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Supplementary Note 128

The bandstructures have been computed along the path M=(πa , 0,
π
c ),29

Z=(0, 0, πc ), Γ=(0, 0, 0) and X=(πa , 0, 0).30

Supplementary Note 2: Total energy minimum with31

different functionals32

To track the total energy changes during the relaxation for different functionals33

we have computed the energy of the system along the structural transition. We34

employed again the d parameter introduced in section 2.4 of the main text to35

parameterize the transition. The resulting total energy vs d distortion graph36

is shown in Supplementary Figure 1. For all functionals the total energy is37

displayed with the orthorhombic value set 0 eV. The figure shows, that using38

the PBE functional has the energy minimum at slightly lower values for the39

distortion and the HSE has its energy minimum at stronger distortion values40

of d. Nevertheless, a monoclinic structure is energetically more stable than the41

orthorhombic geometry for all investigated functionals.42

Supplementary Note 3: Spin-Orbit Coupling43

The results for the PBE, mBJ and HSE03 with and without Spin-Orbit Cou-44

pling (SOC) functional are shown in the Supplementary Figures 2, 3 and 4.45

They show that SOC leads to a bandsplitting which is most apparent on the M-46

Z path for all band dispersions. Note, that this band splitting is not a splitting47

of spin up and down states. Near the bandedge the spin orbit coupling has just48

a small influence on the bandstructures. Only for the monoclinic geometry of49

TNSe using the PBE functional changes are apparent with the bandgap halv-50

ing and the becoming and direct at Γ. A detailed comparison of the obtained51

bandgaps is presented in Supplementary Table 6. We conclude, that the effects52

of SOC are negligible for our discussion in the main text. These results are in53

agreement with a prior study by Sugimoto et al. [1].54

Supplementary Note 4: Increasing the55

exchange-correlation contribution in the functionals56

Increasing the exchange and correlation contribution considered in either the57

HSE hybrid functionals or the modified-Becke-Johnson functional will lead to58

a bandgap opening even in the orthorhombic unit cell. In the modified Becke-59

Johnson (mBJ) functional the amount of exchange and correlation interaction60

included is controlled by the c parameter. It controls the amount of Becke-61

Roussel exchange [2, 3], which approximates exact exchange effects via an62

effective potential, plus a screening term [4]. In the HSE hybrid functionals63

the exact exchange contribution is calculated directly using the Kohn-Sham64

orbitals during the self consistent iterations. Parts of the PBE exchange inter-65

action are replaced by the exact exchange interaction [5]. The admixture of66
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exact and PBE exchange in the functional is controlled by the mixing param-67

eter α which is commonly set to 0.25 for the HSE functionals. Varying it we68

can modify the amount of exchange interaction analogously to varying the c69

parameter in the mBJ functional. The results are shown in the Supplemen-70

tary Figure 5 and Supplementary Figure 6. We see, that for values of c =1.671

or higher a bandgap opens, while the system is still metallic for the self con-72

sistently calculated c-Value of 1.26. Analogously we can control the amount of73

exchange and correlation included in the range separated hybrid functionals.74

To test this we have varied the mixing parameter α, while keeping the range75

separation parameter at 0.3. This way α = 0.25 reproduces the result for the76

HSE03 functional. The resulting bandstructures can be seen in Supplementary77

Figure 6. The behaviour is similar to the mBJ case, with the orthorhombic78

cell becoming a semiconductor for values of α > 0.45.79

Supplementary Note 5: Minimally symmetry broken80

electron dispersion81

We used the displacement parameter d as defined in section 3 of the main82

text to introduce a minimal distortion to the lattice (d=0.05). This procedure83

breaks the relevant orthorhombic lattice symmetries. If the phase transition of84

TNSe is fully electronic the breaking of the symmetries should already induce85

the metal to semiconductor transition. The result for the electronic dispersion86

of the symmetry broken geometry is shown in Supplementary Figure 8. We see87

that all bandstructures ,independent of the exchange correlation functional,88

do not exhibit a metal to insulator transition or a significant gap opening. In89

fact they agree very well with the exact orthorhombic results.90

Supplementary Note 6: STS Gap Correction91

In STS measurements a metal to semiconductor transition has been reported92

at the critical temperature for TNSe [6]. The reported bandgap is 300 meV and93

is significantly bigger than the bandgap obtained from optics measurements of94

160 meV [7]. The discrepancy can be explained taking the different geometries95

of the investigated samples of TNSe in account. The sample used for the STS96

measurement exhibits an β-angle of 92.5◦ and is such significantly bigger than97

the literature result of 90.5◦-90.7◦ [8, 9]. To correct the bandgap taking this98

