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We consider the MSO model-checking problem for simple linear loops, or equivalently discrete-time linear

dynamical systems, with semialgebraic predicates (i.e., Boolean combinations of polynomial inequalities on the
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1 INTRODUCTION

Loops are a fundamental staple of any programming language, and the study of loops plays a pivotal
rôle in many subfields of computer science, including automated verification, abstract interpretation,
program analysis, semantics, etc. The focus of the present paper is on the algorithmic analysis of
simple (i.e., non-nested) linear (or affine) while loops, such as the following:
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t := 1;

u := -1;

v := 2;

w := 0;

while (true) do

t := 3t+2u-5w;

u := u+3w;

v := 4u+3v+w;

w := t+u+2v;

In this running example, wemake use of four numerical variables, 𝑡,𝑢, 𝑣,𝑤 , initialised respectively
to 1, −1, 2, and 0.1 Note that all assignments in the body of the loop are linear functions of the
variables; we therefore speak of a 4-dimensional linear loop.

The behaviour of the loop can be analysed (or ‘specified’) using logical formulas over a finite set of
predicates on the variables. Several temporal-logic formalisms have been designed for this purpose;
in this paper, we focus on Monadic Second-Order Logic (MSO)2 over semialgebraic predicates,3

which affords a high degree of expressiveness.4

In our running example, we could (for instance) define the following predicates:

𝑃1 (𝑡,𝑢, 𝑣,𝑤) : 𝑡 + 𝑢 + 𝑣 −𝑤 = 0 ∧ (𝑡3 = 𝑢2 ∨𝑤 ≥ 3𝑡2 + 𝑢)

𝑃2 (𝑡,𝑢, 𝑣,𝑤) : 𝑡 + 𝑢 + 2𝑣 − 2𝑤 = 0 ∧ 𝑡3 + 𝑣2 + 𝑣 > 𝑤

𝑃3 (𝑡,𝑢, 𝑣,𝑤) : 𝑡4 − 𝑢2 = 3 ∧ 2𝑣2 = 𝑤 ∧ 𝑡2 − 2𝑢3 = 4𝑣

One can then express properties concerning the behaviour of the loop, such as the following:

G(𝑃1 ⇒ F¬𝑃2) ∧ F(𝑃3 ∨ ¬𝑃1) .

For simplicity, the above formula is written in the language of LTL; in words, it asserts that whenever
𝑃1 holds, then 𝑃2 must eventually subsequently fail, and moreover that eventually either 𝑃3 will
hold or 𝑃1 will fail (at some point in the execution of the loop).
The reader will probably agree that whether or not the above specification holds in our run-

ning example is not immediately obvious to determine (even, arguably, in principle). The main
contribution of this paper is to exhibit an algorithm which can automatically decide the truth or
falsity of such assertions. Informally speaking, we show decidability of the MSO model-checking
problem for linear loops in which every predicate in the specification is a semialgebraic set that
is either contained in some three-dimensional subspace, or has intrinsic dimension at most 1. We
make these notions more precise shortly; for now, we simply remark that both 𝑃1 and 𝑃2 (viewed
as semialgebraic subsets of R4) are each contained within three-dimensional subspaces, and 𝑃3 has
intrinsic dimension 1 (i.e., is ‘string-like’, or a curve, as a subset of R4). We also show that relaxing
any of these constraints runs up against formidable mathematical obstacles (longstanding open

1We are purposely not specifying the exact types of the variables; mathematically speaking, in order for our analysis to

be as general as possible, we shall assume that all variables range over the real numbers. In doing so, we are therefore

deliberately not taking account of machine-implementation phenomena such as overflows or finite-precision rounding.
2Monadic Second-Order Logic is a highly expressive specification formalism that subsumes the vast majority of temporal

logics employed in the field of automated verification, such as Linear Temporal Logic (LTL). See Section 2.2 for precise

definitions.
3Semialgebraic predicates are Boolean combinations of polynomial equalities and inequalities.
4The use of predicates in the automated verification of software goes back some 25 years to the seminal work of Graf and

Saïdi [Graf and Saïdi 1997]; however, most existing approaches and tools tend to limit themselves to Boolean combinations

of linear (or affine) predicates (see, e.g., [Jhala et al. 2018]).
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What’s Decidable about Linear Loops? 65:3

problems in number theory); our model-checking decidability result therefore appears to lie at the
very frontier of what is achievable, barring major breakthroughs in mathematics.

Let us briefly comment on the scope of our setting. First, our focus is on linear loops, i.e., loops
whose bodies contain exclusively linear assignments. However, affine assignments can also be
handled, by including an extra (constant) variable and ‘linearising’ the loop; the net effect is to
increase the dimension of the loop by 1. Second, program specifications occasionally make reference
to the loop counter (i.e., the number of times the body of the loop has been executed); likewise, this
can be accommodated within our framework simply by adding an extra variable, meant precisely
to represent the loop counter, and increasing it by 1 on every iteration. Third, for simplicity we
have dispensed with the guard condition in our running example; however any non-trivial guard
can always be taken account of by including it as an additional predicate, so that specifications can
refer to the point when the guard becomes false.5

We shall therefore focus on guard-free linear loops in the remainder of the paper. Such objects
are in fact in one-to-one correspondence with discrete-time linear dynamical systems, and our
subsequent exposition is therefore couched in the language of dynamical systems.
Dynamical systems are a fundamental modelling paradigm in many branches of science, and

have been the subject of extensive research for many decades. A discrete-time linear dynamical

system is given by a square 𝑑 × 𝑑 matrix 𝑀 with rational entries, together with a starting point
𝑥 ∈ Q𝑑 . The orbit of (𝑀,𝑥) is the infinite trajectory O = ⟨𝑥,𝑀𝑥,𝑀2𝑥, . . . ⟩. The starting point 𝑥
and matrix𝑀 corresponding to the loop in our running example are as follows:

𝑥 =

©«

1
−1
2
0

ª®®®¬
𝑀 =

©«

3 2 0 −5
0 1 0 3
0 4 3 13
3 11 6 24

ª®®®¬
.

Within the field of computer science, one of the earliest achievements concerning the analysis
of linear dynamical systems is a celebrated result by Kannan and Lipton from the 1980s, the
(polynomial-time) decidability of the Orbit Problem [Kannan and Lipton 1980, 1986]: given such a
system (𝑀,𝑥), together with a point target 𝑦 ∈ Q𝑑 , does the orbit of the system ever hit 𝑦?

Kannan and Lipton’s paper answered an open problem of Harrison from the 1960s on reachability
for linear sequential machines [Harrison 1969]. However, a secondary motivation was to propose
an approach to attack the well-known Skolem Problem, which had itself been famously open
since the 1930s (and remains unsolved to this day); phrased in the language of linear dynamical
systems, the Skolem Problem asks whether it is decidable, given (𝑀,𝑥) as above, together with a
(𝑑 − 1)-dimensional subspace 𝐻 of R𝑑 , to determine if the orbit of (𝑀,𝑥) ever hits 𝐻 . This problem
is known to be decidable in dimensions 𝑑 ≤ 4, and is otherwise openÐfor a more detailed discussion
on the topic, we refer the reader to [Ouaknine andWorrell 2015]. Kannan and Lipton suggested that,
in ambient space R𝑑 of arbitrary dimension, the problem of hitting a low-dimensional subspace
might be decidable. Indeed, this was eventually substantiated by Chonev et al. for linear subspaces
of dimension at most 3 [Chonev et al. 2013, 2016].
Subsequent research focussed on the decidability of hitting targets of increasing complexity,

such as half-spaces [Halava et al. 2006; Laohakosol and Tangsupphathawat 2009; Ouaknine and
Worrell 2014a,b,c], polytopes [Almagor et al. 2017; Chonev et al. 2015; Tarasov and Vyalyi 2011],
and semialgebraic sets [Almagor et al. 2019, 2021b]. Since discrete-time linear dynamical systems
can equivalently be viewed as simple deterministic while loops with affine assignments, many of

5Note that we do not claim to be able to represent if-then-else conditionals in the loop body, which would immediately lead

to undecidability, by reduction (for example) from the Halting Problem for two-counter machines.
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the questions considered above also have immediate bearing on corresponding halting problems
for such loops.
In recent years, motivated in part by verification problems for stochastic systems and linear

loops, researchers have begun investigating more sophisticated specification formalisms than mere
reachability: for example, the paper [Agrawal et al. 2015] studies approximate LTL model checking
of Markov chains (which themselves can be viewed as particular kinds of linear dynamical systems),
whereas [Karimov et al. 2020] focuses on LTL model checking of low-dimensional linear dynami-
cal systems with semialgebraic predicates. In [Almagor et al. 2021a], the authors investigate the
model-checking problem for diagonalisable linear dynamical systems in arbitrary dimension against
prefix-independent MSO properties; both are significant restrictionsÐin particular, reachability
queries are not prefix-independent and therefore do not fall within the scope of the problems
considered in [Almagor et al. 2021a].

1.1 Main Contributions

In the present paper, we consider full MSOmodel checking of discrete-time linear dynamical systems
of arbitrary dimension (that is, any number of program variables), only placing restrictions on the
dimension of our semialgebraic predicates. More precisely, given a linear dynamical system (𝑀,𝑥)
in ambient dimension 𝑑 , together with a finite collection of (not necessarily disjoint) semialgebraic
sets 𝜋 = {T1,T2, . . . ,T𝑘 } (with each T𝑖 ⊆ R

𝑑 ), we associate with the orbit O of this dynamical system
an infinite characteristic word 𝑤 (O, 𝜋) over the 2𝑘 -letter alphabet 2𝜋 : writing𝑤 (O, 𝜋) [𝑛] to denote
the 𝑛th letter of this word, we require that

T𝑖 ∈ 𝑤 (O, 𝜋) [𝑛] if and only if𝑀𝑛𝑥 ∈ T𝑖 .

In other words,𝑤 (O, 𝜋) keeps track at each discrete time step of the sub-collection of semialgebraic
sets that the orbit is currently visiting.
In order to define our specification formalism, we formally associate to each subset 𝑆 ⊆ 𝜋 of

semialgebraic sets a unary predicate 𝑃𝑆 , and require that 𝑃𝑆 (𝑛) hold if and only if𝑤 (O, 𝜋) [𝑛] = 𝑆 .
Ourmain result is as follows: provided that each of the semialgebraic sets in 𝜋 either has

intrinsic dimension at most 1, or is contained within some three-dimensional subspace

of R𝑑 , the attendant MSO model-checking problem for discrete-time linear dynamical is

decidable.6

Note that since we have a single starting point, the orbit consists of a single trajectory. The
problem we are solving is sometimes referred to in the literature as łpath checkingž, although
typical applications in runtime verification and online monitoring involve finite traces, e.g., [Leucker
and Schallhart 2009]. Path checking ultimately periodic infinite traces is considered in [Markey and
Schnoebelen 2003], but the traces arising from linear dynamical systems need not be ultimately
periodic (see [Agrawal et al. 2015]).
To the best of our knowledge, our model-checking result goes substantially farther than ex-

isting work in the literature; indeed, even mere reachability (let alone MSO model checking!) of
semialgebraic sets contained in 3D subspaces (or complements thereof, since MSO is closed under
negation) was not previously known to be decidable. Moreover, further progress on the decidability
of reachability appears to run into stringent difficulties. For instance, going beyond semialgebraic
sets contained in 3D subspaces seems highly problematic. Indeed, the decidability of reachability

6The result is precisely stated in Theorem 3.1. The intrinsic dimension of a semialgebraic set is formally defined via cell

decomposition; intuitively, one-dimensional semialgebraic sets can be viewed as ‘strings’ or ‘curves’.
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of a 4D polytope in four-dimensional ambient space presents formidable mathematical difficul-
ties, as shown in [Chonev et al. 2015].7 Furthermore, whether 3D polytopes (and hence, arbitrary
semialgebraic sets contained within a four-dimensional subspace) can be reached is hard for the
longstanding open case of the Skolem Problem at order 5. The same applies for the reachability of
semialgebraic sets of intrinsic dimension 2 [Baier et al. 2021].
Our decidability result rests primarily on the following:

Theorem 1.1. [Semenov 1984, Theorem 1] For any effectively almost periodic word 𝑤 , the MSO

theory of (N, <) expanded with unary predicates that define𝑤 is decidable.

Our approach therefore consists in establishing that the characteristic word associated with
the orbit of a linear dynamical system, given our dimensional constraints on the semialgebraic
predicates, is always ‘effectively almost periodic’ (the precise definition is provided later in the
paper). In order to achieve this, we make extensive use of spectral techniques, as well tools recently
developed in [Baier et al. 2021] for handling parametric linear dynamical systems.

1.2 Relevance to PL and Related Work

It is perhaps worth emphasising once more the manner in which our work relates to the field
of Programming Languages, broadly construed. We have already pointed out that linear loops
are in one-to-one correspondence with discrete-time linear dynamical systems, and therefore
model-checking and verification questions pertaining to the latter immediately carry over to the
former.
Linear loops have been extensively studied and play an important role in the foundations

of program analysis and software verification. In particular, methods to prove terminationÐor,
equivalently, reachabilityÐvia a variety of techniques, such as spectral analysis or the synthesis of
ranking functions, have been developed in, e.g., [Ben-Amram et al. 2019; Ben-Amram and Genaim
2013, 2014, 2017; Bradley et al. 2005; Braverman 2006; Chen et al. 2015; Colón and Sipma 2001;
Hosseini et al. 2019; Podelski and Rybalchenko 2004a,b; Tiwari 2004]. Several of these approaches
have been implemented in software verification tools, such as Microsoft’s Terminator [Cook et al.
2006a,b].
Other research directions include the development of acceleration techniques for linear loops,

together with the automated synthesis of closed forms, as in [Boigelot 2003; Jeannet et al. 2014;
Kincaid et al. 2019], as well as the automated generation of invariants, e.g., [Almagor et al. 2018;
Colón et al. 2003; Cousot 2005; Cousot and Halbwachs 1978; Fijalkow et al. 2019; Gupta et al. 2008;
Kincaid et al. 2018; Lefaucheux et al. 2021; Ouaknine and Worrell 2015; Rodríguez-Carbonell and
Kapur 2004, 2007].
Model-checking algorithms, such as the one presented in this paper, both complement and

enhance the toolkit of techniques enabling the automated analysis of program loops and, by
extension, more complex pieces of code.

