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Teresa Marrodán Undagoitia for being on the committee for my PhD defense.

Many thanks to my collaborators, Jisuke Kubo, Alexander Helmboldt and Oliver Fis-

cher; it has been great working with you and discussing challenging projects with you.

I would also like to express my gratitude towards my office mate Thomas Hugle and

my fellow PhD students Christian Doering, Ting Cheng, Tim Herbermann and Thomas

Rink for proofreading parts of this thesis and giving me many useful suggestions to

improve it.

In addition i would like to thank all former and current master students, PhD stu-

dents, post docs and senior staff from the Lindner group for making the past four years

an enjoyable and educational experience. Many thanks also to Anja Berneiser, Britta

Schwarz and the IT-departement for making sure things kept running smoothly and

quickly fixing any problems encountered.

I would also like to thank all fellow students and my teachers Frau Noki and Frau Wolff

from my german class at the university of Heidelberg for providing some much needed

distraction from lockdowns and home-office during COVID times.

Many thanks to my parents, Pieter and Greet, my brother Tim and my sister Debby for

always supporting me even though the distance was sometimes hard.

Last but least, none of this would have been possible without the continuous support

from my boyfriend Manuel. Thanks for always being there, even if it was not always

possible to be together in person, and for encouraging me to keep working even when

projects got stuck.



This page was intentionally left blank.



Abstract

In this thesis two aspects of Standard Model extensions are discussed. Firstly, a Stan-
dard Model extension with a strongly coupled hidden sector is investigated. For suit-
able parameters, such a hidden sector is expected to undergo a first order phase tran-
sition, consequently resulting in the production of gravitational waves. Due to their
strongly coupled nature, effective low energy models have to be used to determine the
phase transition dynamics and calculate the predicted gravitational wave signals. It is
shown that different effective models in general predict similar but by no means equal
gravitational wave signals. Thus showing that calculations from first principles, like
lattice calculations, are needed. Secondly, scalar extensions are discussed, which can
result in a first order electroweak phase transition. In contrast to phase transitions in
strongly coupled sectors, the dynamics of these phase transitions is rather well known.
Consequently, the gravitational wave signals from the electroweak phase transition can
be predicted reasonably well. In this thesis, instead of phase transition dynamics, a dif-
ferent aspect of scalar extensions will be discussed, namely their effect on leptogenesis
via oscillations. Our results show that a scalar extension in general reduces the pro-
duced baryon asymmetry of the Universe. In the future these results, together with
possible proof of a first order phase transition, can be used to further constrain scalar
extensions.

Zusammenfassung

In dieser Doktorarbeit werden zwei Aspekte von Standardmodellerweiterungen disku-
tiert. Zuerst wird eine Erweiterung des Standardmodells mit einem stark gekoppel-
ten verborgenen Sektor untersucht. Für geeignete Parameter wird erwartet, dass ein
solcher verborgener Sektor einen Phasenübergang erster Ordnung durchläuft, der zur
Erzeugung von Gravitationswellen führt. Aufgrund ihrer stark gekoppelten Natur
müssen effektive Theorien bei niederigen Energien verwendet werden, um die Dy-
namik des Phasenübergangs zu bestimmen und die vorhergesagten Gravitationswellen-
signale zu berechnen. Es wird gezeigt, dass verschiedene effektive Modelle im All-
gemeinen ähnliche, aber keineswegs gleiche Gravitationswellensignale vorhersagen.
Dies zeigt, dass Berechnungen aus fundamentalen Prinzipien, wie z.B. Berechnungen
auf einem Gitter, notwendig sind. Zweitens werden skalare Erweiterungen diskutiert,
die eine elektroschwachen Phasenübergang erster Ordnung ermöglichen können. Im
Gegensatz zu stark gekoppelten Sektoren ist die Dynamik dieses Phasenübergangs
recht gut bekannt. Folglich können die Gravitationswellensignale aus dem elektro-
schwachen Phasenübergang recht gut vorhergesagt werden. In dieser Arbeit wird, statt
Phasenübergangsdynamik, ein anderer Aspekt von skalaren Erweiterungen diskutiert,
nämlich ihr Einfluss auf Leptogenese mittels Oszillationen. Unsere Ergebnisse zeigen,
dass eine Skalarerweiterung im Allgemeinen die erzeugte Baryon-Asymmetrie des Uni-
versums reduziert. In der Zukunft können diese Ergebnisse, zusammen mit einem
möglichen Nachweis eines Phasenübergangs erster Ordnung, genutzt werden, um ska-
lare Erweiterungen weiter einzuschränken.
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Chapter 1
Introduction

Almost all physical processes describing the evolution of the Universe from the Big

Bang to the present day can be explained by the Standard Model (SM), General Rela-

tivity (GR) and the ΛCDM cosmological model. The SM was developed in the second

half of the previous century and is able to extremely well describe all processes encoun-

tered in daily life as well as processes observed in precision experiments or collider ex-

periments. Everything ranging from electromagnetism and nuclear fusion to collider

physics: the Standard Model can to high precision explain it. In the past decades all

elementary particles predicted by the Standard Model have been observed. This search

was concluded by the observation of the Higgs boson in 2012 [3, 4]. As of now collider

experiments have not yet found clear signals of particles not included in the Standard

Model.

Gravity is described by the theory of General Relativity, first developed by Albert Ein-

stein around 1915 [5]. The theory was confirmed by measurements of for example the

perihelion precession of Mercury as well as the deflection of light due to the sun, see

e.g. ref. [6]. Furthermore, the observation of the first gravitational wave signals from

a Black Hole binary merger by the LIGO and VIRGO collaboration [7] provided an ex-

cellent test of the theory of General Relativity in the strong gravity regime, which the

theory passed with flying colours [8].

In order to explain how the universe evolved from the Big Bang till the present time the

ΛCDM has been developed, see e.g. [9]. The ΛCDM is a cosmological model which de-

scribes Standard Model particles as well as cold Dark Matter in an expanding universe.

It is only able to predict for example the correct Cosmic Microwave Background (CMB),

measured by for example WMAP [10] or Planck [11] and predict the correct large scale

structure of the Universe, if an extra matter and energy component are introduced. The

1



Chapter 1 Introduction 2

matter component is expected to not interact (or only weakly) with the particles of the

SM. This component is usually called Dark Matter. Additionally an inflationary com-

ponent needs to be included, called Dark Energy. These two new components comprise

respectively 23% and 73% of the universe [11].

Thus, in order to explain the CMB within the ΛCDM model we have to conclude that

about 95% of the Universe does not consist out of the particles described by the Stan-

dard Model. This observation offers one of the strongest hints for physics beyond the

Standard Model. The origin and even the nature of the Dark Matter and Dark Energy

components are almost completely unknown. Theories have been coined which con-

tain Dark Matter candidates with masses covering the complete mass range, from the

smallest masses of O(µeV) to the largest masses of O(109 GeV) [12]. Note that Dark

Matter does not necessarily have to be an elementary particle but can be composite in

nature or even constitute primordial black holes [13]. Explanations for Dark Energy

are maybe even more diverse and exotic [14], ranging from a simple inflaton field to

models with modified gravity [15].

Apart from the issues relating to Dark Matter and Dark Energy, results from precision

experiments hint towards more conflicts between experiments and the Standard Model

predictions. The anomalies which are showing up in experimental data are for example

the muon magnetic moment [16] and the flavour anomalies [17]. Additionally, there is

also the problem of the unexplained Baryon Asymmetry of the Universe (BAU) [18],

non-zero neutrino masses and the tension between early and late time measurements

of the Hubble constant [19].

Aside from these hints from experiments there are also more fundamental problems

with the Standard Model, these include the Hierarchy problem and the unknown ori-

gin of the many parameters of the Standard Model. Lastly, unification of gravity and

particle physics at the Planck scale can not be explained within the SM and GR.

A lot of research on Beyond the Standard Model (BSM) models (and also ΛCDM ex-

tensions) is focussed on developing extensions which can explain one or more of the

issues mentioned above. There are two main ways in which one can approach building

a BSM model, the bottom-up or the top-down approach. Within a bottom-up approach ad-

ditional particles are added to the Standard Model to see if and how they can alleviate

the Standard Model problems. Alternatively, in a top-down one can start from the more

conceptual, structural problems of the Standard Model.

In this thesis two aspects of BSM models will be discussed. In part A we will look

into strongly coupled extension and their gravitational waves (GW) signal, whereas

part B will be concerned with the consequences of scalar extensions for leptogenesis
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via oscillations. These extension have in common that they are both rather minimal-

istic extensions of the Standard Model. Both extensions also contain a particle which

could be a suitable Dark Matter candidate. The scalar and dark sector extension have

another characteristic in common; namely the fact that they could each be included in

a classically conformal SM extension. In conformal scalar extensions the mass scale is

obtained via loop corrections through the Coleman-Weinberg potential [20]. See e.g.

ref. [21] for an example of an explicit model. On the other hand, in strongly coupled

conformal sectors mass scales are obtained through non-perturbative effects, similar to

what occurs in QCD, see e.g. ref. [22, 23] for examples of explicit models.

Additionally, strongly coupled dark sectors as well as scalar extensions predict, for

suitable model parameters, the existence of a first order phase transition in the early

universe. These first order phase transitions can lead to the production of observable

gravitational wave (GW) signals. Since the first detection of gravitational waves oc-

curred in 2016 [7] and considering the many experiments planned to measure gravi-

tational waves from phase transitions these type of models have become increasingly

interesting to look at. Note that without gravitational wave signals both a scalar exten-

sion and a strongly coupled dark sector could easily be so weakly coupled to the Stan-

dard Model that conventional experiments like the Large Hadron Collider at CERN

would never find signals. Whereas GW signals from a scalar extension of the Standard

Model have been extensively investigated, see e.g. [24, 25], first order phase transitions

in strongly coupled sectors are understood significantly less well.

In this thesis some aspects of the scalar and dark sector SM extension will be inves-

tigated. The goal of part A will be to understand the dynamics of phase transitions

in strongly coupled hidden sectors better. We will show how effective models can be

used to investigate a phase transition (PT) in strongly coupled sectors. Like in Quan-

tum Chromodynamics (QCD), a strongly coupled dark sector can undergo a Chiral

Phase Transition (χPT). Whereas this PT is crossover in QCD, the dark sector can have

a first order χPT. Thus allowing for the possibility of measurable gravitational wave

signals in the future. Due to the strongly coupled nature of such a dark sector the tradi-

tional perturbative methods in Quantum Field Theory (QFT) using Feynman diagrams,

cannot be applied, therefore other methods are needed. We will be using low-energy

effective models to describe the dynamics of QCD-like theories. Part A is organized as

follows: In chapter 2 strongly coupled theories and several effective models will dis-

cussed. Once we have introduced these models they can be used to investigate the GW

signal from a first order PT in a strongly coupled sector. The basics of GW signals will

be discussed in chapter chapter 3, whereas the results will be discussed in chapter 4.

The research presented in this part will allow us to answer two main questions:
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1. Do low-energy effective models have similar effective potentials and/or predict

similar GW signals?

2. Can these GW signals be measured in current or future experiments?

Part A is based on work published in collaboration with Jisuke Kubo and Alexander

Helmboldt [1].

The dynamics of first order phase transitions in scalar extensions is already rather well

understood, see e.g. ref. [26]. Also the predicted gravitational wave signals in such

models are extensively researched see e.g. refs.[24, 27, 28] and will not be further dis-

cussed here. However, if gravitational wave experiments do find hints for the existence

of a first order phase transition it would be interesting to investigate in what other ways

a scalar impacts the physics of the early universe. We will therefore looks at the effect of

a scalar on one of the most pressing issues of the Standard Model, the BAU. The aim of

part B is to determine if and how a scalar extension of the SM affects ARS leptogenesis

[29] as used in for example the νMSM model [30]. In chapter 5 leptogenesis will be dis-

cussed with special emphasis on ARS leptogenesis and the νMSM. In chapter 6 we will

look at the scalar extension of the νMSM and determine how the scalar affects (ARS)

leptogenesis through scalar decay and thermal effects. The main question we would

like to answer through this research is if scalars can enhance leptogenesis production

in ARS leptogenesis. Part B is based on work in collaboration with Oliver Fischer and

Manfred Lindner, which will be published soon [2].

Throughout this thesis we will be working with natural units, i.e., h̄ = c = kB = 1 and

use the following convention for the metric tensor, η = diag(+1,−1,−1,−1).



Part A

Strongly coupled SM extensions and

their GW signals
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Chapter 2
Effective models of strongly

interacting sectors

In this chapter we will look into strongly interacting theories, with the main focus on

QCD-like theories, i.e. theories with a SU(3) gauge symmetry. Hidden strongly coupled

sectors are interesting because they are included in many dark matter models. They

are for instance used in models of strongly interacting dark matter (SIMP) [31, 32] and

composite Higgs models, [33, 34]. See ref. [35] for a comprehensive overview. For a

suitable choice of parameters, QCD-like theories can exhibit a first order chiral phase

transition (χPT).

Due to their strong coupling at low energies these theories can not be described by the

standard perturbative methods of QFT. As a result, no calculations from first principles

exists which are able to investigate for example the dynamics of phase transitions in

these sectors. Previous research on gravitational wave signals and phase transitions in

strongly coupled hidden sectors usually relied on certain estimates, see e.g. refs. [35–

37]. However, instead of relying on estimates it is possible to approximate the dynamics

of these theories at low energies using effective models. The work presented in part A

offers a first study towards using effective models to describe phase transitions and

predict gravitational waves signals in strongly coupled models.

Note that, due to advances in computational methods, it has also become possible to

explore strongly coupled models at low energies using lattice field theory. This has for

example already been done for phase transitions in purely scalar models [38] and for

a first order electroweak phase transition [39, 40]. Unfortunately, lattice calculations

7
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are not yet able to fully determine the dynamics of phase transitions and the resulting

gravitational wave signals when fermions are involved 1.

The outline of this chapter is as follows; after briefly reviewing QCD-like theories we

will introduce three of the existing effective models, namely the Nambu-Jona-Lasinio

(NJL) model, the Polyakov loop enhanced NJL (PNJL) model and the linear sigma

model (LSM). For each of these models the effective potential will be derived. This

will be needed later to characterize the phase transitions and subsequently calculate

the gravitational wave signal produced during a first order Chiral Phase Transition

(χPT). This chapter is based on work done together with J.Kubo and A.Helmboldt [1].

2.1 Strongly coupled theories

The best-known example of a strongly coupled theory is QCD, see e.g. ref. [42] for a

review. Within the Standard Model of particle physics it is the theory which describes

the strong interactions between gluons and quarks. QCD exhibits interesting properties

like colour confinement, asymptotic freedom and a χPT. As we will later see, for QCD

this phase transition is expected to be a crossover, however, with the right choice of

(dark) fermion masses the χPT in a dark sector can be first order.

The QCD-like theories we will be investigating have a SU(3) gauge symmetry, for n f

flavours and gauge coupling g the Lagrangian can be written as:

LSU(3) =
n f

∑
i=1

q̄i(iγµDµ − mi)qi −
1
4

Ga
µνGµν

a with (2.1a)

Dµ = ∂µ − igTa Aa
µ , (2.1b)

Gµν = ∂µ Aa
ν − ∂ν Aa

µ + g fabc Ab
µ Ac

ν . (2.1c)

q is the fermion field, with quark masses mi, and Aµ is the gluon field. The index

i = 1 . . . n f is the flavour index while the index a runs from 1 · · · 8 and corresponds

to the eight gauge bosons (gluons). Ta = λa/2, where λa are the Gell-Mann matrices,

which satisfy Tr(TaTb) = δij/2. fabc are defined through the commutator of the Gell-

Mann matrices as [λa, λb] = 2i f abcλc. The colour index α = 1, 2, 3 has been suppressed

but is implicitly summed over. The same holds for the spinor indices.

1Very recently in ref. [41] lattice calculations were used in combination with effective theories to calcu-
late GW signals from phase transitions in strongly coupled models, their results seem qualitatively rather
similar.
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The fermionic part of this Lagrangian can also be written in terms of the chiral fields qL

and qR, with q = qL + qR:

Lm =
n f

∑
i=1

q̄i(i /D − mi)qi =
n f

∑
i=1

[q̄Lii /DqLi + q̄Rii /DqRi − mi(q̄LiqRi + h.c.)] . (2.2)

In this form it becomes clear that apart form the SU(3) gauge symmetry the Lagrangian

also has global symmetries. In the chiral limit, i.e. mi = 0, this symmetry group is given

by:

G ′ = U(n f )L × U(n f )R = SU(n f )V × SU(n f )A × U(1)V × U(1)A (2.3)

Note that U(n f ) ∼= SU(n f ) × U(1).

One can show the invariance of the (matter part) of the Lagrangian explicitly by looking

at how q(L/R) transforms under each global symmetry. The Dirac spinor q transforms

under U(1)V and U(1)A as

q → eiϑq and q → eiϑ5γ5 q . (2.4)

Whereas the chiral components qL and qR transform under SU(3)L and SU(3)R as

qL → ULqL and qR → URqR , (2.5)

with UL and UR unitary matrices which have a determinant equal to one. Substituting

these transformations in the Lagrangian it is clear that for m = 0 the Lagrangian is

invariant. Note that a non-zero mass term in the Lagrangian will cause the left and

right-handed fermion fields to mix and SU(3)L × SU(3)R will subsequently be broken

down to SU(3)V .

G ′ is the symmetry group on the classical level. It is well known that quantum correc-

tions break the U(1) axial symmetry explicitly. This is called the chiral anomaly or the

Adler-Bell-Jackiw anomaly [43, 44].

Including quantum corrections the global symmetry group of eq. (2.2) is thus:

G = SU(n f )V × SU(n f )A × U(1)V . (2.6)

Due to non-perturbative (strong coupling) effects the quarks will form a condensate

⟨q̄q⟩ ̸= 0, which, similar to an explicit quark mass, will (spontaneously) break the sym-

metry group G → SU(n f )V × U(1)V . The symmetry is expected to be restored at high

temperatures due to thermal effects.
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The breaking of this symmetry is accompanied by the existence of n2
f − 1 massless Gold-

stone bosons. If the Lagrangian already explicitly breaks the chiral symmetry, through

for example non-zero quark masses, the Goldstone bosons will only be pseudo-Goldstone

bosons, which have a small but non-zero mass. In QCD the pseudo-Goldstone bosons

correspond to the three pions with roughly equal masses, due to the finite mass of the

two lightest quarks, the u and d quark, these pions are pseudo-Goldstone instead of

Goldstone bosons.

The chiral phase transition signifies the transition from a quark-gluon plasma at high

temperatures to a state which is described by quark condensates, i.e., mesons and

baryons, at low temperatures. The nature of the χPT of QCD has been a topic of re-

search for many years and will depend in general on the size of quark masses and the

number of flavours [45].

2.1.1 The Phase Diagram of QCD

In the early universe we differentiate between roughly three types of transitions; the

crossover, the second order phase transition and the first order phase transition. The

crossover is a transition which is completely smooth and thus in the strictest sense

not a true phase transition; no symmetries are broken and there is no singularity [46].

Whereas a second order PT is characterized by a continuous change from one phase

to another, a first order PT is a discontinuous process where the new phase first devel-

ops in bubbles (from tunnelling) which subsequently expand and collide till the PT has

completed. These bubble collisions can produce GWs and thus open up the possibility

of measuring signals from dark sectors which are not detectable by any of the conven-

tional experiments. In the next chapter the GW production from bubble collisions in a

first order PT is discussed.

To determine for which number of flavours n f and quark masses mi QCD-like theories

exhibit which type of transition one generally has to do lattice calculations. However,

in the limits mi → 0 and mi → ∞ the nature of the phase transition can be determined to

be first order based on general arguments using universality classes. See e.g. refs. [46,

47].

For n f = 2 + 1 2 the type of phase transition as function of mi can be summarized in

the Columbia plot (see fig. 2.1), named after the university where the seminal work

on the QCD phase transition was done [45]. Although in recent years many more so-

phisticated lattice calculations have been performed [46], the general characteristics as
2n f = 2 + 1 means that two quarks are degenerate in mass, whereas the third quark can have a

different mass, this is to good approximation true for the physical masses of the three lightest quarks in
QCD.
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FIGURE 2.1: Columbia plot for three quark flavours, taken from ref. [45].

shown in fig. 2.1 are still the same. More precise calculations using lattice QCD have

shown that due to the finite masses of the quarks, as measured for QCD, the transition

is in fact a crossover [46].

QCD-like theories can thus exhibit different types of transitions, depending on the

number of quarks and the size of the quark masses. For massless QCD-like sectors

it is known that the PT must be first order for n f > 2 [45], thus possibly allowing for

the production of a significant gravitational wave signal. In order to characterize the

PT in a QCD-like dark sector further we will need to find the effective potential. How-

ever, due to the non-perturbative nature of strongly coupled theories this is impossible

within the conventional perturbative expansion of QFT. To circumvent this problem we

will be using low-energy effective models. The following sections we will discuss the

NJL model, the PNJL model and the LSM. We will be looking specifically at QCD-like

dark sectors with n f = 3.

The idea of all these effective models is that they are constructed such that they observe

the same symmetries and symmetry breaking patterns as the full theory. We will later

show how the parameters of the effective models can be selected in such a way that the

observables are the same for each model.

2.2 Nambu-Jona-Lasinio model

In this section we closely follow the review from S.P. Klevansky [48, 49]. The NJL

model was first proposed by Y. Nambu and G. Jona-Lasinio in the 60s as a model to

describe nucleon interactions [50, 51], however it can be reformulated to describe quark

interactions within QCD. The Lagrangian of the NJL model is not derived from first
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principles but postulated such that it respects all the global symmetries of the complete

theory. Although the NJL model does describe the quark degrees of freedom it does

not describe the gluon interactions. Confinement is therefore not incorporated in the

NJL model. Given the global symmetries of a SU(N) gauge theory with n f flavours as

summarized in eq. (2.6), one possible choice for an effective Lagrangian respecting all

these symmetries is the following [23, 48]:

LNJL = Tr q̄i/∂q + 2G Tr(Ψ†Ψ) + GD(det Ψ + h.c.) with (Ψ)ij = q̄i(1 − γ5)qj .

(2.7)

Here q corresponds to the (hidden) quarks and Ψ is a fermion bi-linear. The flavour

indices i, j run from i, j = 1 . . . n f . The colour indices are again implicit. Note that

we are looking at the chiral limit of the theories, such that the quarks do not have an

explicit mass term.

The first term of this Lagrangian is the standard kinetic term for massless quarks. The

second term encompasses the interaction term between four quarks. The last term is

the ’t Hooft determinant which is put in to break the U(1)A symmetry explicitly and

thus take into account the quantum corrections. For a theory with three flavours the ’t

Hooft determinant corresponds to a 6-fermion interaction. Note that the Lagrangian is

clearly non-renormalizable, since the mass-dimension of the interaction terms is larger

than four. This non-renormalizability is however not surprising, nor concerning, since

the aim of these effective QCD-like models is to describe the theory at low energies.

The non-renormalizability of the NJL model just shows that at high temperatures the

correct description of the physics is given by QCD.

To show that indeed this Lagrangian respects all the global symmetries of the full the-

ory and that U(1)A is explicitly broken by the ’t Hooft determinant we will use the

transformations as defined in eqs. (2.4) and (2.5). Again the kinetic term trivially re-

spects all global symmetries. To determine if the other terms respect the global sym-

metry group G ′ we first need to determine how the bi-linear Ψ transforms. To find the

transformation of Ψ under SU(n f )L and SU(n f )R it is convenient to write Ψ in terms of

the chiral fields; Ψij = q̄RjqLi.

Using eqs. (2.4) and (2.5), it is straightforward to see that Ψ transforms as:

Ψ → ULΨU†
R under SU(3)L × SU(3)R ,

Ψ → Ψe2iϑ5γ5 under U(1)A ,

Ψ → Ψ under U(1)V .

(2.8)

The unitarity of UL and UR implies that U†
L/RUL/R = I, which will ensure that Ψ†Ψ is

invariant under SU(3)L × SU(3)R. Moreover, Ψ†Ψ also remains invariant under both
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U(1) symmetries. The situation for the ’t Hooft determinant is slightly more com-

plicated; Clearly this term is invariant under U(1)V , since unitary matrices have the

property that their determinant is equal to one the ’t Hooft determinant also respects

SU(3)L × SU(3)R. The axial symmetry is however explicitly broken by U(1)A, as desired.

The low energy effective NJL model as described by the Lagrangian in eq. (2.7) thus

respects exactly the same symmetries as the underlying QCD-like theory.

2.2.1 Mean Field Approximation

The Lagrangian in eq. (2.7) is not yet in a form which can be used to derive the effec-

tive potentials and investigate the possible PTs within this model. To work towards a

useful Lagrangian we employ the so called Mean Field Approximation (MFA) [49, 52],

which loosely speaking means we split up the Lagrangian in an interacting part, which

we subsequently ignore, and a mean field term, by expanding the Lagrangian around

the expectation value ⟨Ψ⟩. The mean field Lagrangian can then be used to derive the

effective potential.