discrepancy into account, we computed the bandstructures for both our mono-99

clinic unit cell as well as a unit cell with 92.5◦ β-angle. The obtained bandgaps100

are 40meV for our relaxed geometry and 66 meV for the 92.5◦ geometry using101

the PBE functional. Taking the ratio of these two and multiplying the 300102

meV experimental gap, we obtain a correction of the STS gap to 181 meV.103

Supplementary Note 7: Convergence of the G0W0104

calculations105

We present the details of the convergence of the G0W0 calculation for the106

monoclinic unit cell. To display the convergence behaviour of the calculation107
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we performed convergence studies for the number of k-Points needed in each108

direction, the number of unoccupied bands and the energy cutoff we have to109

consider for the response function calculation and size of the frequency grid110

of the frequency integration. It is important to note, that the energy cutoff111

for the response function and the number of unoccupied states are not inde-112

pendent convergence parameters and thus, we use the standard method and113

converge them simultaneously [10]. The bandstructures have been obtained114

via post-processing using the Wannier90 package [11].115

For the presented convergence studies we have employed the Density Func-116

tional Theory solution using the PBE functional as starting point. A discussion117

of the effect using different functionals such as the HSE hybrid functional is118

in the section 2.3 of the main text.119

For the bandstructure convergence of TNSe with varying k-mesh we will120

assume that the spatial directions for the k-mesh converge independently and121

perform a series of calculations with varying grid size in all three directions.122

To measure the convergence of the bandstructure we will compute the funda-123

mental bandgap and extrapolate using a function f(x) = a+b/(x+c) with a,b124

and c as fitting parameters. For these k-mesh calculations we used 640 unoc-125

cupied states with a 80eV Cutoff for the response function and 160 frequency126

grid points in the calculation of the screened interaction. The k-meshes are127

kx × 4 × 2, 12 × ky × 4 and 12 × 4 × kz with kx, ky and kz are varied. The128

result is shown in Supplementary Figure 13. One sees, that the convergence129

in ky and kz along the corresponding reciprocal lattice directions converges130

quite fast. This is different for kx as the bandstructure is highly dispersive in131

x-direction and many grid-points are needed to sample it accurately.132

We also performed a simultaneous convergence of the energy cutoff for the133

response function and the number of unoccupied states. Convergence against134

the exact result should be in first order proportional to 1/Number of unoccu-135

pied states [10]. We have performed the convergence calculation in the standard136

way increasing response function cutoff and the number of included orbitals137

simultaneously. The given combinations are shown in Supplementary Table 8.138

The result of the energy convergence is presented in Supplementary Figure 14.139

We see, that including 1160 unoccupied states leads to a quite well converged140

bandgap already.141

Lastly we also investigate of the convergence with increasing number of142

frequency grid points. This time the test setup is a k-mesh of 12x4x2 with143

880 unoccupied states and a 100eV Cutoff. The result is shown in Fig 15. We144

see, that full convergence is only achieved for a large number of frequencies145

considered due to the small bandgap.146

Supplementary Note 8: BSE Convergence147

We also investigated the convergence behaviour of the solution of the Bethe-148

Salpether equation [12, 13] for the monoclinic phase of TNSe. We performed149

the BSE using the eigenenergies and screened interaction from the G0W0 calcu-150

lation. The calculations show, that for all convergence parameters the excitonic151
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binding energy decreases proportional to the bandgap. This together with the152

fact, that even more converged G0W0 calculations in kx tend to increase the153

G0W0 bandgap suggests, that for the material the excitonic binding energy154

does not exceed the bandgap. A detailed analysis of all relevant convergence155

parameters follows:156

The solution of the Bethe-Salpether equation is very sensitive to the k-157

mesh. Thus, we investigated the solution of the BSE with an increasing k-mesh158

along the three different axes. We use a test setup with 160 frequencies for the159

calculation of the screened interaction, 640 unoccupied states (80eV cutoff)160

during the G0W0 calculation and include again the first 12 valence and 14161

conduction bands in the BSE. The k-meshes used are kxx4x2, 8xkyx2 and162

8x4xkz, where kx, ky and kz are variable and are be successively increased.163

The results are depicted in Supplementary Figure 16. We see, that while the164

dielectric function converges quickly with an increasing k-mesh in y-direction165