2 PRELIMINARIES

2.1 Words

Given a finite alphabet Σ, let Σ∗ be the set of finite words over Σ and Σ
N be the set of infinite

words over Σ. Given a word 𝑤 , let 𝑤 [𝑖] be the 𝑖’th character in 𝑤 , indexed from 0, i.e. 𝑤 =

𝑤 [0]𝑤 [1]𝑤 [2] · · · . We say that a non-emptyword𝑢 = 𝑢0 · · ·𝑢 𝑗 occurs at position𝑘 in𝑤 if𝑤 [𝑘]𝑤 [𝑘+
1] · · ·𝑤 [𝑘 + 𝑗] = 𝑢.

7In a nutshell, such a decidability result would entail substantial breakthroughs in the field of Diophantine approximation.
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2.2 Monadic Second-Order Logic (MSO)

Temporal logics specify the required behaviour of the system as it evolves with time. Typically
these are specified as 𝜔-regular properties (regular languages over infinite words). Such properties
can be captured in Monadic Second-Order Logic (MSO) over the structure (N, <) (representing the
ordered set of positions of an infinite word) and a finite collection of predicates 𝑃1, . . . , 𝑃𝑘 : N→
{true, false}. These predicates are used as indicators as to whether the location orbit is within a
target at time 𝑖 . Second-order quantification is permitted, but is restricted to quantification over
sets of positions. The grammar of a monadic second-order specification is as follows8:

𝜓 := 𝑃 (𝑖) (where 𝑃 (𝑖) is a predicate on position 𝑖 of the word)

𝜓 := ∃𝑖 ∈ N : 𝜓 | ∀𝑖 ∈ N : 𝜓 (first-order quantification)

𝜓 := ∃𝑋 ⊆ N : 𝜓 | ∀𝑋 ⊆ N : 𝜓 (subset quantification/monadic second-order quantification)

𝜓 := 𝑖 ∈ 𝑋 | 𝑖 ∉ 𝑋 (subset membership testing)

𝜓 := 𝑖 < 𝑗 | 𝑖 = 𝑗 (index comparison)

𝜓 := ¬𝜓 | 𝜓 ∨𝜓 | 𝜓 ∧𝜓 | 𝜓 ⇒ 𝜓 (standard logical operations)

𝜓 := 𝑖 = 0 | 𝑖 = 1 | 𝑖 = 2 | . . . (fixed values)

We are interested in model checking MSO on infinite words. Here the natural numbers represent
positions in the word, and the predicates indicate sets of positions in a word, for example, 𝑃𝑆 (𝑖)
could be defined to indicate whether𝑤 (O, 𝜋) [𝑖] = 𝑆 .

Example 2.1. Examples of MSO formulas for model checking LDS:

• Reachability of target T𝑖 : ∃𝑛 : 𝑃T𝑖 (𝑛).
• Eventually trapped inside T𝑖 : ∃𝑛∀𝑚 :𝑚 > 𝑛 =⇒ 𝑃T𝑖 (𝑚).
• In target T𝑖 at every odd position (𝑂 is the set of odd natural numbers in the following):
∃𝑂 ⊆ N : 1 ∈ 𝑂 ∧ ∀𝑥 ∈ 𝑂, ∃𝑦, 𝑧 : (𝑦 ∉ 𝑂 ∧ 𝑧 ∈ 𝑂 ∧ 𝑥 < 𝑦 < 𝑧 ∧ �𝑡 : 𝑥 < 𝑡 < 𝑦 ∨ 𝑦 < 𝑡 <

𝑧) ∧ ∀𝑥 : 𝑥 ∈ 𝑂 =⇒ 𝑃T𝑖 (𝑥).
• Whenever T𝑖 is visited T𝑗 is visited some point later: ∀𝑛 : 𝑃T𝑖 (𝑛) =⇒ ∃𝑚 > 𝑛 : 𝑃T𝑗 (𝑚).
• Any linear temporal logic (LTL) formula over predicates 𝑃T1 , . . . , 𝑃T𝑚 .

Decomposing the predicates. We will use the following simple observation on several occasions.
Consider two sets of semi-algebraic predicates 𝜋 = {T1, . . . ,T𝑘 } and 𝜋

′
= {T ′

1 , . . . ,T
′
𝑘′
}. Suppose

that for all 𝑖 ∈ {1, . . . , 𝑘}, each set T𝑖 can be written as a Boolean combination of T ′
1 , . . . ,T

′
𝑘′
. Then

the problem of model checking MSO formulas on the characteristic word𝑤 (O, 𝜋) can be reduced
to that of model checking MSO formulas on𝑤 (O, 𝜋 ′).

2.3 Algebraic Numbers and Eigenvalues

Our linear dynamical systems are defined using rational matrices, however our techniques rely
on the analysis of eigenvalues and the Jordan normal form of a matrix. Given a matrix 𝑀 , the
roots of the characteristic equation det(𝑀 − 𝜆𝐼 ) = 0 are the eigenvalues. In general the eigenvalues
of a rational matrix, and thus the entries of the Jordan normal form are not necessarily rational,

but algebraic. The set of algebraic numbers Q comprises those complex numbers that are roots
of univariate polynomials with rational coefficients. In particular, rational numbers are algebraic

numbers. For every 𝛼 ∈ Q there exists a unique monic univariate polynomial 𝑝𝛼 with rational
coefficients of minimum degree for which 𝑝𝛼 (𝛼) = 0. We call 𝑝𝛼 the minimal polynomial of 𝛼 . An
algebraic number 𝛼 is represented as a tuple (𝑝, 𝑎, 𝜀), where 𝑝 is its minimal polynomial, 𝑎 = 𝑎1+𝑎2𝑖 ,

8Some expressions can be written as combination of the others, but are included to make the expressivity clear.
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with 𝑎1, 𝑎2 ∈ Q, is an approximation of 𝛼 , and 𝜀 ∈ Q is sufficiently small such that 𝛼 is the unique
root of 𝑝 within distance 𝜀 of 𝑎 (such 𝜀 can be computed by the root-separation bound, due to
Mignotte [Mignotte 1982]). This is referred to as the standard or canonical representation of an
algebraic number. Given canonical representations of algebraic numbers 𝛼 and 𝛽 , one can compute
canonical representations of 𝛼 + 𝛽 , 𝛼𝛽 , and 𝛼/𝛽 , all in polynomial time (see e.g., [Ouaknine et al.
2017, Section 2.4]).
Let T be the set of points on the unit torus. That is the set of complex numbers with modulus

one. Such a number 𝛼 is a root of unity if 𝛼𝑛 = 1 for some 𝑛.

2.4 Linear Recurrence Sequences

Linear dynamical systems and linear recurrent sequences (LRS) are strongly related. An order-𝑘
linear recurrence sequence (LRS) ⟨𝑢𝑛⟩𝑛∈N is computed by 𝑢𝑛 = 𝑎1𝑢𝑛−1 + · · · + 𝑎𝑘𝑢𝑛−𝑘 , for fixed
𝑎1, . . . , 𝑎𝑘 ∈ R and initial values 𝑢1, . . . , 𝑢𝑘 ∈ R. In fact, the sequence of values of each coordinate
of a linear dynamical system (or program variables of a linear loop), can be described by a linear
recurrence sequence. We will make use of this strong interdependence and first recall some key
properties of LRS.
Its characteristic polynomial is 𝑝 (𝑥) = 𝑥𝑘 − 𝑎1𝑥

𝑘−1 − . . . − 𝑎𝑘−1𝑥 − 𝑎𝑘 , and further the roots of
𝑝 are called the characteristic roots of the LRS. An LRS with characteristic roots 𝜆1, . . . , 𝜆𝑡 can be
expressed in closed form 𝑢𝑛 = 𝑝1 (𝑛)𝜆

𝑛
1 + · · · + 𝑝𝑡 (𝑛)𝜆

𝑛
𝑡 , for polynomials 𝑝1, . . . , 𝑝𝑡 with degrees

depending on the multiplicities of the roots and coefficients on the initial values 𝑢1, . . . , 𝑢𝑘 . We
refer the reader to [Kauers and Paule 2011, Chapter 4] for further reading on this topic.

2.5 Almost Periodic Words and Arc-Hitting Models

Given a target T ⊆ R𝑑 we define the hitting set as the times the orbit hits (is contained within)
T that isZ(T ) = {𝑛 | 𝑀𝑛𝑥 ∈ T }. For the targets of the form considered in this paper we aim to
characterise such sets, for which, we introduce the following definitions.

Definition 2.2. An infinite word𝑤 ∈ Σ
N over the alphabet Σ is called periodic if there exists 𝑝 > 0

such that𝑤 [𝑛] = 𝑤 [𝑛 + 𝑝] for all 𝑛 ≥ 0. An infinite word𝑤 is eventually periodic if there exist 𝑁
and 𝑝 > 0 such that𝑤 [𝑛] = 𝑤 [𝑛 + 𝑝] for all 𝑛 ≥ 𝑁 .

Eventually periodic words can be represented by a finite directed graph, where each node has
exactly one successor and each edge is labelled by a character. However, in some cases we must
generalise this notion as follows:

Definition 2.3. An infinite word 𝑤 ∈ Σ
N is almost periodic if for any finite word 𝑢 ∈ Σ

∗, there
exists 𝐵𝑢 ∈ N such that either 𝑢 does not occur in𝑤 after position 𝐵𝑢 , or the gap between any two
consecutive occurrences of 𝑢 is at most 𝐵𝑢 .
The word𝑤 is effectively almost periodic if 𝐵𝑢 can be computed for any given word 𝑢.

Our goal is to show that the characteristic word is effectively almost periodic. To do this we
will represent sets using so-called arc-hitting models. For some intuition, consider a circle with
an arc covering some part of the perimeter. An arrow points from the center of the circle to its
edge, and is allowed to move only by rotating by a fixed angle. This system represents a setZ ⊆ N
defined so that the integer 𝑛 is in Z if and only if the 𝑛th rotation of the arrow points into the arc.
Formally we represent this model using open subsets of the unit circle in the complex plain (or
torus) T := {𝑧 ∈ C : |𝑧 | = 1}:

Definition 2.4. An arc on the torus T is a connected subset of T and is defined by three points: it
is the circular arc which connects its two endpoints and passes through the third point. An open
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arc is an arc whose endpoints are removed. A setZ ⊆ N is represented by an arc-hitting model if
there exist an algebraic number 𝜆 with |𝜆 | = 1 but which is not a root of unity9, a finite union 𝐼
of open arcs on T, 𝑁 ∈ N, and a finite set 𝐹 ⊆ {0, . . . , 𝑁 − 1} such that 𝑛 ∈ Z if and only if either
𝜆𝑛 ∈ 𝐼 and 𝑛 ≥ 𝑁 , or 𝑛 ∈ 𝐹 . The angle of an arc-hitting model is the argument of 𝜆, arg(𝜆).

The indicator word 𝑤 ∈ {0, 1}N (𝑤 [𝑛] = 1 if and only if 𝑛 ∈ Z) of a set Z represented by an
arc-hitting model is known to be almost periodic [Muchnik et al. 2003, Theorem 15]. The arc-
hitting model doesn’t capture all sets with almost periodic indicator words, but is sufficient for our
purposes; for example, they do not capture sets with eventually periodic indicator words because
such sets would require roots of unity (which we exclude). Arc-hitting models can also represent
finite and cofinite sets (𝑋 is cofinite if there exists 𝑁 ∈ N such that 𝑋 ∪ {0, . . . , 𝑁 } = N)Ðhere 𝐼 = ∅
or T respectively, with 𝐹 taking care of the finite part.

2.6 The Point Target Case

Let us first consider the case where a target T ⊆ R𝑑 is in fact a single point, that is, T = {𝑡} for
𝑡 ∈ R𝑑 . In this case we observe that Z(T ) is either finite or eventually periodic. In fact, if a point 𝑡
is repeated then the whole orbit is eventually periodic, since the dynamics of the system between
the two occurrences will repeat indefinitely, and we can revert to model checking an eventually
periodic word. Two applications of the Kannan-Lipton orbit problem can detect this case: first ask
if (𝑀,𝑥) reaches T (if not,Z(T ) is empty), and if the first hitting time is 𝑛, then ask if (𝑀,𝑀𝑛+1𝑥)
hits T , if so the system is eventually periodic and otherwiseZ(T ) = {𝑛}.
Our analysis will show that for certain 1D semialgebraic targets, only a finite number of the

points from the target can be reachedÐin which case these targets reduce to a finite union of points
and can be handled by the preceding analysis.

3 DEGENERACY

For the sake of further analysis, we account for degeneracy. A LDS is degenerate if there exist two
distinct eigenvalues 𝜆𝑖 , 𝜆 𝑗 of matrix𝑀 such that their quotient 𝜆𝑖/𝜆 𝑗 is a root of unity.
As captured in [Everest et al. 2003, Section 1.1.9], the study of degenerate LDS can be reduced

to that of finitely many related non-degenerate systems. The idea is to decompose the orbit of
a degenerate system specified by a matrix 𝑀 into 𝐿 ∈ N many non-degenerate suborbits, each
specified by matrix𝑀𝐿 . We take this approach, and so will need to put the suborbits back together
againÐwe do this in Section 6.

We take a short detour towards the Jordan normal form to discuss the eigenvalues of matrix𝑀
and its powers. It is well-known that there exists a nonsingular matrix 𝑆 such that 𝑀 = 𝑆−1 𝐽𝑆 ,
where 𝐽 = diag(𝐽1, . . . , 𝐽𝑡 ) is a block diagonal matrix. Each block of 𝐽 has the following form:

𝐽𝑖 =



𝜆𝑖 1

𝜆𝑖
. . .

. . . 1
𝜆𝑖


, (1)

where 𝜆1, . . . , 𝜆𝑡 are (not necessarily distinct) eigenvalues of𝑀 . A block 𝐽𝑖 is referred to as a Jordan
block of 𝜆𝑖 . Matrix 𝐽 is the Jordan normal form, or simply Jordan form, of𝑀 . Since 𝐽 is block diagonal,
so is any power: 𝐽𝑚 = diag(𝐽𝑚1 , . . . , 𝐽

𝑚
𝑡 ). As a matter of fact, the diagonal entries of a Jordan block

9A number 𝛼 is a root of unity if there exists 𝑛 such that 𝛼𝑛 = 1. In particular, if 𝜆 is not a root of unity, the argument of 𝜆

is not a rational multiple of 𝜋 .
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power 𝐽𝑚𝑖 are all 𝜆𝑚𝑖 . Hence, 𝜆
𝑚
1 , . . . , 𝜆

𝑚
𝑡 are all eigenvalues of 𝐽𝑚 . Since𝑀𝑚

= 𝑆−1 𝐽𝑚𝑆 , we conclude
that the eigenvalues of𝑀𝑚 are the same as eigenvalues of 𝐽𝑚 .