The split is achieved by expanding the Lagrangian around the expectation value, which

can be defined as:

⟨Ψ⟩ = − 1
4G
(
(σ + iη′)I + 2(aa + iπa)Ta) , (2.9)

with

σ = −4G
3
⟨q̄q⟩ , πa = −4iG⟨q̄γ5Taq⟩ , η′ = −4iG

3
⟨q̄γ5q⟩ , aa = −4G⟨q̄Taq⟩ .

(2.10)

These fields correspond to the physical mesons of the theory and a runs from 1 . . . 8.

Note that all these fields are 3 × 3 matrices in flavour space. When the quark masses

are degenerate there is no mixing between π0 (the η′ meson) and π8.

Expanding the bi-linear around the vacuum expectation value as:

Ψ = ⟨Ψ⟩+ : Ψ : , (2.11)

we can also determine how Ψ†Ψ is expanded:

Ψ†Ψ = (⟨Ψ⟩+ : Ψ :)2 (2.12)

= ⟨Ψ⟩2 + 2⟨Ψ⟩ : Ψ : + : Ψ :2 (2.13)

= −⟨Ψ⟩2 + 2⟨Ψ⟩Ψ+ : Ψ :2 , (2.14)
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where in the last line we have put back : Ψ := Ψ − ⟨Ψ⟩ such that we get a mean field

term which is at most linear in the fermion bi-linear Ψ.

By expanding the bi-linear around the expectation value it is thus possible to split the

Lagrangian into a part which only contains terms which are at most linear in Ψ, i.e.

quadratic in the fermion, and a part which contains the interaction terms:

LNJL = LMFA + Lint . (2.15)

Following the above steps and using the Cayley-Hamilton theorem to expand the deter-

minant of a 3 × 3 matrix: det Ψ = 1
3 Tr(Ψ3)− 1

2 Tr(Ψ2)Tr(Ψ) + 1
6 (Tr(Ψ))3 it is possible

to derive the MFA Lagrangian:

LMFA
NJL = Tr q̄(i/∂ − M)q − i Tr(q̄γ5πq)− i Tr(q̄γ5η′q)− Tr(q̄aq)

+
GD

8G2

[
(πaπa − aaaa − η′2)Tr(q̄q)− Tr(q̄π2q) + Tr(q̄a2q)

+ Tr(q̄η′πq) + i Tr(q̄γ5σπq)− 2i Tr(q̄γ5πaq) + i Tr(q̄γ5η′aq)− Tr(q̄σaq)

+ i(3aaπa − 2ση′)Tr(q̄γ5q)
]
− V tree

NJL .

(2.16)

The flavour indices a are implicitly summed over from a = 1 . . . 8. And π and a are

defined as π := 2πaTa and a := 2aaTa. The effective fermion mass M is defined as:

M = σ − GD

8G2 σ2 . (2.17)

And the tree-level potential V tree
NJL is

V tree
NJL =

1
8G

(
3σ2 + 3η′2 + 2πaπa + 2aaaa

)
− GD

16G3

[
σ
(

σ2 + πaπa − 3η′2 − aaaa

)
+ 5aaπaη′

]
.

(2.18)

Note that this Lagrangian gives the same tree-level mass to each of the three quark

flavours. Since we left out explicit masses and the model consequently has a Z3 sym-

metry, this is to be expected. In the presence of a degenerate explicit quark mass m the

effective mass becomes M = m + σ − GD
8G2 σ2.

2.2.2 Effective Potential

Having obtained the Lagrangian in the Mean Field Approximation, LMFA, it is now pos-

sible to derive the effective potential. The NJL effective potential will be determined in

a loop expansion, up to and including the one-loop effects. Because the vacuum needs
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FIGURE 2.2: Terms contributing to the one-loop effective potential.

to be parity even and the quarks are degenerate and thus respect a Z3 symmetry in

the chiral limit, for which all quarks are massless, the only meson field which is able

to obtain a vacuum expectation value is the σ meson. The effective potential describ-

ing the phase transition thus only needs to contain all the terms depending on σ. To

determine the one-loop contribution we need to realize that only the quarks can run

in the loop because the mesons are non-propagating at tree-level, i.e. they don’t have

kinetic terms. The effective potential is thus given by a tree level term VNJL
0 and loop

contributions from the fermions running in the loop;

VNJL
EFF = VNJL

0 + Vloop . (2.19)

At tree level the effective potential can simply be determined from eq. (2.18) as,

VNJL
0 =

3
8G

σ2 − GD

16G3 σ3 . (2.20)

As mentioned, the loop-level terms in the potential are obtained by integrating out the

fermions. The one-loop contribution to the effective potential is given by the Coleman-

Weinberg term [20, 53], for L ∼ q̄Mq it is given as:

Vloop = i
∫ d4 p

(2π)4

∞

∑
n=1

4ncn f

(
M2

p2

)n 1
2n

(−1)

= 2incn f

∫ d4 p
(2π)4 log

(
1 − M2

p2

)
. (2.21)

Here we have already taken the trace over Dirac indices and summed over flavour

and colour indices. Diagrammatically this equation is equivalent to summing over the

class of Feynman diagrams as shown in fig. 2.2. In this figure the external lines are

given by the field M and the internal lines are the (massless) quarks. In our case only

the diagrams with an even number of external legs will contribute, because the trace

over an uneven number of gamma matrices is zero.

Following ref. [53] and using similar techniques as for determining the thermal scalar

mass (see appendix A), the loop contribution to the effective potential can be split up
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in a temperature independent part, VNJL
CW , and a temperature dependent term VNJL

FT .

Note that the temperature independent part of eq. (2.21) is divergent. For our purposes

the NJL model is being treated as an effective low-energy theory with an explicit cut-off,

therefore we will employ an explicit 4D Euclidean cut-off Λ to regularize this integral
3,

VNJL
CW (σ) = −2ncn f

1
8π2

∫ Λ

0
dpE p3

E log
(

1 +
p2

E
M2

)
= −

ncn f

16π2

[
M2Λ2 + Λ4 log

(
1 +

M2

Λ2

)
− M4 log

(
1 +

Λ2

M2

)]
. (2.22)

At finite temperature, using the imaginary time formalism, the integral in eq. (2.21) can

be written as:

Vloop = −2ncn f T ∑
n

∫ d3 pE

(2π)3 log
(

1 +
M2

p2
E + ω2

n

)
, (2.23)

where the sum is over the Matsubara frequencies, see appendix A, and pE is the mo-

mentum. Using similar techniques as those employed in appendix A to determine

thermal masses, the temperature dependent part of this equations gives,

VNJL
FT (σ) =

2ncn f T4

π2 JF(M/T) , (2.24)

with JF(r) = −
∫ ∞

0 dx x2 log
(

1 + e−
√

x2+r2
)

, r = M/T and x = pE/T.

Combining everything we obtain the following effective potential for the NJL model

VNJL
EFF =+

3
8G

σ2 − GD

16G3 σ3

− 3nc

16π2

[
Λ4 log

(
1 +

M2

Λ2

)
− M4 log

(
1 +

Λ2

M2

)
+ Λ2M2

]
+

2ncn f T4

π2 JF(M/T) .

(2.25)

2.2.3 Phase diagram

Since only first order phase transitions occur through the production of bubbles, grav-

itational waves are only produced in this type of phase transition. To determine the

nature of the phase transition the global minimum of VNJL(σ) as a function of the tem-

perature needs to be determined. It is possible to do this calculation for zero as well as

non-zero (but degenerate) quark masses. The results are shown in fig. 2.3, where the

3Note that other regularization schemes can also be used, see ref. [54] for a discussion on this.
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FIGURE 2.3: Phase transition in the NJL model for several values of the (degenerate) quark
mass. Using BP A as defined in table 4.1.

global minimum vσ is shown as a function of T for several values of the degenerate

quark mass mq.

Figure 2.3 shows that for zero quark mass the transition is indeed discontinuous, i.e.

first order, while for larger quark masses the transition becomes crossover or second

order. This result agrees with the general behaviour of the Columbia plot shown in

fig. 2.1. We thus see that qualitatively the NJL model has the same symmetry breaking

behaviour as QCD. This is to be expected since the fact that the phase transition of

chiral models with more than two flavours is first order is based on general symmetry

arguments; both massless QCD and the NJL respect the same symmetries, thus the

phase transition should be of the same type. The same holds for the other effective

models.

2.2.4 Meson masses

In order to compare the NJL model with other effective models we need to determine

the observables predicted by the effective models. For the NJL model the observables

are given by the masses of the mesons mσ, mπ, mη and ma. To determine the masses of

these mesons the (zero temperature) propagators need to be determined. This is done

by taking into account all the one-loop contributions to the propagator, while keeping

in mind that only the fermions, not the mesons, propagate in the loop. As an example

the diagrams contributing to the σ propagator are shown in fig. 2.4.
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FIGURE 2.4: Feynman diagrams contributing to the one-loop propagator of the σ meson.

Calculating these diagrams the propagator for each meson can be determined:

Γσσ(p2, vσ) = − 3
4G

+
3GDvσ

8G3 −
(

1 − GDvσ

4G2

)2

3nc IS(p2, vσ) +
GD

G2 3nc IV(vσ) , (2.26a)

Γππ(p2, vσ) = − 1
2G

+
GDvσ

8G3 +

(
1 − GDvσ

8G2

)2

2nc IP(p2, vσ) +
GD

G2 nc IV(vσ) , (2.26b)

Γη′η′(p2, vσ) = − 3
4G

− 3GDvσ

8G3 +

(
1 +

GDvσ

4G2

)2

3nc IP(p2, vσ)−
GD

G2 3nc IV(vσ) , (2.26c)

Γaa(p2, vσ) = − 1
2G

− GDvσ

8G3 −
(

1 +
GDvσ

8G2

)2

2nc IS(p2, vσ)−
GD

G2 nc IV(vσ) . (2.26d)

With the integrals defined as,

IV(vσ) =
∫ d4k

i(2π)4
Mc

k2 − M2
c

, (2.27a)

IS(p2, vσ) =
∫ d4k

i(2π)4
Tr[(/k + /p + Mc)(/k + Mc)]

((k + p)2 − M2
c )(k2 − M2

c )
, (2.27b)

IP(p2, vσ) =
∫ d4k

i(2π)4
Tr[(/k + /p + Mc)γ5(/k + Mc)γ5]

((k + p)2 − M2
c )(k2 − M2

c )
. (2.27c)

Mc = M(vσ) is the constituent quark mass at the true minimum. For the purpose

of finding the zero temperature masses, these integrals are calculated using an explicit

4D Euclidean cut-off Λ. The effective masses are then determined from the root of the

(zero-temperature) propagators;

Γ(p2)
∣∣

p2=m2 = 0 , (2.28)

where vσ is the vacuum expectation value of the field σ at zero temperature, which can

be found from the effective potential, as depicted in fig. 2.3

The mass spectrum of the mesons was determined for Benchmark Point A, as defined

in table 4.1; i.e. Λ = 0.93 GeV, GD = −90.65 GeV−5, G = 3.84 GeV−2 and mq = 0 GeV.

To check the consistency of the NJL model the mass spectrum is also determined for a
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FIGURE 2.5: The effect of the ’t Hooft determinant and explicit quark masses on the mass spec-
trum of the (pseudo)scalar mesons.

theory in which the ’t Hooft determinant is zero; GD = 0 and for a theory with non-

zero but degenerate quark masses; mq = 1/300 GeV. Whereas GD = 0 corresponds to

unbroken axial U(1)A symmetry, non-zero quark masses correspond to a theory with

explicitly broken chiral symmetry. The results are shown in fig. 2.5. Here the index a

runs from a = 1 . . . 8.

This meson spectrum is qualitatively as expected; For unbroken U(1)A the scalar and

pseudoscalar nonet are degenerate in mass, additionally the pseudoscalars are massless

due to their Goldstone boson nature. Furthermore, U(1)A breaking through a non-zero

’t Hooft determinant splits the nonets into octets and singlets, where the pseudoscalar

octet (pions) are the massless Goldstone bosons. When an explicit (degenerate) mass

term is added to the model the pions become pseudo Goldstone bosons and thus obtain

a small but non-zero mass. Note that the addition of a degenerate quark mass, as

opposed to a non-degenerate quark mass, ensures that the masses of both octets remain

degenerate. When the u, d and s quark have different masses, as seen in QCD, both

octets will split. See for example ref. [55] for more details on meson spectra. Note

that in the chiral limit the NJL model has two free parameters which together fix four

masses.
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2.2.5 Wave function Renormalization, σ propagation

The last quantity needed to determine the dynamics of the phase transition is the wave

function renormalization of the meson σ. This is necessary because we need σ to tunnel

from the false vacuum into the real vacuum (first order phase transition) [56]. At tree

level the field σ is not dynamical due to its composite nature and therefore can not

tunnel. To obtain a dynamical meson we will need to look at the loop diagrams and

determine the wave function renormalization (Z−1
σ ). The kinetic term for σ is then given

by,

L ⊃ Z−1
σ (∂σ)2 . (2.29)

The wave function renormalization is defined as [56]:

Z−1
σ =

d
dp2 Γσσ(p2, σ)

∣∣∣∣
p2=0

. (2.30)

Note that for an elementary particle Z−1
σ is equal to one at tree level.

The one-loop σ propagator, Γσσ(p2, σ), was already defined in eq. (2.26) to determine

the meson mass. Using this propagator the wave function renormalization can be de-

termined as [1]:

Z−1
σ (σ) = −3nc

(
1 − GD

4G2 σ

)2 [
−2A0 + 2B0 + 8C0 − 2ℓA(r) + 2ℓB(r) + 8ℓC(r)

]
, (2.31)

with r ≡ r(σ) = |M(σ)|/T and

A0 =
1

16π2

[
log
(

1 +
Λ2

M2

)
− Λ2

Λ2 + M2

]
,

B0 = − 1
32π2

Λ4

(M2 + Λ2)2 ,

C0 =
1

96π2
3M2Λ4 + Λ6

(M2 + Λ2)3 .
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The thermal integrals ℓI(r) are determined to be

ℓA(r) = − 1
4π2

∫ ∞

0
dx
(

x2

√
x2 + r23

1
1 + exp

√
x2 + r2

+
1
2

x2

(
√

x2 + r2)2

1
1 + cosh

√
x2 + r2

)
,

(2.32)

ℓB(r) =
r2

16π2

∫ ∞

0
dx
(

3x2

√
x2 + r25

1
1 + exp

√
x2 + r2

+
3x2

2(
√

x2 + r2)4

1
1 + cosh

√
x2 + r2

+
x2

2(
√

x2 + r2)5

1
1 + cosh

√
x2 + r2

)
,

(2.33)

ℓC(r) = − r4

96π2

∫ ∞

0
dx
(

15x2

√
x2 + r27

1
1 + exp

√
x2 + r2

+
15x2

2(
√

x2 + r2)6

1
1 + cosh

√
x2 + r2

+
3x2

(
√

x2 + r2)5

tanh(
√

r2 + x2/2)
1 + cosh

√
x2 + r2

+
x2

2(
√

x2 + r2)4

1
1 + cosh

√
x2 + r2

− 3x2

2(
√

x2 + r2)4

1
(1 + cosh

√
x2 + r2)2

)
. (2.34)

Note that these rather lengthy expression are the result of calculating the integrals in

eq. (2.27) at finite temperature, with explicit 4D Euclidean cut-off Λ for the zero temper-

ature part. The temperature dependent integrals are determined within the imaginary

time formalism, see e.g. ref. [57] for a review on thermal quantum field theory.

Having derived the effective potential, meson masses and the wave function renormal-

ization of σ, we now have all necessary ingredients to determine the phase transition

dynamics of the NJL model. This will be the topic of the coming chapters, first two

more effective models of QCD-like theories will be discussed.

2.3 Polyakov Extended NJL

Whereas the NJL model describes the effective dynamics of mesons and quarks, it does

not contain gluons and is therefore not able to describe the (de)confinement PT which

is expected to take place in QCD-like theories. From QCD it is known that the chiral

and (de)confinement PT occur at similar temperatures [58], therefore the inclusion of

gluon effects might have an important effect on the χPT. The problem of how to in-

corporate gluon effects into the effective potential was discussed some decades ago by

Fukushima [59], he showed that gluon effects can be put explicitly into the effective

potential by using the expectation value of the Polyakov loop, denoted as L [59, 60]. A

review on the Polyakov loop can be found in e.g. ref. [58]. The effective gluon potential
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which can be formed with the Polyakov loop is not derived from first principles but is

phenomenological; its parameters are determined from for example lattice calculations.

There are many possible choices for the gluon potential, which are all approximately

equivalent for temperatures up to the critical temperature of the (de)confinement phase

transition [61]. Following ref. [60] the Polyakov potential is chosen as:

T−4Vglue(L, T) = − 1
2 a(T)LL̄ + b(T) log

[
1 − 6LL̄ − 3(LL̄)2 + 4(L3 + L̄3)

]
, (2.35)

with

a(T) = a0 + a1
Tglue

T
+ a2

(
Tglue

T

)2

and b(T) = b3

(
Tglue

T

)3

. (2.36)

Here L is the order parameter, which is equivalent to the expectation value of the

Polyakov loop. Due to the logarithmic term in the potential L is limited to lie between

L = 0 and L = 1. This potential can be further simplified by the fact that we are

assuming the chemical potentials to be equal to zero, thus L = L̄ [58].

The parameters ai and b3 in eq. (2.36) can be determined by lattice QCD calculations, in

ref. [60] they are stated to be:

a0 = 3.51 , a1 = −2.47 , a2 = 15.2 , b3 = −1.75 . (2.37)

The last unknown parameter of the gluon potential is Tglue, the critical temperature

of the (de)confinement PT. The value of Tglue can be determined from lattice calcu-

lations. In the pure gauge limit, where quarks are assumed to be infinitely heavy,

Tglue = 270 MeV, while the presence of finite-mass quarks reduces Tglue to 178 MeV[62].

The (de)confinement phase transition described by the gluon potential corresponds to

a transition between a confined phase at low temperatures and a deconfined phase

at higher temperature, with ⟨L⟩ = 0 and ⟨L⟩ ̸= 0, respectively. By determining the

minimum of L as a function of the temperature T the phase transition can be quantified,

this is shown in fig. 2.6. The figure shows that the gluon potential exhibits a first order

phase transition; with the critical temperature given by Tglue. This first order nature of

the (de)confinement phase transition is only true in the case of a pure gluonic model,

i.e. infinitely heavy or absent quarks. In ref. [63] lattice calculations with the inclusion of

(light) quarks predict that the transition in this case is no longer first order but becomes

a crossover.

The gluon potential in itself does not couple to the quarks and mesons and would

therefore not affect the χPT. Following ref. [58] the interaction between gluons and

quarks is taken into account in the temperature dependent term of the NJL effective
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FIGURE 2.6: Gluon potential in terms of the Polyakov loop for multiple temperatures. Note that
Tglue corresponds to the critical temperature, i.e. the potential shown by the yellow line.

potential eq. (2.25) as follows:

VNJL
FT = −

2ncn f T4

π2

∫ ∞

0
dxx2 log

(
1 + e−

√
x2+r2

)
(2.38)

→ −
2n f T4

π2

∫ ∞

0
dx x2 log

(
1 + e−3

√
x2+r2

+ 3Le−
√

x2+r2
+ 3Le−2

√
x2+r2

)
= VPNJL

FT

(2.39)

Note that at high temperature ⟨L⟩ → 1, thus, the interaction term reduces to that of the

NJL model, i.e. log(1 + 3x + 3x2 + x3) = 3 log(1 + x), with the factor of 3 being the

number of colours. Thus in the limit T → ∞ the dynamics of the PNJL and NJL model

are the same, the gluon potential itself does not affect the sigma dynamics without an

interaction term. At zero temperature both models are also equivalent, since the finite

temperature loop contributions do not contribute at zero temperature.

The tree level and Coleman-Weinberg term of the effective potential as derived for the

NJL model eq. (2.25) remain the same. Combining everything the effective potential of

the PNJL is given as:

VPNJL
EFF =VNJL

0 + VNJL
CW + VPNJL

FT + Vglue

=+
3

8G
σ2 − GD

16G3 σ3

− 3nc

16π2

[
Λ4 log

(
1 +

M2

Λ2

)
− M4 log

(
1 +

Λ2

M2

)
+ Λ2M2

]
−

2n f T4

π2

∫ ∞

0
dx x2 log

(
1 + e−3

√
x2+r2

+ 3Le−
√

x2+r2
+ 3Le−2

√
x2+r2

)
+ T4

(
− 1

2 a(T)L2 + b(T) log
[
1 − 6L2 − 3L4 + 8L3]) .

(2.40)

The above potential contains two fields, σ and L. In order to use the standard (one-field)

tunnelling formalism, as discussed in the following chapter, the potential needs to be
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FIGURE 2.7: On the left the effective potential, Veff[ GeV4] as a function of σ[ GeV] and L. The
black line corresponds to L = Lmin and the red star indicates the true minimum. On the right

the potential along this line is shown. For BPA, as defined in table 4.2, with T = 0.12 GeV.

reduced such that it only depends on one field. Thus we need to put in an assumption

for the Polyakov loop L. As discussed, L undergoes a crossover transition in the pres-

ence of light quarks. It is therefore reasonable to assume that L will simply follow its

minimum during the transition, thus becoming a function of σ and T. Mathematically

we determine L by minimizing VPNJL
EFF for each T and σ, i.e. L → Lmin(σ, T)).

In the left plot of fig. 2.7 the potential at T = 0.12 GeV is shown as a function of σ

and L, in this plot Lmin(σ) is also depicted. The effective potential which is used to

determined the dynamics of the first order phase transition is defined along this line.

This potential is shown in the right figure of fig. 2.7, note that even with the inclusion of

the gluon dynamics the chiral phase transition remains first order, as seen by the bump

separating the two minima.

With the substitution L → Lmin = Lmin(σ, T) we have thus obtained a one dimensional

effective potential which can be used to determine the dynamics of the first order phase

transition and the strength of the gravitational wave signals. This will be discussed in

chapters 3 and 4. Note that in ref. [64] a similar, but slightly less sophisticated choice of

Lmin(σ, T) was used.

The observables, i.e. the masses and the pion decay constant, are determined at zero

temperature and will thus not be affected by the inclusion of the Polyakov loop; they

will be equal to those determined in the NJL model. Furthermore, it is assumed that

the effect of the Polyakov loop on the wave-function renormalization can be neglected,

thus Z−1
σ as derived for the NJL model will also be used in the PNJL model.

The derivation of all relevant elements needed to determine the dynamics of the phase

transition is now completed for both the NJL and PNJL model. As a last model the

Linear Sigma Model will be discussed.
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2.4 Linear Sigma Model

The Linear Sigma Model (LSM) was first introduced by Gell-Mann in the 60s in ref. [65].

Like the (P)NJL model the aim of the LSM is to describe non-perturbative behaviour of

strongly coupled theories like QCD. Whereas the (P)NJL model contains quark degrees

of freedom and the PNJL additionally contains the gluon dynamics, the LSM only de-

scribes scalar degrees of freedom, i.e. the mesons. The Lagrangian of the LSM is, like

the (P)NJL Lagrangian, chosen such that it respects the same symmetries as the full

theory. As mentioned before the symmetry group of massless QCD, with n f = 3, is

given by SU(3)V × SU(3)A × U(1)V . A general renormalizable Lagrangian respecting

this symmetry group is:

LLSM = Tr ∂µΦ†∂µΦ − VLSM
tree (Φ) , (2.41)

with VLSM
tree (Φ) defined as [66]:

VLSM
tree (Φ) = − m2 Tr(Φ†Φ) + 1

2 (λσ − λa)
(
Tr(Φ†Φ)

)2
+ 3

2 λa Tr
(
(Φ†Φ)2)

−
√

2
3 c
(
det Φ + det Φ†) .

(2.42)

The meson field Φ is a complex scalar field, given by a 3 × 3 matrix

Φ =
1√
6
(σ + iη′)I + (aa + iπa) Ta . (2.43)

with a again running from 1 . . . 8 and Ta are the reduced Gell-Mann matrices as defined

below eq. (2.1). The LSM thus describes the same meson fields as the (P)NJL; the scalars

σ and aa and the pseudoscalars η′ and πa.

Following the same reasoning as for the NJL Lagrangian, it is clear that, apart from

the determinant, this Lagrangian is invariant under U(3)L × U(3)R. Similar to the de-

terminant in the (P)NJL the determinant in this Lagrangian explicitly breaks the axial

symmetry, U(1)A. Due to spontaneous symmetry breaking the scalar σ will obtain a

vacuum expectation value vσ from the chiral phase transition. As explained before the

other mesons will not obtain a vacuum expectation value.