and z-direction, we need many k-points in kx direction to obtain we reasonable166

result. The reason is, that the bandgap minimum is shifted slightly toward x-167

direction after the G0W0 calculation and therefore only very dense k-meshes168

can sample the highly dispersive energies in x-direction.169

Secondly, we investigate the effect onto the BSE calculation for an increas-170

ing cutoff in the G0W0 calculation and an increasing number of unoccupied171

states. The test setup is working with a 12x4x2 k-mesh, 160 frequencies for172

the calculation of the screened interaction and including the first 12 valence173

and 14 conduction band states in the BSE. We employed the Tamm-Dancoff174

approximation [13, 14]. The results are depicted in Supplementary Figure 17.175

Using 880 unoccupied states with a 80eV cutoff already gives a well converged176

dielectric function and excitonic binding energies.177

The third convergence parameter we investigate is the effect of including an178

increasing number of frequencies in the computation of the screened interaction179

onto the result of the Bethe-Salpeter equation. The test setup is using a 12x4x2180

k-mesh, 640 unoccupied states and the first 12 valence and 14 conduction band181

states in the BSE. The results is depicted in Supplementary Figure 18. We182

see, that the BSE solution converges quite fast with the number of frequencies183

included in the calculation of the screened interaction. The dielectric function184

only obtains a rigid shift, which can be explained by the decreasing bandgap185

of the underlying G0W0 bandstructure calculation.186

Lastly, we show the BSE convergence properties with an increasing number187

of valence and conduction bands included in the BSE calculation. The test188

setup includes a 12x4x2 k-mesh, 880 unoccupied states, a 80 eV cutoff and189

160 frequencies in the calculation of the screened interaction. The number of190

valence (v) and conduction bands (c) included is varied. The convergence of191

the dielectric function and the eigenvalues of the BSE solution is displayed in192

the Supplementary Figure 19. We see, that we always obtain well converged193

eigenvalues, but need to include at least the first 12 valence and the first 14194

conduction bands around the Fermi level to obtain a fully converged dielectric195

function. The excitonic eigenvalues are already very well converged only the196

first valence and conduction bands.197
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a (in �A) b (in �A) c (in �A)
Experiment [9] 3.492 12.814 15.649
vdW-optB88 3.517 12.982 15.776
vdW-optPBE 3.532 13.325 15.845
PBE 3.510 14.160 15.776

Supplementary Table 1 Lattice parameters after full relaxation of the TNSe compound
in the monoclinic phase using different functionals. The experimental reference data has
been measured at 30K via X-ray diffraction [9]. The theory calculations are performed at
T=0K.

a (in �A) b (in �A) c (in �A)
Experiment[15] 3.503 12.870 15.677
vdW-optB88 3.512 12.993 15.771
vdW-optPBE 3.526 13.252 15.834
PBE 3.504 14.190 15.762

Supplementary Table 2 Lattice parameters after relaxation of the TNSe compound
with enforced orthorhombic symmetry. The experimental values have been obtained via
X-ray diffraction at T=400K [15]. The theory calculations are performed at T=0K.

a (in �A) b (in �A) c (in �A)
Experiment[8] 3.415 12.146 15.097
orthorhombic 3.430 12.200 15.203
monoclinic 3.428 12.223 15.203

Supplementary Table 3 Lattice parameters for TNS of both the orthorhombic phase
and the monoclinic phase obtained via full relaxation. The experimental values have been
measured via X-ray diffraction at T=278 K. [8].

lattice vector x (in �A) y (in �A) z (in �A)

a 3.51177786 0.00000000 0.00000000
b 1.75588893 6.49659343 0.00000000
c 0.00000000 0.00000000 15.77141641

species a b c
Ta 0.22143275 0.55713450 0.88896088
Ta 0.22143275 0.55713450 0.61103912
Ta 0.77856725 0.44286550 0.11103912
Ta 0.77856725 0.44286550 0.38896088
Ni 0.70190352 0.59619297 0.75000000
Ni 0.29809648 0.40380703 0.25000000
Se 0.58116235 0.83767530 0.86174128
Se 0.58116235 0.83767530 0.63825872
Se 0.41883765 0.16232470 0.13825872
Se 0.41883765 0.16232470 0.36174128
Se 0.14695064 0.70609873 0.04873952
Se 0.14695064 0.70609873 0.45126048
Se 0.85304936 0.29390127 0.95126048
Se 0.85304936 0.29390127 0.54873952
Se 0.32729988 0.34540023 0.75000000
Se 0.67270012 0.65459977 0.25000000