In order to determine the matrix-specific value of 𝐿 mentioned previously, we first define the set
of all eigenvalue quotients of𝑀 which are roots of unity:

Ω = {𝜆𝑖/𝜆 𝑗 : 𝜆1, . . . , 𝜆𝑡 eigenvalues of𝑀 and 𝜆𝑖/𝜆 𝑗 is a root of unity}.

Given a root of unity 𝜔 , let order(𝜔) be the smallest positive integer such that 𝜔order(𝜔)
= 1,

and let 𝐿 = lcm{order(𝜔) : 𝜔 ∈ Ω}. We note that every power of 𝑀 that is a multiple of 𝐿 has
no degenerate eigenvalues. Let 𝜆𝑖 , 𝜆 𝑗 be two eigenvalues of 𝑀 such that 𝜆𝐿𝑖 and 𝜆𝐿𝑗 are distinct

eigenvalues of 𝑀𝐿 . The ratio 𝜆𝐿𝑖 /𝜆
𝐿
𝑗 is not a root of unity: indeed, if 𝜆

𝐿
𝑖 /𝜆

𝐿
𝑗 = (𝜆𝑖/𝜆 𝑗 )

𝐿 is a root

of unity, then so is 𝜆𝑖/𝜆 𝑗 . In that case, order(𝜆𝑖/𝜆 𝑗 ) divides 𝐿 by definition and this implies a

contradiction 𝜆𝐿𝑖 = 𝜆𝐿𝑗 . We recall that all eigenvalues of𝑀𝐿 are 𝐿-th powers of𝑀 ’s eigenvalues and

conclude that𝑀𝐿 is non-degenerate. For the same reason, since𝑀𝐿 is non-degenerate, so is 𝑀𝑘𝐿

for any fixed positive integer 𝑘 . Moreover, the matrix𝑀𝑘𝐿 is not only non-degenerate; each of its
non-real eigenvalue is not a real multiple of a root of unity. To see that, let 𝜆 be an eigenvalue of𝑀

such that 𝜆𝑘𝐿 = 𝐴𝜔 , where 𝐴 ∈ R and 𝜔 is a root of unity. Since 𝜆𝑘𝐿 is non-real, its conjugate 𝜆𝑘𝐿

is an eigenvalue of𝑀𝑘𝐿 as well. Then, however, their ratio 𝜆𝑘𝐿/𝜆𝑘𝐿 = 𝐴𝜔/𝐴𝜔−1
= 𝜔2 would be a

root of unity, contradicting non-degeneracy. Finally, by setting 𝐿 := lcm{𝐿, 2}, we can assume that
all multiples of roots of unity among eigenvalues of𝑀𝐿 are positive reals.
We can then consider 𝐿 subsequences ((𝑀𝐿)𝑛𝑀𝑟𝑥)∞𝑛=0, for each 𝑟 ∈ {0, . . . , 𝐿 − 1}. Notice that

each instance uses the same matrix𝑀𝐿 , but the starting points differ.
Our approach is to describe, for every target T and every 𝑟 ∈ {0, . . . , 𝐿 − 1} the setZ𝑟 (T ) of 𝑛

such that (𝑀𝐿)𝑛𝑀𝑟𝑥 ∈ T . We will show thatZ𝑟 (T ) can be represented with arc-hitting models
(including possibly because Z𝑟 (T ) is finite or cofinite).

From the sets Z𝑟 (T ), we will be able to reconstruct the characteristic word 𝑤 (O, 𝜋) in an
effectively almost periodic way (Theorem 6.1), and hence apply Theorem 1.1 to prove our main
theorem:

Theorem 3.1. Consider a linear dynamical system (𝑀,𝑥), a collection 𝜋 of semialgebraic targets

each of which either has intrinsic dimension at most one or linear dimension at most three, and an

MSO formula𝜓 . Let𝑤 (O, 𝜋) be the characteristic word. Then it is decidable whether the characteristic

word𝑤 (O, 𝜋) satisfies𝜓 .

Here the intrinsic dimension of a semialgebraic set is the usual dimension of a semialgebraic set
(see [Bochnak et al. 1998] and Section 5.1). The linear dimension of a semialgebraic set 𝑆 is the
dimension of the subspace spanned by the points in 𝑆 . A subspace of dimension 𝑘 can be defined
by 𝑘 independent vectors 𝑣1, . . . , 𝑣𝑘 as {𝑣1𝑎1 + · · · + 𝑣𝑘𝑎𝑘 | 𝑎1, . . . , 𝑎𝑘 ∈ R}.
Henceforth, when constructing Z𝑟 (T ) in Section 5 and Section 4 we consider only the non-

degenerate matrix𝑀𝐿 .

4 SEMIALGEBRAIC TARGETS CONTAINED IN 3D SUBSPACES

In this section, we show that given an update matrix 𝑀 , a starting point 𝑥 and a semialgebraic
target set T contained inside a 3D subspace10, it is possible to partition the orbit ⟨𝑥,𝑀𝑥,𝑀2𝑥, . . .⟩
into 𝐿 subsequences such that the set of time steps at which each of the 𝐿 suborbits enters T can be
described using an arc-hitting model. We then use this result in Theorem 6.1, which shows effective

10T is contained in a 3D subspace if there exist linearly independent 𝑣1, 𝑣2, 𝑣3 such that T is contained in the span of

𝑣1, 𝑣2, 𝑣3.
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almost-periodicity of infinite words obtained by interleaving words that can be described using
arc-hitting models.

Theorem 4.1. Let 𝑀 ∈ Q𝑑×𝑑 and 𝑥 ∈ Q𝑑 . For every semialgebraic target set T ⊆ R𝑑 contained

inside a 3D subspace𝑉 of R𝑑 , there exists 𝐿 > 0 such that for 0 ≤ 𝑟 < 𝐿,Z𝑟 (T ) = {𝑛 ∈ N : 𝑀𝑛𝐿+𝑟𝑥 ∈
T } = {𝑛 ∈ N : (𝑀𝐿)

𝑛
(𝑀𝑟𝑥) ∈ T } can be described by an arc-hitting model.

Theorem 4.1 shows that the sequence (𝑀𝑛𝑥)𝑛∈N can be written as an interleaving of 𝐿 sequences
that can be described using arc-hitting models. Observe that it suffices to prove Theorem 4.1 for
non-degenerate matrices𝑀 . To see this, suppose that the theorem holds for non-degenerate systems
and let 𝑀 be an arbitrary matrix and 𝐷 be such that 𝑀𝐷 is non-degenerate. Define sequences
𝑥0, . . . , 𝑥𝐷−1, (𝑥𝑘𝑖 ) = 𝑀

𝑖𝐷+𝑘𝑥 . Since𝑀𝐷 is non-degenerate, each 𝑥𝑖 can be written as an interleaving
of 𝐿𝑖 sequences described by arc-hitting models. Observing that if a sequence can be described
using 𝐿𝑖 arc-hitting models, then it can be described using 𝐿′𝑖 arc-hitting models for every multiple
𝐿′𝑖 of 𝐿𝑖 , we can take the least common multiple of 𝐿0, . . . , 𝐿𝐷−1 and assume that 𝐿𝑖 = 𝐿 𝑗 = 𝐿

′ for

every 𝑖, 𝑗 . Next, define 𝐿 = 𝐿′𝐷 and consider the subsequences 𝑦0, . . . , 𝑦𝐿−1,where 𝑦𝑘𝑖 = 𝑀𝑖𝐿+𝑘𝑥 .

We have to construct an arc-hitting model for each 𝑦𝑖 . Wlog consider 𝑦0. Observe that 𝑦0 is a
subsequence of 𝑥0: in fact, 𝑦0𝑖 = 𝑥

0
𝑖𝐿′

for 𝑖 ≥ 0. By assumption, 𝑥0 can be described (more precisely,

the set {𝑛 ∈ N : 𝑥0𝑛 ∈ T } can be described) using an arc-hitting model with parameters 𝑁 , 𝜆, 𝐼 .

Then 𝑦0 can be described by the ł𝐿′-times acceleratedž arc-hitting model with parameters 𝑁𝐿′, 𝜆𝐿
′

and 𝐼 .
To prove Theorem 4.1, we begin by investigating Z(𝑉 ) where 𝑉 is a subspace.

Theorem 4.2. Let 𝑉 be a subspace of R𝑑 and (𝑀,𝑥) a linear dynamical system. Then Z(𝑉 ) is
semilinear, that is, of the form 𝐹 ∪

⋃𝑠
𝑖=1 (𝑟𝑖 + 𝑁N) for finite 𝐹 and arithmetic progressions 𝑟𝑖 + 𝑁N for

1 ≤ 𝑖 ≤ 𝑠 .

Proof. If 𝑉 = R𝑑 , then Z(𝑉 ) = N, which is semilinear. Otherwise, 𝑉 can be written as an
intersection 𝑉1 ∩ . . . ∩ 𝑉𝑚 of 𝑚 hyperplanes of dimension 𝑑 − 1. By the Skolem-Mahler-Lech
Theorem [Hansel 1985], Z(𝑉𝑖 ) is semilinear for each 𝑖 , and intersection of semilinear sets remains
semilinear. □

The Skolem-Mahler-Lech Theorem, however, is not constructive in the sense that it does not give
us a way to construct the semilinear sets Z(𝑉1), . . . ,Z(𝑉𝑚). In fact, the famously open Skolem
Problem boils down to deciding whether the finite set 𝐹 is empty. We will show (in Theorem 4.5)
that it is possible to write down the setZ(𝑉 ) if dim(𝑉 ) ≤ 3. To do this, we will need the following
lemmata. First, Theorem 4.3 which combines the results of [Chonev et al. 2016, Lemmata G.1,
G.3-G.4]:

Lemma 4.3. Let (𝑢𝑖 )𝑖∈N be a non-zero non-degenerate LRS of order at most 4. If

(1) 𝑢𝑛 = 𝐴𝜆𝑛1 +𝐴𝜆
𝑛
1 + 𝐵𝜆

𝑛
2 + 𝐵 𝜆

𝑛
2 , or

(2) 𝑢𝑛 = (𝐴 + 𝐵𝑛)𝜆𝑛1 + (𝐴 + 𝐵𝑛)𝜆𝑛1

for 𝐴, 𝐵, 𝜆1, 𝜆2 ∈ Q, then there exists a computable bound 𝑁 on the set {𝑛 ∈ N : 𝑢𝑛 = 0}.

Understanding zeros of LRS (in particular, computing effective bounds on zeros of LRS) is
interesting to us due to the connection to reachability problems for linear dynamical systems. For
example, given a hyperplane 𝐻 , there exists an LRS 𝑢 such that𝑀𝑛𝑥 ∈ 𝐻 if and only if 𝑢𝑛 = 0. One
way to obtain such bounds for LRS of the form 𝑢𝑛 = 𝑣𝑛 +𝑤𝑛 is to compute a lower bound on |𝑣𝑛 |.
For example, if |𝑣𝑛 | >

1
𝑝 (𝑛) for some polynomial 𝑝 (𝑛), and |𝑤𝑛 | < (1 − 𝜖)𝑛 for some 𝜖 > 0, then 𝑢𝑛

cannot be 0 for large 𝑛. This is exactly how the following lemma will be used later.
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Lemma 4.4. Let 𝜆, 𝑐 ∈ Q with |𝜆 | = 1, 𝜆 not a root of unity and 𝐵 ∈ R ∩ Q. There exist computable

values 𝐷, 𝑁 > 0 such that for all 𝑛 > 𝑁 , |𝑐𝜆𝑛 + 𝑐 𝜆𝑛 + 𝐵 | > 1
𝑛𝐷

.

Proof. It suffices to only consider the case where |𝑐 | = 1, as one can show that 𝐷, 𝑁 satisfy
the statement of the lemma for 𝜆, 𝑐, 𝐵 if and only if 𝐷 ′, 𝑁 satisfies the statement of the lemma for
𝜆, 𝑐|𝑐 | , 𝐵 where 𝐷 ′

> 0 is sufficiently large with respect to |𝑐 |.

Since 𝑐𝜆𝑛 + 𝑐 𝜆𝑛 takes values in [−2, 2], if |𝐵 | > 2, then |𝑐𝜆𝑛 + 𝑐 𝜆𝑛 + 𝐵 | is bounded below by a
positive constant and the conclusion follows immediately. Henceforth we assume that 𝐵 ∈ [−2, 2].

Define 𝑓 (𝑧) = |𝑧 + 𝑧 + 𝐵 | = |2 Re(𝑧) + 𝐵 |. Then |𝑐𝜆𝑛 + 𝑐 𝜆𝑛 + 𝐵 | = 𝑓 (𝑐𝜆𝑛).
Given the restriction 𝐵 ∈ [−2, 2], 𝑓 (𝑧) will have exactly two conjugate zeroes in the unit circle T,

which we denote with𝑤 and𝑤 . Using [Ouaknine and Worrell 2014a, Corollary 8] we can compute
𝐷, 𝑁 such that for all 𝑛 > 𝑁 , |𝑐𝜆𝑛 −𝑤 |, |𝑐𝜆𝑛 −𝑤 | > 1

𝑛𝐷/2 . We show that this implies that for all

𝑛 > 𝑁 , |𝑓 (𝑐𝜆𝑛) | > 1
𝑛𝐷

. We begin by writing

|𝑓 (𝑐𝜆𝑛) | = |𝑓 (𝑐𝜆𝑛) − 𝑓 (𝑤) | = |𝑐𝜆𝑛 + 𝑐 𝜆𝑛 −𝑤 −𝑤 | = 2| Re(𝑐𝜆𝑛) − Re(𝑤) |.

Recall that for all 𝑛 > 𝑁 , |𝑐𝜆𝑛 −𝑤 |, |𝑐𝜆𝑛 −𝑤 | > 1
𝑛𝐷/2 . By considering the geometry of the unit circle,

|𝑧1 − 𝑧2 | >
1

𝑛𝐷/2
=⇒ | Re(𝑧1) − Re(𝑧2) | > | Re(1) − Re(𝑒

𝑖 1

𝑛𝐷/2 ) | = 1 − cos
1

𝑛𝐷/2
.

We hence obtain that for all 𝑛 > 𝑁 ,

2| Re(𝑐𝜆𝑛) − Re(𝑤) | > 2| (1 − cos
1

𝑛𝐷/2
) | >

1

𝑛𝐷
. □

We are now ready to analyseZ(𝑉 ) where 𝑉 is a linear subspace of dimension at most three.