2.4.1 Effective Potential

To determine the dynamics of the phase transition we again derive the effective po-

tential at finite temperature. The tree level effective potential V0(σ̄) can be determined
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from the LSM potential, eq. (2.42), by expanding the potential around Φ = 1√
6
σ̄;

V0(σ̄) = −1
2

m2σ̄2 +
1
8

σ̄4 − 1
9

cσ̄3 , (2.44)

with σ̄ the classical field of the σ meson.

Due to infrared divergences standard perturbation theory unfortunately breaks down

and thus can not be used to reliably determine the loop level contributions to the effec-

tive potential [67]. It is however possible to deal with these divergences by resumma-

tion techniques. In the following the Cornwall-Jackiw-Tomboulis (CJT) formalism [68]

will be used to re-sum specific classes of diagrams and thus alleviate the problem of in-

frared divergences. This formalism was extended to be applicable at finite temperature

in for example refs. [69–71]. Furthermore, in refs. [72–75] the CJT formalism has been

applied to the LSM to determine the effective potential. A short summary of this for-

malism for a single scalar field is given in appendix B. The extension of this formalism

to multiple scalars is straightforward.

Following appendix B and the papers mentioned above, the CJT formalism within the

Hartree-Fock approximation [76, 77] gives the following effective potential:

VLSM
EFF = V0(σ̄) + VLSM

FT (σ̄, T) (2.45a)

= V0(σ̄) +
T4

2π2 ∑
i

gi

[
JB(R2

i )− 1
4 (R2

i − r2
i )IB(R2

i )
]

, (2.45b)

with V0(σ̄) defined in eq. (2.44). We have defined ri ≡ ri(σ̄, T) = mi(σ̄)/T and Ri ≡
Ri(σ̄, T) = Mi(σ̄, T)/T. The sum runs over all the mesons; the scalars σ and a and the

pseudoscalars π and η. With gi = 1 and gi = 8 for respectively the singlet and the octet

(pseudo)scalars. The thermal integrals JB and IB are defined as:

JB(r2) = +
∫ ∞

0
dx x2 log

(
1 − e−

√
x2+r2

)
, (2.46a)

IB(r2) = 2
dJB(r2)

dr2 =
∫ ∞

0
dx

x2
√

x2 + r2

1

e
√

x2+r2 − 1
. (2.46b)

Note that one-loop zero temperature contributions to the effective potential are ne-

glected, in [73, 74] it was shown that this does not impact the results qualitatively. In

these equations mi correspond to the tree level masses of the mesons, whereas Mi are

the effective temperature dependent masses. The thermal masses of the mesons are

determined self-consistently via so called fixed-point equations. Within the CJT for-

malism, using the Hartree-Fock approximation [76, 77], these fixed point equations are
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FIGURE 2.8: a) the double bubble diagram. b) the class of Daisy diagrams. c) the class of
super-daisy diagrams.

given as:

M2
σ(σ̄) = m2

σ(σ̄) +
T2

4π2

[
3λσ IB(R2

σ) + 8(λσ + 2λa)IB(R2
a) + λσ IB(R2

η′) + 8λσ IB(R2
π)
]

,

(2.47a)

M2
a(σ̄) = m2

a(σ̄) +
T2

4π2

[
(λσ + 2λa)IB(R2

σ) + 5(2λσ + λa)IB(R2
a)

+ λσ IB(R2
η′) + (8λσ + 9λa)IB(R2

π)
]

,
(2.47b)

M2
η′(σ̄) = m2

η′(σ̄) +
T2

4π2

[
3λσ IB(R2

η′) + 8(λσ + 2λa)IB(R2
π) + λσ IB(R2

σ) + 8λσ IB(R2
a)
]

,

(2.47c)

M2
π(σ̄) = m2

π(σ̄) +
T2

4π2

[
(λσ + 2λa)IB(R2

η′) + 5(2λσ + λa)IB(R2
π)

+ λσ IB(R2
σ) + (8λσ + 9λa)IB(R2

a)
]

,
(2.47d)

with mi the zero temperature masses of the mesons. Solving these fixed point equations

we can determine M ≡ M(σ̄, T), thus resulting in a well defined effective potential.

Note that this effective potential only required the calculation of one type of diagram,

namely the double bubble diagram. However due to resummation, i.e. inserting the full

propagator instead of the tree level propagator and determining the full propagator self

consistently using the gap equation, the effective potential automatically includes an

infinite set of daisy and super-daisy diagrams [69]; without explicitly calculating these.

Examples of daisy and super-daisy diagrams as well as the double bubble diagram are

shown in fig. 2.8.

2.4.2 Observables

The observables we are interested in are the meson masses and the pion decay con-

stant. The zero temperature masses of the mesons can be determined from the tree

level potential eq. (2.42) using

m2
α =

∂2V
∂α2 |Φ= 1√

6
σ̄I . (2.48)
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Here we again assume only σ will obtain a vacuum expectation value. From the tree

level LSM potential as defined in eq. (2.42), the following masses for the mesons can be

derived:

m2
π(σ̄) = −m2 − 1

3 cσ̄ + 1
2 λσσ̄2 , (2.49a)

m2
η′(σ̄) = m2

π(σ̄) + cσ̄ , (2.49b)

m2
σ(σ̄) = m2

π(σ̄)− 1
3 cσ̄ + λσσ̄2 , (2.49c)

m2
a(σ̄) = m2

π(σ̄) +
2
3 cσ̄ + λaσ̄2 . (2.49d)

The pion decay constant is related to the vacuum expectation value of σ̄ as [66]:

vσ =

√
3
2

fπ . (2.50)

In the chiral limit the Linear Sigma Model thus has four observables; mσ, mη′ , ma and

fπ. Note that mπ is automatically zero in the chiral limit, no tuning of parameters is

required. The LSM Lagrangian also has four free parameters λσ, λa, c, m2, therefore,

contrary to the (P)NJL model, each mass can be tuned individually by setting the pa-

rameters to specific values. As we will see later this will be crucial in order to compare

the three effective models.

We have thus derived the effective potential for all three effective models. In the next

chapter we will see how the effective potential can be used to investigate the dynamics

of the phase transition and the gravitational wave production.



Chapter 3
Gravitational wave production from

PTs in the early universe

Already in 1918, soon after the development of the theory of General Relativity (GR)

in 1915 [5, 78], it was shown that the existence of gravitational waves is predicted by

General Relativity [79]. GWs can be visualized as waves or ripples moving through

spacetime which alternately stretch and contract spacetime. They are expected to be

produced during violent events, meaning events with strong gravitational interactions,

like the merger of black holes and/or neutron stars, but also during first order phase

transitions (see e.g. ref. [80] for a recent review). Whereas a binary merger constitutes

one single event coming from a specific source, the signal from a phase transitions is

a stochastic signal, i.e. a signal which does not come from a resolvable source. This

stochastic background is in general much harder to detect.

In each of the processes mentioned above the gravitational waves are produced either

in the early universe and/or at a large distance from the earth. Due to the generic

redshift from the expansion of the universe gravitational wave signals from these pro-

cesses, as measured on earth, are thus rather weak. Direct detection of gravitational

waves on earth is consequently extremely hard. However, since several decades there

have been indirect hints from astrophysical measurements that strongly suggest that

a binary inspiral indeed produces gravitational waves [81, 82]. It was shown that the

binary first discovered in 1974 [81] and closely followed in the years afterwards, slowly

looses energy, causing the two stars of the binary to move closer together [82]. Eventu-

ally over a long time the stars are expected to merge. The most straightforward way to

explain this energy loss is through the emission of gravitational waves [82]. Precise cal-

culations on the expected energy loss from gravitational wave emission in this binary,

when compared to decades of precise measurement on the binary orbit have shown

29
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that the theory of General Relativity is able to explain the binary inspiral remarkably

well [83].

Finally in 2016, almost exactly 100 years after the first prediction of gravitational waves,

they were for the first time directly observed when the LIGO and VIRGO collaboration

managed to detect gravitational wave signals from a black hole merger [7]. In recent

years the LIGO and VIRGO collaboration have measured many more black hole binary

mergers as well as neutron star mergers [84–86]. These measurements allow for all

kinds of interesting research on astrophysics and also offer a unique way of testing

General Relativity in the limit of strong interaction [7]. Note that the gravitational wave

signals from the first measured black hole merger corresponds to a physical length

difference of about 10−18 m [87]: these signals are thus indeed extremely weak.

Unlike gravitational wave signals from binary mergers, a stochastic gravitational wave

signal from a first order phase transition (PT) has not (yet) been detected. These signals

would be interesting for multiple reasons; first of all they would likely point to new

physics, after all the Standard Model is not expected to undergo any first order phase

transition. Secondly, gravitational waves are produced in the early universe and thus

describe physics at large energy scales, they therefore offer a channel complementary

to standard collider searches, which are in general much more limited in the energy

scale of new physics they can investigate. In the case of strongly coupled QCD-like

dark sectors, which are not, or only very weakly, interacting with the Standard Model

particles, gravitational wave signals might very well be one of the only signals one

could expect to observe in the near future.

Although it will likely still be some decades before experiments are able to detect grav-

itational waves from first order phase transitions, if these even exist and are strong

enough, it is in the meantime interesting to determine for Standard Model (SM) ex-

tensions what the possible GW signals would be. The goal of this type of research is

two-fold; it helps set sensitivity targets for (future) experiments while it at the same

time, once experimental results begin to emerge, will help to constrain SM extensions.

The aim of this chapter is to show how the GW signals from a first order phase tran-

sition can be determined. In the following chapter this will be applied to the effective

low-energy QCD-like models, which were discussed in chapter 2.

The remainder of this chapter is organized as follows; We will start with explaining

the different quantities which are relevant for the PT dynamics. A discussion on how

these can be derived or estimated from the effective potential and the Lagrangian will

also be included. Following this, the three main production mechanisms of GWs (bub-

ble collisions, soundwaves and turbulence) will be discussed. Formulas for calculating
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FIGURE 3.1: Potential for several temperature, exhibiting a first order phase transition. Tc is the
critical temperature.

the energy density of each of these contributions will be given. To conclude the chap-

ter some current and future GW experiments and their (proposed) sensitivities will be

discussed. Reviews on this topic, which we will closely follow in this chapter, are for

example refs. [25, 28].

3.1 Quantifying the PT dynamics

A first order PT occurs through the nucleation of bubbles as follows; In the early uni-

verse, for which the temperature is larger than some critical temperature Tc the universe

is in the symmetric phase; there is no bubble nucleation. However, once the universe

starts cooling down the effective potential can develop a second minimum, at the criti-

cal temperature Tc these minima have the same energy. Note that for a first order phase

transition these minima are separated by a barrier, which causes the field to remain

temporarily stuck in the old (false) vacuum. Quantum fluctuations and/or thermal

fluctuations will subsequently push small patches of the universe into the new (true)

vacuum. These bubbles of true vacuum will then expand and collide with each other.

The phase transition is complete when the bubbles have filled the universe. An ex-

ample of how a generic potential exhibiting a first order phase transition evolves from

high to low temperature is shown in fig. 3.1.

Due to their approximate spherical symmetry neither the bubbles themself nor their

expansion produces gravitational waves, however, the collisions of these bubbles will

result in the production of gravitational waves [88]. If strong enough, these gravita-

tional wave signals could in principle be measured by detectors on earth like LIGO

and VIRGO [89, 90] or proposed space-based detectors like eLISA [28]. The expected

signal from a first order phase transition can be characterized by a finite set of macro-

scopic quantities [28]:
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• α, a measure of the relative energy released during the transition, i.e. the energy

difference between the false and true vacuum;

• Tn, the nucleation temperature, i.e. the temperature at which bubble nucleation

becomes efficient;

• β/H, a measure of the duration of the phase transition;

• vw, the terminal velocity of the bubble wall.

Below each of these quantities will be discussed. Their meaning will be explained and

we will describe how they can be determined from the effective potential.

3.1.1 Released energy

The most straightforward of these quantities is α. This quantity can be defined in sev-

eral ways, depending on how one exactly defines the energy released during the transi-

tion [25]. We will here discuss the two definitions mainly encountered in the literature:

α defined through the latent heat and α defined through the trace of the energy momen-

tum tensor. Note that α is always normalized to the energy density outside the bubbles,

i.e. the energy density in the symmetric phase.

Defining α through the latent heat gives (see e.g. [24]),

αL :=
1

ρrad(Tn)

(
∆Veff(Tn)− Tn

∂∆Veff(T)
∂T

∣∣∣∣
T=Tn

)
. (3.1)

On the other hand defining α through the trace of the energy momentum tensor gives

[91, 92],

αT :=
1

ρrad(Tn)

(
∆Veff(Tn)−

1
4

Tn
∂∆Veff(T)

∂T

∣∣∣∣
T=Tn

)
. (3.2)

In these equations ∆Veff(T) := Veff(0, T)− Veff(σ̄min(T), T) and σ̄min(T) is the true min-

imum of the potential for a given temperature. Veff is the effective potential of the

theory. Furthermore, ρrad = π2

30 g⋆T4 is the energy density of a radiation dominated uni-

verse and g⋆ is the number of degrees of freedom in the symmetric, high temperature

phase. For our QCD-like model the degrees of freedom are determined by the three

quarks with each four polarizations and three colours and the eight massless gluons

with two polarizations each, i.e.,

g⋆ =
7
8 ∑

f
n f + ∑

b
nb = 7/8 × 4 × 3 × 3 + 2 × 8 = 47.5 . (3.3)
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Note that α is related to the strength of the phase transition, the more energy released

during a phase transition the stronger the phase transition will be. In case of strong

phase transitions in which the universe remains stuck in the false vacuum long after

the critical temperature we have ∆Veff ≫ Tn(∂∆Veff(T)/∂T). In this regime, generally

called supercooling, both definitions of α are equivalent. Strong phase transitions are

characterized by α ≫ 1.

In the following chapter it will be shown that in general the chiral phase transitions of

our effective models are weak first order, i.e. α ≤ 1. Therefore, a definition of α needs

to be chosen. The choice of α will affect definitions of quantities discussed later, thus in

order to remain consistent with definition of other quantities we follow the definition

as given in ref. [91] and define α through the energy momentum tensor, i.e. α := αT.

Given the effective potentials of the (P)NJL model and the LSM, which can be found

in respectively eqs. (2.25), (2.40), (2.44) and (2.45), α can thus be straightforwardly de-

termined once σmin and Tn are known. While σmin can be determined by minimizing

each effective potential, the nucleation temperature Tn requires the determination of

the bubble nucleation rate Γ, which will be the topic of the next section.

3.1.2 Bubble nucleation rate

The effective potential and bubble nucleation dynamics are characterized by two tem-

peratures, Tn and Tc, which are in general not equal. The critical temperature Tc is the

temperature at which both minima are equal, i.e. the true and false minimum have

the same energy, and can easily be determined by plotting the effective potential as a

function of the temperature. Right below Tc bubbles will begin to nucleate. At some

point the temperature will be small enough that bubble nucleation becomes efficient.

This temperature is defined as Tn. Mathematically this condition is defined as the tem-

perature at which one bubble per (4D) Hubble volume is produced [93],

∫ Tc

Tn

dT
T

Γ(T)
H(T)4

!
= 1 , (3.4)

where Γ(T) is the bubble nucleation rate at finite temperature. Once this condition is

full-filled, bubbles will be produced faster than the Hubble expansion can drive them

apart, the relative space occupied by bubbles will therefore start to increase and the

phase transition will soon after be completed. In general Tn is also the temperature

at which the gravitational waves will be produced [28]. Note that in case of super-

cooling and subsequent reheating one needs to be careful with the equality [93]. This

will however not be an issue for the weak first order phase transitions present in our
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effective models. Equation (3.4) can be simplified by realizing that in general, for non-

supercooled PTs, the integral is dominated by contributions at T = Tn. Thus, the nu-

cleation temperature can to good approximated be determined from [93],

Γ(Tn)
!
= H(Tn)

4 , (3.5)

with the Hubble constant,

H2(T) =
ρrad(T)
3M2

Pl
, (3.6)

and the Planck mass, MPl = 2.435 × 1021 MeV. Note that this definition of the Hubble

constant is only valid for a radiation dominated universe.

At zero temperature the bubble nucleation rate, i.e. the tunnelling probability per unit

time and unit volume, is defined as [94, 95]:

Γ = A exp(−S4(ϕ)) , (3.7)

with S4(ϕ) the 4 dimensional Euclidean action. Which for a general scalar field ϕ is

given by,

S4(ϕ) =
∫

d4x

[
1
2

(
dϕ

dt

)2

+
1
2
(∇ϕ)2 + Veff(ϕ)

]
. (3.8)

The nucleation rate Γ can then be found by minimizing the Euclidean action S4(ϕ) and

substituting this into the definition of Γ. Assuming O(4) symmetry and working in

spherical coordinates this corresponds to solving the differential equation

∂2ϕ

∂r2 +
3
r

∂ϕ

∂r
− ∂Veff

∂ϕ
= 0 , (3.9)

with boundary condition,

ϕ(r)|r→∞ → 0 and
dϕ

dr

∣∣∣∣
r=0

= 0 . (3.10)

Note that for zero temperature the transition from the false to the true vacuum occurs

via quantum tunnelling.

We are however interested in the dynamics of the field at finite temperature, in this case

temperature fluctuations will play a dominant role in transitioning the field from the

false to the true vacuum [95]. At high temperatures the 4D Euclidean action will be

replaced by the 3D action S3 [95] which is defined as,

S3[ϕ] =
∫

d3x
(

1
2

∂iϕ∂iϕ + V(ϕ)

)
=
∫

dΩdr r2

[
1
2

(
dϕ

dr

)2

+ V(ϕ)

]
, (3.11)
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with the nucleation rate defined as [94],

Γ(T) ≃ T4
(

S3[ϕ]

2π2T

) 3
2

exp(−S3[ϕ]/T) . (3.12)

Similar to the zero temperature case the nucleation rate is determined by minimizing

the action S3[ϕ] and substituting this into the equation for Γ(T). Again assuming spher-

ical symmetry the S3[ϕ] is minimized by the following equation of motion,

∂2ϕ

∂r2 +
2
r

∂ϕ

∂r
− ∂V

∂ϕ
= 0 . (3.13)

The boundary conditions are the same as those defined for the zero temperature case,

see eq. (3.10). The solution of this equation of motion will be defined as ϕ0(r).

The equation of motion as defined in eq. (3.13) can be used to describe bubble nucle-

ation in the LSM, with the effective potential Veff defined in eq. (2.45). Note that the

field ϕ needs to be substituted by σ̄. However, as discussed, the scalar σ in the (P)NJL

model has a composite nature, consequently the kinetic term of the scalar field is not

present at tree level. It is thus necessary to add the wave function renormalization to

the Lagrangian. This results in a slightly changed equation of motion as compared to

eq. (3.11),

d2σ̄

dr2 +
2
r

dσ̄

dr
− 1

2
∂ log Zσ

∂σ̄

(
dσ̄

dr

)2

= Zσ
∂Veff

∂σ̄
. (3.14)

The same boundary conditions again apply. With Veff given by eq. (2.25) and eq. (2.40)

for the NJL and PNJL model, respectively. The wave function renormalization Zσ is for

both models defined in eq. (2.31).

Although a solution of this equation of motion can in general not be found analytically,

it is possible to find in numerically. In the next section we will discuss how this equation

of motion can be solved numerically to determine the minimum of the action S3[ϕ],

which we will define as S3[ϕ0].

Given the solution for the equation of motion, S3[ϕ0], the bubble nucleation rate can be

determined. Combining eqs. (3.4), (3.6) and (3.12) the nucleation temperature is found

by solving,
S3[ϕ0]

T

∣∣∣∣
T=Tn

= 2 log

(
90

g∗π2

M2
Pl

T2
n

)
. (3.15)

For weak phase transitions, as is the case for the transitions in our effective models,

Tn ∼ Tc. This equation can therefore be simplified by setting Tn = Tc in the right-hand

side of this equation.
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From S3[ϕ0] it is thus possible to find the nucleation temperature Tn and once Tn is

known α can be determined. The third quantity related to the bubble nucleation,

β/H, which is a measure for the speed of the phase transition, can also be determined

straightforwardly once S3[ϕ0] and Tn are derived. β is defined as [28],

β = H(Tn)Tn ·
d(S3(ϕ0)/T)

dT

∣∣∣∣
T=Tn

. (3.16)

3.1.3 Velocity of the bubble wall

The last quantity relevant for the production of gravitational waves is the bubble wall

velocity, vw. Naively one can understand its importance by thinking about the bubble

wall velocity as an energy contained in the bubbles. When bubbles collide, a large wall

velocity will naively correspond to more gravitational wave production.

Unfortunately the bubble wall velocity is the least well understood of the four quan-

tities discussed here. The terminal velocity the bubble wall reaches when expanding

is strongly related to the interaction of the particles undergoing the phase transition

with the plasma. One can in general distinguish two separate cases, runaway and non-

runaway. In case of a scalar field which does not couple to the plasma the bubbles

formed during the first order phase transition will be able to expand without any fric-

tion. This results in so called runaway bubbles for which the bubble wall velocity will

very quickly reach the speed of light, vw → 1. On the other hand, a field which is

strongly coupled to a plasma will have an expanding bubble wall which encounters a

large amount of friction from the plasma, thus resulting in a wall velocity which reaches

a terminal value vw ≤ 1 [28]. In this scenario the bubbles are called non-runaway.

To deal with the uncertainty in the bubble wall velocity we will in the next chapter

determine the gravitational wave spectra for a range of bubble wall velocities, namely,

0.75 < vw < 1.

3.2 Solving the equations of motions

In the following we will discuss how eq. (3.11), but also eq. (3.14), can be solved to

minimize S3[ϕ] and find ϕ0(r). The solution of the equations of motion, ϕ0(r), describes

a bubble profile; inside the bubble, at small r, the field is in the true vacuum, whereas

outside the bubble the field value takes the value of the false vacuum. Below we will

show explicitly how the equation of motion for an elementary particle, eq. (3.11), can be
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solved. The extension of this method to solving the equation of motion of a composit

field, eq. (3.14), is straightforward.

The equation of motion, eq. (3.11), shows that tunnelling from the false to the true

vacuum is mathematically equivalent to the classical motion of a ball rolling down a

potential −V with the friction given by 2
r

∂ϕ
∂r [94, 96]. The friction term is the result of

working in spherical coordinates. The boundary conditions then correspond to an ini-

tial position at which the velocity is zero and a final position exactly ‘on top’ of the false

vacuum. Continuing this equivalence one can see that the parameter r is analogous to a

time variable, while the field ϕ acts as a 1D position variable x. Note that the inversion

of the potential is the result of changing from Minkowski to Euclidean space. The equa-

tion of motion can in principle also be generalized for ϕ consisting of multiple fields,

see e.g. ref. [96], however for our purposes it is sufficient to describe the tunnelling of

a single scalar field.

To solve the equation of motion for a field ϕ and determine the bubble profile ϕ0(r)

which minimizes the action S3[ϕ] the Python package CosmoTransitions [96] is used.

For the (P)NJL, the package was slightly adapted to allow for the changed equation

of motion as defined in eq. (3.14). CosmoTransitions uses the overshoot/undershoot

method (see e.g. [94]) to solve the equation of motion.

The overshoot/undershoot method works as follows; Given a potential −V(ϕ), as de-

picted in fig. 3.2, the boundary conditions correspond to the field having zero ‘velocity’,

i.e. dϕ

dr
= 0, at some initial point close to the true vacuum and to the field reaching the

false vacuum for r → ∞. To determine the tunnelling solution, i.e. the true bubble pro-

file, we need to find the initial position ϕ(r = 0) such that at the end of the evolution

the field has exactly reached the false vacuum, i.e. ϕ(r → ∞) → 0. In general one can

always find a value of ϕ(r = 0) for which the field roles down too fast, causing it to

overshoot the false vacuum. The opposite case in which the field roles down so slow

that it gets stuck in the minimum can also generally be found. This is called under-

shooting. Consequently there must be a unique point for which the field roles down

with exactly the correct speed such that it ends up at the false vacuum with zero ve-

locity. This corresponds to the true solution of the equation of motion ϕ0(r). Within

CosmoTransitions this point is determined by varying the initial position till the true

solution is found up to some finite accuracy. In the right plot of fig. 3.2 the true solution

and an example of an undershoot and overshoot bubble profile are shown. We note

that the friction term results in the damped oscillation observed in the bubble profile of

the undershoot solution.

Furthermore, note that for small S3[ϕ0]/T the bubble nucleation rate is large, while for

large S3[ϕ0]/T the bubble nucleation rate is exponentially suppressed. For T = Tc the



Chapter 3 Gravitational wave production from PTs in the early universe 38

0 5 10 15 20

-1

0

1

2

3

4

5

6

r

ϕ
(r
)

FIGURE 3.2: On the left the inverted potential plus two points corresponding to approxi-
mately overshoot (A) and undershoot (B). On the right we have the bounce solution for over-

shoot(green), undershoot(orange) and the true solution(blue)

true bubble profile ϕ0(r) will give S3[ϕ0] → ∞. Which corresponds to the fact that

when the true and false minimum have the same energy tunnelling will take infinitely

long, i.e. there is no bubble nucleation at the critical temperature (Γ(Tc) → 0). For

smaller temperatures T < Tc the energy difference between the two minima in general

increases, thus increasing the bubble nucleation rate.