Supplementary Table 4 Result of the relaxation of the orthorhombic cell with Cmcm
symmetry obtained using the vdw-optB88 functional. The atoms are given in units of the
lattice vectors a,b and c
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lattice vector x (in �A) y (in �A) z (in �A)

a 3.5172791481 0.0000000000 0.0000000000
b 1.7642919084 6.4903780477 0.0000000000
c -0.1695581062 -0.0018790259 15.7763685968

species a b c
Ta 0.788009744 0.446403261 0.888662426
Ta 0.765747213 0.446396149 0.611343122
Ta 0.209582861 0.558275853 0.111357977
Ta 0.231832330 0.558274801 0.388645515
Ni 0.297194687 0.407655269 0.750000961
Ni 0.701051209 0.596787458 0.250006008
Se 0.411119367 0.165767233 0.861499543
Se 0.424071823 0.165757101 0.638461393
Se 0.586395710 0.838882702 0.138539629
Se 0.573462842 0.838897364 0.361493392
Se 0.859540334 0.295478962 0.048418035
Se 0.845322448 0.295464258 0.451556475
Se 0.137960710 0.709232641 0.951592761
Se 0.152210287 0.709218409 0.548427477
Se 0.670947177 0.658753928 0.750003802
Se 0.327025141 0.345806896 0.249991137

Supplementary Table 5 Result of the relaxation of the triclinic cell using the
vdw-optB88 functional. The atomic positions are given in units of the lattice vectors a,b,
and c.

TNSe, ortho TNSe, mono TNSe, ortho,SOC TNSe, mono, SOC

PBE metallic 40 meV metallic 18 meV (-55%)
mBJ metallic 101 meV metallic 120 meV (+18%)

HSE03 metallic 183 meV metallic 179 meV (-2%)

TNS, ortho TNS, mono TNS, ortho,SOC TNS, mono, SOC

PBE metallic 102 meV metallic 102 meV (+0%)
mBJ 42 meV 151 meV 98 meV (+133%) 178 meV (+18%)

HSE03 248 meV 352 meV 250 meV (+1%) 362 meV (+3%)
Supplementary Table 6 Comparison of the obtained bandgaps for TNSe and TNS with
various functionals including SOC and neglecting it. We obtain quite good agreement
between the SOC result and the non SOC result except for TNSe in the monoclinic phase
for the PBE functional.
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Mode Orthorhombic (THz) Monoclinic (THz)
1 -2.581 0.000
2 0.000 0.000
3 0.000 0.000
4 0.000 1.156
5 0.761 1.224
6 1.160 1.543
7 1.224 1.703
8 1.670 1.969
9 1.890 2.084
10 2.580 2.668
11 2.693 3.117
12 3.107 3.331
13 3.136 3.403
14 3.299 3.628
15 3.370 3.775
16 3.430 4.160
17 3.567 4.255
18 3.920 4.397
19 4.255 4.679
20 4.393 4.966
21 4.578 5.382
22 4.694 5.675
23 6.410 6.400
24 7.338 7.159
25 7.657 7.403
26 7.701 7.476
27 7.785 7.520
28 7.817 7.585
29 7.823 8.025
30 7.911 8.029
31 7.967 8.093
32 8.170 8.134
33 8.183 8.259
34 8.214 8.439
35 8.490 8.495
36 8.668 8.686
37 8.733 8.777
38 9.000 9.311
39 9.313 9.539
40 9.574 9.715
41 9.691 9.765
42 9.960 9.958
43 10.142 10.187
44 10.174 10.242
45 11.362 11.451
46 11.397 11.459
47 11.477 11.544
48 11.536 11.571

Supplementary Table 7 Eigenvalues of the phononic modes of TNS calculated at the
Γ-Point.
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cutoff (eV) orbitals
60 640
80 880
100 1160
120 1480