Theorem 4.5. Let𝑉 be a linear subspace of R𝑑 with dim𝑉 ≤ 3, and (𝑀,𝑥) a non-degenerate linear
dynamical system with𝑀 ∈ Q𝑑×𝑑 and 𝑥 ∈ Q𝑑 . Either

• Z(𝑉 ) = N, or
• Z(𝑉 ) is finite with an effectively computable upper bound 𝑁 on the elements of Z(𝑉 ).

Proof. Observe that whether Z(𝑉 ) = N can be determined by simply checking whether the
first four elements 𝑥,𝑀𝑥,𝑀2𝑥,𝑀3𝑥 of the orbit are in𝑉 . To see this, suppose 𝑥,𝑀𝑥,𝑀2𝑥,𝑀3𝑥 ∈ 𝑉 .
Then there must exist 𝑘 ≤ 3 such that 𝑀𝑘𝑥 = 𝑐0𝑥 + . . . + 𝑐𝑘−1𝑀

𝑘−1𝑥 for some 𝑐0, . . . , 𝑐𝑘−1 ∈ R.
Multiplying both sides of the linear dependence equation by powers of𝑀 , we conclude that for all
𝑖 ≥ 3 (in fact, for all 𝑖 ≥ 𝑘),𝑀𝑖𝑥 can be written as a linear combination of the 𝑘 preceding elements
𝑀𝑖−𝑘𝑥, . . . , 𝑀𝑖−1𝑥 . Since the subspace𝑉 is closed under taking linear combinations, using induction
we can conclude that𝑀𝑖𝑥 ∈ 𝑉 for all 𝑖 ≥ 0.

We next show how to compute a bound onZ(𝑉 ) in caseZ(𝑉 ) ≠ N. In this proof we exploit the
real Jordan normal form to streamline the arguments. Let 𝜆1, . . . , 𝜆𝑘 be the real eigenvalues of𝑀 ,
while 𝜆𝑘+1, . . . , 𝜆𝑠 are non-real (and closed under conjugation). The real Jordan normal form is a
block diagonal matrix as in the definition given in Section 3. A real Jordan block 𝑅𝑖 corresponding
to 𝜆𝑖 , 𝑖 = 1, . . . , 𝑘 is defined as in (1), whereas the Jordan blocks 𝐽1, . . . , 𝐽ℓ of complex eigenvalues
are redefined. Every complex Jordan block of the form 𝐽 𝑗 corresponds to a pair of conjugate complex

eigenvalues 𝜆 𝑗 = 𝑎 𝑗 + 𝑏 𝑗𝑖 , 𝜆 𝑗 = 𝑎 𝑗 − 𝑏 𝑗𝑖 and has the following form:

𝐽 𝑗 =



Λ 𝑗 𝐼

Λ 𝑗
. . .

. . . 𝐼

Λ 𝑗


, Λ 𝑗 =

[
𝑎 𝑗 −𝑏 𝑗
𝑏 𝑗 𝑎 𝑗

]
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for 1 ≤ 𝑗 ≤ 𝑙 , where 𝑎 𝑗 , 𝑏 𝑗 ∈ R ∩ Q. The benefit of working with the real Jordan form 𝐽 =

diag(𝑅1, . . . , 𝑅𝑘 , 𝐽1, . . . , 𝐽ℓ ) is that all matrices involved are over R ∩ Q rather than Q. Let𝑚 be the
multiplicity of 𝐽 𝑗 , that is, 𝐽 𝑗 ∈ R

2𝑚×2𝑚 . Powers of 𝐽 𝑗 have the following form:

𝐽𝑛𝑗 =



Λ
𝑛
𝑗

(𝑛
1

)
Λ
𝑛−1
𝑗

(𝑛
2

)
Λ
𝑛−2
𝑗 · · ·

( 𝑛
𝑚−1

)
Λ
𝑛−𝑚+1
𝑗

Λ
𝑛
𝑗

(𝑛
1

)
Λ
𝑛−1
𝑗 · · ·

( 𝑛
𝑚−2

)
Λ
𝑛−𝑚+2
𝑗

. . .
. . .

...

Λ
𝑛
𝑗

(𝑛
1

)
Λ
𝑛−1
𝑗

Λ
𝑛
𝑗


, Λ𝑛𝑗 =

[
Re(𝜆 𝑗 ) − Im(𝜆 𝑗 )
Im(𝜆 𝑗 ) Re(𝜆 𝑗 )

]
. (2)

Observe that 𝐽𝑚𝑗 consists of blocks that are a polynomial (in 𝑛) multiples of powers of Λ 𝑗 .

We can assume that 𝑀 is in real Jordan form since any problem instance can be translated
into one with the update matrix in this form by observing that for any 𝑆, 𝐽 such that𝑀 = 𝑆−1 𝐽𝑆 ,
𝑀𝑛𝑥 ∈ 𝑉 if and only if 𝐽𝑛 (𝑆𝑥) ∈ 𝑆 (𝑉 ) where 𝑆 (𝑉 ) is the image of𝑉 under the coordinate transform
𝑆 with dim 𝑆 (𝑉 ) = dim𝑉 . It will also be convenient to assume that for 1 ≤ 𝑖 ≤ 𝑘 , the entry of 𝑥
that corresponds to the bottom row of 𝑅𝑖 (i.e. the entry of x that, when computing in 𝑀𝑥 , will
be multiplied by the diagonal entry in the bottom row of 𝑅𝑖 ) is non-zero and for 1 ≤ 𝑗 ≤ 𝑙 , the
two coordinates of 𝑥 that correspond to the bottom two rows of 𝐽 𝑗 are not both zero. Any given
instance with𝑀,𝑥 and 𝑉 can be transformed into this form by removing equations corresponding
to certain coordinates that are always zero and modifying 𝑉 accordingly. For example, suppose

𝑀 =


Λ 𝐼 0
0 Λ 𝐼

0 0 Λ


∈ R6×6 and 𝑥 =

[
𝑥1 𝑥2 𝑥3 𝑥4 0 0

]⊤
∈ R6. Then 𝑀𝑛𝑥 ∈ 𝑉 if and

only if

[
Λ 𝐼

0 Λ

]𝑛 [
𝑥1 𝑥2 𝑥3 𝑥4

]⊤
∈ 𝑊 , where𝑊 = {𝑣 ∈ R4 : (𝑣, 0, 0) ∈ 𝑉 }. In particular,

dim(𝑊 ) ≤ dim𝑉 .
Next we show how to compute the bound 𝑁 onZ(𝑉 ) by a case analysis on the structure of 𝐽 .

Case I considers problem instances whose update matrix has at least four (i.e. at least two conjugate
pairs of) non-real eigenvalues. The idea of the proof is to first show that the łglobalž condition
𝑀𝑛𝑥 ∈ 𝑉 is satisfied only if a certain local condition is satisfied by the 𝑛th powers of two blocks of
𝑀 that, between them, have four different non-real eigenvalues. We then show that this sufficient
local condition already enforces thatZ(𝑉 ) is finite. Cases II and III partition the problem instances
with at most one conjugate pair of non-real eigenvalues based on whether diag(𝐽1, . . . , 𝐽𝑙 ) is simple
or not. These two cases could also be handled by using the facts that the Skolem-Mahler-Lech
Theorem is effective when 𝑀 has at most one pair of non-real eigenvalues (see [Tijdeman et al.
1984, Theorem 1]), and that 𝑉 can be written as an intersection of hyperplanes.

Case I. Suppose 𝑀 has four distinct non-real eigenvalues, i.e. there exist blocks 𝐽𝑖 and 𝐽 𝑗 with

eigenvalues 𝜆𝑖 , 𝜆𝑖 , 𝜆 𝑗 , 𝜆 𝑗 and Λ𝑖 ≠ Λ 𝑗 . We denote the entries of 𝑥 corresponding to the bottom
two rows of 𝐽𝑖 and 𝐽 𝑗 by 𝑥1, 𝑥2 and 𝑥3, 𝑥4 respectively, with (𝑥1, 𝑥2) ≠ 0 and (𝑥3, 𝑥4) ≠ 0 by the
assumption discussed above. Let𝑊 be the projection of 𝑉 onto the coordinates that correspond to
𝑥1, . . . , 𝑥4 and 𝐻 = {𝑥 ∈ R4 : 𝑐⊤𝑥 = 0}, 𝑐⊤ =

[
𝑐1 𝑐2 𝑐3 𝑐4

]
≠ 0 a hyperplane that contains𝑊 .

Such 𝐻 must exist as dim𝑊 ≤ 3 (this is where the assumption that dim𝑉 ≤ 3 is crucial). We have

𝑀𝑛𝑥 ∈ 𝑉 =⇒



𝑎𝑖 −𝑏𝑖 0 0
𝑏𝑖 𝑎𝑖 0 0
0 0 𝑎 𝑗 −𝑏 𝑗
0 0 𝑏 𝑗 𝑎 𝑗



𝑛 

𝑥1
𝑥2
𝑥3
𝑥4


∈𝑊 =⇒ [𝑐1 𝑐2 𝑐3 𝑐4]



𝑎𝑖 −𝑏𝑖 0 0
𝑏𝑖 𝑎𝑖 0 0
0 0 𝑎 𝑗 −𝑏 𝑗
0 0 𝑏 𝑗 𝑎 𝑗



𝑛 

𝑥1
𝑥2
𝑥3
𝑥4


= 0.
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By analysing the powers of Λ𝑖 and Λ 𝑗 , the rightmost condition can be written as

𝐴𝜆𝑛𝑖 +𝐴𝜆
𝑛
𝑖 + 𝐵𝜆

𝑛
𝑗 + 𝐵 𝜆

𝑛
𝑗 = 0

where 𝜆𝑖 = 𝑎𝑖 + 𝑏𝑖𝑖 , 𝜆 𝑗 = 𝑎 𝑗 + 𝑏 𝑗𝑖 , 𝐴 = 𝑐1 (𝑥1 − 𝑥2𝑖) + 𝑐2 (𝑥1𝑖 + 𝑥2) and 𝐵 = 𝑐3 (𝑥3 − 𝑥4𝑖) + 𝑐4 (𝑥3𝑖 + 𝑥4).
Since all the variables are real-valued, 𝑐 ≠ 0, and at least one of (𝑥1, 𝑥2) and (𝑥3, 𝑥4) is not equal to 0,

𝐴 and 𝐵 both cannot be zero. Hence 𝑢𝑛 = 𝐴𝜆𝑛𝑖 +𝐴𝜆
𝑛
𝑖 + 𝐵𝜆

𝑛
𝑗 + 𝐵 𝜆

𝑛
𝑗 is a real-valued, non-degenerate

linear recurrence sequence, and by Theorem 4.3, it has finitely many zeros with a computable
bound 𝑁 such that 𝑢𝑛 ≠ 0 for 𝑛 > 𝑁 . Going back to (𝑀,𝑥) and 𝑉 , we can conclude thatZ(𝑉 ) is
also bounded by 𝑁 .
Case II. There exists a block 𝐽 𝑗 with multiplicity at least 2 (i.e. with at least 4 rows). Similarly

to the preceding case, considering only the four coordinates corresponding to the bottom four
rows of 𝐽 𝑗 , define 𝑥1, 𝑥2, 𝑥3, 𝑥4 and project 𝑉 onto the 4 relevant coordinates to obtain𝑊 . Let
𝐻 = {𝑥 ∈ R4 : 𝑐⊤𝑥 = 0}, 𝑐 ≠ 0 be a hyperplane that contains𝑊 . We have

𝑀𝑛𝑥 ∈ 𝑉 =⇒



𝑎𝑖 −𝑏𝑖 1 0
𝑏𝑖 𝑎𝑖 0 1
0 0 𝑎𝑖 −𝑏𝑖
0 0 𝑏𝑖 𝑎𝑖



𝑛 

𝑥1
𝑥2
𝑥3
𝑥4


∈𝑊 =⇒ [𝑐1 𝑐2 𝑐3 𝑐4]



𝑎𝑖 −𝑏𝑖 1 0
𝑏𝑖 𝑎𝑖 0 1
0 0 𝑎𝑖 −𝑏𝑖
0 0 𝑏𝑖 𝑎𝑖



𝑛 

𝑥1
𝑥2
𝑥3
𝑥4


= 0.

The last equation can be written as

𝐶 (𝑛)𝜆𝑛𝑖 +𝐶 (𝑛) 𝜆
𝑛
𝑖 = 0 (3)

where 𝜆𝑖 = 𝑎𝑖 + 𝑏𝑖𝑖 and

𝐶 (𝑛) = 𝑐1 (𝑥1 + 𝑥2𝑖) + 𝑐2 (𝑥1𝑖 + 𝑥2) + 𝑐3 (𝑥3 + 𝑥4𝑖) + 𝑐4 (𝑥3𝑖 + 𝑥4) +
𝑐1 (𝑥3 + 𝑖𝑥4) + 𝑐2 (−𝑥3𝑖 + 𝑥4)

𝜆𝑖
𝑛.

Recalling that 𝑥3, 𝑥4 are not both zero and that all variables are real-valued, we observe that
𝑐1 (𝑥3 + 𝑖𝑥4) + 𝑐2 (−𝑥3𝑖 + 𝑥4) ≠ 0 and conclude that 𝐶 (𝑛) is not identically zero. We can therefore

write Equation 3 as (𝐴+𝐵𝑛)𝜆𝑛𝑖 + (𝐴+𝐵𝑛)𝜆𝑛𝑖 = 0,𝐴, 𝐵 ∈ Q, which by Theorem 4.3, has a computable
upper bound on the solutions in 𝑛.

Case III. 𝐽𝑖 = Λ =

[
𝑎 −𝑏
𝑏 𝑎

]
for every 𝑖 . In this case,𝑀 has at most one pair of non-real eigenvalues,

𝜆 = 𝑎 + 𝑏𝑖 and 𝜆 = 𝑎 − 𝑏𝑖 , and all blocks with non-real eigenvalues have multiplicity 1. We show
that for every hyperplane 𝐻 = {𝑥 ∈ R𝑑 : 𝑐⊤𝑥 = 0}, 𝑐 ≠ 0, Z(𝐻 ) is finite and can be effectively
bounded. Hence either 𝑉 = R𝑑 , in which case Z(𝑉 ) = N, or 𝑉 is contained in a hyperplane 𝐻 and
Z(𝑉 ) ⊂ Z(𝐻 ) can be effectively bounded.