3.3 Contributions to the gravitational wave spectrum

Having introduced the four quantities describing a first order phase transition, we can

now use them to determine the energy density of the gravitational waves produced

during a first order phase transition.

The gravitational wave spectrum is not derived from first principles but determined

numerically using large-scale simulations. With these simulations approximate formu-

las for the energy density of the gravitational wave signal have been determined, see

e.g. ref. [97]. These formulas require the input of the four quantities discussed above.

There are three main processes which contribute to the gravitational wave production

(see e.g. ref. [28]); bubble wall collisions, soundwaves and magnetohydrodynamic tur-

bulence. The total gravitational wave signal is given as the sum of each of these pro-

cesses,

h2ΩGW ≃ h2Ωcoll + h2Ωsw + h2Ωturb . (3.17)

Depending on the quantities α, β/H, Tn and vw one or more of these contributions

dominate. In the following each of these contributions will be discussed separately.

The contribution to the gravitational wave signals from bubble wall collisions can be

approximated using the so called envelop approximation. From large scale simulations
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this contribution is determined to be (see e.g. [28]),

Ωcollh2( f ) ≈ 1.67 × 10−5
(

H
β

)2 ( κα

1 + α

)2 ( 0.11v3
w

0.42 + v2
w

)(
100
g⋆

)1/3

Senv( f ) , (3.18)

with the spectral function Senv( f ),

Senv( f ) =
3.8 ( f / fenv)

2.8

1 + 2.8 ( f / fenv)
3.8 . (3.19)

The redshifted peak frequency fenv defined as,

fenv = 16.5 × 10−3 mHz
β

H
f⋆
β

Tn

100 GeV

( g⋆
100

)1/6
, (3.20)

and the peak frequency at the time the gravitational waves are produced, f⋆, is

f⋆
β

=
0.62

1.8 − 0.1vw + v2
w

. (3.21)

Within the envelope approximation, see e.g. refs. [28, 98], the bubbles are approximated

as a thin shell. It is assumed that after collisions between bubbles only the outer shells

remain relevant, i.e. the envelope. The dynamics of the remnants of shells after their

initial collision, which are contained within this envelope, are neglected.

The only unknown quantity in these equations is κ, which is the energy contributing to

the bubble wall collisions as a fraction of the total energy produced during the phase

transformation. For a runaway bubble the bubble wall velocity quickly reaches the

speed of light. Therefore, almost all energy is contained in the bubble wall collisions

and subsequently transformed into gravitational waves. In this scenario the bubble

wall collisions will be the dominant contribution to the gravitational wave spectrum.

In case of a non-runaway bubble the friction of the bubble wall with the plasma will

transfer a large fraction of its energy to the plasma. Consequently, contribution from

soundwaves and turbulence are expected to be dominant and the contribution from

collisions is expected to be negligible [28]. Note that, contrary to the contribution from

bubble walls, the gravitational wave production from soundwaves as well as turbu-

lence are processes taking place in the plasma, so called bulk motion. Both of these

contributions are known less well, but can also be determined reasonably well with

large scale simulations. The gravitational wave spectra for each of these contributions
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are determined to be [28],

Ωswh2( f ) ≈ 2.65 × 10−6
(

H
β

)(
κvα

1 + α

)2 (100
g⋆

)1/3

vwSsw( f ) , (3.22)

Ωturbh2( f ) ≈ 3.35 × 10−4
(

H
β

)(
κturbα

1 + α

)3/2 (100
g⋆

)1/3

vwSturb( f ) , (3.23)

with the spectral functions Ssw and Sturb,

Ssw( f ) =
(

f
fsw

)3
(

7

4 + 3 ( f / fsw)
2

)7/2

, (3.24)

Sturb( f ) =
( f / fturb)

3

(1 + f / fturb)
11/3 (1 + 8π f /h⋆)

. (3.25)

The frequencies are defined as,

fturb = 2.7 × 10−2 mHz
1
vb

β

H
Tn

100GeV

( g⋆
100

)1/6
, (3.26)

fsw = 1.9 × 10−2 mHz
1
vb

β

H
Tn

100GeV

( g⋆
100

)1/6
. (3.27)

And h⋆, the reduced Hubble rate the time of the phase transition, is defined as,

h⋆ = 16.5 × 10−3 mHz
(

Tn

100GeV

)( g⋆
100

)1/6
. (3.28)

κv and κturb are the fractions of total energy going into respectively soundwaves and

turbulence. In case of large bubble wall velocities, which do not runaway, κv can be

estimated as [28],

κv =
α

0.73 + 0.083
√

α + α
. (3.29)

Following refs. [24, 28] the fraction of energy contained in turbulence is in general as-

sumed to be small,

κturb = ϵκv, with ϵ ≈ 0.05 . (3.30)

Due to ϵ ≪ 1 it can in general be assumed that for non-runaway bubbles soundwaves

will be the dominant contribution to the gravitational wave spectrum.

3.3.1 Fast transitions

The formulas for the soundwave contribution to the effective potential, as summarized

above, are derived within large-scale simulations, they are therefore only valid in spe-

cific limits. Interpolation of these results to other cases is in principle not trivial. More
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specifically, the equations for the gravitational wave contribution from soundwaves,

as summarized above, are only valid for slow phase transitions, i.e. for transitions in

which the soundwaves have enough time to produce the gravitational wave signals.

This means that they are only valid for τswH > 1 [99], with

τsw = (8π)
1
3 · ξw

U f β
. (3.31)

U f is the root mean-square velocity of the plasma [24],

U2
f =

3
ξ3

w

∫ ξw

cs

ξ2 v(ξ)2

1 − v(ξ)2 dξ . (3.32)

In this equation v(ξ) is the velocity profile as a function of ξ = r/t, with r the distance

from the centre of the bubble and t the time after nucleation. cs =
√

1/3 is the speed of

sound in a relativistic fluid. Following ref. [24] the velocity profile can be determined

by solving the differential equation,

2v
ξ

=
1 − ξv
1 − v2

[
1
c2

s

(ξ − v)
(1 − ξv)

− 1
]

∂ξv ,

v(ξw) =
v+ − v−

1 − v+v−
.

(3.33)

The boundary condition is determined by v+ and v−, which are respectively the plasma

velocity in the symmetric phase and the broken phase with respect to the bubble wall

velocity. In the case when the bubble wall moves faster then the sound speed we have

v+ = ξw. This situation is called detonation [91]. For detonation v+ and v− are related

through,

v+ =
1

1 + α

[(
v−
2

+
1

6v−

)
+

√(
v−
2

+
1

6v−

)
+ α2 +

2
3

α − 1
3

]
. (3.34)

Assuming the wall velocity reaches values close to the speed of light, i.e. the fluid out-

side of the bubbles moves into the bubble with v+ ∼ 1, v− and v(ξw) can be determined

from eqs. (3.33) and (3.34). These can subsequently be used to solve eq. (3.33) to find

the plasma velocity U f .

In the next chapter we will show that the first order phase transitions, as found in the

effective models we are discussing, in general have large β/H, consequently, τswH ∼
O(10−3). Thus, the phase transition completes before the soundwaves have had suffi-

cient time to produce gravitational waves. Equation (3.22) is therefore expected to over-

estimate the produced gravitational wave signal. Following refs. [24, 92] this overesti-

mation is taken into account by multiplying the energy density, as defined in eq. (3.22),
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with an additional factor,

Ωfast
sw h2 = τswH · Ωswh2 . (3.35)

Note that this reduction factor has not yet been determined within the actual simu-

lations but is an estimate based on the reduction of the time the soundwaves have

to produce gravitational waves. Large scale simulations in the case of τswH < 1 are

needed to get a better understanding of this effect.

For fast transitions the fraction of the energy which is stored in turbulent motion is

expected to significantly increase, i.e. the estimate in eq. (3.30) likely underestimates

the contribution of turbulence to the gravitational wave signal. Following ref. [92] this

effect is taken into account by multiplying the energy density defined in eq. (3.23) by

an extra factor,

Ωfast
turbh2 = (1 − τswH) · Ωturbh2 . (3.36)

Additionally ϵ = 1 and thus κtb = κv.

In the next chapter we will show that due to the reduction of the soundwave contri-

bution and the increase of the contribution from turbulence, both contributions now

become comparable in size [1].

3.4 Gravitational wave experiments

Apart from some already operational experiments like LIGO and VIRGO [87] there

are many proposed and/or planned experiments which aim to measure gravitational

waves from both astrophysical sources as well as early cosmology. This includes signals

from phase transitions in the early universe. See for example ref. [100] for a review.

Without going into all the technical details we will give a short summary of some of

these experiments with their main characteristics. The currently planned or operational

gravitational wave experiments we will be discussing can in general be split into three

groups: ground- and space-based interferometers and Pulsar Timing Arrays (PTAs).

See ref. [100] for a more extensive review and details of experiments not mentioned

here.

The best-known ground-based gravitational wave experiments are LIGO and VIRGO

[87]. As mentioned, these are the two experiments which have been able to measure

gravitational wave signals from binary black hole and neutron star mergers [86]. Both

of these detectors are ground-based laser interferometer experiments, consisting out

of two kilometre-scale perpendicular arms. Using strong lasers the distance between

freely floating masses, i.e. test masses, at the end of each arm is precisely measured.



Chapter 3 Gravitational wave production from PTs in the early universe 43

Thermal fluctuations are minimized by embedding the whole system in vacuum tubes.

Gravitational waves will stretch and contract spacetime in perpendicular direction,

thereby creating an, at least theoretically, measurable shift in the arm-lengths (see e.g.

ref. [87]). Upgrades of both of these experiments are underway, called aLIGO and

aVIRGO. Note that there are also plans for a so called third-generation ground-based

interferometer, the Einstein Telescope [101, 102], unlike VIRGO and LIGO the Einstein

telescope is planned to be underground, allowing for reduction in background noise.

Furthermore, the Einstein telescope is planned to be triangular-shaped. Triangular-

shaped detectors are an efficient way of measuring additional aspects of gravitational

wave signals, like the for example the polarization, without the need to introduce mul-

tiple L-shaped detectors [102]. LISA and VIRGO as well as the Einstein Telescope are

mainly sensitive in the ∼ 100Hz region, interesting for for example the binary mergers.

Note that by using multiple L-shaped interferometers, located at different positions

on earth, it is not only possible to measure gravitational wave signals, but it is also

possible to pinpoint the source of these gravitational waves. Thus allowing for ex-

tremely interesting multi-messenger research by combining graviational wave signals

with electromagnetic signals [85].

Additionally, there are multiple space-based experiments in various stages of research

and development. The most notable of these is eLISA [37, 103, 104], which is planned

to be a triangular-shaped interferometer, like the Einstein Telescope. Since the detec-

tor will be space-based there is no need for complex vacuum tubes which embed the

lasers and test masses. The plan is for eLISA to have arm-lengths of about 2.5× 106 km.

Noise is expected to reduce drastically compared to standard ground-based interferom-

eters. eLISA will be measuring signals in the mHz range [100], thus being interesting

for galactic and extra-galactic binaries as well as possible gravitational wave signals

from processes in the early universe like phase transitions [100, 104]. At the moment

important research on the feasibility and technically challenges is being done with the

LISA-pathfinder mission, which has shown that indeed very good sensitivities can be

reached [104]. eLISA is expected to be operationally at some point in the 2030s.

Several other space-based detectors worth mentioning here are DECIGO [105, 106] and

BBO [105], both of these will be similar to eLISA, but are planned to be sensitive to

slightly larger frequencies (0.1 mHz) and have better sensitivities.

The last type of gravitational wave experiments are the Pulsar Timing Arrays. These

experiments are based on the extremely precise measurement of pulses coming from a

pulsar. Gravitational waves will affect the speed of light, thereby changing the arrival

time of a pulse if the photons encounter a gravitational wave along the way. Due to
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the well-known periodicity of pulsar any change in periodicity can in principle be de-

tected, thus giving an indirect measure of the gravitational wave background [100]. Of

all the experiments PTAs are in general sensitive to the lowest frequencies, namely to

frequencies in the nHz range.

In order to determine if an experiment will be able to detect gravitational wave signals

from phase transitions in a certain model, as calculated from eqs. (3.18), (3.22) and (3.23)

for respectively the collisional, soundwave and turbulence contribution, the expected

signal needs to be compared to the experimental sensitivity.

Following refs. [89, 100, 107], the sensitivity of an experiment is (partially) limited by

the noise measured in the experiment. The noise can be defined either in terms of the

characteristic strain hn, the power spectral density amplitude, S1/2
n , or the gravitational

wave spectral energy density Ωnoise, these three definitions of the sensitivity are related

through [100, 107],

Ωnoise( f ) =
2π2

3H2
0

f 3Sn( f ) , (3.37)

hn( f ) = f 1/2[Sn( f )]
1
2 . (3.38)

The quantity which is usually plotted is Ωh2, which has the advantage that it does not

depend on the relatively badly known Hubble constant [89],

Ωh2 =
2π2

3
f 3S( f )

(
h

H0

)2

, (3.39)

with H0 = h × 100 km s−1 Mpc−1

Given the power spectral density amplitude or the characteristic strain, which is the

function usually given for an experiment, it is straightforward to change this into the

spectral energy density. For each experiment the (design) sensitivity can be found in

the literature (see e.g. ref. [107]). For a range of operational and planned experiments

these sensitivity curves are shown in fig. 3.3.

An important quantity to determine the discovery potential of a signal for a given ex-

periment is the signal-to-noise ratio (SNR), defined as,

SNR =

√
2tobs

∫ fmax

fmin

d f
[

ΩGW( f ) h2

Ωnoise( f ) h2

]2

. (3.40)

Here tobs is the time for which the experiment is operational, given in seconds. ΩGWh2

and Ωnoiseh2 are respectively the GW signal from the first order phase transition and the
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FIGURE 3.3: Sensitivity curves in terms of ΩGWh2 as a function of frequency, from ref. [89]

sensitivity of the experiment in terms of the energy density. The frequencies fmin and

fmin are determined by the frequency band for which a given experiment is sensitive.

Note that when plotting sensitivities in terms of Ωh2 the area for which the signal and

the experimental sensitivity overlap does not straightforwardly correspond to the SNR

[89].

Following ref. [93], we find the sensitivity curves of the experiments from refs. [105, 106,

108] for respectively the B-DECIGO, FP-DECIGO and BBO and LISA experiments. The

sensitivity curves used in the following chapter assume 5 years of run-time (tobs = 5

years) and a threshold signal to noise ratio of 5.
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Chapter 4
Gravitational wave signals from a

strongly coupled dark sector

In chapter 2 we have derived equations for the effective potential of three effective

low-energy models for QCD-like theories. Afterwards, in chapter 3, we showed how

the effective potential can be used to derive the gravitational wave signals from a first

order phase transition. In this chapter these results will be combined to derive the

gravitational wave signal from a first order phase transition in a QCD-like theory.

The chapter is organized as follows: first we will discuss how the parameters in the

three effective models, the (P)NJL model and the LSM, can be chosen such that the

models give comparable results. Secondly, several sets of parameters will be given.

These benchmark points will be subsequently used to determine the predicted gravita-

tional wave spectra for each of the effective models. Afterwards we will show how

these results can be extended straightforwardly to also determine the gravitational

wave spectra of phase transitions at different energy scales. The chapter will end with a

discussion of these results, highlighting the interesting aspects and discussing possible

issues and improvements.

The results presented in this chapter are based on work done in collaboration with

J.Kubo and A.Helmboldt, as presented in ref. [1].

4.1 Parameter choices

To compare the different effective models we will choose the parameters of each model

such that the observables, i.e. the meson masses and the pion decay constant, match.

47
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The NJL and the PNJL model each have two free parameters, G and GD, while all other

parameters are fixed as discussed in chapter 2. The meson masses are determined as

summarized in chapter 2, eq. (2.28), whereas the pion decay constant fπ is given by

[48, 109]:

f 2
π = 4nc M2

c I0(vσ) , (4.1)

I0(vσ) =
∫ d4k

i(2π)4
1

(k2 − M2
c )

2 , (4.2)

with Mc the constituent quark mass at the minimum; Mc = M(vσ). The pion de-

cay constant is determined at zero temperature. Similar to the divergent integrals we

encountered previously in the (P)NJL model, this integral is regularized using a four-

dimensional Euclidean cut-off Λ. We set the cut-off scale to Λ = 0.93 GeV, such that

the dark sector resembles real-world QCD closely [23].

It is clear that with two free parameters and four observables (the fifth observable mπ is

per definition zero in the chiral limit), only two of the observables can be tuned to match

experimental data, the other two observables will be predictions of the model. In the case

of real world QCD, a 3-flavour NJL model will have more parameters; e.g. GD, G, mu ≈
md and ms, but the number of observables is also much larger due to the produced mass

splitting within the octets. In ref. [55] the mass spectrum of the pseudoscalar mesons is

derived and it can be seen that the NJL model actually does a decent job in predicting

meson masses. Given G and GD we can thus uniquely determine the mesons masses

as well as the pion decay constant. For the NJL model the mass spectrum for one set of

parameters is shown in fig. 2.5. As mentioned previously, the gluon dynamics does not

affect the zero temperature observables, the PNJL model therefore has the same mass

spectrum as the NJL model.

On the other hand, the LSM has four free parameters in the chiral limit, c, λσ, λa and m2.

In principle this allows for each observable to be tuned separately. In order to ensure

that the observables are the same in all three effective models, we first fix G and GD.

Given these parameters it is straightforward to derive the predicted mass spectrum and

pion decay constant in the NJL and PNJL models. Finally, using these observables as

input parameters for the LSM, the free parameters of the LSM can be calculated.

Working with parameter sets determined in the manner described above ensures that

the mass spectra, as well as the pion decay constant, are the same. To allow for some

variation in G and GD we will in this chapter work with four sets of benchmark points,

these benchmark points are chosen such that the phase transition is first order. We only

consider small deviations from the parameters describing real-world QCD. Tables 4.1
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benchmark
point

(P)NJL model Linear Sigma Model

G[ GeV−2] GD[ GeV−5] m2[ MeV2] λσ λa c[ MeV]

A 3.84 −90.65 −4.2 × 103 16.8 12.9 2369

B 3.99 −106.45 4.8 × 103 25.5 15.2 4091

C 4.00 −60.00 2.4 × 104 14.8 14.0 1196

D 5.00 −60.00 1.9 × 105 33.3 25.1 2176

TABLE 4.1: Model parameters corresponding to the meson masses in table 4.2. The UV cutoff
scale of the (P)NJL model is set to Λ = 930 MeV. From ref. [1].

benchmark
point fπ [MeV] mπ [MeV] mσ [MeV] mη′ [MeV] ma [MeV]

A 72 0 248 458 491

B 90 0 400 672 697

C 74 0 291 328 431

D 108 0 694 535 792

TABLE 4.2: Mass spectra and pion decay constant of the benchmark points presented in table 4.1.
From ref. [1]

and 4.2 summarize the model parameters and the resulting meson masses and pion

decay constant for each benchmark point and effective model.

Before discussing the predicted gravitational wave spectra, we will, for one of the

benchmark points, show explicitly that indeed the phase transition in all three effective

models is first order. This is done by determining the global minimum of the potential

as a function of temperature, the results of this calculation are shown in fig. 4.1.

Several aspects of this figure are interesting to mention; First of all the global minimum

for all three models is clearly discontinuous as a function of temperature. This signifies

that indeed the phase transition is first order. Secondly, the NJL and PNJL model are

equivalent for small temperatures. This is true by construction, since for small temper-

atures the temperature corrections to the effective potential will be subleading. At zero

temperature any contribution from the gluon dynamics will completely disappear. A

third interesting feature is that the gluon dynamics increases the critical temperature of

the PNJL model with respect to the NJL model. Note that this observation agrees with

literature, see e.g. ref. [58]. On a last note, fig. 4.1 shows that, for these effective mod-

els, not only the critical temperature but also the vacuum expectation value of σ is of

similar magnitude but by no means equal. Considering the different origins of these ef-

fective models and different degrees of freedom contained within them this is perhaps

not a surprise. Already from this result we can expect that these effective models will in
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FIGURE 4.1: Global minimum of the effective potential, σ̄min, for each of the low-energy effective
models. Calculations have been done for benchmark point A of table 4.1. From ref. [1].

general not predict exactly the same gravitational wave signals. To determine the dis-

crepancies between the predicted gravitational wave signals we will in the following

section calculate the predicted signals for each of the effective models explicitly.

4.2 Chiral Phase Transition at O(100 MeV)

Using the benchmark points defined in table 4.1, the gravitational wave signal pro-

duced during a first order phase transition in each of the effective models can be deter-

mined. It is straightforward to show that for each benchmark point the phase transi-

tions occurs around T = 100 MeV, thus implying that the hidden sector closely resem-

bles real-world QCD.

We start by determining the effective action, S3(T)/T, as a function of T, by solving the

bounce equation with CosmoTransitions [96], as discussed in chapter 3. For benchmark

point A these results are shown in fig. 4.2 for each effective model. Interestingly, the

points can be seen to lie on a line which is approximated very well by:

S3(T)
T

≈ b
(

1 − T
Tc

)−γ

for T ≤ Tc . (4.3)

Note that for γ > 0, this function has a pole at T = Tc. As discussed previously, this

is exactly the behaviour the true minimized action should have since at T = Tc both

minima are equal and tunnelling will thus take an infinitely long time.
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FIGURE 4.2: Minimized effective action S3[σ0]/T as a function of the dimensionless temperature
T/Tc for benchmark point A of table 4.2. The black circles correspond to the explicit calculations,
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BP effective
model Tc [MeV] Tn [MeV] g⋆α β

H [104] γ b

A

NJL 71.7 70.5 3.4 1.8 1.76 1.3 · 10−1

PNJL 121.8 121.4 1.1 9.4 1.82 5.0 · 10−3

LSM 101.8 101.0 0.8 4.4 1.86 1.8 · 10−2

B

NJL 107.1 106.4 2.6 4.3 1.80 2.3 · 10−2

PNJL 140.5 140.2 2.0 13.8 1.87 2.0 · 10−3

LSM 145.8 145.3 0.7 8.6 1.89 4.6 · 10−3

C

NJL 90.8 90.6 1.2 11.1 1.81 4.0 · 10−3

PNJL 131.3 131.1 0.9 45.7 1.85 2.4 · 10−4

LSM 100.5 99.9 1.1 5.7 1.87 1.1 · 10−2

D

NJL 180.3 180.3 0.4 162.6 1.92 1.4 · 10−5

PNJL 198.3 198.3 0.3 244.9 1.86 9.7 · 10−6

LSM 175.3 174.5 1.2 7.8 1.91 5.0 · 10−3

TABLE 4.3: Parameters characterizing the (hidden) chiral first order phase transition for each
effective model and benchmark point from. g⋆ = 47.5 throughout. From ref. [1]

The interpolation of S3(T) will be used to determine the nucleation temperature as well

as β/H. The parameters b and γ are determined by fitting the results of explicit calcu-

lations to eq. (4.3). Additionally, α and the critical temperature can be determined as

described in chapter 3. All these results are summarized in table 4.3, for each bench-

mark point and each effective model. As mentioned g⋆ = 47.5, which corresponds to a

dark sector with three fermion flavours and colours together with eight gluons.

Similarly to what we saw for benchmark point A, the critical temperature in the PNJL

model is generally larger than that of the NJL model. On the other hand, the critical
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temperature of the LSM can be both smaller and larger than those of the (P)NJL mod-

els. Furthermore, the nucleation temperature is rather close to the critical temperature.

As discussed, this signifies a weak first order phase transition. The generically small

values of α ∼ 0.1 concur with this observation. Note that the weak transition means

that there will not be any significant supercooling or reheating [93], which justifies the

use of the radiation energy density in the definition of the Hubble constant, eq. (3.6).

Since the transition happens at a relatively large temperature and in the absence of

supercooling or reheating, the use of S3 instead of S4 is also valid.