Supplementary Table 8 Energy and orbital cutoff pairs used to check the convergence
of the response function in the G0W0 calculation.
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Supplementary Figure 2 Here we compare the bandstructures obtained with the PBE
functional including spin orbit coupling and neglecting it for both structural phases of TNSe
and TNS. The letters o and m describe the orthorhombic and monoclinic geometry in the
plot labels.
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Supplementary Figure 3 Here we compare the bandstructures obtained with the mBJ
functional including spin orbit coupling and neglecting it for both structural phases of TNSe
and TNS. The letters o and m describe the orthorhombic and monoclinic geometry in the
plot labels.
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Supplementary Figure 4 Here we compare the bandstructures obtained with the HSE03
functional including spin orbit coupling and neglecting it for both structural phases of TNSe
and TNS. The letters o and m describe the orthorhombic and monoclinic geometry in the
plot labels.
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Supplementary Figure 5 Bandgap opening as we increase the amount of exchange con-
sidered in the mBJ-functional by increasing the c-parameter in the orthorhombic phase. For
values higher than 1.6 a gap opens. The self consistently calculated c-Value is 1.26.
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Supplementary Figure 6 Bandgap opening as we increase the amount of exchange
increasing the α-parameter in the HSE hybrid functionals in the orthorhombic phase. The
gap opens with increasing amount of exchange considered. The HSE03 hybrid functional
corresponds to α = 0.25. In all calculations the range separation parameter is chosen to 0.3
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Supplementary Figure 7 Comparison of the theoretically calculated phonon eigenener-
gies at T=0K with the Raman spectra provided by M.Ye et al. [16] plotted on a linear scale.
The top two panels show the orthorhombic phonon spectra and the bottom two panels show
the monoclinic phonon spectra. The theory spectra are obtained at T=0K and are in good
agreement with Raman spectra. Only the first two B2g-modes show a relevant discrepancy
in their eigenenergy.
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Supplementary Figure 8 Electronic Dispersion of TNSe for minimally distorted lattice
geometry to break the lattice symmetries for different exchange correlation functionals (lat-
tice distortion parameter d = 0.05). In shallow colors the exact orthorhombic bandstructure
is displayed. We see, that for all exchange correlation functionals orthorhombic and symme-
try broken dispersions are almost degenerate. We do not observe a metal to semiconductor
transition or a significant gap opening for any functional.
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Supplementary Figure 9 Electronic Dispersion of TNSe and TNS for the orthorhombic
and monoclinic geometry using the HSE06 functional.
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the bandgaps significantly.
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Supplementary Figure 12 Frozen phonon bandstructures after DFT calculation using
the PBE functional. We displayed the result for the four Raman active phonons presented in
section 5 of the main text. They show similar behavior as the results after G0W0 calculation.
In the G0W0 calculation, however, the group velocity of the electrons is increased.
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Supplementary Figure 13 Convergence of the G0W0 bandgap with the k-gridsize. Con-
vergence in each direction is tested separately using 640 unoccupied states, a 80eV Cutoff
for the response function and 160 frequency grid points. The panels a) - c) show the corre-
sponding bandstructures computed with an increasing k-mesh into the different directions.
the panels d)-f) show the convergence of the bandgap using increasing meshes. kx, ky an
kz count the number of k-points along the corresponding reciprocal lattice vector. In red
dashed lines an extrapolation is displayed. In kz direction we have too few data points for
an extrapolation, but the 3 data points suggest, that convergence is already achieved for 2
points in this direction
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Supplementary Figure 14 G0W0 convergence using an increasing amount of unoccupied
states while also increasing the response function cutoff simultaneously. Panel a) shows
the bandstructures for an increasing number of states included in the response function
calculation. Panel b) shows the convergence of the bandgap for an increasing number of
orbitals included.
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the screened interaction calculation. Panel b) shows the convergence of the bandgap.
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Supplementary Figure 16 Convergence of the dielectric function and BSE eigenenergies
after solving the BSE using different number of k-points along the 3 axes. We see, that we
need many k-Points in x-direction to obtain a converged BSE calculation. This makes sense,
as we need a fine grid sampling in this direction to probe the bandgap extrema as well as
its highly dispersive character in x-direction.
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Supplementary Figure 17 Convergence of the dielectric function and BSE eigenenergies
after solving the BSE using different number of unoccupied states for the calculation of the
screened interaction and G0W0 calculation.
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Supplementary Figure 18 Convergence of the dielectric function and BSE eigenvalues
after solving the BSE using different number of frequencies for the computation of the
screened interaction and the G0W0 calculation
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Supplementary Figure 19 Convergence of the dielectric function and first exciton energy
after solving the Bethe-Salpether equation including an increasing number of valence and
conduction bands. We see, that including the first 12 valence and 14 conduction bands results
in a well converged dielectric function and excitonic energies.
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