By considering powers of𝑀 (e.g., see Equation 2) and observing that Re(𝜆n) = 1
2 (𝜆

𝑛 + 𝜆𝑛) and

Im(𝜆n) = 1
2 (𝜆

𝑛 − 𝜆𝑛),

𝑐⊤𝑀𝑛𝑥 = 𝐶𝜆𝑛 +𝐶 𝜆𝑛 +
𝑘∑︁
𝑖=1

𝑝𝑖 (𝑛)𝜌
𝑛
𝑖

where𝐶 ∈ Q, 𝜌1, . . . , 𝜌𝑘 are the real eigenvalues of𝑀 with 𝜌1 > · · · > 𝜌𝑘 > 0 (recall from Section 3
that we can assume that all real eigenvalues are positive and distinct), and 𝑝𝑖 (𝑛) are polynomials
with non-zero real algebraic coefficients for 1 ≤ 𝑖 ≤ 𝑘 .

Let 𝜎 = max{|𝜆 |, 𝜌1, . . . , 𝜌𝑘 } be the spectral radius of𝑀 , 𝛾 =
𝜆
𝜎
and 𝛿𝑖 =

𝜌𝑖
𝜎
for 1 ≤ 𝑖 ≤ 𝑘 . Observe

that either |𝛾 | = 1, or 𝛿1 = 1 and |𝛾 |, 𝛿2, . . . , 𝛿𝑘 < 1. Define

𝑣𝑛 =
𝑐⊤𝑀𝑛𝑥

𝜎𝑛
= 𝐶𝛾𝑛 +𝐶 𝛾𝑛 +

𝑘∑︁
𝑖=1

𝑝𝑖 (𝑛)𝛿
𝑛
𝑖 .
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We have that𝑀𝑛𝑥 ∈ 𝐻 ⇐⇒ 𝑐⊤𝑀𝑛𝑥 = 0 ⇐⇒ 𝑣𝑛 = 0. Hence it suffices to show that the set of all
zeros of 𝑣𝑛 can be effectively bounded.

• If |𝛾 | < 1 (in which case, 𝛿1 = 1), then |𝑝1 (𝑛)𝛿
𝑛
1 | = Ω(1) (i.e. asymptotically bounded from

below by a positive constant), whereas |𝐶𝛾𝑛 +𝐶 𝛾𝑛 | and |
∑𝑘
𝑖=2 𝑝𝑖 (𝑛)𝛿

𝑛
𝑖 | decrease exponentially

to 0. Hence we can compute 𝑁 such that for all 𝑛 > 𝑁 , |𝑝1 (𝑛)𝛿
𝑛
1 | > |𝐶𝛾𝑛 +𝐶 𝛾𝑛 +

∑𝑘
𝑖=2 𝑝𝑖 (𝑛)𝛿

𝑛
𝑖 |

and hence 𝑣𝑛 ≠ 0.
• Similarly, if 𝛿1 < 1 (in which case, |𝛾 | = 1), then |

∑𝑘
𝑖=1 𝑝𝑖 (𝑛)𝛿

𝑛
𝑖 | decreases exponentially to 0

with 𝑛, whereas by Theorem 4.4 we can compute a constant 𝐷 and a bound 𝑁 such that for

all 𝑛 > 𝑁 , |𝐶𝛾𝑛 +𝐶 𝛾𝑛 | > 1
𝑛𝐷

. Hence we can compute a bound 𝑁 ′ such that for all 𝑛 > 𝑁 ′,

|𝐶𝛾𝑛 +𝐶 𝛾𝑛 | > 1
𝑛𝐷

>

���∑𝑘
𝑖=1 𝑝𝑖 (𝑛)

��� and hence 𝑣𝑛 ≠ 0.

• If 𝛿1 = |𝛾 | = 1 and 𝑝1 (𝑛) is not constant, then |𝑝1 (𝑛)𝛿
𝑛
1 | goes to infinity with 𝑛, whereas

|𝐶𝛾𝑛 +𝐶 𝛾𝑛 | is bounded by a constant and |
∑𝑘
𝑖=2 𝑝𝑖 (𝑛)𝛿

𝑛
𝑖 | decreases exponentially. Hence we

can compute 𝑁 such that for all 𝑛 > 𝑁 , |𝑝1 (𝑛)𝛿
𝑛
1 | > |𝐶𝛾𝑛 +𝐶 𝛾𝑛 +

∑𝑘
𝑖=2 𝑝𝑖 (𝑛)𝛿

𝑛
𝑖 | and hence

𝑣𝑛 ≠ 0.
• If 𝛿1 = |𝛾 | = 1 and 𝑝1 (𝑛) = 𝐵 is constant, then by Theorem 4.4 we can compute a constant

𝐷 and a bound 𝑁 such that for all 𝑛 > 𝑁 , |𝐶𝛾𝑛 + 𝐶 𝛾𝑛 + 𝐵 | >
1
𝑛𝐷

. Hence we deduce

that for all 𝑛 > 𝑁 , |𝐶𝛾𝑛 + 𝐶 𝛾𝑛 + 𝑝1 (𝑛)𝛿
𝑛
1 | = |𝐶𝛾𝑛 + 𝐶 𝛾𝑛 + 𝐵 | > 1

𝑛𝐷
. Since |

∑𝑘
𝑖=2 𝑝𝑖 (𝑛)𝛿

𝑛
𝑖 |

decreases exponentially to 0, we can then compute a bound 𝑁 ′
> 𝑁 such that for all 𝑛 > 𝑁 ′,

|𝐶𝛾𝑛 +𝐶 𝛾𝑛 + 𝑝1 (𝑛)𝛿
𝑛
1 | >

1
𝑛𝐷

>

���∑𝑘
𝑖=2 𝑝𝑖 (𝑛)

��� and hence 𝑣𝑛 ≠ 0. □

The preceding theorem describes Z(𝑉 ) for a 3D subspace 𝑉 . Recall that we are interested
in understanding Z(T ) for T contained inside such a subspace. To this end, we will combine
Theorem 4.5 with the following result about three-dimensional dynamical systems from [Karimov
et al. 2020].

Lemma 4.6. Let T ⊆ R3 be a semialgebraic set and (𝑀,𝑥) a non-degenerate dynamical system

with𝑀 ∈ (Q ∩ R)
3×3

and 𝑥 ∈ (Q ∩ R)
3
.Z(T ) can be described by an arc-hitting model.

Proof. Let 𝑝 : R3 → R be a polynomial in three variables. The approach is to show that

• the set {𝑛 : 𝑝 (𝑀𝑛𝑥) = 0} is either finite or equal to N, and
• the sets {𝑛 : 𝑝 (𝑀𝑛𝑥) > 0} and {𝑛 : 𝑝 (𝑀𝑛𝑥) > 0} each can be described by an arc-hitting
model with 𝜆 that only depends on𝑀 .

This suffices because the semialgebraic set T can be defined as a Boolean combination of sets
T1, . . . ,T𝑘 , where for 1 ≤ 𝑖 ≤ 𝑘 , T𝑖 = {(𝑥1, 𝑥2, 𝑥3) : 𝑝𝑖 (𝑥1, 𝑥2, 𝑥3) ∼𝑖 0} and ∼𝑖 ∈ {<,=, >}. Hence
Z(T ) is a Boolean combination ofZ(T1), . . . ,Z(T𝑘 ), which are either finite or cofinite or can be
described using an arc-hitting model with the same 𝜆. It remains to observe that finite and cofinite
sets can be represented by arc-hitting models (with any parameter 𝜆 that is not a root of unity),
and that taking a Boolean combination of arc-hitting models with the same parameter 𝜆 yields a
single arc-hitting model (with parameter 𝜆).
First consider the case where 𝑀 has only real eigenvalues 𝜌1, 𝜌2, 𝜌3 ∈ R and let 𝐽 = 𝑆𝑀𝑆−1 be

the Jordan form of 𝑀 . Let 𝑥1 (𝑛), 𝑥2 (𝑛), 𝑥3 (𝑛) denote the three coordinates of 𝑀
𝑛𝑥 . By analysing

𝑀𝑛𝑥 = 𝑆−1 𝐽𝑛𝑆𝑥 we can observe that for 1 ≤ 𝑖 ≤ 3, 𝑥𝑖 (𝑛) is of the form

𝑥𝑖 (𝑛) =
3∑︁
𝑗=1

𝑞 𝑗 (𝑛)𝜌
𝑛
𝑗
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where for 1 ≤ 𝑗 ≤ 3, 𝑞 𝑗 is a polynomial with real algebraic coefficients. Since 𝑝 (𝑀𝑛𝑥) is obtained
from 𝑥1 (𝑛), 𝑥2 (𝑛), 𝑥3 (𝑛) through multiplication and addition, 𝑝 (𝑀𝑛𝑥) will be of the form∑︁

𝑖, 𝑗,𝑘<𝐾

𝑞𝑖, 𝑗,𝑘 (𝑛)𝜌
𝑖𝑛
1 𝜌

𝑗𝑛
2 𝜌

𝑘𝑛
3 =

∑︁
𝑖, 𝑗,𝑘<𝐾

𝑞𝑖, 𝑗,𝑘 (𝑛)𝜌
𝑛
𝑖,𝑗,𝑘

for some 𝐾 > 0, polynomials 𝑞𝑖, 𝑗,𝑘 with algebraic coefficients and real algebraic 𝜌𝑖 . 𝑗 .𝑘 . It remains to
observe that expressions of this type are either identically zero, ultimately positive or ultimately
negative.
Now suppose 𝑀 has a complex eigenvalue 𝜆 (which, by the assumption of non-degeneracy,

cannot be a root of unity ). [Karimov et al. 2020, Section 4] shows, again by writing𝑀 in Jordan
form and considering powers of𝑀 , that there exists a computable 𝑁 such that for all 𝑛 > 𝑁 ,

sign(𝑝 (𝑀𝑛𝑥)) = sign

(
𝐾∑︁
𝑚=0

𝛽𝑚𝛾
𝑛𝑚 + 𝛽𝑚𝛾𝑛𝑚 + 𝑟 (𝑛)

)

where sign maps R to {−, 0, +}, 𝛾 =
𝜆
|𝜆 | , 𝛽𝑚 ∈ Q for all𝑚 and 𝑟 (𝑛) decreases exponentially to 0 as

𝑛 → ∞. From this we can deduce that either sign(𝑝 (𝑀𝑛𝑥)) is always 0 (in case 𝛽𝑚 = 0 for all𝑚), or
[Karimov et al. 2020, Theorem 5] that there exist computable open subsets 𝐼> and 𝐼< of T (that are
finite unions of open intervals) such that for all 𝑛 > 𝑁 , 𝑝 (𝑀𝑛𝑥) ≠ 0 and 𝑝 (𝑀𝑛𝑥) ∼ 0 if and only if
𝛾𝑛 ∈ 𝐼∼. This gives us arc-hitting models with parameters 𝑁 , 𝛾 and one of 𝐼>, 𝐼< . □

Proof of Theorem 4.1. Recall that it suffices to prove Theorem 4.1 for non-degenerate𝑀 . Let
𝑀 ∈ Q𝑑×𝑑 , 𝑥 ∈ Q𝑑 , 𝑉 be a 3D subspace of R𝑑 and T ⊆ 𝑉 a semialgebraic target. ConsiderZ(𝑉 ).
By Theorem 4.5, there are two possibilities. If Z(𝑉 ) is finite with an effectively computable upper
bound, then so is Z(T ) and we can describeZ(T ) using a single arc-hitting model (i.e. 𝐿 = 1).
Now suppose Z(𝑉 ) = N, i.e. the orbit of (𝑀,𝑥) always remains inside 𝑉 . In this case, (𝑀,𝑥)

is essentially a three-dimensional dynamical system. More formally, let 𝐷 ≤ 3 be the maximal
number of independent vectors in {𝑥,𝑀𝑥,𝑀2𝑥}. We can then define a 𝐷-dimensional łprojectedž
dynamical system (𝑀𝑝 , 𝑥𝑝 ) and a semialgebraic set T𝑝 ⊆ R𝐷 such that𝑀𝑛𝑥 ∈ T ⇐⇒ 𝑀𝑛

𝑝𝑥𝑝 ∈ T𝑝 .

For example, if 𝐷 = 3, then using {𝑥,𝑀𝑥,𝑀2𝑥} as a basis for R3 we can write 𝑥𝑝 =
[
1 0 0

]
,

𝑀𝑝 =
[
𝑀𝑥 | 𝑀2𝑥 | 𝑀3𝑥

]
and T𝑝 = {(𝑎, 𝑏, 𝑐) : 𝑎𝑥 +𝑏𝑀𝑥 + 𝑐𝑀2𝑥 ∈ T }. But now observe that

we can characterize the set of all 𝑛 such that𝑀𝑛
𝑝𝑥𝑝 ∈ T𝑝 using Theorem 4.6. Let 𝐿 be such that𝑀𝐿

𝑝 is

non-degenerate. Then, by Theorem 4.6, we have that Z𝑟 (T𝑝 ) (and hence Z𝑟 (T )) can be described
by an arc-hitting model for 0 ≤ 𝑟 < 𝐿. □

5 1D SEMIALGEBRAIC TARGETS

In this section we consider semialgebraic target sets that have (intrinsic) dimension 1 but need not
stay within a 3D subspace of R𝑑 . Such sets are essentially finite unions of curves, and in Section 5.1
we show that a 1D semialgebraic target T can be represented as union T =

⋃ℓ
𝑖=1{𝑣𝑖 (𝑠) : 𝑠 ∈ R} of

sets parametrized by an algebraic function of a single variable.
Let 𝑀 be an update matrix, 𝐿 > 0 such that 𝑀𝐿 is non-degenerate, 𝑥 a starting point and T a

semialgebraic target of dimension 1 (which we will formally define shortly). Similarly to the main
theorem of Section 4, we will show that for 0 ≤ 𝑟 < 𝐿, Z𝑟 (T ) = {𝑛 ∈ N : 𝑀𝑛𝐿+𝑟𝑥 ∈ T } can be
described by an arc-hitting model. We extend the work of [Baier et al. 2021], which (implicitly)
showed how to determine whether Z(T ) is empty or not, by fully characterising the set using
arc-hitting models.