At last, note that the values of β/H obtained for the phase transitions in these effec-

tive models are, perhaps somewhat unexpectedly, rather large. Remember that β/H is

actually calculated from the effective models and is not an estimate. This result is sig-

nificantly different compared to previous work on this topic, see e.g. refs. [35–37, 110],

where β/H was generally estimated to be around β/H =∈ [1, 100]. In ref. [110] a value

of β/H ∼ O(1 − 100) is estimated as follows: starting from the definition of β/H

β

H
= Tn

d(S3[ϕ0]/T)
dT

∣∣∣∣ , (4.4)

the derivative can be expanded as,

β

H
=

(
dS3

dT
− S3

T

)
T=Tn

. (4.5)

Neglecting the first term and using the definition of Tn, see eqs. (3.5) and (3.12), we can

approximate β/H by
β

H
≈ 4 log

MPl

Tn
. (4.6)

Due to the logarithmic dependence on MPl and the large value of MPl this approxima-

tion will give β/H ∼ O(100) for a large range of nucleation temperatures Tn. Thus

explaining why an estimate of β/H ∼ 100 is often used in the literature. However,

from this argumentation we can also see why it fails for our models and benchmark

points. As a result of the weak first order phase transition, with Tn ∼ Tc, the derivative

term in eq. (4.5) is expected to be large1 and can therefore not be neglected. In for ex-

ample ref. [111] β/H was also determined within a LSM as an effective model for some

dark sector and also here a β/H value larger than the conservative estimate of O(100)

was found. Note that for a strong first order phase transition with Tn ≪ Tc the estimate

β/H ∼ O(100) should remain valid for a large range of Tn.

Given the parameters describing the phase transition as summarized in table 4.3, it is

now possible to determine the corresponding expected gravitational wave signal. The

1This is the case because S3(T) is expected to approach infinity for T → Tc.



Chapter 4 Gravitational wave signals from a strongly coupled dark sector 53

FIGURE 4.3: The contribution from bubble collisions, soundwaves and turbulence to the total
gravitational wave spectrum. On the left without suppression(enhancement) factors for sound-

waves(turbulence), on the right with this additional factor.

uncertainty in the bubble wall velocity vw will be taken into account by determining a

band of gravitational wave signals covering 0.75 ≤ vw ≤ 1. Note that the large β/H

values calculated for the phase transition signify fast phase transitions, i.e. τswH < 1

with τsw defined in eq. (3.31). Since the validity of the suppression(enhancement) term

for the sound(turbulence) contribution to the gravitational wave spectrum, i.e. eqs. (3.35)

and (3.36), is not yet explicitly proven in simulations, we will calculate the gravitational

wave spectrum both with and without the additional factor. The true signal will then

likely lie somewhere between these two estimates.

In chapter 3 it was argued that the soundwave contribution is expected to be domi-

nant since we are assuming the scalar has sizeable interactions with the plasma, thus

resulting in a significant energy transfer from the bubble wall to the plasma and con-

sequently resulting in a non-runaway scenario [28]. To explicitly show this, fig. 4.3

shows for benchmark point A of the NJL model the gravitational wave signal from

each of the three contributions. On the left without the extra factor from fast transi-

tions, i.e. eqs. (3.18), (3.22) and (3.23), on the right with this extra factor, i.e. eqs. (3.18),

(3.35) and (3.36). With κ = 1 for the contribution from bubble wall collisions. For the

right figure only the spectrum for vw = 1 is shown while in the first figure a band is

shown for vw = 0.75 to vw = 1. Since the gravitational wave signal which include

effects from fast transitions is anyway strongly suppressed looking into bubble wall

velocities vw < 1 will only result in further suppression.

Although in the right plot of fig. 4.3 the contribution from collisions is shown, this

contribution should probably not be taken seriously. Naively fast transitions should

also affect the ability of bubbles to efficiently collide and produce gravitational waves,

thus affecting the validity of the envelope approximation. The envelope approximation

will thus likely overestimate the contribution of bubble collisions to the gravitational

wave signal. Since already the envelope contribution gives a gravitational wave signal
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FIGURE 4.4: Predicted gravitational wave spectra for each of the benchmark points and models.
Also shown is the power-law integrated sensitivity curve for the LISA experiment. The contin-
uous bands show the GW signal without taking into account the additional factor due to the

fast transition, whereas the dashed curves show spectra including this factor. From ref. [1].

which is only of the same order of magnitude as the other contributions we will in the

following neglect the contribution from bubble collisions.

From fig. 4.3 we can thus conclude that for an order of magnitude estimate of the grav-

itational wave signals from first order phase transitions it is sufficient to only take into

account the soundwave contribution, eq. (3.22), when the additional factor from fast

transitions is not taken into account. When we do take this additional factor into ac-

count, we will determine both the soundwave and turbulence contribution eqs. (3.35)

and (3.36), since these contributions are shown to be of the same order of magnitude.

For the four benchmark points and three effective models the predicted gravitational

wave spectrum is shown in fig. 4.4. This figure also shows the power-law integrated

sensitivity curve for the LISA experiment [105, 107], for a runtime of five years and a

threshold SNR of 5. From fig. 3.3 it is clear that none of the other gravitational wave

experiments will have sensitivities good enough to be able to measure the predicted

signal.

Figure 4.4 shows that chiral phase transitions around 100 MeV correspond to a peak

frequency of about 1 mHz, exactly in the range for which the LISA experiment is most

sensitive. Unfortunately the large values of β/H result in suppressed gravitational

wave signals. Taking into account the additional suppression as defined in eq. (3.35),
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a possible detection from a chiral phase transition seems even further away. Note that

the different effective models predict GW signals, which although qualitatively similar,

do differ both in size and peak frequency by several orders of magnitude. Furthermore,

the predicted GW spectrum also varies by several orders of magnitude depending on

the choice of model parameters, i.e. the benchmark points. Note that by plotting the en-

ergy density, Ωh2 the discovery potential, or signal-to-noise ratio, is no longer directly

related to the overlapping area between signal and experiment [89]; however it still

holds that the further these two are apart the less likely it is for an experiment to detect

the signal. We will later give results for the signal-to-noise ratios to give a more quanti-

tative measure of how likely it is for the LISA experiment, or any other experiment, to

detect gravitational wave signals from the hidden chiral phase transition.

4.3 Chiral Phase Transition at higher scales

So far the effective QCD-like models we considered describe dark sectors which contain

physics at a scale of about O(100 MeV), similar to the real QCD theory embedded in

the standard model. However, there is in principle nothing which limits these QCD-

like dark sectors to this energy scale. QCD-like dark sectors could just as easily contain

physics at (much) higher energy scales.

Scaling up the results of the O(100 MeV) dark sector is pretty straightforward and, as

we will see, does not require a complete recalculation of all quantities needed to derive

the gravitational wave spectra. In e.g. ref. [23] the rescaling of a QCD-like NJL model

is also discussed. We consider a rescaling with ξ for which the observables of the three

effective models, as summarized in table 4.2, are rescaled as follows;

mi → ξ · mi and fπ → ξ · fπ . (4.7)

The rescaling of these observables is achieved by rescaling all dimensionful model pa-

rameters as:

G → G/ξ2, GD → GD/ξ5, Λ → ξ · Λ,

Tglue → ξ · Tglue, m2 → ξ2 · m2, c → ξ · c .
(4.8)

Since the critical temperature is completely determined by the model parameters through

the effective potential, it will also rescale in the same way, Tc → ξ · Tc. Correspondingly,

the dimensionless quantity S3
T (T/Tc) will remain unchanged by rescaling. There is thus

no need to again solve the equations of motions for these rescaled dark sectors explic-

itly.
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The nucleation temperature on the other hand does not exactly rescale like Tn → ξ · Tn.

Looking back at the definition of the nucleation temperature given in eq. (3.15), it is

clear that MPl, although being a dimensionful quantity, will not change under rescaling

since it is not determined by a model but fixed to a specific value. Consequently, Tn

does not exactly scale according to its dimensionality, the discrepancy is however small

due to the logarithmic dependence of eq. (3.15) on MPl.

Since the potential is a smooth function in T, a small deviation in the scaling Tn → ξ · Tn

is not expected to impact α significantly. α, being a dimensionless constant, will thus

remain approximately unchanged during rescaling. β/H on the other hand is expected

to be rather sensitive to small changes in Tn, due to the pole S3(T) has at T = Tc.

We thus expect the dimensionless β/H to change non-negligibly due to rescaling. By

using S3/T and solving eq. (3.15) to find the nucleation temperature, it is possible to

find β/H as a function of the scale. In fig. 4.5 β/H is shown as a function of Tc for the

different effective models and for benchmark point A. The dependence of β/H on g⋆
is shown by the depicted bands. Furthermore, note that Tc = 100 MeV corresponds to

approximately ξ = 1 while Tc = 10TeV corresponds to approximately ξ = 105. Note

that the changes in β/H and Tn/Tc are not significant enough to change anything in the

discussion on which contribution is the most relevant or change the issue of the phase

transition being relatively fast.

Given the dependence of Tn, α and β/H on the rescaling parameter ξ it is now pos-

sible to determine the gravitational wave spectrum for any ξ. This will be done in

exactly the same manner as for fig. 4.4. Note that due to the redshift, the peak frequen-

cies for all contributions scale with approximately Tn and will thus also scale linearly
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FIGURE 4.6: Predicted gravitational wave spectra for each of the benchmark points and effective
models, rescaled with ξ = 100. Also shown are the power-law integrated sensitivity curves for
the DECIGO and BBO experiments. See text and caption of fig. 4.4 for more details. From ref. [1].

with ξ. For ξ > 1 the predicted gravitational wave spectrum will therefore shift to

larger frequencies. Thus resulting in signals which, for large enough ξ, will be in the

range of experiments like B-DECIGO, FP-DECIGO and BBO, see fig. 3.3. The power

law-integrated sensitivity curves for these experiments are again determined for a run-

time of 5 years and a threshold SNR of 5. Strain noise power spectral densities for

these three experiments can be found in refs. [106], [108] and [105] respectively. Note

that other experiments like LIGO or the Einstein Telescope, although sensitive to fre-

quencies of about 1 − 1000 Hz, have sensitivities which are insufficient to detect the

predicted gravitational wave signal, see fig. 3.3.

Figures 4.6 to 4.8 show the predicted gravitational wave spectrum for each of the bench-

mark points and effective models for respectively ξ = 100, ξ = 103 and ξ = 105, cor-

responding to dark sectors with chiral phase transitions occurring at scales between

10 GeV and 10 TeV. Note that changing the scale of the model has almost no effect on

the magnitude of the GW signal, only on the position of the peak.

These figures show that, in contrast to the O(100 MeV) chiral phase transition, which

produces an insufficient GW signal, the scaled up hidden sectors have a much better

chance of producing measurable GW signals. This is mainly due to the increased sensi-

tivity of DECIGO and BBO compared to eLISA. Unfortunately, also here, when taking
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into account the additional factor due to the fast phase transition, predicted gravita-

tional wave signals become highly suppressed, thus reducing the chance of detection.

Instead of plotting the energy densities of the gravitational wave signal it is more in-

structive to determine the signal-to-noise ratio (SNR), eq. (3.40). Of all the benchmark

points used benchmark point A has the largest signals, we therefore use this bench-

mark point to determine the SNR, this is shown in fig. 4.9. As mentioned the SNR

gives us a quantitative measure of the discovery potential. In this figure, the SNR is

plotted as a function of the critical temperature of the scaled-up effective models, both

for the case when the likely soundwave suppression from fast phase transition is taken

into account and for the case where this effect is ignored. Signal-to-noise ratios for the

three experiments which are most sensitive in the relevant frequency band, i.e. LISA,

FP-DECIGO and BBO, are shown.

Figure 4.9 illustrates again the qualitative picture already discussed; measuring a signal

from a first order phase transition in a hidden QCD-like sector seems rather unlikely.

Although, we have to keep in mind that there is a large uncertainty coming from the

choice of effective model and the choice of model parameters as well as the way in

which a possible suppression from fast phase transitions is implemented.
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4.4 Discussion

Looking back at the two main questions posed in the introduction;

(1) Do different low-energy effective models have similar effective potentials and/or

predict similar gravitational wave signals?

(2) Can these GW signals be measured in current or future experiments?

we are now in a position to answer these questions.

Figure 4.1 shows that even though the three effective models predict the chiral phase

transition to be first order, they do not generally predict exactly the same critical tem-

perature or vacuum expectation value. The order of magnitude of these quantities is

however similar. We can thus conclude that although the qualitative behaviour of each

of the models is the same, quantitatively there are O(1) differences between the predic-

tions of the effective models.

This overall picture carries over to the determination of the quantities related to bubble

nucleation, i.e. α, β/H and Tn. Although all similar in magnitude, the discrepancies

are also of O(1), or, in the case of the inverse duration of the phase transition, β/H,

even larger. These results were summarized in table 4.3. Consequently there are also

large quantitative differences between the gravitational wave spectra predicted by the

effective models, see e.g. fig. 4.4.

Thus, the answer to the first question is only partially confirmative; yes low-energy

effective models do describe similar effective potentials with critical temperatures of

the same order of magnitude. However, the magnitude as well as the peak frequency of

the gravitational wave spectra can differ by multiple orders of magnitude. Within each

model there is also a large variation in predicted gravitational wave spectra depending

on the choice of the model parameters.

The second question unfortunately cannot be answered conclusively either. Due to the

large variation in magnitude of the gravitational wave signal depending on both the

effective model used and the choice of model parameters it is unclear if a signal will be

within detectable range of (future) experiments like LISA, BBO and DECIGO. Note that

the discovery potential of such a hidden chiral phase transition seems most favourable

for QCD-like models with critical temperatures around the 100 GeV scale.

However all is not lost. To end the discussion on a more positive note I would here like

to discuss how these results can proof useful and what could be done to improve on

this analysis.
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First of all the discrepancy between the models clearly shows that work remains to be

done on the effective models describing low-energy QCD, which is in itself a useful

conclusion. In order to address and possibly minimize this discrepancy between the

effective models one could for example, in the LSM, include the renormalization of the

vacuum contributions instead of neglecting these terms. Additionally it is an option to

add terms from higher order loop diagrams to the effective potential. One could for ex-

ample add sunset diagrams to the effective potential of the LSM, however, since these

additional diagrams are supposed to be subleading, they should not have a significant

effect on for example the critical temperature. By using different, better, renormaliza-

tion schemes the determination of the effective potential of the (P)NJL model could also

be improved, see e.g. ref. [54] for a discussion on renormalization schemes for the NJL

model. Furthermore, it is also possible to extend the effective QCD models to include

vector mesons.

With the advancement of computational methods, it has also become feasible to calcu-

late properties of QCD on the lattice. Lattice calculations have the advantage that they

calculate the full QCD theory from first principles, meaning no effective low-energy

models are needed. When the moment comes that these type of calculations can deter-

mine for example the effective potential with sufficient precision, one could determine

the quantities relevant for bubble nucleation and the gravitational wave spectrum from

first principles. Considering the inherent uncertainty involved in choosing effective

models, this might be the preferred route to take towards understanding the dynam-

ics of strongly coupled (hidden) theories. Recently in ref. [41] a first calculation in this

direction was presented.

Furthermore, when a stochastic background is measured by the GW experiments and

its shape points towards the existence of a first order phase transitions2, these measure-

ments can be used to constrain the possible hidden sectors. Since hidden sectors by

construction only interact weakly with the Standard Model conventional experiments

like collider experiments will in principle not be able to constrain the parameter space

of a hidden sector significantly. The detection of gravitational waves from a first order

phase transition thus provides a unique complementary route for investigating physics

at high energy scales, like for example hidden sectors.

Hereby part A of this thesis is concluded and we continue with another interesting

Standard Model extension, namely scalar extensions. As mentioned in the introduc-

tion, the dynamics of (first order) phase transitions in scalar extensions is rather well

2Note that there are other stochastic backgrounds, from for example unresolved binaries, which how-
ever are not expected to have the same distinct shape as the signals from a first order phase transition. See
e.g. ref. [112].
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known. This will allow us to hopefully constrain scalar extensions further once gravi-

tational waves from first order phase transitions are detected. In part B another aspect

of scalar extensions, also related to physics in the early Universe, will be discussed. To

be precise, we will investigate how a scalar can affect the Baryon Asymmetry of the

Universe (BAU).



Part B

Effect of a scalar on leptogenesis via

oscillations
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Chapter 5
Leptogenesis via oscillations

In this chapter some solutions to one of the prominent problems of the Standard Model,

its inability to explain the Baryon Asymmetry of the Universe (BAU), will be discussed.

The chapter is organized as follows; we will start with a quick reminder of what the

BAU is before giving a limited overview of some of the many mechanisms which can

explain the BAU. The main focus of this chapter will be on a rather elegant minimalistic

way to produce the BAU, namely leptogenesis via oscillations; generally called ARS

leptogenesis after the authors of the first paper discussing the mechanism [29]. ARS

leptogenesis will be discussed in one of its simplest implementations: the νMSM [30,

113, 114].

After discussing standard ARS leptogenesis and its implementation in the νMSM, we

will, in chapter 6, discuss how a scalar extension affects this framework.

5.1 The BAU and its possible production mechanisms

Within the Standard Model of particle physics all elementary particles have a partner

with opposite charge, the anti-particles. We observe that the number of baryons today

exceeds the number of anti-baryons by multiple orders of magnitude, i.e., there exists a

non-zero baryon asymmetry. This asymmetry can be measured indirectly from for ex-

ample the Cosmic Microwave Background (CMB) or Big Bang Nucleosynthesis (BBN)

and has been determined to be [115],

Y∆B =
nB − nB̄

s
≈ 8.75 × 10−11 . (5.1)

65
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FIGURE 5.1: An example of an electroweak sphaleron interaction.

Here the entropy s is defined as s = 2π2

45 g⋆T3 and g⋆ is the number of relativistic degrees

of freedom in the thermal bath. In the early Universe, before electroweak symmetry

breaking, g⋆ = 106.75 for the Standard Model, see e.g. ref. [116].

Although the baryon asymmetry could in principle be set by the initial conditions of the

Universe, this explanation is unsatisfactory for multiple reasons; An asymmetry this

small would require an extreme fine-tuning in the early Universe. Therefore, it would

be more natural that the early Universe started out in a state with equal numbers of

particles and anti-particles [115]. Fine-tuning, although not forbidden or impossible,

is at the very least somewhat unlikely. Secondly, in order to explain, for example, the

observed flatness of the Universe it has been proposed that the early Universe has gone

through a period of fast exponential expansion, called inflation. Any initial baryon

asymmetry would have been completely diluted during this time [115].

Thus, starting from the hypothesis that the BAU does not result from some fine-tuned

initial condition of the Universe, we must conclude that processes in the early Universe

are responsible for the observed non-zero BAU. In the 1960s Sakharov proposed three

conditions which need to be fulfilled in order to create a Baryon asymmetry [117];

(1) C and CP violation, such that particles behave differently from anti-particles,

(2) Violation of baryon number,

(3) Processes in the early Universe need to take place out of equilibrium, since other-

wise interactions producing baryons will be balanced by the inverse interaction.

Note that baryon number does not need to be violated directly, first producing a non-

zero lepton asymmetry is in general sufficient. Electroweak sphaleron interactions will

then partially transform the lepton asymmetry into a baryon asymmetry. These inter-

actions are of a non-perturbative nature and each interaction involves one particle of

each left-handed fermion doublet. Sphaleron interactions are thus 12-fermion interac-

tions, i.e., they involve 9 quark doublets – one for each colour and generation – and 3

lepton doublets. An example of a sphaleron interaction is shown in fig. 5.1.
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From the diagram it is clear that sphaleron interactions violate baryon and lepton num-

ber as:

∆B = ∆L = 3 . (5.2)

Thus, the electroweak sphaleron interactions conserve B − L while B + L is violated.

In general only a fraction of the total lepton asymmetry is transformed into a baryon

asymmetry [118]. In ref. [118, 119] this conversion factor csph is derived as follows;

The temperatures we are interested in are all above the electroweak phase transition

thus hypercharge is unbroken, consequently sphaleron dynamics needs to conserve

hypercharge. From the Standard Model interactions, which are in thermal equilibrium

in the early universe, the following conditions for the chemical potentials of the SM

particles can be determined [120],

N f (3µq + µL) = 0 ,

N f (2µq − µu − µd) = 0 ,

N f (µq + 2µu − µd − µL − µe +
2

N f
µH) = 0 ,

N f (µq − µH − µd) = 0 ,

N f (µq − µu + µH) = 0 ,

N f (µL − µH − µe) = 0 .

(5.3)

With µq, µL, µu, µd, µe and µH the chemical potentials of respectively the quark dou-

blet, the lepton doublet, the right handed up and down quarks, the right handed elec-

trons and the Higgs doublet. N f is the number of flavours. The first condition comes

from the electroweak sphaleron interactions and the second from the QCD (strong)

sphaleron interactions. These QCD sphaleron interactions are similar to the electroweak

ones, but instead of the SU(2) doublets the coloured triplets, i.e., the quarks, participate.

Furthermore, the third condition in eq. (5.3) ensures hypercharge conservation. The

last three conditions are derived from the Yukawa interactions in thermal equilibrium.

Note that above the electroweak scale all gauge bosons have zero chemical potential,

they therefore do not appear in these equations.

Note that electroweak sphalerons only couple to the left-handed doublets, not to right-

handed particles. This means that a baryon asymmetry can be produced even if the

lepton asymmetry in the left-handed plus right-handed sector is zero. In order to create

a non-zero baryon asymmetry it is sufficient that the lepton asymmetry in the left-

handed sector itself is non-zero [121]. Since QCD sphalerons couple to both left-handed

and right-handed quarks they will not play a role in converting a lepton asymmetry

into a baryon asymmetry.
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Solving the equations listed in eq. (5.3), the baryon and lepton asymmetry can be de-

termined as,

B = N f (2µq + µu + µd)) = 4N f µq , (5.4)

L = N f (2µl + µe)) = −
(9N f + 14N2

f )µq

1 + 2N f
, (5.5)

B − L =
(13N f + 22N2

f )µq

1 + 2N f
. (5.6)

Since sphaleron transitions conserve B − L it is now possible to determine the con-

version factor: The early Universe started out in a symmetric state with B = L = 0,

interactions subsequently produce a certain lepton asymmetry. The baryon asymmetry

remains zero till sphaleron interactions become efficient around the electroweak scale,

thus,

(B − L)init = −Linit . (5.7)

Employing B − L conservation we thus have,

(B − L)init = (B − L) f in ,

−Linit = B f in − L f in ,
(5.8)

with B f in and L f in defined in eq. (5.6). From these equations the conversion factor csph

is determined to be,

csph = B f in/Linit = −28/79 , (5.9)

for N f = 3. Thus, although a significant fraction of the lepton asymmetry is converted

into a baryon asymmetry, the thermal equilibrium condition will forbid full conversion.

Note that sphaleron interactions are mainly efficient above the electroweak scale. After

electroweak symmetry breaking sphaleron interactions are exponentially suppressed.

Thus, in order for sphalerons to transform a lepton asymmetry into a baryon asymme-

try the lepton asymmetry needs to be produced before the electroweak phase transition,

i.e., at temperatures above T ∼ TEW = 140 GeV [18, 122].

Within the Standard Model the three Sakharov conditions could all have been fulfilled

[115]; baryon number is violated via the electroweak sphaleron processes, whereas CP

violation is contained within the CKM matrix which parametrizes the quark mixing.

The last condition, departure from thermal equilibrium, can be fulfilled if the elec-

troweak phase transition is sufficiently strong first order. As discussed in part A of

this thesis, a first order phase transition occurs via the nucleation of bubbles. Inter-

actions of particles in the plasma with the bubble walls can fulfill the out of thermal
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equilibrium condition [18]. However, precise measurements of the Standard Model pa-

rameters have shown that both the first and third condition are likely not fulfilled. The

CKM matrix only contains a very small amount of CP violation which is not enough

to produce a sufficient BAU of O(10−11) and the size of the Higgs mass predicts the

electroweak phase transition to be a crossover. The Standard Model, with parameters

determined from experiment, can thus not explain the observed baryon asymmetry of

the universe. The non-zero BAU determined in experiments is therefore one of the

strongest hints for the necessity of a Standard Model extension.

Many Standard Model extensions can be and have been developed which incorporate

the three Sakharov conditions and consequently can produce a sufficient BAU. Some of

these models are for example GUT baryogenesis [123], thermal leptogenesis [122], res-

onant leptogenesis [124], Dirac leptogenesis [121], electroweak baryogenesis [18] and

ARS leptogenesis [29]. See for example extensive reviews by A.D. Dolgov [125, 126] for

a more complete list of baryogenesis mechanisms.

Within GUT baryogenesis [123] the BAU is produced in the very early Universe when

the electroweak and strong interactions are assumed to be unified, i.e. the Universe is

described by a Grand Unified Theory (GUT). When heavy bosons decay out of equi-

librium, a baryon asymmetry could be produced. Note that in general GUTs predict

proton decay, which has not been observed as of today. This has resulted in very strong

limits on the lifetime of the proton, in ref. [42] a lower limit for the proton lifetime of

about τ ∼ 1030 years is given. It appears difficult to explain the correct BAU as well as

predict protons with a long enough lifetime within GUT models, see e.g. [115].

In models with thermal [122] or resonant leptogenesis [127] the Standard Model is ex-

tended with additional sterile neutrinos. By including loop effects it can be shown that

the out of equilibrium decay of sterile neutrinos produces a large lepton asymmetry.

