-amplitude fluctuations.
The statistical properties of rare strong spikes are thus
characterized by the central and the left-down parts of
the plots. When diffusion is faster, the log-log depen-
dence in the central part of Fig. 2 is closer to linear. For
A=3.0 in the region v <0.02 we have s ~v¢, where
£=0.54. Applying the same approximation to the data
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FIG. 3. The dependence of the population ratio s on the
volume ratio v for different values of the diffusion parameter A.
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FIG. 4. The averaged dependence of the population ratio s
on the volume ratio v in the stochastic birth-death model
(A=3.0). White circles show for comparison the data obtained
in the numerical simulations [17] of the turbulent vorticity field.

shown in Fig. 3, we find that for A=3.0 in the region
v <0.05 this dependence follows the law m ~v¢ with
£=0.85.

It is well known that intermittent spatio-temporal dis-
tributions are typical for the hydrodynamic turbulence
with high Reynolds numbers [15,16]. Recently, the
method of cluster analysis has been applied in numerical
simulations of such hydrodynamic turbulence [17]. In
these simulations the stationary turbulent flow of a
three-dimensional incompressible Navier-Stokes fluid was
computed inside a cube with 256 grid points and period-
ic boundary conditions; the Reynolds number was Re
=120. The scalar field of the square of the vorticity
found in these simulations demonstrated the intermittent
properties and contained many spots with a high local
vorticity level.
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FIG. 5. The dependence of the rescaled (see the text) number
of clusters on the volume ratio v in the stochastic birth-death
model with A=3.0, after averaging over 50 independent realiza-
tions taken at t=400000. White circles show the respective
data obtained in the numerical simulations [17] of the hydro-
dynamic turbulence.
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Since the same method has been used by us to charac-
terize the statistical properties of the population distribu-
tions in the stochastic birth-death model, we can try to
compare our results with the data of the hydrodynamic
simulations. We find that the best fit between the data
for the vorticity ratio in the hydrodynamic problem and
the population ratio in the birth-death problem is
achieved at the largest diffusion rate A=3.0 which we
had in our simulations. The curve in Fig. 4 shows the
dependence of the population ratio vs the volume ratio
averaged over 50 realizations for the stochastic birth-
death model at :=400000. The white circles in Fig. 4
give the respective data for the turbulent vorticity field.
We see that not only the slopes but even more fine details
agree in both of these plots.

Since the simulations [17] of hydrodynamic turbulence
are performed on the three-dimensional lattice with 2563
sites, the number of the observed clusters is obviously
much larger than in our case. To make the comparison
possible, we have taken the cubes of the volume ratio v
and of the number m of clusters at A=3.0 (which is for-
mally equivalent to extending out data to three dimen-
sions) and then multiplied m> by an appropriate scaling

factor. The dependence of thus determined “number of
clusters” on the cube of the volume ratio, averaged over
50 independent realizations at ¢ =400000 for A=3.0, is
shown in Fig. 5. We see that it again fits well the respec-
tive data for the hydrodynamic turbulence (white circles
in Fig. 5); some deviation is seen only in the middle of
Fig. 5.

The degree of similarity between the cluster statistics
of the stochastic birth-death model and of the hydro-
dynamic turbulence is surprisingly high. Such a good
agreement, achieved by adjusting one parameter in Fig. 4
and one additional parameter in Fig. 5, may indicate the
presence of effectively autocatalytic mechanisms in the
hydrodynamics of turbulent flows. Generally, the results
of our investigation show that the method of cluster
analysis can be successfully used to characterize and to
compare the intermittent spatial distributions of different
origin.
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