Theorem 5.1. Given a non-degenerate (𝑀,𝑥) and a semialgebraic target T of dimension 1, the set
Z(T ) can be effectively represented with arc-hitting models.
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Assuming non-degeneracy matrices, we further observe that we can assume the problem to be
given in Jordan form, as defined in Section 3. Suppose𝑀 = 𝑆−1 𝐽𝑆 with 𝐽 in Jordan form and that
T = {𝑣 (𝑠) : 𝑠 ∈ R}. Then𝑀𝑛𝑥 ∈ T ⇐⇒ 𝐽𝑛 (𝑆𝑥) = 𝑆𝑣 (𝑠) for some 𝑠 . Let 𝑥 = 𝑆𝑥 and 𝑣 (𝑠) = 𝑆𝑣 (𝑠).
Here 𝑣 (𝑠) is a linear transformation on 𝑣 (𝑠) and therefore is also an algebraic function. Notice that
the entries of 𝐽 , 𝑥 and 𝑣 may be non-real due to 𝐽 being the complex Jordan form. The remainder of
this section discusses 1D semialgebraic sets and proves Theorem 5.1 with the translation to JNF in
mind.

5.1 Expressing Semialgebraic Sets Parametrically

Dimension of a semialgebraic set is defined using Cell Decomposition (see, e.g., [Bochnak et al.
1998, Chapter 2]). In particular, a semialgebraic set of dimension one (in our case, the target T ) is a
union of cells 𝐶1, . . . ,𝐶𝑘 of dimension one in R𝑑 , which can be defined inductively as follows.

• Cells of dimension one in R are either points in Q ∩ R, or open intervals with endpoints in

Q ∪ {−∞,∞};
• A cell𝐶 of dimension one in R𝑘+1 with 𝑘 > 0 can be written as𝐶 = {(𝑥,𝑔(𝑥)) : 𝑥 ∈ 𝐷}, where
𝐷 is a cell of dimension one in R𝑘 and 𝑔(𝑥) is the unique value of 𝑦 satisfying the system
𝑝1 (𝑥,𝑦) = 0, 𝑞1 (𝑥,𝑦) > 0, . . . , 𝑞𝑚 (𝑥,𝑦) > 0 where 𝑝1, 𝑞1, . . . , 𝑞𝑚 are polynomials in 𝑘 + 1
variables with integer coefficients. In other words,𝐶 ⊆ R𝑘+1 is the image of the semialgebraic
function 𝑔 over the cell 𝐷 ⊆ R𝑘 of dimension one.

Consider a 1D semialgebraic target T ⊆ R𝑑 . We show that T can be written as a finite union
of sets parametrized by an algebraic function over R, i.e. sets of the form {𝑓 (𝑠) : 𝑠 ∈ R} where
𝑓 : R ↦→ R𝑑 is an algebraic function. We do this by using induction to show that each cell of
dimension one can be written as a union of sets parametrized by an algebraic function over R. For

the base case, observe that a point 𝑝 ∈ Q ∩ R can be characterized using the algebraic function
𝑓 (𝑠) = 𝑝 , the interval (0, 1] as { 1

1+𝑠2
: 𝑠 ∈ R} and the interval (0,∞) as { 1

𝑠2
: 𝑠 ∈ R}. We can

characterize all other types of intervals using these parametrizations. For example, (𝑎, 𝑏] = {𝑎+ 𝑏−𝑎
1+𝑠2

},

[𝑏, 𝑎) = {𝑎 − 𝑎−𝑏
1+𝑠2

: 𝑠 ∈ R} and an open interval (𝑎, 𝑏) can be written as (𝑎, 𝑏) = (𝑎, 𝑎+𝑏2 ] ∪ [ 𝑎+𝑏2 , 𝑏).

Next, let 𝐶 be a cell of dimension 1 in R𝑘+1. Recall that

𝐶 = {(𝑥,𝑦) : 𝑥 ∈ 𝐷, 𝑝1 (𝑥,𝑦) = 0, 𝑞1 (𝑥,𝑦) > 0, . . . , 𝑞𝑚 (𝑥,𝑦) > 0}

where 𝐷 is a cell of dimension 1 in R𝑘 . By the induction hypothesis, 𝐷 must be a union of sets
𝐷1, . . . , 𝐷ℓ parametrized by 𝑓1 (𝑠), . . . , 𝑓ℓ (𝑠), respectively. Hence 𝐶 =

⋃ℓ
𝑖=1𝐶𝑖 , where for 1 ≤ 𝑖 ≤ ℓ ,

𝐶𝑖 = {(𝑓𝑖 (𝑠), 𝑦) : 𝑠 ∈ R, 𝑝1 (𝑓𝑖 (𝑠), 𝑦) = 0, 𝑞1 (𝑓𝑖 (𝑠), 𝑦) > 0, . . . , 𝑞𝑚 (𝑓𝑖 (𝑠), 𝑦) > 0}

is the component of 𝐶 that is obtained from 𝐷𝑖 . We need to show that each 𝐶𝑖 can be parametrized
by an algebraic function. Viewing 𝑝1 (𝑓𝑖 (𝑠), 𝑦) and 𝑞 𝑗 (𝑓𝑖 (𝑠), 𝑦), 1 ≤ 𝑗 ≤ 𝑚, as polynomials in 𝑦 with
coefficients that are algebraic functions of 𝑠 , we can factorise to obtain the system



𝑝1 (𝑓𝑖 (𝑠), 𝑦) = (𝑦 − ℎ01 (𝑠)) · . . . · (𝑦 − ℎ
0
𝜅 (0)

(𝑓1 (𝑠))) = 0

𝑞1 (𝑓𝑖 (𝑠), 𝑦) = (𝑦 − ℎ11 (𝑠)) · . . . · (𝑦 − ℎ
1
𝜅 (1)

(𝑓1 (𝑠))) > 0

· · ·

𝑞𝑚 (𝑓𝑖 (𝑠), 𝑦) = (𝑦 − ℎ𝑚1 (𝑠)) · . . . · (𝑦 − ℎ
𝑚
𝜅 (𝑚)

(𝑓1 (𝑠))) > 0

where ℎ𝑖𝑟 is an algebraic function for every 0 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑟 ≤ 𝜅 (𝑖). Next we will show how to
compute 𝜅 (0) subsets 𝐼1, . . . , 𝐼𝜅 (0) of R that have the following properties.

•
⋃𝜅 (0)
𝑗=1 𝐼 𝑗 = R;

• Each 𝐼 𝑗 is a finite union of intervals;
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• For 1 ≤ 𝑗 ≤ 𝜅 (0), for all 𝑠 ∈ 𝐼 𝑗 the value of 𝑦 corresponding to 𝑓𝑖 (𝑠) is equal to ℎ
0
𝑗 (𝑠) (that is,

(𝑓𝑖 (𝑠), ℎ
0
𝑗 (𝑠)) ∈ 𝐶𝑖 ), which is the 𝑗th root of 𝑝1 (𝑓𝑖 (𝑠)).

That is, 𝐼 𝑗 is the set of all values of 𝑠 for which 𝑦 = ℎ0𝑗 (𝑠). This will allow us to write

𝐶𝑖 =

𝜅 (0)⋃
𝑗=1

{(𝑓𝑖 (𝑠), ℎ
0
𝑗 (𝑠)) : 𝑠 ∈ 𝐼 𝑗 }.

Here each 𝐼 𝑗 is a finite union of intervals and hence can be parametrized using algebraic functions
with domain R. Since composition of two algebraic functions remains algebraic, we can characterize
each component of 𝐶𝑖 that comes from a single subinterval of 𝐼 𝑗 using algebraic functions with
domain R. Hence we can write 𝐶𝑖 as a union of sets with the desired parametrization.

To construct 𝐼 𝑗 for each 1 ≤ 𝑗 ≤ 𝜅 (0), we proceed as follows. Since 𝐼 𝑗 = {𝑠 : (𝑓𝑖 (𝑠), ℎ
0
𝑗 (𝑠)) ∈ 𝐶𝑖 },

it can be defined by the formula

𝜑 (𝑠) ≔ 𝑝1 (𝑓𝑖 (𝑠), ℎ
0
𝑗 (𝑠)) = 0 ∧ 𝑞1 (𝑓𝑖 (𝑠), ℎ

0
𝑗 (𝑠)) > 0 ∧ · · · ∧ 𝑞𝑚 (𝑓𝑖 (𝑠), ℎ

0
𝑗 (𝑠)) > 0.

Hence 𝐼 𝑗 is semialgebraic. Since semialgebraic sets have finitely many connected components, 𝐼 𝑗
must be a finite union of interval subsets of R.

5.2 Non-diagonalisable𝑀

Having shown that we can consider the target T as an image of an algebraic function, towards
Theorem 5.1 we now show thatZ(T ) can be represented using an arc-hitting model. We begin
with the case that𝑀 is non-diagonalisable and show that in this case Z(T ) is in fact either finite
or co-finite. We consider the case where𝑀 is diagonalisable in Section 5.3 .
Let 𝐽 = (𝐽1, . . . , 𝐽𝑡 ) be the Jordan form of the non-degenerate matrix, where 𝐽𝑖 is a Jordan block

of dimension 𝑑𝑖 corresponding to an eigenvalue 𝜆𝑖 . We index 𝑥 by 𝑥𝑖,1, . . . , 𝑥𝑖,𝑑𝑖 for the coordinates
corresponding to 𝐽𝑖 (where 𝑥𝑖,1 corresponds to the bottom row), similarly for 𝑣 (𝑠). For example:

𝐽 =



𝐽1

𝐽2

𝐽3



𝑥 =



𝑥1,1
𝑥2,𝑑2
...

𝑥2,1
𝑥3,𝑑3
...

𝑥3,1



𝑣 (𝑠) =



𝑣1,1 (𝑠)
𝑣2,𝑑2 (𝑠)

...

𝑣2,1 (𝑠)
𝑣3,𝑑3 (𝑠)

...

𝑣3,1 (𝑠)


Lemma 5.2. Given non-degenerate 𝐽 , if there exists a non-diagonal Jordan block 𝐽𝑖 with eigenvalue

𝜆𝑖 , then Z(T ) is effectively finite or cofinite.

Proof. Recall from the non-degeneracy assumption of Section 3 that either 𝜆𝑖 is not a root of
unity or 𝜆𝑖 = 1.
If 𝜆𝑖 is not a root of unity, we can apply [Baier et al. 2021, Lemma 18] which shows there is an

effective bound on 𝑛 for which 𝜆𝑛𝑖 𝑥𝑖,1 = 𝑣𝑖,1 (𝑠) and 𝜆
𝑛
𝑖 𝑥𝑖,2 + 𝑛𝜆

𝑛−1
𝑖 𝑥𝑖,1 = 𝑣𝑖,2 (𝑠) can both hold. This

entails thatZ(T ) is finite.
Now let us turn to the case when 𝜆𝑖 = 1, we will still conclude Z(T ) is finite or cofinite. We

consider polynomial equations in variable 𝑛, formed by 𝐽𝑛𝑖 𝑥𝑖 = 𝑣𝑖 (𝑠), for all Jordan blocks with
𝜆𝑖 = 1. For 𝐽𝑖 , this leads to constraints on (𝑛, 𝑠) in the following form:

𝑥𝑖,1 = 𝑣𝑖,1 (𝑠), 𝑛𝑥𝑖,1 + 𝑥𝑖,2 = 𝑣𝑖,2 (𝑠), . . . ,

𝑑𝑖∑︁
𝑗=1

(
𝑛

𝑑𝑖 − 𝑗

)
𝑥𝑖, 𝑗 = 𝑣𝑖,𝑑𝑖 (𝑠).
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Equations which do not depend on 𝑛, for example 𝑥𝑖,1 = 𝑣𝑖,1 (𝑠) must either hold for all 𝑠 , or there
are finitely many choices of 𝑠 because there are only finitely many roots of an algebraic function
(reducing the problem to single point targets).

For the remaining equations, there is an equation of the form 𝑛 = (𝑣𝑖,2 (𝑠) − 𝑥𝑠 )/𝑥𝑖,1, which can
be used to replace 𝑛 in all other equations. Again we test whether the constraint system is satisfied
for all 𝑠 or only finitely many 𝑠 (in which case we again reduce to single point targets).

If the constraints hold for all 𝑠 , we have the equation 𝑛 = (𝑣𝑖,2 (𝑠) −𝑥𝑠 )/𝑥𝑖,1. If the range {(𝑣𝑖,2 (𝑠) −
𝑥𝑠 )/𝑥𝑖,1 | 𝑠 ∈ 𝑅} is bounded then we conclude that Z(T ) is finite.

Otherwise, if the constraints do not hold for all 𝑠 , we take an equation of the form 𝜆𝑛𝑗 𝑥 𝑗,1 = 𝑣 𝑗,1 (𝑠)

from some Jordan block with eigenvalue different from 1 (if it exists) and can again apply [Baier
et al. 2021, Lemma 18] to bound 𝑛 such that 𝜆𝑛𝑗 𝑥 𝑗,1 = 𝑣 𝑗,1 (𝑠) and 𝑛 = (𝑣𝑖,2 (𝑠) − 𝑥𝑠 )/𝑥𝑖,1 both hold,

concluding thatZ(T ) is finite. If no such equation exists (because all Jordan blocks have eigenvalue
1) then 𝑛 is unbounded, and Z(T ) is cofinite. □

5.3 Diagonalisable𝑀

In the remainder, we complete the proof of Theorem 5.1 when the matrix is diagonalisable, and so
we have constraints of the form 𝜆𝑛𝑖 𝑥𝑖 = 𝑣 (𝑠)𝑖 , 𝑖 = 1, . . . , 𝑡 . Henceforth, we rewrite this as 𝜆𝑛𝑖 = 𝛾𝑖 (𝑠),
where 𝛾𝑖 (𝑠) = 𝑣 (𝑠)𝑖/𝑥𝑖 . In order to do this, we must assume that 𝑥𝑖 ≠ 0. Observe that if 𝑥𝑖 = 0 (or
indeed 𝜆𝑖 = 0), then the constraint can be dropped: either all 𝑛 satisfy the constraint if there exists
𝑠 : 𝑣 (𝑠)𝑖 = 0, or otherwise no 𝑛 satisfy the constraint and Z(T ) is empty.

Eigenvalues can either be real or complex. We recall, due to our non-degeneracy assumption,
that no complex eigenvalue has rational argument (that is a rational multiple of 2𝜋 ). That is there
are no real multiples of roots of unity, except the positive reals.
Hence, if any eigenvalue 𝜆𝑖 is a root of unity then 𝜆𝑖 = 1, forming the constraint 1𝑛 = 1 = 𝛾𝑖 (𝑠).