Through sphaleron interactions this asymmetry can be converted into a baryon asym-

metry. In the case of the simplest thermal leptogenesis models a lower bound for the

sterile neutrino mass of the order of MN ∼ 109 GeV was determined [128]. On the other

hand, for resonant leptogenesis, where two of the sterile neutrinos are almost degener-

ate, the lepton asymmetry is resonantly enhanced. Therefore, the lower bound for the

sterile neutrino mass can be drastically reduced to MN ∼ 1 TeV [124]. The relatively

small sterile neutrino masses required in resonant leptogenesis compared to thermal

leptogenesis have the additional advantage that current experiments should be able to

detect effects from these TeV scale particles in the near future.

In models with Dirac leptogenesis [121] the observation that sphalerons only couple to

the left handed particles is used. As a consequence, it is sufficient if the left-handed

sector has a non-zero lepton asymmetry such that sphaleron processes can convert this
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into a non-zero baryon asymmetry. Note that this is even true in the limiting case

where the total lepton number in the left- and right-handed sector combined is zero.

For lepton number to remain stored within the left handed sector it is required that

left and right-handed sectors do not equilibrate, which is the case as long as Yukawa

couplings are small. In the simplest toy-model the asymmetry in each sector would

be produced through CP violating decays of heavy scalars into sterile neutrinos and

leptons.

In electroweak baryogenesis [18] the electroweak phase transition is made first order through

the addition of one or more extra scalars. The first order phase transitions will make

sure the third Sakharov condition is fulfilled through interactions between the bubble

and the plasma. The enhanced scalar sector can also incorporate additional sources of

CP violation [115]. Electroweak Baryogenesis is interesting from an experimental point

of view due to the possibly large gravitational wave signals produced during the first

order phase transition. One such experiment, the space-based LISA interferometer, was

partially developed with exactly this goal in mind [28], thus being in an ideal position

to investigate the plausibility of electroweak baryogenesis.

As mentioned, the baryogenesis mechanism which is the main focus of this chapter is

leptogenesis via oscillations, also called ARS leptogenesis [29]. In its simplest implementa-

tion, called the νMSM [113], the Standard Model is extended by three sterile neutrinos.

Lepton asymmetry production will then occur through oscillations between the lep-

ton sector and the sterile neutrinos. Note that, similar to Dirac leptogenesis [121], we

will be interested in the lepton asymmetry produced in the left-handed sector. Also in

this mechanism the total lepton asymmetry is zero. With these three sterile neutrinos

it is possible to explain the BAU as well as the dark matter abundance [30, 113]. This

makes the addition of sterile neutrinos a rather economical way of solving multiple of

the currently known problems of the Standard Model.

All of these models, as well as many of the models not mentioned here, have interesting

aspects regarding their ability to explain not only the BAU but also one or more of the

other problems of the Standard Model, like for example the existence of small but non-

zero neutrino masses or Dark Matter. However, each of these models also encounters

its own problems regarding its ability to produce measurable signals as well as staying

within limits from precision measurements, like for example proton decay measure-

ments. Precision experiments as well as collider experiments and gravitational wave

experiments will be needed to shed light on which of these models is able to describe

the BAU in the most plausible way.
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In the remainder of this chapter the mechanism of ARS leptogenesis will be explained

and discussed by means of the νMSM. We will show that it is indeed possible to pro-

duce a sufficient amount of baryon asymmetry. We will closely follow the work from

T.Asaka et al. presented in ref. [114]. In the next chapter we will then discuss an ex-

tension of the νMSM with an additional scalar, to determine if and how this additional

scalar could affect leptogenesis via oscillations.

5.2 ARS leptogenesis and the νMSM

Within the framework of ARS leptogenesis [29] the Standard Model is extended by

multiple sterile neutrinos, NI . However, contrary to thermal and resonant leptogene-

sis where the additional sterile neutrinos are heavy, here the sterile neutrinos will be

light with masses around the GeV scale. This also means that in the early universe, be-

fore electroweak symmetry breaking, the sterile neutrinos will be relativistic. The three

Sakharov conditions are then fulfilled as follows [29]; CP is violated through oscilla-

tions within the sterile neutrino sector and oscillations between the active and sterile

neutrino sectors. The sterile neutrinos are assumed to be only weakly interacting with

the active sector, thus resulting in interactions which are out of thermal equilibrium.

The sphalerons will subsequently break baryon symmetry. Note that within the ARS

mechanism the total lepton number remains zero, however, the active and sterile sec-

tor separately do obtain non-zero lepton asymmetry. Due to the chiral properties of

the subsequent sphaleron interaction a non-zero baryon number can be produced even

though the total lepton asymmetry in the sterile neutrinos plus Standard Model sector

is zero. For this mechanism to produce a non-zero lepton asymmetry at least one of the

sterile neutrinos species needs to remain out of equilibrium with the active sector till

the sphaleron freeze-out temperature.

5.2.1 Model

One of the simplest models in which the ARS leptogenesis can be employed is the

νMSM [30]. In this model the Standard Model is extended by three sterile neutrinos.

We assume that the lightest sterile neutrinos is almost fully decoupled from the system

and can therefore be neglected. Note that approximate decoupling requires that one of

the Yukawa couplings is much smaller than the others. Although this could be seen

as fine-tuning, there is enough freedom within the model and the experimental data to

achieve this. The νMSM will thus be described by a neutrino sector containing three

active neutrinos and two sterile neutrinos. Working with only two sterile neutrinos has
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as an advantage that the model contains less parameters, compared to a model with

three sterile neutrinos. Thus making it easier to deal with as well as making it more

predictable. A second advantage is that the third decoupled neutrino could be an ideal

Dark Matter candidate [30]. The Lagrangian describing the sterile neutrinos and its

interactions with the SM particles is given by:

L = −FαI L̄αΦNRI −
MI

2
N̄c

RI
NRI + (h.c). . (5.10)

The first term describes the Yukawa interaction between the lepton L, the Higgs boson

Φ and the sterile neutrino NR. Note that all dynamics which will be discussed here

takes place at temperatures above the electroweak scale, electroweak symmetry is thus

unbroken. The second term is the explicit mass term for the sterile neutrinos. The

indices are given as I = 2, 3 and α = e, µ, τ. It is in general always possible to

diagonalize either the mass matrix of the active neutrinos or the mass matrix of the

sterile neutrinos, here we choose to do the latter.

The Yukawa matrix F is a 3× 2 matrix, which through the Casas-Ibarra parametrization

is defined as [114, 129, 130],

F =
i

⟨Φ⟩U
√

DνΩ
√

DN with (5.11)

⟨Φ⟩ =246√
2

, DN = diag(M2, M3) and Dν = diag(m1, m2, m3) .

The matrices U and Ω are defined as,

U =


c12c13 s12c13 s13e−iδ

−c23s12 − s23c12s13eiδ c23c12 − s23s12s13eiδ s23c13

s23s12 − c23c12s13eiδ −s23c12 − c23s12s13eiδ c23c13

× diag
(

1, eiη , 1
)

,

Ω =


0 0

cos ω − sin ω

ξ sin ω ξ cos ω

 .

Normal ordering is assumed throughout. The mass matrices DN and Dν are respec-

tively the sterile neutrino and active neutrino mass matrix. And the sterile neutrino

masses M2 and M3 are conveniently parametrized as M2/3 = M ∓ ∆M/2. Note that

the sterile neutrino masses are required to be highly degenerate in order for the ARS

mechanism to work with only two sterile neutrinos [29]. It turns out that this degener-

acy is closely related to the mass degeneracy which results in the resonant enhancement

of lepton asymmetry production from non-relativistic sterile neutrino decays [124]. See
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for example refs. [131, 132] for an extensive discussion on the similarities between res-

onant leptogenesis and ARS leptogenesis. Additionally, note that extensions in which

three sterile neutrino flavours are included allow for much weaker fine-tuning, which

is for example discussed in ref. [133].

The mixing angles and active neutrino masses can be determined from neutrino os-

cillation experiments, these parameters are for example summarized in the Review of

Particle Physics from the Particle Data Group [42],

m1 m2 m3 sin2 θ12 sin2 θ13 sin2 θ23

0 eV 8.68 × 10−3 eV 5.03 × 10−2 eV 0.307 0.0218 0.545
(5.12)

The lightest active neutrino mass is set to zero following the assumption that the light-

est sterile neutrino is almost completely decoupled from the active sector.

Following ref. [114] the remaining parameters are set to ξ = 1, ω = π/4, δ = 7π/4 and

η = π/3. The model thus only has two free parameters which are not yet specified, the

sterile neutrino mass M and the mass splitting ∆M.

5.2.2 Kinetic equations

Given the Lagrangian for the νMSM model, eq. (5.10), kinetic equations can be used to

characterize interactions of the Standard Model particles with the sterile neutrinos in

order to determine how particle densities evolved in the early Universe [134]. Kinetic

equations not only track the particle densities, i.e. the diagonal parts of the density

matrix, but also track off-diagonal elements such that mixing between particles is taken

into account.

For a system of leptons and sterile neutrinos the most general kinetic equation is given

by [113],

i
dρ

dt
= [H, ρ]− i

2
{Γd, ρ}+ i

2
{Γp, 1 − ρ} . (5.13)

In this equation [ , ] denotes the commutator, while { , } denotes the anti-commutator.

H is the effective Hamiltonian,

H = k + H0 + Hint, (5.14)

with Γd and Γp the destruction and production rate, respectively. Note that within

the commutator the momentum term k drops out and thus does not affect the kinetic

equations.
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The density matrix ρ is a block matrix containing all particle densities and mixing

terms, in our case the densities and mixing terms of the three leptons, two sterile neu-

trinos and their anti-particles. The density matrix can be simplified using the fact that

all off-diagonal blocks of the block matrix ρ are negligible [113]. Due to the large mass

difference between active leptons and sterile neutrinos their mixing will be small. Fur-

thermore, since we assume all particles to be relativistic and the Yukawa couplings to

be small the mixing between particle and anti-particle is also negligible. We are thus

left with only the block diagonal components of ρ,

ρ =


ρL 0 0 0

0 ρL̄ 0 0

0 0 ρN 0

0 0 0 ρN̄

 . (5.15)

The density matrices for the leptons and anti-leptons are given by ρL and ρL̄, which are

3× 3 matrices. The off-diagonal entries of the density matrices of the (anti-)leptons can

be neglected since the oscillations within the active sector are small.

In the early Universe the leptons are in thermal equilibrium with the thermal bath,

which allows us to write the density matrix of the (anti-)leptons as,

ρL = NDρeq(k)A and ρL̄ = NDρeq(k)A−1 , (5.16)

with ND = 2, corresponding to the fact that the leptons are part of a doublet. The

matrix A is a diagonal matrix containing the chemical potentials for each lepton flavour,

A = diag(eµνe , eµνµ , eµντ ). The equilibrium density is approximated by the Maxwell-

Boltzmann distribution, which for relativistic particles is given by: ρeq = e−k/T. The

sterile neutrino densities ρN and ρN̄ are 2× 2 matrices; each density matrix corresponds

to sterile neutrinos of one of the helicity states.

Since all off-diagonal block entries in the density matrix ρ can be neglected, the full

density matrix ρ can be approximated by a block-diagonal matrix. The kinetic equation

as defined in eq. (5.13) can thus also be split into separate kinetic equations for the

(anti-)leptons and sterile neutrinos. The kinetic equation for sterile neutrinos is given

by,
dρN

dt
= −i[HN , ρN ]−

1
2
{Γd

N , ρN}+ Γp
NρN , (5.17)

with HN = H0
N + VN , the effective Hamiltonian. [H0

N ]I J =
√

k2
N + M2

I δI J for I = 2, 3.

VN is the effective potential, as a result of interaction with the plasma. Γd
N and Γp

N are

the destruction and production rates for sterile neutrinos, respectively. The last term in

the kinetic equation was simplified by assuming Boltzmann statistics, i.e. ρN = e−k/T.
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FIGURE 5.2: Diagram contributing to the effective potential of the sterile neutrino VN .

For relativistic particles in a thermal bath the dominant momentum mode is k ∼ T,

which results in ρN < 1. Thus, ρN can be neglected in the second anti-commutator of

eq. (5.13).

Similarly, the kinetic equation for ρL can be written as,

dρL

dt
= −1

2
{Γd

ν, ρL}+ NDΓp
ν . (5.18)

Note that because ρL is diagonal the commutator does not affect lepton production

and therefore has been removed from the kinetic equation. Again the second anti-

commutator has been simplified. Γd
ν and Γp

ν are the destruction and production rates of

the active neutrinos, respectively. The factor of ND is added to take into account that

ρL = ρν + ρe, i.e., ρL is the density of the doublet. A similar equation holds for the

anti-leptons.

To determine the full kinetic equations we thus need to determine the effective potential

of the sterile neutrinos and the destruction and production rates for active and sterile

neutrinos.

Effective potential

Following ref. [113] we determine the effective potential of the sterile neutrinos, VN ,

from the interactions of the sterile neutrinos with the thermal bath of leptons and Higgs

bosons. The dominant interaction is shown in fig. 5.2. Note that the effective potential

is related to the thermal mass. In e.g. ref. [135, 136] the effective potential is determined

within the real-time formalism, which was introduced briefly in appendix A.

Employing the standard Feynman rules from the real-time formalism, the 1-loop dia-

gram shown in fig. 5.2 is given by,

−iRΣL = (−iF†)(−iF)ND

∫ d4 p
(2π)4 D11(p − k)RS11(p)L . (5.19)

Here the factor ND = 2 accounts for the fact that doublets are running in the loop.

Using the definitions of the propagators as given in eq. (A.8) we can determine the self
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energy, which is given by the real part of the 1-loop diagram,

Σself = −iNDF†F
∫ d4 p

(2π)4

[
i

(p − k)2 (−2πδ(p2)/pnF(|p0|)) + 2πδ((p − k)2)nB(|p0 − k0|)
i/p
p2 )

]
,

(5.20)

Σself = NDF†F
∫ d4 p

(2π)4
δ(p2)

(p + k)2 [/pnF(|p0|) + (/p + /k)nB(|p0|)] , (5.21)

where in the second line a change of variables was done to simplify the integral, to be

precise, in the first term we change p → −p and in the second term p → p + k. For the

derivation of these equations we assume the chemical potentials and the masses to be

zero throughout. Note that the self-energy consists out of two separate terms; one for

which the sterile neutrino interacts with the fermion in the thermal bath, the other one

for which the interaction is with the Higgs boson in the thermal bath, thus,

Σself = Σ(F)
self + Σ(B)

self . (5.22)

The self energy is further simplified by realizing that we are only interested in the con-

tributions of O(T2), all contributions of O(T) or less are sub-leading. The contribution

from the /k term will therefore be ignored.

In order to calculate the integral in the thermal bath, Lorentz invariance is imposed

such that Σself can be parametrized as, Σ(B/F)
self = a(B/F)/k + b(B/F)/u = V(B/F)

µ γµ. Here

the velocity vector is uµ = (1, 0) and the 4-momentum is kµ = (ω, κ).

The fermion contribution to the effective potential is then found by calculating V(F)
µ kµ

and V(F)
µ uµ,

V(F)
µ kµ = a(F)(ω2 − κ2) + b(F)ω

= NDF†F
∫ d4 p

(2π)4
δ(p2)

(p + k)2 (p · k)nF(|p0|)

=
NDF†FT2

48
+O(T) + . . . ,

(5.23)

and similarly,

V(F)
µ uµ = a(F)ω + b(F)

=
NDF†FT2

96
I +O(T) + . . . ,

(5.24)

with,

I = log
∣∣∣∣ω + κ

ω − κ

∣∣∣∣ . (5.25)
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FIGURE 5.3: Feynman diagrams for the 2 → 2 interactions contributing to the destruction rate
Γd

N in the kinetic equations.

The integrals were performed using the following identity for the Dirac delta function,

δ(p2) = δ(p2
0 − p̄2) =

1
2| p̄| (δ(p0 + | p̄|) + δ(p0 − | p̄|)) . (5.26)

Similarly for the bosonic terms,

V(B)
µ kµ = a(B)(ω2 − κ2) + b(B)ω

= ND
F†FT2

24
+O(T) , (5.27)

V(B)
µ uµ = a(B)ω + b(B)

= ND
F†FT2

48
I +O(T) . (5.28)

Combining everything we get the following equations for a and b,

a = a(B) + a(F) = −ND
F†FT2

16κ2

(
1 − ω

2k
I
)

, (5.29)

b = b(B) + b(F) = +ND
F†FT2

16κ

(
ω

κ
+

1
2

(
1 − ω2

2κ2

)
I
)

. (5.30)

The effective potential for the sterile neutrinos is then defined as [136],

VN = b(κ, κ) =
NDT2

16kN
F†F , (5.31)

where kN = κ, the momentum of the sterile neutrino.

Destruction and production rates

Several diagrams contribute to the destruction and production rate of the sterile neu-

trinos, the dominant diagrams for the sterile neutrino destruction rate are the 2 → 2

scatterings as shown in fig. 5.3. Similar diagrams contribute to the other production

and destruction rates. The diagrams involving the top quark are the dominant contri-

butions due to the O(1) coupling of the top quark to the Higgs. All other quarks couple

much weaker to the Higgs boson. Note that the sterile neutrino decay and inverse de-

cay contributions to the destruction and production rate are subdominant because they
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are in the relativistic limit suppressed by a factor M/T compared to scattering processes

[29].

From the Feynman diagrams the following decay and production rates in a thermal

bath can be derived [114],

Γd
N = Γd,eq

N + δΓd
N and Γp

N = Γp,eq
N + 2δΓp

N . (5.32)

With

Γd,eq
N = 3γd

N(kN)F†F , Γp,eq
N = ρeqΓd,eq

N ,

γd
N(kN) =

NC NDh2
t

64π3
T2

kN
,

δΓd
N = γd

N F†(A−1 − 1)F and δΓp
N = γd

NρeqF†(A − 1)F .

The A−1 dependence seen in for example the decay rate comes from the s-channel con-

tribution as depicted in the third diagram of fig. 5.3. The destruction rate of the sterile

neutrinos determined from this Feynman diagram will be dependent on the density of

the anti-leptons in the thermal bath, as defined in eq. (5.16). Thus when integrating

over all leptons in the thermal bath a factor of A−1 will remain. Note that this does not

hold for the t-channel diagrams, because Pauli-blocking factors, which normally need

to be included in decay and production rates in a thermal bath, are neglected, i.e. , we

assume (1 ± ρi) ∼ 1.

For this derivation all particle masses have been neglected, which is a valid assumption

in the relativistic limit. Note that for µi = 0 → A = 1 and the terms δΓ(d/p)
N = 0. These

terms are thus only relevant when the chemical potentials of the leptons are non-zero,

i.e., when there is a non-zero lepton asymmetry within each flavour. NC denotes the

number of colours, which for all calculations is taken as NC = 3 and ht is the Yukawa

coupling between the Higgs boson and the top quark, we take ht = 1.

Similarly for the destruction and production rate of the active neutrinos [114],

Γd
ν = Γd,eq

ν + δΓd
ν and Γp

ν = Γp,eq
ν + 2δΓp

ν . (5.33)

With

Γd,eq
ν = 3γd

ν(kL)FF† , Γp,eq
ν = ρeqΓd,eq

ν , (5.34)

γd
ν(kL) =

NCh2
t

64π3
T2

kL
, (5.35)
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and

δΓd
ν = γd

ν(kL)
∫ dkNkN

T2

[
F
(

ρT
N̄(kN)− ρeq(kN)

)
F†
]

,

δΓp
ν = γd

ν(kL)ρ
eq(kL)

[∫ kL

0

dkN

kL

1 − ρeq(kN)

ρeq(kN)

(
F (ρN(kN)− ρeq(kN)) F†

)
+
∫ ∞

kL

dkN

kL

1 − ρeq(kL)

ρeq(kL)

(
F (ρN(kN)− ρeq(kN)) F†

)]
.

(5.36)

Note that, similar to the production and destruction rates for the sterile neutrinos the

terms δΓ(d/p)
ν will be equal to zero, if ρN = ρeq .

Full kinetic equations

Combining all of the above equations the following kinetic equation for the sterile neu-

trinos is obtained [114],

dρN

dt
= −i[H0

N + VN , ρN ]−
1
2
{Γd,eq

N , ρN − ρeq}+ 2δΓp
N − 1

2
{δΓd

N , ρN} . (5.37)

The corresponding kinetic equation for the other helicity state, ρN̄ , can be found straight-

forwardly by taking the conjugate of this expression, i.e., A → A−1 and F → F∗.

Instead of defining kinetic equations for the lepton and anti-lepton densities separately,

it is more convenient to look at the chemical potential of the active neutrino µνα , with

α = e, µ, τ. Due to thermal equilibrium ρL and ρL̄ are related via the chemical po-

tential, see eq. (5.16), it is thus unnecessary to solve kinetic equations for each density

separately. Using eq. (5.16) it is straightforward to show that the chemical potential and

the densities are related through,

ρLα − ρL̄α
= 2ND cosh(µνα)ρ

eq , (5.38)

d(ρLα − ρL̄α
)

dt
= 2NDρeq cosh(µνα)

dµνα

dt
. (5.39)

To remove the dependence of these equations on the active neutrino momentum kL the

left- and right-hand side of this equation can be integrated over kL,

∫
dkLk2

L
d(ρLα − ρL̄α

)

dt
=
∫

dkLk2
L2NDρeq(kL) cosh(µνα)

dµνα

dt

= 4T3ND cosh(µνα)
dµνα

dt
. (5.40)

Note that by definition the chemical potential is independent of kL.
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Combining all of the above the kinetic equations for the chemical potentials µνα are

determined to be [114],

dµνα

dt
=− γd

ν(T)[F.F†]αα tanh(µνα)

+
γd

ν(T)
4

∫ ∞

0

dkNkN

T2

((
1 +

2
cosh(µνα)

) [
F.ρN .F† − F∗.ρN̄ .FT

]
αα

− tanh(µνα)
[

F.ρN .F† + F∗.ρN̄ .FT
]

αα

)
,

(5.41)

Note that, like in eq. (5.40), also the kinetic equations of eq. (5.16) have been integrated

over kL to remove the dependence on the momentum kL. The kinetic equations are thus

only dependent on the sterile neutrino momentum kN .

The kinetic equations for the sterile neutrinos and leptons given in eqs. (5.37) and (5.41)

are rather complicated coupled integro-differential equations. These equations can

only be solved numerically, which is computationally time consuming. In ref. [114]

the full momentum dependent solutions to these kinetic equations are discussed. In

the following we will employ some simplifications in order to deal with these kinetic

equations more efficiently.

First of all we will do a change of variables,

x = kN/T and z = TEW/T , (5.42)

such that the particle densities become comoving densities, i.e., the expansion of the

universe is automatically taken into account. TEW is given by the temperature of elec-

troweak symmetry breaking, which coincides approximately with the temperature of

sphaleron freeze-out and is defined as TEW ∼ 140 GeV. Changing variables in such a

way also changes the time derivative. The time derivative in terms of the momentum

p and the temperature T in an expanding Universe is given by,

d
dt

=
∂

∂t
− Hp

∂

∂p
, (5.43)

with H the Hubble constant, which, in a radiation dominated Universe, is defined as,

H =
1
2t

=
T2

M0
. (5.44)

Here M0 = 7.12× 1017 GeV. Applying the change of variable as defined above the time

derivative is related to the derivative in terms of the dimensionless quantity z as,

d
dt

=
T2

EW
M0z

d
dz

. (5.45)



Chapter 5 Leptogenesis via oscillations 81

Apart from this change of variables the kinetic equations will be simplified by making

the following assumptions [114]:

• We use Boltzmann statistics throughout, such that the equilibrium density is

given by the Maxwell-Boltzmann distribution ρeq = e−k/T.

• All momentum dependence of the particle densities for the sterile neutrinos will

be approximately contained in the equilibrium density, i.e. ρN(k) = RNρeq(k).

Here RN , like A for the leptons, is momentum independent. Equivalently for the

sterile neutrinos with opposite helicity, ρN̄(k) = RN̄ρeq(k). Note that the leptons

and anti-leptons also have densities which are proportional to the equilibrium

density.

• To remove all remaining momentum dependence in the kinetic equations all mo-

mentum dependent terms will be replaced by their thermal averages. Assuming

particles follow the Maxwell-Boltzmann distribution, the thermal average of an

operator O is defined as,

⟨O⟩ =
∫

dkk2Oe−k/T∫
dkk2e−k/T . (5.46)

Considering that all terms in the kinetic equations are exactly or approximately

inversely proportional to the momentum, i.e., ∼ 1/k, taking the thermal average

corresponds to k = 2T. In the case of H0
N the choice k = 2T only corresponds to

the thermal average in the approximation k ≫ M, the relativistic limit. An added

advantage of the choice k = 2T is that, like the full momentum dependent kinetic

equations, these thermal averaged kinetic equations still conserve the total lepton

number.

These assumptions have shown to give results which can differ substantially from the

full momentum dependent calculation [114, 137]. However as an order of magnitude

estimation these simplifications suffice. Furthermore, in the next chapter we will be

interested in comparing the predicted BAU in the νMSM with that predicted in its

scalar extension. We are thus only interested in the relative change of the produced

baryon asymmetry due to the addition of scalar interactions.
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All of these assumptions simplify the kinetic equations considerably to,

dRN

dz
T2

EW
M0z

=− i[⟨H0
N⟩+ ⟨VN⟩, RN ]−

3
2
⟨γd

N⟩{F†.F, RN − 1}+ 2⟨γd
N⟩F†.(A − 1).F

− ⟨γd
N⟩

2
{F†.(A−1 − 1).F, RN} , (5.47)

dµνα

dz
T2

EW
M0z

=− γd
ν(T)[F.F†]αα tanh(µνα)

+
γd

ν(T)
4

((
1 +

2
cosh(µα)

) [
F.RN .F† − F∗.RN̄ .FT

]
αα

− tanh(µα)
[

F.RN .F† + F∗.RN̄ .FT
]

αα

)
, (5.48)

with T(z) = TEW/z.

Assuming we start out in a state without lepton asymmetry and with zero sterile neu-

trino densities, the initial conditions supplied to these kinetic equations will be: RN(0) =

RN̄(0) = µνα(0) = 0.

Solving the kinetic equations, RN , RN̄ and µi can be determined as a function of z. The

lepton asymmetry in each sector and the total baryon asymmetry, Y∆Li and Y∆B, are

then determined by,

Y∆NI =
1
s

∫ d3k
(2π)3 (ρN − ρN̄)I =

1
s

∫ d3k
(2π)3 ρeq(RN − RN̄)I =

45
2π4 (RN − RN̄)I , (5.49)

Y∆Lα
=

1
s

∫ d3k
(2π)3 (ρL − ρL̄)α =

1
s

∫ d3k
(2π)3 NDρeq(A − A−1)α =

45ND

π4 sinh µα , (5.50)

Y∆Ltot =∑
α

Y∆Lα , (5.51)

Y∆Ntot =∑
I

Y∆NI , (5.52)

Y∆B =csphY∆Ltot . (5.53)

The entropy s is defined below eq. (5.1) and the number of relativistic degrees of free-

dom in the thermal bath is given by g⋆ = 106.75 for the Standard Model before the

electroweak phase transition. Note that sterile neutrinos are not expected to affect this

value much, since in our case the sterile neutrinos are never thermalized. Y∆NI and Y∆Lα

are the lepton asymmetry in the sterile and lepton sector, respectively.

In the last equation csph is the sphaleron conversion factor, which, as derived in the

introduction of this chapter, is given by csph = −28/79 for the Standard Model [18].
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5.2.3 Timescales

In ARS leptogenesis several timescales play a role, the interplay between these time-

scales determines how much, if any, lepton asymmetry will be produced. In the νMSM

we distinguish between the following timescales: sphaleron freeze-out, sterile neutrino

equilibration and the oscillation timescale [137].

As discussed, in order for a lepton asymmetry to be transformed to a baryon asym-

metry, the lepton asymmetry needs to be produced before sphaleron freeze-out, set by

Tsph ∼ TEW → zsph = 1.

The second timescale, the sterile neutrino equilibration, is important because equilibra-

tion of sterile neutrinos with the thermal bath will result in equilibration of the lepton

asymmetry between sectors. Since the total lepton asymmetry in the combined sec-

tors is zero, the final baryon asymmetry will undergo significant washout. The sterile

neutrino equilibration timescale can be determined approximately by comparing the

Hubble constant with for example the sterile neutrino destruction rate,

⟨Γd
N⟩ = H ,

3NC NDh2
t

64π3 F†F
T
2
=

T2

M0
,

Teq =
3NC NDh2

t M0

128π3 F†F . (5.54)

We here ignore the flavour effects, since they – although important for the exact dy-

namics – are only sub-leading in the production.

The last relevant timescale is that of the sterile neutrino oscillations. From the La-

grangian defined in eq. (5.10) it is clear that each sterile neutrino species, N2 and N3,

has a slightly different mass and coupling to the thermal bath. Consequently, when

sterile neutrinos propagate through the thermal bath a phase shift between each sterile

neutrino species will develop. This phase shift is crucial in the eventual production of

the lepton asymmetry because a non-zero phase shift also results in each species in-

teracting differently with the active neutrino sector. The oscillation timescale, tosc, is

defined as the time it takes to build up an O(1) phase shift [137],

∆ϕ =
∫ tosc

0
([HN ]33 − [HN ]22)dt !

= 1

≃
∫ tosc

0

∆M2

4T
dt

!≃ 1 ,
(5.55)

where in the last line we have assumed k ≪ M and k = 2T and neglected contribution

of VN to the mass splitting. ∆M2 is defined as ∆M2 = M2
3 − M2

2. For sterile neutrino
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masses M2, 3 = M ∓ α
2 M. Equation (5.55) can then be solved as

tosc =

(
3
√

2
√

M0

∆M2

)2/3

,

or equivalently,

zosc = TEW/Tosc with

Tosc =

√
M0

2

(
∆M2

3
√

2M0

)1/3

. (5.56)

Here we used the definitions of the Hubble constant and z to change the time variable

into more useful quantities.

Results

We can now solve the kinetic equations, which we will at first do for MN = 10 GeV

and δMN = αMN with α = 10−8. For this choice of parameters the oscillation timescale

is given by zosc = 0.028 and the timescale of sterile neutrino equilibration is approxi-

mately given by Teq ∼ 30 GeV, thus zeq ∼ 5. For this choice of variables we therefore

have zosc < zsph < zeq. ARS leptogenesis is thus expected to be efficient in producing a

lepton asymmetry and subsequently, through sphalerons, a finite BAU.

Note that when solving the kinetic equations numerically we solve from a finite initial

value of z = 10−7 up to z = 1 with the initial conditions approximated by RN(10−7) =

RN̄(10−7) = µνα(10−7) = 0 .

Solving the kinetic equations and subsequently looking at the evolution of some quan-

tities as a function of z, we can see how the timescales play a role in the dynamics. The

evolution of some interesting quantities is shown in fig. 5.4. In these plots the oscilla-

tion timescale zosc is depicted by the dashed vertical lines.
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FIGURE 5.4: Solutions to the kinetic equations of the νMSM. Note that in the plots different
scales are used for the x- and y-axis. See text for more details on the plots.

In plot (A) the sterile neutrino density ρN2 is shown, it is clear that the sterile neutrino

density does not reach values close to the equilibrium density, which is given by ρeq =

e−k/T ∼ 0.14 for k = 2T. Thereby showing that at least for this case the sterile neutrinos

have not equilibrated with the Standard Model thermal bath yet. This is in line with

our result that zeq > 1.

In plot (B) the lepton asymmetry in the active sector is shown per flavour. Note that the

production of asymmetry only starts after some time, which coincides approximately

with zosc. Furthermore one sees that the oscillations very quickly become so fast that

they effectively average out.

In plot (C) the lepton asymmetry for each helicity of the sterile neutrinos is depicted.

Here, like for the leptons, we see that the asymmetry production only starts after zosc.

In the last plot, plot (D), the total lepton asymmetry in each sector is shown. Again

we see that the asymmetry is only produced after some initial time. Note that the total

lepton asymmetry in both sectors together is equal to zero, i.e, no net asymmetry is

produced. This is checked explicitly in the numerical computations. However, since

sphalerons couple only to the left-handed particles and not to the right-handed sterile

neutrinos, it is sufficient to have a lepton asymmetry in the lepton sector in order to

produce a BAU. Note also that in plot (D) no efficient washout of the lepton asymmetry
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FIGURE 5.5: Left: baryon asymmetry as a function of sterile neutrino mass MN . Right: sterile
neutrino equilibration, as defined through eq. (5.54), as a function of the sterile neutrino mass

MN . See text for more details.

can be observed, since zeq > 1 and consequently sterile neutrinos have not equilibrated

with the Standard Model thermal bath this is to be expected.

From the solution of the kinetic equations a BAU of Y∆B = 5.05 × 10−11 is determined.

This value is about a factor of 4 smaller than that stated in ref. [114] in which a BAU

of Y∆B = 2.73 × 10−10 is given. This change is the result of using more recent neutrino

parameters, as summarized in ref. [42].

Similar calculations can be done for different choices of the sterile neutrino mass, but

before doing that, in order to optimize the calculation further, the kinetic equations

will be simplified once more. As we can see from plot (B) in fig. 5.4 as well as eq. (5.55)

the oscillation frequency increases as a function of z. Due to these fast oscillations

at later times their effect averages out after some point. We can use this to simplify

numerically solving the kinetic equations by only solving the full differential equations

till z = Nzosc. The remaining dynamics till z = 1 will then be determined by only

solving the diagonal parts of the kinetic equations [137]. We have explicitly calculated

the baryon asymmetry for several choices of N,

N 10 20 30

Y∆B 4.97 × 10−11 5.04 × 10−11 5.06 × 10−11
. (5.57)

Note that large N results in reduced speed in solving the kinetic equations numerically.

To have both good precision and a reasonable speed we therefore choose N = 20 such

that Y∆B can be determined accurately up to 1%.

In plot (A) of fig. 5.5 the baryon asymmetry as a function of the sterile neutrino mass

MN is shown, throughout α = 10−8. The figure shows that the total baryon asymmetry

is maximized at a certain mass, MN ∼ 60 GeV. This peak can be explained as fol-

lows; increasing the sterile neutrino mass increases the active-sterile coupling through
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the Casas-Ibarra parametrization, eq. (5.11). Consequently, the amount of asymme-

try exchanged between the sectors increases, thus explaining why initially increasing

MN results in an increased asymmetry production. However, for a certain mass the

Yukawa coupling becomes so large that the sterile neutrinos will equilibrate, resulting

in washout of the produced baryon asymmetry. In plot (B) of fig. 5.5 the approximate

equilibration rate is shown as a function of the sterile neutrino mass, the dashed line

corresponds to equilibration at electroweak symmetry breaking. Note that the peak in

plot (A) of fig. 5.5 corresponds to the sterile neutrino mass for which these two effects

balance each other.

5.3 Discussion

We thus see that sterile neutrino oscillations can efficiently produce a lepton asymme-

try, which through the sphalerons is transformed into a baryon asymmetry. Note that

this does require a rather fine-tuned mass-splitting with α ∼ 10−8. In for example

ref. [133] the assumption of a decoupled lightest sterile neutrino was removed. It was

shown that a model with three sterile neutrinos participating in the ARS mechanism

allows for enough freedom in the extra parameters to alleviate the finetuning in the

mass splitting of the sterile neutrinos.

There are multiple reasons why a further extension of the νMSM could be interesting.

Even if neutrino masses, dark matter and leptogenesis can be explained by a mini-

mal SM extension as used in the νMSM, there are still problems with the Standard

Model. Some of these problems are for example the unknown nature of Dark Energy,

but also problems of a more fundamental nature, like the hierarchy problem and the

randomness of all the SM parameters. Additionally there is also an increasing list of

experimental results which hint towards the existence of new physics. These anoma-

lies include for example the flavour anomalies [17], the (g − 2) muon anomaly [16] and

many others.

From a top-down approach the inclusion of sterile neutrinos might seem somewhat

arbitrary, they are not needed for the consistency of the model. On the other hand, in

many GUT models the theory at lower scales, after symmetry breaking, will apart from

the Standard Model symmetries, have residual gauge symmetries. One of these sym-

metries can for example be the U(1)B−L symmetry, see e.g. ref. [138]. In order for anoma-

lies to cancel in the presence of a U(1)B−L symmetry the existence of sterile neutrinos

is required, thus explaining their inclusion into a Standard Model extension [139]. In

case of a U(1)B−L symmetry sterile neutrinos would not be allowed to have an explicit



Chapter 5 Leptogenesis via oscillations 88

mass term, however, through an interaction of a scalar the sterile neutrinos can obtain

a mass when the scalar undergoes spontaneous symmetry breaking.

Additionally, in models where conformal symmetry is imposed on the Lagrangian,

such that all explicit mass terms are forbidden, non-zero sterile neutrino mass could

also require the existence of additional scalars [140]. Conformally symmetric models

are interesting due to their ability to produce mass scales in a theory which on the clas-

sical level does not contain mass scales [20]. These theories therefore do not suffer from

the hierarchy problem.

Considering the arguments above, it is thus not unreasonable to expect the existence of

on or more additional scalars. These scalars can in principle couple to sterile neutrinos,

which could consequently affect ARS leptogenesis. In the next chapter the question of

how scalars affect ARS leptogenesis will be investigated.



Chapter 6
Scalar extension of the νMSM

In this chapter the framework of ARS leptogenesis, as implemented in the νMSM, will

be extended to include an additional scalar. The goal of this chapter is to show when

and how scalars affect the dynamics of leptogenesis via oscillations and to hopefully

find a region of parameter space where the inclusion of a scalar can enhance the pro-

duced baryon asymmetry.

Extensions of the νMSM have for example also been discussed in refs. [141, 142], how-

ever in these papers the additional scalar is usually assumed to be non-thermal such

that it is not expected to have a significant impact on the leptogenesis mechanism.

The chapter will start with a description of the model, afterwards the effects of the

scalar on the kinetic equations will be discussed. In the remainder of the chapter the

consequences of these changes for the baryon asymmetry will be shown. We will end

with a discussion on how to interpret these results and how to possibly extend this

framework further to obtain more interesting dynamics. This chapter is based on work

in collaboration with O.Fischer and M.Lindner, which will soon be published [2].

6.1 Model

Many Standard Model extension include one or more new scalars. Without going into

the details of a UV complete model, which could for example be related to a U(1)B−L

symmetric model [143] or a conformal model [144], we will here look into an effective

theory where the only relevant new dynamics is assumed to be that of the scalar. The

Majorana mass term in eq. (5.10) will be replaced by a scalar interaction such that the

89
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Yukawa terms in the Lagrangian are given by,

LY = −Fαi L̄αΦNi −
1
2

YijSN̄c
i Nj + (h.c.) . (6.1)

Here Lα, NI , and Φ are again the lepton doublet, the sterile neutrino and the Higgs

doublet, with α = e, µ, τ and I = 2, 3. The scalar singlet field is denoted by S. The

matrix Y corresponds to the interaction strength of the sterile neutrinos with the new

scalar. In the basis where the sterile neutrino mass matrix is diagonalized the Yukawa

coupling Y is a diagonal matrix.

The scalar potential will be defined as,

V(S, Φ) = −1
2

µ2
SS2 − µ2

ΦΦ†Φ +
1
4

λSS4 + λH(Φ†Φ)2 +
1
2

λSHΦ†ΦS2 . (6.2)

Several cases for the dynamics of the scalar S can be distinguished:

(A) Non-thermalized and ⟨S⟩ = 0,

(B) Non-thermalized and ⟨S⟩ ̸= 0,

(C) Thermalized and ⟨S⟩ = 0,

(D) Thermalized and ⟨S⟩ ̸= 0.

Cases (A) and (C) would not be able to explain neutrino masses via the see-saw mecha-

nism as parametrised by the Casas-Ibarra parametrisation, eq. (5.11), unless an explicit

mass term for sterile neutrino is included in the Lagrangian. This could be an interest-

ing situation which, however, is not discussed further here.

Case (B), on the other hand, is able to explain neutrino masses, however, because the

scalar is assumed to be non-thermalized, it will not affect the dynamics much for two

reasons: A non-thermalized scalar will not produce a large sterile neutrino abundance

through its decay and secondly, it will not affect thermal masses of the other particles.

Note that for late symmetry breaking close to the electroweak scale ARS leptogenesis

will effectively be turned off, without sterile neutrino masses and mass differences the

whole mechanism stops working. The dynamics of case (B) seems thus straightfor-

ward; for early symmetry breaking the model will simply be reduced to the νMSM,

while for late symmetry breaking the ARS mechanism will be turned off.

Of these four cases the interesting one, which can explain both the non-zero neutrino

masses and can possibly have a non-trivial effect on ARS leptogenesis, is thus case (D).
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A thermalized scalar which obtains a non-zero vev, v0
s will have the following effects

on the sterile neutrinos and its kinetic equations:

The most obvious effect is the inclusion of sterile neutrino mass from the vacuum ex-

pectation value:

MI(z) = YI I · vs(z) , (6.3)

with vs(z) the temperature dependent vacuum expectation value. In order to take into

account that before symmetry breaking v0
S = 0 we define vs(z) as,

vs(z) = v0
s Θ(z − zc) , (6.4)

with zc corresponding to the critical temperature at which the scalar undergoes sym-

metry breaking. Θ(z) is the Heaviside step function. To avoid overly complicating the

model with many extra parameters we choose zc = TEW/v0
S, i.e. the temperature at

which the symmetry breaks is equal to the vacuum expectation value.

When numerically solving the kinetic equations the step function will be approximated

by an exponentially function,

vS(z) = v0
S ·

1

e−2k(z−TEW /v0
S) + 1

. (6.5)

This function is equal to the Θ-function for k → ∞, we choose k = 105.

Another important effect is that the sterile neutrino will obtain an additional contribu-

tion to the effective potential, or equivalently, a thermal mass, from interactions with

the scalar in the thermal bath. The relevant diagram is shown in fig. 6.1. In the deriva-

tion below eq. (5.19) the effective potential of the sterile neutrinos from interactions

with the Higgs boson and lepton doublet was derived. A similar calculation can be

done to determined the effective potential of the sterile neutrinos from interactions

with the scalars in the thermal bath and gives,

VS
N =

2
3

T2

16kN
Y · Y . (6.6)

The additional factor 2/3 is included because the fermionic contribution to the effec-

tive potential is negligible, due to the fact that sterile neutrinos are not thermalized.

Furthermore, the factor ND is not present because no doublets are participating in this

interaction. Note that thermal contributions to the sterile neutrino mass will not affect

the masses which are used as input in the Casas-Ibarra parametrization eq. (5.11). This

equation uses masses as measured today, i.e., the zero temperature masses.
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(A) (B)

FIGURE 6.1: In (A) the Feynman diagram contributing to the effective potential of the sterile
neutrino VN is shown. In (B), the two diagrams contributing to the thermal mass of the scalar.

The last new contribution to the dynamics due to the presence of scalar interactions is

the scalar decay into sterile neutrinos. In the limit of light sterile neutrinos this decay

rate can be defined as [145, 146]

ΓS =
Y.Y
16π

1
ρeq(x)

MS(z)2

TEW

z
x2

∫ ∞

y0

ns(y)dy , (6.7)

with MS(z) the thermal mass of the scalar z and ns(y) = e−y, the equilibrium density of

the scalars. Furthermore the limit in the integral y0 is defined as y0 = x + z2

4x
M2

s (z)
T2

EW
. This

term basically takes into account energy conservation and Boltzmann or phase-space

suppression of the scalar particle number for large scalar masses. Note that inverse

decay has been neglected, eq. (6.7) is therefore only valid for ρN < 1. Furthermore,

this equation is only valid for 2MN(z) < MS(z), such that the decay is kinematically

allowed.

To determine the thermal mass of the scalar MS(z) we look at the Feynman diagrams.

At one loop two diagrams contribute to the thermal mass of the scalar, these are shown

in fig. 6.1. In appendix A the scalar thermal mass in derived within the imaginary

time formalism. Following similar steps one can also determine the thermal mass from

interactions with the Higgs boson. The total contribution to the scalar thermal mass,

from both the scalars and Higgs bosons in the plasma is given by,

MS(T)2 = 2λS(vS(T))2 +
1
4

λST2 +
1
6

λSHT2 . (6.8)

Combining all of the above we can conclude that the kinetic equations of the leptons

µνα will not be affected by the new scalar, thus, the second equation in eq. (5.48) is

unchanged. The kinetic equations for the sterile neutrinos changes as,

dRN

dz
T2

EW
M0z

=− i[⟨H0
N⟩+ ⟨VN⟩+ ⟨VS

N⟩, RN ]−
3
2
⟨γd

N⟩{F†.F, RN − 1}+ 2⟨γd
N⟩F†.(A − 1).F

− ⟨γd
N⟩

2
{F†.(A−1 − 1).F, RN}+

1
ρeq(2T)

ΓS , (6.9)

with [H0
N ]I I =

√
k2

N + M0
NI

and M0
NI

= YI IvS(z), the sterile neutrino mass from scalar
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symmetry breaking. The term ΓS takes into account the additional sterile neutrino pro-

duction from scalar decay and is defined in eq. (6.7). The additional ρeq(2T) factor is

added because the kinetic equations are in terms of RN not ρN , we substituted k = 2T.

Note that every scalar decay produces one sterile neutrino of each helicity, the kinetic

equation for RN̄ is therefore changed in the same way.

Time scales

In chapter 5 it was discussed that three timescales are relevant for the dynamics of

leptogenesis in the νMSM: the sphaleron freeze-out, the oscillation time scale and the

sterile neutrino equilibration rate. Whereas the sphaleron freeze-out does not change

the oscillation time is affected due to the changes to the Hamiltonian. Starting from the

same definition as given in eq. (5.55) and substituting eqs. (6.3) and (6.6) the oscillation

timescale changes as,

∆ϕ =
∫ tosc

0
([HN ]33 − [HN ]22)dt !

= 1

≃
∫ tosc

0

∆M(z)2

4T
dt

!≃ 1 , (6.10)

with

∆M2(z) = (Y2
33 − Y2

22) ·
(

vs(z)2 +
2
3

T2

8

)
. (6.11)

Note that again the contribution from VN has been neglected. For large v0
s , and thus

early breaking since Tc = v0
s this equation reduces to eq. (5.55) for T < Tc.

The timescale of equilibration of sterile neutrinos from the interaction with the active

sector zeq is not changed, however an extra equilibration rate is present in this model

due to the scalar decay (eq. (6.7)) and inverse decay.

6.2 Effect on BAU production

The model has several free parameters; the Yukawa coupling Y2 and Y3, the scalar vev

v0
S, the scalar coupling λS and the scalar-Higgs coupling λSH. Similar to the sterile

neutrino masses in the νMSM, we will parametrize Y2 and Y3 as,

Y2/3 = Y ∓ α/2 , (6.12)
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(A) α = 0.1 (B) α = 10−3

(C) α = 10−8 (D) α = 10−8

FIGURE 6.2: Parameter space as a function of the parameters Y and v0
S. See text for more details.

Adapted from ref. [2].

such that the zero temperature relative mass splitting in this model and the νMSM are

both defined by α.

The parameter λSH is only relevant for thermalizing the scalar with the Standard Model

thermal bath. In for example ref. [147] it is stated that for λSH ∼ 10−4 the scalar will

be thermalized at TS ∼ 106 GeV. Taking a slightly more conservative choice λSH =

10−3 we can assume the scalar will be thermalized for the timescales we are interested

in. Note that after electroweak symmetry breaking the scalar and the Higgs boson

will mix because both particles will have obtained a vev. Searches for new scalars in

collider experiments have given limits on the allowed mixing of the Higgs with a new

scalar, however for large scalar masses these limits are rather weak [148]. It is thus not

expected to influence the choice λSH = 10−3 in the parameter space we are interested

in.

To develop some intuition about how each parameter affects the timescales and to de-

termine which parameters warrant closer attention we can have a look at fig. 6.2. This
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figure shows the dependence of some of the limits and timescales on these parame-

ters. In the following we will define sterile neutrino equilibration as the values of Y,

λS and v0
S for which sterile neutrino production from eq. (6.7) exceeds ρN > 0.15 at

z = 1. Equilibration of sterile neutrinos from interactions with the scalar will occur

somewhere around the border of the region defined by the condition. Note that an-

other reason for requiring small sterile neutrino densities is that it ensures that inverse

decay can indeed be ignored.

In plot (A), (B) and (C) of fig. 6.2 the blue regions are the regions for which sterile neu-

trino equilibration occurs due to scalar decay, for several choice of λS. Other timescales

shown in these three figures are the region where zosc > 1 (the pink area) and the region

for which zosc/zc < 1 (the green/yellow area). Furthermore the line MN = 100 MeV is

shown, this corresponds approximately to the lower limit sterile neutrinos are allowed

to have in order not to change Big Bang Nucleosynthesis predictions considerably, see

e.g. [149, 150]. Note that the grey-hashed area corresponds to the region where the

sterile neutrino mass exceeds 100 GeV. In this region the assumption that the sterile

neutrinos are relativistic starts to break down, the framework developed for the ARS

leptogenesis mechanism will not be valid here. Lastly these figures show three red stars

which denote the three benchmark points which will be used later on.

Plot (D) differs from the other three plots as follows; instead of producing limits on

sterile neutrino equilibration from scalar decay for different values of λS we fix the

zero temperature scalar mass to M0
S = 10 TeV such that λS = (M0

s )
2/2(v0

S)
2. In plot (D) we

set α = 10−8.

From the plots in fig. 6.2 different areas can be distinguished:

Sterile neutrino equilibration: within the blue areas sterile neutrinos are expected to equi-

librate before or at electroweak symmetry breaking. In this region inverse decays,

which have so far been neglected, will become relevant. As a result sterile neutrinos

will decohere. We thus expect that any asymmetry previously produced will undergo

significant washout in this region.