This holds either at finitely many 𝑠 (reducing T to point targets), or 𝛾𝑖 (𝑠) = 1 identically (for all 𝑠)
in which case the constraint holds for all 𝑛 trivially. Thus we may assume that no 𝜆𝑖 is a root of
unity.
In the remainder of this section, we assume that no eigenvalue 𝜆1, . . . , 𝜆𝑡 is 0 or 1 by removing

such equations as described above.
We split our case analysis depending on whether there exist two multiplicatively independent

eigenvalues, that is, whether there exists 𝑖 , 𝑗 such that 𝜆𝑎𝑖 ≠ 𝜆𝑏𝑗 for all 𝑎, 𝑏 ∈ Z not both zero.11

Indeed, if there are two multiplicatively independent eigenvalues, then the following lemma of
[Baier et al. 2021] entails thatZ(T ) is finite.

Lemma 5.3 ([Baier et al. 2021, Lemma 20]). Suppose 𝜆1, 𝜆2 are constant, not roots of unity, and are

multiplicatively independent. Assume further that 𝛾1, 𝛾2 are non-constant algebraic functions. Then the

system 𝜆𝑛1 = 𝛾1 (𝑠), 𝜆
𝑛
2 = 𝛾2 (𝑠) has only finitely many solutions, and there is an effectively computable

upper bound on such 𝑛.

It remains that all pairs of eigenvalues are multiplicatively dependent. In particular, for each pair
𝜆𝑖 , 𝜆 𝑗 , we have 𝜆

𝑎2
𝑖 = 𝜆𝑎1𝑗 for some integers 𝑎1, 𝑎2 not both zero. In fact, since we assume that no

eigenvalue of interest is a root of unity, we have that neither 𝑎1 nor 𝑎2 equals 0.
We observe that we cannot have both reals and complex numbers because we have eliminated

the case where 𝜆𝑖 ’s may be (real multiples of) roots of unity. Suppose 𝜆𝑖 is complex and 𝜆 𝑗 is real,
but then 𝜆𝑎1𝑖 = 𝜆𝑎2𝑗 implies 𝜆𝑎1𝑖 is real (thus 𝜆𝑖 is a (real multiple of a) root of unity).

11Given a collection 𝑌 = {𝜆1, . . . , 𝜆𝑡 } of algebraic numbers consider the set 𝐿 = {(𝑎1, . . . , 𝑎𝑡 ) ∈ Z𝑡 : 𝜆
𝑎1
1 · · · 𝜆𝑎𝑡𝑡 = 1}. It

forms an abelian group under component-wise addition, and a deep result of Masser [Masser 1988] shows that a basis of

𝐿 can be computed (in polynomial time, see, e.g., [Cai et al. 2000]). In particular, it is decidable whether any two of the

eigenvalues 𝜆𝑖 are multiplicatively independent.
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Secondly, observe that a non-real 𝜆𝑖 must be of modulus 1. Suppose we have complex 𝜆𝑖 , then

since 𝑀 is real we also have the complex conjugate 𝜆 𝑗 = 𝜆𝑖 . As 𝜆𝑖 and 𝜆𝑖 are multiplicatively

dependent, we have 𝜆𝑎1𝑖 = 𝜆𝑖
𝑎2

for 𝑎1, 𝑎2 ≠ 0. Then 𝜆𝑎1+𝑎2𝑖 = 𝜆𝑎2𝑖 𝜆𝑖
𝑎2

= ( |𝜆𝑖 |
2)𝑎2 . Hence either |𝜆 | = 1

or 𝑎1 = 𝑎2. However if 𝑎1 = 𝑎2 then 𝜆
𝑎1
𝑖 = 𝜆𝑖

𝑎1
is real and so 𝜆𝑖 is a (real multiple of a) root of unity,

which we have already excluded.

All real. First we suppose that every 𝜆𝑖 is real; as mentioned in Section 3 we may further assume
that 𝜆𝑖 is non-negative. We will show that Z(T ) is either finite or cofinite.

We have for any two eigenvalues 𝜆𝑎𝑖𝑖 = 𝜆
𝑎 𝑗
𝑗 and require 𝜆𝑛𝑖 = 𝛾𝑖 (𝑠) and 𝜆

𝑛
𝑗 = 𝛾 𝑗 (𝑠). Since 𝜆𝑖 = 𝜆

𝑎 𝑗 /𝑎𝑖
𝑗 ,

we have 𝛾𝑖 (𝑠) = 𝜆𝑛𝑖 = (𝜆
𝑎 𝑗 /𝑎𝑖
𝑗 )𝑛 = (𝜆𝑛𝑗 )

𝑎 𝑗 /𝑎𝑖 = 𝛾 𝑗 (𝑠)
𝑎 𝑗 /𝑎𝑖 . We either have 𝛾𝑖 (𝑠) = 𝛾 𝑗 (𝑠)

𝑎 𝑗 /𝑎𝑖 holds

identically, in which case we can drop one of the equations, or there are finitely many such 𝑠 . In
which case this reduces to the single point target problem. Hence we only need to worry about a
single equation, let us assume this is 𝜆𝑛𝑖 = 𝛾 (𝑠).
Further since 𝛾 (𝑠) only crosses 0 finitely many times, some can partition T by splitting into

regions of 𝑅 where 𝛾 (𝑠) is of constant sign. We haveZ(T ) = ∅ whenever 𝜆𝑖 > 0 and 𝛾 (𝑠) ≤ 0, so
we assume 𝛾 (𝑠) > 0.

Hence we solve 𝜆𝑛 = 𝛾 (𝑠) for 𝜆,𝛾 > 0. Now, suppose 𝜆 = 1, either we have 𝛾 = 1, in which case
Z(T ) = N. Or 𝛾 (𝑠) = 1 for finitely many 𝑠 , in which case we partition T into finitely many point
targets.
The case where 𝜆 > 1 can be reduced to 𝜆 < 1 by considering (1/𝜆)𝑛 = 1/𝛾 (𝑠) if necessary.

Thus assume 𝜆 < 1. Then if inf𝑠∈𝑅 𝛾 (𝑠) > 0, we have 𝜆𝑛 < inf𝑠∈𝑅 𝛾 (𝑠) for some 𝑛 and so Z(T )
is finite. If inf𝑠∈𝑅 𝛾 (𝑠) = 0 we reach T by the intermediate value theorem for every 𝑛 ≥ 𝑚 where
𝜆𝑚 < sup𝑠∈𝑅 𝛾 (𝑠). HenceZ(T ) is cofinite.

Some non-real. Let us first work under the assumption there is a single constraint 𝜆𝑛 = 𝛾 (𝑠), where
𝜆 is a complex number of modulus one, but not a root of unity. Therefore 𝜆𝑛 takes on values in the
unit circle. In case 𝛾 (𝑠) intersects the unit circle only at finitely many 𝑠 , the problem reduces to the
finitely many targets case. Otherwise the range of 𝛾 (𝑠), by continuity, is a finite union of arcs on
the unit circle. Thus we can construct an arc-hitting model with 𝜆 and these arcs.

In general we have several constraints. Just like in the all real case, we want to reduce to a single

constraint. However, one has to be careful when taking rational powers 𝜆
𝑎𝑖/𝑎 𝑗
𝑖 or 𝛾𝑖 (𝑠)

𝑎𝑖/𝑎 𝑗 , as these
are multivalued functions over the complex numbers. In the analysis that follows we indeed show
that the problem reduces to a single constraint one, but the arguments are quite technical due to
the intricacies of complex exponentiation.
We express the pairwise multiplicative dependencies between the eigenvalues through 𝜆1. For

the sake of readability, we set 𝜆 = 𝜆1 and 𝛾 = 𝛾1. Then, for each 𝑗 = 2, . . . , 𝑡 , let 𝑎 𝑗 and 𝑏 𝑗 be non-zero

integers such that 𝜆𝑎 𝑗 = 𝜆
𝑏 𝑗
𝑗 , 𝑗 = 2, . . . , 𝑡 . Let ℓ = lcm {𝑏2, . . . , 𝑏𝑡 }. Fix 𝜇 to be one of the ℓ complex

numbers in the set 𝜆1/ℓ . Take then an algebraic function 𝜂 satisfying 𝜂ℓ = 𝛾 identically, with 𝜂
continuous over 𝐷 (e.g., a suitable root of the polynomial obtained by replacing 𝑦 with 𝑦ℓ in the
minimal polynomial of 𝛾 ).

The aim is to show that, for each 0 ≤ 𝑟 < ℓ , the set of solutions (𝑛, 𝑠), with 𝑛 = 𝑟 mod ℓ , to the
original system of equations is exactly the union of solutions to the equations 𝜇𝑛 = 𝜔𝜂 (𝑠), where 𝜔
ranges over a suitable subset (depending on 𝑟 ) of the ℓth roots of unity.

To this end, notice that 𝜇ℓ𝑎 𝑗 = 𝜆𝑎 𝑗 = 𝜆
𝑏 𝑗
𝑗 so we have 𝜔 𝑗 𝜇

ℓ𝑎 𝑗 /𝑏 𝑗 = 𝜆 𝑗 for some 𝑏 𝑗 th root of unity

𝜔 𝑗 . Furthermore, the number 𝑐 𝑗 := ℓ𝑎 𝑗/𝑏 𝑗 is an integer. Similarly we have 𝜂ℓ𝑎 𝑗 (𝑠) = 𝛾𝑎 𝑗 (𝑠) = 𝛾
𝑏 𝑗
𝑗 (𝑠)
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for all 𝑠 ∈ 𝐷 , so we have 𝛾 𝑗 (𝑠) = 𝜔
′
𝑠,𝑗𝜂

𝑐 𝑗 (𝑠) for each 𝑠 and some 𝑏 𝑗 th root of unity 𝜔 ′
𝑠,𝑗 . In fact, 𝜔 ′

𝑠,𝑗

is constant in 𝑠 since 𝜂 and 𝛾 are continuous. Thus we may write 𝛾 𝑗 = 𝜔
′
𝑗𝜂
𝑐 𝑗 .

We plug these relations into the constraints 𝜆𝑛𝑗 = 𝛾 𝑗 (𝑠), 𝑗 = 1, . . . , 𝑡 to obtain the equations

𝜔𝑛𝑗 𝜇
𝑐 𝑗𝑛 = 𝜔 ′

𝑗𝜂
𝑐 𝑗 . Notice that these equations are not łconstantž in 𝑛 in the sense that 𝜔𝑛𝑗 varies with

𝑛, but we can take arithmetic progressions with period ℓ to get łconstantž equations. That is to
say, for each 𝑟 , 0 ≤ 𝑟 < ℓ , and for each 𝑛 = 𝑟 mod ℓ , we have 𝜆𝑛𝑗 = 𝜔

𝑛
𝑗 𝜇
𝑐 𝑗𝑛 = 𝜔𝑟𝑗 𝜇

𝑐 𝑗𝑛 . The equation

𝜆𝑛𝑗 = 𝛾 𝑗 (𝑠) is then equivalent to 𝜇𝑐 𝑗𝑛𝜔𝑟𝑗 = 𝜔
′
𝑗𝜂
𝑐 𝑗
𝑗 (𝑠). Writing 𝜔 ′′

𝑗 = 𝜔 ′
𝑗/𝜔

𝑟
𝑗 for each 𝑗 (with 𝑟 fixed),

we obtain the following equivalent system of equations{
𝜇ℓ𝑛 = 𝜂ℓ (𝑠)

𝜇𝑐 𝑗𝑛 = 𝜂
𝑐 𝑗
𝑗 (𝑠)𝜔

′′
𝑗 , 𝑗 = 2, . . . , 𝑡,

(4)

where 𝜔 ′′
𝑗 = 𝜔 ′

𝑗/𝜔
𝑟
𝑗 is yet another fixed 𝑐 𝑗 th root of unity (assuming 𝑟 is fixed).

A solution (𝑛, 𝑠) to the equation 𝜇ℓ𝑛 = 𝜂ℓ (𝑠) implies that (𝑛, 𝑠) is a solution to the equation
𝜇𝑛 = 𝜔𝜂 (𝑠) for some ℓth root of unity 𝜔 . Conversely, any such solution is a solution to 𝜇ℓ𝑛 = 𝜂ℓ (𝑠).
Therefore, to satisfy the first equation, we must have 𝜇𝑛 = 𝜔𝜂 (𝑠) for some 𝜔 an ℓth root of unity.
So assume (𝑛, 𝑠) is a solution to the first equation. Then 𝜇𝑐 𝑗𝑛 = (𝜔𝜂 𝑗 )

𝑐 𝑗 = 𝜔𝑐 𝑗𝜂𝑐 𝑗 (𝑠). We conclude
that (𝑛, 𝑠) is a solution to (4) if and only if (𝑛, 𝑠) is a solution to 𝜇𝑛 = 𝜔𝜂 (𝑠) with 𝜔 an ℓth root of
unity such that 𝜔𝑐 𝑗 = 𝜔 ′′

𝑗 for each 𝑗 = 2, . . . , 𝑡 . We compute the set 𝑆𝑟 of ℓth roots of unity 𝜔 which

satisfy 𝜔𝑐 𝑗 = 𝜔 ′′
𝑗 for all 𝑗 . Then the set of solutions (𝑛, 𝑠) to (4) with 𝑛 = 𝑟 mod ℓ is exactly the

union of the solutions to the equations 𝜇𝑛 = 𝜔𝜂 (𝑠), 𝜔 ∈ 𝑆𝑟 .
We claim that the characteristic sequences of the union of the solutions to the equations 𝜇𝑛 =

𝜔𝜂 (𝑠), 𝑤 ∈ 𝑆𝑟 can be expressed by an arc-hitting model. Indeed, the range of the function 𝜂 is
a finite union of arcs on the unit circle: indeed, we have that |𝜂 (𝑠) | = 1 as this holds for 𝛾 . The
domain of 𝜂 might not be an interval, but might have at most finitely many points of discontinuity,
but 𝜂 maps each of its domain’s connected components to an arc on the unit circle by continuity.
The union of the unions of arcs given by 𝜔𝜂, 𝜔 ∈ 𝑆𝑟 , gives a set I of arcs on the unit circle, such
that 𝜇𝑛 ∈ I if and only if 𝜇𝑛 = 𝜔𝜂 (𝑠) for some 𝜔 ∈ 𝑆𝑟 . We note that the obtained arc-hitting model
has angle arg(𝜆1)/ℓ .