Slow oscillations: the pink areas denote regions for which zosc > 1, this means that the

sterile neutrinos will not have developed a O(1) relative phase shift before electroweak

symmetry breaking. As discussed before, almost no asymmetry production is expected

in the pink regions.

Thermal oscillations: the yellow/green areas correspond to zosc/zc < 1. This area could

be rather interesting because the phase difference from sterile neutrino oscillations is

produced before the symmetry breaking of the scalar. Thus, the produced oscillation
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Points v0
S y Y∆B

A 107.5 10−6.5 5.04 × 10−11

B 107 10−6 4.96 × 10−11

C 106.5 10−5.5 1.46 × 10−11

TABLE 6.1: Selected benchmark points. The produced baryon asymmetry for each point is also
listed. Throughout α = 10−8, λSH = 10−3 and λS = 10−2.

timescale is dominated by the thermal mass of the sterile neutrino and not the zero tem-

perature mass. This would offer a profound difference from the νMSM dynamics. We

observe however that this region in general coincides with sterile neutrino equilibra-

tion, thus no significant asymmetry will be produced. Note that only for large relative

mass splitting α there is a region in which the blue area does not fully overlap with the

yellow area. However, ARS leptogenesis with two sterile neutrinos requires that the

sterile neutrino masses are strongly degenerate, thus, also here we do not expect signif-

icant lepton asymmetry production. The overlap between yellow and blue regions is

probably not fully unexpected; for the thermal mass of the sterile neutrino to dominate

over the zero temperature mass the yukawa coupling Y needs to be large, at the same

time this will of course also result in large scalar decay rates.

Successful leptogenesis: we are thus left with the white region in these plots. In these

regions all timescales conspire such that it is in principle possible to produce sufficient

lepton asymmetry. Note that for this to happen the mass difference must be small, we

therefore choose α = 10−8 in all calculations which will follow. In the next section this

region will be further investigated.

6.3 Results

We will continue our discussion on efficient lepton asymmetry production by calculat-

ing the produced asymmetry for three benchmark points: A, B and C, as defined in

table 6.1. Note that these three points correspond to the red stars in fig. 6.2. In order to

compare our results to the results calculated within the νMSM these points are chosen

to have a zero temperature sterile neutrino mass given by M0
N = 10 GeV. Further-

more, these points have been selected such that they are respectively far away, close

to and in the blue region. We thus chose points which have increasing sterile neutrino

production from scalar decay.

We can show that each point indeed corresponds to increasing sterile neutrino pro-

duction by comparing the total sterile neutrino production with the production from
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FIGURE 6.3: Sterile neutrino density RN(z) for the benchmark points A, B and C. The orange
lines correspond to the sterile neutrino production from only the scalar decays, the blue lines

correspond to the total sterile neutrino production. See text for more details. From ref. [2]

just scalar decay as defined in eq. (6.7). Results are shown in fig. 6.3. These figures

show that indeed the sterile neutrino production increases for benchmark points closer

to the blue area. Note that for benchmark point C the sterile neutrino production is

completely dominated by scalar decays. The vertical grey dashed lines in these plots

correspond z = zS and z = 10zS, where zS is determined by solving MS(zS) = T(zS).

This shows that the main sterile neutrino production from scalar decay occurs when

the scalar thermal mass is approximately equal to the temperature.

From the results summarized in table 6.1 we see that for point A the baryon asymmetry

is the same as the baryon asymmetry determined within the νMSM for MN = 10 GeV.

For the points B and C the total baryon asymmetry is reduced. From this we can make

the preliminary conclusion that additional sterile neutrino production reduces the pro-

duced baryon asymmetry, even for moderate production.

To extend this analysis further the baryon asymmetry as a function of the scalar vev

has been determined. Results are shown in fig. 6.4. On the left for fixed scalar self

coupling λS = 10−3 and three different sterile neutrino masses MN . And on the right

for fixed sterile neutrino mass, MN = 10 GeV, and three choices of λS. The results

in this figure confirm our suspicion that increasing sterile neutrino production from

scalar decay only reduces the produced baryon asymmetry. Note that in the limit of

negligible production, i.e., for large v0
S the produced baryon asymmetry is equivalent

to that predicted by the νMSM.

As a final plot we will show a comparison between the baryon asymmetry of the νMSM

and the baryon asymmetry of the scalar extension, as a function of the sterile neutrino

mass M0
N . Looking back at plot (C) in fig. 6.2 we can, for 1 GeV < M0

N < 100 GeV select

points (v0
S, Y) such that they are on a line parallel to the boundary of the blue areas in

fig. 6.2. This line can be parametrized as:

log(v0
S) = 2 log(Y) + Li , (6.13)
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FIGURE 6.4: Baryon asymmetry as a function of the scalar vev v0
S. On the left for several choices

of MN and on the right for several choices of λS. For these plots λSH = 10−3 and α = 10−8.
From ref. [2].

We choose Li = 20, 18.5, 17.5, corresponding to parallel lines far away, close to, and

inside the blue area, respectively. We fix λSH = 10−3, λS = 10−2 and α = 10−8. Results

are shown in fig. 6.5. Similar to previous results, these results show that additional ster-

ile neutrino production mainly affects ARS leptogenesis by reducing the total baryon

asymmetry. Note that the peak for which the production is maximized shifts, for in-

creasing sterile neutrino production, to slightly smaller values of M0
N . This is likely re-

lated to the additional equilibration rate of the sterile neutrinos with the thermal bath

due to scalar interactions. Furthermore, these results show that for negligible scalar

decay the produced baryon asymmetry in the scalar extension is equal to the baryon

asymmetry produced in the νMSM, which is exactly what we would expect.

6.4 Discussion

We have seen that in general one thermalized scalar will, through sterile neutrino pro-

duction from scalar decays, reduce the produced baryon asymmetry. This result seems

independent of the chosen parameters. The question posed in the introduction, “can a

scalar enhance the baryon asymmetry production in ARS leptogenesis?”, therefore has to be

answered negatively – one thermalized scalar is not able to enhance baryon asymmetry

production.

This result, although at first sight somewhat disappointing can still proof useful. If

(when) collider searches, or other experiments like gravitational wave experiments,

find evidence for the existence of a heavy thermalized scalar the results presented in

this chapter will help constrain the possible parameter space for which ARS leptogen-

esis will be able to explain the observed BAU.

Furthermore we see that in the νMSM with small mass splitting and MN ∼ 60 GeV

the predicted BAU is actually larger than that observed in experiments. A thermalized
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FIGURE 6.5: Baryon asymmetry production as a function of the sterile neutrino mass M0
N , com-

pared to results obtained for the νMSM. See text for more details. From ref. [2].

scalar which couples sufficiently strong to the sterile neutrinos to reduce the produced

BAU, but not strong enough to fully thermalize them, could help alleviate this differ-

ence between prediction and observation. Note that there are also many parameters

within the νMSM, for example the parameters in eq. (5.11), which one could tune to

obtain the same effect. From fig. 6.2 we can also see that the existence of a thermalized

scalar with large Yukawa coupling to the sterile neutrinos would rule out leptogene-

sis via oscillations. Thus, showing that another mechanism or further Standard Model

extensions are required to explain the BAU.

In future work it would be interesting to look into Standard Model extensions with

multiple scalars. If all new scalars are thermalized with similar vacuum expectation

values the results discussed above should not be affected qualitatively. However a com-

bination of a thermalized scalar with vacuum expectation value and a (non)-thermalized

scalar without a vacuum expectation value could be interesting since it would break the

link between the zero temperature sterile neutrino masses, the thermal sterile neutrino

masses and sterile neutrino production from scalar decay. Breaking this link could pro-

vide an interesting change to the timescales discussed.

This concludes our discussion on leptogenesis via oscillations and the effect an extra

scalar has on this mechanism. In the next chapter this thesis will be wrapped up with

a conclusion and discussion to place the results obtained in part A and part B in per-

spective.
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Chapter 7
Conclusion and Discussion

In this thesis we have discussed two distinct Standard Model extensions; a scalar exten-

sion and an extension with a strongly coupled dark sector. Each of these extensions has

the property that they could be rather weakly coupled to the Standard Model particles,

therefore making it difficult to discover signatures of these models in conventional ex-

periments. Luckily, with the advancement of gravitational wave experiments, another

window into these theories has opened up.

In part A we have seen that phase transitions in strongly coupled hidden sectors, al-

though quantitatively well understood, are qualitatively not yet as well understood.

This is mainly due to the lack of calculations from first principles as a result of the

theory being non-perturbative. Consequently, possible gravitational wave signals pro-

duced by these hidden sectors are difficult to predict in a reliable manner. With the first

detection of gravitational wave signals from a first order phase transition hopefully

rapidly approaching, this is somewhat of a problem. Without a reliable prediction of

gravitational wave signals, experimental results will not be able to help put limits on

hidden sectors, or ideally, proof the existence of a strongly coupled hidden sector. Note

that this last point is anyway somewhat hard to achieve because gravitational wave sig-

nals mainly depend on a set of macroscopic quantities. Many different underlying SM

extensions can produce similar sets of macroscopic quantities, which will make it dif-

ficult if not completely impossible to trace gravitational wave signals back to a specific

model.

To alleviate this uncertainty somewhat we employed low-energy effective models to

approximate the full dynamics of a strongly coupled hidden sector. By using the NJL

101
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model, the PNJL model and the LSM we have been able to calculate the effective poten-

tials as well as the predicted gravitational wave signals, without resorting to approxi-

mations as made in previous work. Results show that the peak frequency and signal

strength of the GW signals predicted by the effective models can sometimes differ by

several orders of magnitude. Additionally, due to the fast phase transitions, predicted

gravitational wave signals appear to be rather weak. We have seen that future experi-

ments like DECIGO and BBO are most sensitive to phase transitions in strongly coupled

hidden sector which occur around 100 GeV.

These results show that in order for gravitational wave experiments to be of any value

towards constraining strongly coupled hidden sectors we need to first understand their

phase transitions better. This requires either better effective models, by for example tak-

ing into account more diagrams when calculating the effective potential, or the use of

lattice calculations. Ideally, lattice calculations could in the future allow us to calcu-

late the phase transition dynamics from first principles, without resorting to effective

models.

For a scalar extension the situation is much better understood. Many scalar extensions

have been discussed in the literature which result in the electroweak phase transition

being first order. This will consequently result in a possibly measurable gravitational

wave signal. Once gravitational wave experiments find proof of a first order phase

transition it should thus be possible to partially constrain the parameters of these scalar

extension. It is therefore interesting to look into other effects an additional scalar has

on the Standard Model physics and determine how a scalar can contribute to solving

one or more of the many issues the Standard Model has. In particular, in part B we

looked into the effect a scalar has on leptogenesis via oscillations. The aim of leptogenesis

via oscillations, or any other baryogenesis mechanism, is to explain why our universe

seems to consist out of mainly baryons and not an equal number of baryons and anti-

baryons.

We have shown that a Standard Model extension with one thermalized singlet scalar

in general reduces the predicted baryon asymmetry. This reduction is the result of ad-

ditional sterile neutrino production from scalar decays. A region for which the asym-

metry can be enhanced has so far not been found. These results can be used as an

additional constraint on a possible scalar extension. More research still has to be done

on further scalar extensions, with enough freedom in a scalar sector it might be ex-

pected that a region in parameter space can be found for which the produced baryon

asymmetry will actually be enhanced. However, explicit calculations are needed to

answer this question definitively.
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Overall, this thesis has shown that the prospect of detecting first order phase transitions

through gravitational wave experiments leads to many interesting avenues to investi-

gate. On the one hand a lot of work remains to be done on calculating gravitational

wave signals from Standard Model extension in a reliable and precise manner. On the

other hand, once proof of a phase transition is found, this can be used to constrain

for example scalar extensions. We have also shown how such scalar extension can be

connected to other issues of the Standard Model.

The coming decades will hopefully proof to be an interesting time in particle physics,

with many experimental advances in neutrino experiments, collider experiments and

gravitational wave experiments.
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Appendix A
Thermal QFT and Thermal masses

Unlike particles travelling in vacuum, a particle travelling through a thermal medium

will interact with this medium. Standard Quantum Field Theory (QFT) only describes

physics at zero temperature in the vacuum. In order to describe physics in a thermal

bath one needs Thermal QFT. See for e.g. refs. [57, 151] for more details on Thermal

Quantum Field Theory.

Within Thermal QFT there are two main ways in which one can derive thermal ef-

fects, the real time formalism and the imaginary time formalism. In principle these two

formalisms are equivalent, however, the imaginary time formalism is only valid in

equilibrium. On the other hand, the real-time formalism can also be used to describe

non-equilibrium processes [151].

In this Appendix both formalisms will be briefly introduced. In order to get a better

understanding of the real and imaginary time formalism we will go through the explicit

example of deriving the effective potential, or equivalently the thermal mass, of a scalar

in a thermal bath.

A.1 Imaginary time formalism

This formalism was first developed by Matsubara [152]. Within the imaginary time

formalism the time variable is exchanged by imaginary time t → −iτ. For finite tem-

perature τ is a periodic variable: 0 ≤ τ ≤ β and β = 1/T. It is subsequently possible

to use all the standard Feynman techniques, in momentum space, with the following

105
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FIGURE A.1: One-loop diagram contributing to the thermal mass of a scalar ϕ.

changes to the scalar propagator and the momentum integration over loop momenta:

iDF(k) → ∆̃ =
1

ω2
n + ω2

k
, (A.1)

∫ d4kE

(2π)4 → T ∑
n

∫ d3k
(2π)3 . (A.2)

For a scalar ωn = nπT with n = 0,±1,±2 . . . , while for a fermion ωn = (n + 1)πT

with n = 0,±1,±2 . . . . The frequency ωk is defined as ω2
k = k⃗2 + m2

For a scalar self-interaction Lint = − 1
4! λϕ4, the one-loop diagram responsible for the

thermal mass is shown in fig. A.1.

Following the standard Feynman rules with the changes as given in eqs. (A.1) and (A.2)

the two-point function of this diagram is [57]:

G2 = −∆m2 = T ∑
n

∫ d3k
(2π)3

−λ

4!
4 × 3 × 1

k2 + m2 + ω2
n

, (A.3)

with ωn = 2πnT and n = 0,±1,±2 . . . .

Using the residue theorem the sum is equivalent to an integral in complex space, with

the contour enclosing all poles ω = 2πnT;

T ∑
n

1
ω2

n + ϵ2
k

!
= − 1

2πi

∮
dω

1
ω2 − ϵ2

k

1
2

coth(ω/2T)

= − 1
2πi

(2πi)Res
1
2

eω/2T + e−ω/2T

ω2 + ϵ2
k

1
eω/2T + e−ω/2T

= −1
2 ∑

n
limω→2πinT

g(ω)

h(ω)

= T ∑
n

1
ω2

n + ϵ2
k

,

(A.4)

where we have used L’Hôpital’s rule to calculate the limit. Futhermore, ϵ2
k = k2 +

m2. Instead of doing the sum we can now simply calculate the integral using complex

integration, this is done by deforming the contour such that it encircles not the poles

on the imaginary axis but the poles ω = ±ϵk; using again the Residue theorem the sum
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is thus given by:

− 1
2πi

∮
dω

1
ω2 − ϵ2

k

1
2

coth(ω/2T) = −Res
1

(ω + ϵk)(ω − ϵk)

1
2

coth(ω/2T)

=
1

2ϵk
coth(ϵk/2T) . (A.5)

Using the above relation the two point function can thus be written as:

− ∆m2 = −λ

2

∫ d3k
(2π)3

1
2ϵk

coth(ϵk/2T) . (A.6)

Through the equality coth(ϵk/2T) = 1+ 2nB(ϵk), this integral can be split up in a diver-

gent zero temperature contribution and a finite, temperature dependent, contribution.

nB(ϵk) is the Bose-Einstein distribution function for scalars; nB(ϵk) =
1

eϵk/T−1
. The zero

temperature contribution can be dealt with using renormalization.

The finite temperature part can be approximated for high temperatures m ≪ T as [57]:

∆m2
T =

λ

2

∫ d3k
(2π)3

1
ϵk

nB(ϵk) ∼
λ

24
T2 . (A.7)

A.2 Real time formalism

Instead of the imaginary time formalism the real time formalism can also be used to

calculate Feynman diagrams at finite temperature. Within the real time formalism the

thermal bath is taking into account by changing the propagators of scalars and fermions

as,

iD11(k) =
i

k2 − m2 + nB(|k0|)2πδ(k2 − m2) ,

iS11(k) = (/k + m)

(
i

k2 − m2 − nF(|k0|)2πδ(k2 − m2)

)
,

nB(|k0|) = (e|k0|/T − 1)−1 = Θ(k0)(ek0/T − 1)−1 + Θ(−k0)(e−k0/T − 1)−1 ,

nF(|k0|) = (e|k0|/T + 1)−1 = Θ(k0)(ek0/T + 1)−1 + Θ(−k0)(e−k0/T + 1)−1 .

(A.8)

Note that in the real time formalism there is also a second branch of propagators, see

for example textbooks on thermal quantum field theory like ref. [57]. However, for the

one-loop propagators we want to determine in this thesis these propagators are not

relevant and we will thus not discuss them here.
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Similar to the real-time formalism, we look at a scalar self-interaction Lint = − 1
4! λϕ4.

The one-loop diagram responsible for the thermal mass is shown in fig. A.1. The two

point function from this Feynman diagrams is given as,

G2 =
(−iλ)

2

∫ d4k
(2π)4 iD11(k)

=
−iλ

2

∫ d4k
(2π)4

(
i

k2 − m2 + nB(|k0|)2πδ(k2 − m2)

)
. (A.9)

The first term corresponds to the divergent zero-temperature loop contribution to the

scalar mass, while the second term is the finite temperature contribution. Integrating

over k0 we obtain,

G2 = −i∆m2
T =

−iλ
2

∫ d3k
(2π)3

∫
dk0nB(k0)δ(k2

0 − k⃗2 − m2)

∆m2
T =

λ

2

∫ d3k
(2π)3

1
ϵk

nB(ϵk) , (A.10)

with ϵ2
k = k2 + m2. This is exactly the same thermal mass as derived within the imagi-

nary time formalism, eq. (A.7).



Appendix B
CJT formalism

We will here go through the steps needed to obtain the CJT effective potential for a

simple ϕ4 scalar field theory, extending the formalism to multiple scalar fields is for

example done in ref. [72]. The Lagrangian for this toy model is given by:

L =
1
2
(∂µϕ)(∂µϕ)− 1

2
m2ϕ2 − λ

24
ϕ4 . (B.1)

Following ref. [72], this potential is shifted around the classical field ϕcl , i.e. ϕ → ϕ+ϕcl .

Assuming fluctuations are small, only terms linear in ϕ are kept, thus giving a classical

potential:

U(ϕcl) =
1
2

m2ϕ2
cl +

λ

24
ϕ4

cl . (B.2)

Within the CJT formalism the effective potential is defined in terms of the classical field

ϕ and the full propagator G as [74, 75]:

VCJT[ϕcl , G] = U(ϕcl) +
1
2

∫
k

log G−1(k) + 1
2

∫
k

[
∆−1(k; σ̄)G(k)− 1

]
+ V2[ϕcl , G(k)] .

(B.3)

The finite temperature integral is defined as

∫
k

f (k) := T
∞

∑
n=−∞

∫ d3⃗k
(2π)3 f (ωn, k⃗) , (B.4)

with ∆−1 the tree-level propagator of the meson,

∆−1(k; ϕcl) = k2 + m2
eff(ϕcl) . (B.5)
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FIGURE B.1: Double bubble diagram contributing to the 2PI potential.

meff is the effective (zero temperature) mass; m2
eff = m2 + 1

2 λϕ2
cl . The term V2 is the

2PI effective potential and it thus in principle contains all two-particle-irreducible (2PI)

diagrams. In practice it is ofcourse not possible to calculate this exactly, since it would

require the inclusion of infinitely many diagrams. In the following V2 is approximated

using the Hartree-Fock approximation [76, 77], which was also used in refs. [72–75].

Within this approximation the only diagram(s) taken into account to determine V2

is(are) the double bubble diagram(s). Since our toy model only contains one field there

is only one diagram contributing to V2. This double bubble diagram is shown in fig. B.1.

Within the Hartree-Fock approximation V2 is thus given by:

V2[ϕcl , G(k)] =
1
8

λ

[∫
k

G(ϕcl ; k)
]2

. (B.6)

Note that the propagator used in this equation is the full propagator G. The physical

value of G = G0 is determined by minimizing the CJT effective potential, as given in

eq. (B.3), with respect to the full propagator G. This minimization results in a gap equa-

tion, or alternatively called a fixed point equation, from which G0 can be determined

self consistently:

G−1(k; ϕcl) = ∆−1(k; ϕcl) + Π̂[ϕcl , G(k; ϕ)] with Π̂[σ̄, Ĝ(k; σ̄)] := 2
δV2[ϕcl , G(k)]

δG(k)
.

(B.7)

Note that both the left- and right-hand side of this equation depend on G. Addition-

ally it is also clear that for V2 = 0 the effective potential, eq. (B.3), corresponds to the

one-loop particle irreducible effective potential [1]. From this gap-equation G0 can be

determined as the true propagator, in the Hartree-Fock approximation. Using G0 to

calculate the effective potential will then give us an effective potential is term of the

classical field ϕ. This is the CJT effective potential.

Substituting V2, as determined within the Hartree-Fock approximation, in the gap equa-

tion we obtain:

G−1(k; ϕcl) = k2 + m2 +
1
2

λϕ2
cl +

1
2

λ
∫

k
G(ϕcl ; k) (B.8)

M(ϕcl)
2 = m2 +

1
2

λϕ2
cl +

1
2

λ
∫

k

1
k2 + M(ϕcl)2 (B.9)
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Where in the second line we have assumed the full propagator can be written as G−1 =

k2 + M2, with M the temperature dependent effective mass [69]. The solution of the

second equation gives the physical meson masses M0. Note that M0 is not momentum

dependent. Putting everything into eq. (B.3), the CJT effective potential in the Hartree-

Fock approximation is defined as:

VHF
CJT [ϕcl ] =

1
2

m2ϕ2
cl +

λ

24
ϕ4

cl +
1
2

∫
k

log(k2 + M2
0)

− 1
2

(
M2

0 − m2 − 1
2

λϕ2
cl

) ∫
k

[
1

k2 + M2
0

]
+

1
8

λ

[∫
k

1
k2 + M2

0

]2

=
1
2

m2ϕ2
cl +

λ

24
ϕ4

cl +
1
2

∫
k

log(k2 + M2
0)− 1

4

(
M2

0 − m2 − 1
2

λϕ2
cl

) ∫
k

[
1

k2 + M2
0

]
,

(B.10)

where in the last equality the gap equation was used to simplify the expression.

These integrals can be calculated within the imaginary time formalism [57], see also

appendix A. The second integral is calculated to be,

∫
k

1
k2 + M2

0
= T ∑

n

∫ d3k
(2π)3

1
k2 + ω2

n + M2
0

=
T

2π2

∫
dkk2

[
∑
n

1
k2 + ω2

n + M2
0

]

=
1

2π2

∫
dkk2 1

2
√

k2 + M2
0

(
1 +

2

e
√

k2+M2
0/T − 1

)

=
T2

4π2

∫
dxx2 1√

x2 + R2

(
1 +

2

e
√

x2+R2 − 1

)
≡ T2

2π2 IB(R2) ,

(B.11)

with x = k/T and R2 = M2
0/T2. Note that in the final line of this equation we have re-

moved the vacuum contributions, following refs. [73, 74] this was shown to not impact

the results qualitatively.

The other integral can be straightforwardly derived using,

∫
k

1
k2 + M2

0
=
∫

k

d
dM2

0
log(k2 + M2

0) (B.12)
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thus, ∫
k

log(k2 + M2
0) =

∫
dM2

0

∫
k

1
k2 + M2

0

=
T4

2π2

∫
dR2 IB(R2)

=
T4

π2

∫
dxx2 log

(
1 − e−

√
x2+R2

)
≡ T4

π2 JB(R2)

(B.13)

where again variables are changed as x = k/T and R2 = M2
0/T2. Also in this integral

the vacuum contributions have been neglected.

Combining everything the following CJT effective potential for a single scalar is ob-

tained,

VHF
CJT [ϕcl ] =

1
2

m2ϕ2
cl +

λ

24
ϕ4

cl +
T4

2π2

(
JB(R2)− 1

4
(R2 − r2)IB(R2)

)
(B.14)

with r2 = m2
eff/T2.
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[131] Juraj Klarić, Mikhail Shaposhnikov, and Inar Timiryasov. Uniting Low-Scale

Leptogenesis Mechanisms. Phys. Rev. Lett., 127(11):111802, 2021. doi: 10.1103/

PhysRevLett.127.111802.
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