6 PUTTING HUMPTY TOGETHER AGAIN

In this section, we prove the main result of this paper, Theorem 3.1. From Theorem 4.1 and
Theorem 5.1 we know that for a single semialgebraic target T that is either contained inside a 3D
subspace or has intrinsic dimension (at most) 1, there exists computable 𝐿 > 0 such that Z(T )
is equal to interleaving of Z0 (T ), . . . ,Z𝐿−1 (T ) where each Z𝑟 (T ) =

{
𝑛 | 𝑀𝑛𝐿+𝑟𝑥 ∈ T

}
can be

represented by an arc-hitting model. Let us consider the situation where we have multiple targets
T1, . . . ,T𝑚 that are either contained in a subspace of dimension 3 or have intrinsic dimension (at
most) 1. Suppose for 1 ≤ 𝑖 ≤ 𝑚,Z(T𝑖 ) can be written as an interleaving of 𝐿𝑖 sets, each of which
can be represented by an arc-hitting model. Observe that if a set can be represented by 𝐿𝑖 arc-hitting
models, then for any positive integer multiple 𝐿 of 𝐿𝑖 , it can be represented using 𝐿 arc-hitting
models. Hence by taking the least common multiple of 𝐿1, . . . , 𝐿𝑚 , we can assume that 𝐿𝑖 = 𝐿 𝑗 = 𝐿
for every 𝑖, 𝑗 . That is, we can assume that the number of subsequences we need to consider is equal
to 𝐿 for all targets T1, . . . ,T𝑚 .
From Section 2.5 we already know that for 0 ≤ 𝑟 ≤ 𝐿 − 1 and 1 ≤ 𝑖 ≤ 𝑚, the setZ𝑟 (T𝑖 ) can be

represented by an arc-hitting model and hence is effectively almost-periodic. Next we show that
the overall word𝑤 (O, 𝜋) with respect to targets T1, . . . ,T𝑚 , which is obtained by aggregating the
setsZ𝑟 (T𝑖 ), is also effectively almost periodic.
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Theorem 6.1. Let (𝑀,𝑥) be a linear dynamical system such that Z𝑟 (T1), . . . ,Z𝑟 (T𝑚), for 𝑟 ∈

{0, . . . , 𝐿 − 1}, are represented by arc-hitting models. Let𝑤 = 𝑤 (O, 𝜋) ∈
(
2{T1,...,T𝑚 }

)N
be the charac-

teristic word of the LDS with respect to the𝑚 targets.𝑤 is effectively almost periodic.

Proof. Let 𝜆𝑖,𝑟 , 𝑁𝑖,𝑟 , 𝐹𝑖,𝑟 , 𝐼𝑖,𝑟 be the parameters of the arc-hitting model corresponding to Z𝑟 (T𝑖 ).
We will use these arc-hitting models in the following way. Let 𝑛 = 𝑞𝐿 + 𝑟 , 0 ≤ 𝑟 < 𝐿 be larger than
max{𝑁𝑖,𝑟 : 1 ≤ 𝑖 ≤ 𝑚, 0 ≤ 𝑟 < 𝐿}. We have that for each 𝑖 , by the definition of arc-hitting models,

T𝑖 ∈ 𝑤 [𝑛] if and only if 𝜆
𝑞
𝑖,𝑟 ∈ 𝐼𝑖,𝑟 . In other words, T𝑖 ∈ 𝑤 [𝑛] if and only if 𝜆

⌊ 𝑛
𝐿
⌋

𝑖,𝑟 ∈ 𝐼𝑖,𝑟 .
Next we compute large enough 𝑁 such that for all 𝑛 > 𝑁 , 1 ≤ 𝑖 ≤ 𝑚 and 0 ≤ 𝑟 < 𝐿,

• ⌊𝑛
𝐿
⌋ > 𝑁𝑖 .𝑟 , and

• 𝜆
⌊ 𝑛
𝐿
⌋

𝑖,𝑟 is not an endpoint of 𝐼𝑖,𝑟 . To see that this is possible, observe that for every 𝑖 and 𝑟 , the

set 𝐼𝑖,𝑟 has a finite number of endpoints. Since 𝜆𝑖,𝑟 by definition cannot be a root of unity,
for every point 𝑝 ∈ T one can compute 𝑁𝑝 such that for all 𝑛 > 𝑁𝑝 , 𝜆

𝑛
≠ 𝑝 . Hence for all 𝑛

larger than max{𝑁𝑝 : 𝑝 is an endpoint of 𝐼𝑖 .𝑟 }, 𝜆
𝑛 is not an enpoint of 𝐼𝑖,𝑟 .

The first condition means that for 𝑛 > 𝑁 , 𝑛 = 𝑞𝐿 + 𝑟 , in order to determine whether T𝑖 ∈ 𝑤 [𝑛] we
only need to consider 𝜆𝑖,𝑟 and 𝐼𝑖,𝑟 and ignore the finite set 𝐹𝑖,𝑟 of exceptions. The second condition
is useful for determining whether T𝑖 ∉ 𝑤 [𝑛]: for 𝑛 > 𝑁 , T𝑖 ∉ 𝑤 [𝑛] if and only if 𝜆

𝑞
𝑖,𝑟 ∉ 𝐼𝑖,𝑟 , which,

by the second condition is equivalent to 𝜆
𝑞
𝑖,𝑟 ∈ Int(T \ 𝐼𝑖,𝑟 ) (the interior of T \ 𝐼𝑖,𝑟 ). But crucially,

Int(T \ 𝐼𝑖,𝑟 ) is also a finite union of open arcs, and hence for 𝑛 > 𝑁 , T𝑖 ∈ 𝑤 [𝑛] (or T𝑖 ∉ 𝑤 [𝑛]) if and
only if 𝜆𝑖,𝑟 is in a certain open semialgebraic subset of T.
Let T𝐿 ·𝑚 denote the 𝐿 ·𝑚-dimensional torus (with one coordinate per arc-hitting model and

semialgebraic target). We define Λ = (𝜆1,0, . . . , 𝜆1,𝐿−1, . . . , 𝜆𝑚,0, . . . , 𝜆𝑚,𝐿−1) ∈ T
𝐿 ·𝑚 and write Λ𝑛 =

(𝜆𝑛1,0, . . . , 𝜆
𝑛
1,𝐿−1, . . . , 𝜆

𝑛
𝑚,0, . . . , 𝜆

𝑛
𝑚,𝐿−1). Arc-hitting models describe the structure of Z𝑟 (T𝑖 ) in terms

of powers of 𝜆𝑖,𝑟 and the open subset 𝐼𝑖,𝑟 of T. Next, we show how to describe the structure of𝑤 in
terms of powers of Λ and semialgebraic open subsets of T𝐿 ·𝑚 .
Let 𝑛 = 𝑞𝐿 + 𝑟 > 𝑁 , with 0 ≤ 𝑟 < 𝐿.

• For every target T𝑖 , by definition of the arc-hitting model T𝑖 ∈ 𝑤 [𝑛] if and only if 𝜆
𝑞
𝑖,𝑟 ∈ 𝐼𝑖,𝑟 .

Let𝑂𝑖,𝑟 be the preimage of 𝐼𝑖,𝑟 under the projection map T𝐿 ·𝑚 → T onto the coordinate (𝑖, 𝑟 ).
We have that 𝑂𝑖,𝑟 is open and T𝑖 ∈ 𝑤 [𝑛] if and only if Λ𝑞 ∈ 𝑂𝑖,𝑟 .

• Similarly, for every target T𝑖 , let 𝑂
′
𝑖,𝑟 be the preimage of Int(T \ 𝐼𝑖,𝑟 ) in T

𝐿 ·𝑚 under the
projection map onto (𝑖, 𝑟 ). Recall that Int(T \ 𝐼𝑖,𝑟 ) is the open set that is used to characterize
the times when the orbit is not in T𝑖 . We have that 𝑂 ′

𝑖,𝑟 is open and 𝑇𝑖 ∉ 𝑤 [𝑛] if and only if
Λ
𝑞 ∈ 𝑂 ′

𝑖,𝑟 , for all 𝑛 > 𝑁 .

• Next, let ℓ ∈ 2{T1,...,T𝑚 } be a letter. For example, suppose ℓ = {T1,T3}, i.e. ℓ describes the set
(T1 ∪T3) \ T2, assuming there are three targets in total. Then𝑤 [𝑛] = ℓ if and only if Λ𝑞 ∈ 𝑂1,𝑟

and Λ𝑞 ∈ 𝑂 ′
2,𝑟 and Λ

𝑞 ∈ 𝑂3,𝑟 , which is equivalent to Λ𝑞 ∈ 𝑂1,𝑟 ∩𝑂
′
2,𝑟 ∩𝑂3,𝑟 =: 𝑂ℓ,𝑟 . Observing

that 𝑂ℓ,𝑟 is open, we conclude that for any letter ℓ , we can define an open subset 𝑂ℓ,𝑟 (that is
obtained by taking intersections and unions of the sets 𝑂𝑖,𝑟 and 𝑂

′
𝑖,𝑟 ) such that𝑤 [𝑛] = ℓ if

and only if Λ𝑞 ∈ 𝑂ℓ,𝑟 .
• Finally, let 𝑢 = 𝑢0 · · ·𝑢𝑘 be a finite word over 2{T1,...,T𝑚 } . We characterize when 𝑢 occurs
at position 𝑛 of 𝑤 , that is for 0 ≤ 𝑗 ≤ 𝑘 , 𝑤 [𝑛 + 𝑗] = 𝑢 𝑗 . Let us consider a single equality

𝑤 [𝑛 + 𝑗] = 𝑢 𝑗 . By the preceding analysis, this is equivalent to Λ ⌊ 𝑛+𝑗
𝐿

⌋ ∈ 𝑂𝑢 𝑗 ,𝑛+𝑗 mod 𝐿 . Observe

that Λ ⌊ 𝑛+𝑗
𝐿

⌋
= Λ

𝑞+𝛿 𝑗 = Λ
𝑞
Λ
𝛿 𝑗 for some 𝛿 𝑗 ≥ 0. Therefore, 𝑤 [𝑛 + 𝑗] = 𝑢 𝑗 if and only if

Λ
𝑞 ∈ Λ

−𝛿 𝑗𝑂𝑢 𝑗 ,𝑛+𝑗 mod 𝐿 , where multiplication is performed pointwise. Hence we obtain that
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the word 𝑢 occurs at position 𝑛 if and only if Λ𝑞 ∈ 𝑂𝑢,𝑟 where

𝑂𝑢,𝑟 =
⋂

0≤ 𝑗≤𝑘

Λ
−𝛿 𝑗𝑂𝑢 𝑗 ,𝑛+𝑗 mod 𝐿

is an open semialgebraic subset of T𝐿 ·𝑚 .

We now move onto proving effective almost periodicity. To this end, given a finite word 𝑢, we
need to show how to compute a bound 𝑝𝑢 such that either𝑢 does not occur in𝑤 [𝑝𝑢,∞), or it occurs
within every contiguous subword of 𝑤 of length 𝑝𝑢 . From the analysis above we can compute
the open sets 𝑂𝑢,0, . . . ,𝑂𝑢,𝐿−1. Suppose all of these sets are empty. In this case, for 𝑛 > 𝑁 , the
word 𝑢 cannot occur in position𝑤 [𝑛]. Hence we can choose 𝑝𝑢 = 𝑁 . Now suppose at least one of
𝑂𝑢,0, . . . ,𝑂𝑢,𝐿−1 is non-empty. Below we show how to compute an effective upper bound on the
distance between consecutive occurrences.
Let 𝑊 = {Λ𝑛 : 𝑛 ∈ N}, where Λ ∈ T𝐿 ·𝑚 is defined as above. First, compute an effective

representation of the topological closure𝑊 of𝑊 .12 The closure of𝑊 , unlike𝑊 itself, is very
well-understood and semialgebraic; see [Ouaknine and Worrell 2014a, Appendix A] for how to
compute a representation for it. It is also the case that, by Kronecker’s theorem, the sequence

(Λ𝑛)𝑛∈N is dense in𝑊 [Ouaknine and Worrell 2014a, Theorem 5].

Next, let 𝑂𝑢 =
⋃𝐿−1
𝑟=0 𝑂𝑢,𝑟 . If 𝑂𝑢 ∩𝑊 is empty (observe that this can be effectively checked as 𝑂𝑢

and𝑊 are both semialgebraic), then Λ
𝑛 is never in 𝑂𝑢 and hence for 𝑛 > 𝑁 , the word 𝑢 cannot

occur at position 𝑛 of𝑤 . Therefore, we can once again choose 𝑝𝑢 = 𝑁 . It only remains to consider

the case where 𝑂𝑢 ∩𝑊 is non-empty. We will prove that in this case, the word 𝑢 occurs infinitely

often in𝑤 and show how to compute 𝑝𝑢 . Wlog assume that𝑂𝑢,0 ∩𝑊 ≔ 𝑂 ≠ ∅, and observe that𝑂
must be open.

Recall that for large enough 𝑞 (i.e. 𝑞𝐿 > 𝑁 ), Λ𝑞 ∈ 𝑂𝑢,0 if and only if the word 𝑢 occurs at position

𝑞𝐿. By density of (Λ𝑛)𝑛∈N in𝑊 and openness of 𝑂 , the sequence (Λ𝑛)𝑛∈N will visit 𝑂 infinitely
often. Hence the word 𝑢 will occur at a position 𝑞𝐿 of 𝑤 for infinitely many. To compute the
bound on 𝑝𝑢 on the gap between consecutive occurrences of 𝑢 in 𝑤 , we will proceed as follows.

Consider the sequence ⟨𝑂,Λ−1𝑂,Λ−2𝑂, . . .⟩. By density of (Λ𝑛)𝑛∈N in𝑊 , from any point in𝑊 one

can reach 𝑂 in finitely many steps under multiplication by Λ. Hence
⋃∞
𝑗=0 Λ

−𝑗𝑂 =𝑊 . Notice that

𝑊 is a closed, bounded set, and thus compact13. Therefore, there must exist a finite open subcover,

i.e.
⋃𝑀
𝑗=0 Λ

−𝑗𝑂 = 𝑊 for some 𝑀 > 0. The value of 𝑀 can be determined by guess and check:

observe that for any prefix of ⟨𝑂,Λ−1𝑂,Λ−2𝑂, . . .⟩, whether it is a cover can be determined by

manipulating the semialgebraic sets in the prefix and the semialgebraic set𝑊 . In the end, we have
that (Λ𝑛)𝑛∈N visits 𝑂 within every𝑀 steps and hence the word 𝑢 must occur at positions (𝑞𝑖𝐿)𝑖∈N
where 𝑞𝑖+1 − 𝑞𝑖 < 𝑀 . Therefore, 𝑢 must occur within every window of size 𝐿 ·𝑀 in𝑤 [𝑁,∞] and
we can choose 𝑝𝑢 = max{𝑁, 𝐿 ·𝑀}. □

Together with Theorem 1.1, Theorem 6.1 completes the proof of the main result of this paper.
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