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Introduction 

One of the major goals of magnetically confined fusion research is the understanding and 

control of plasma turbulence, which deteriorates the confinement of plasma. The tools used to 

study turbulence experimentally include microwave diagnostics and, in particular, poloidal 

correlation reflectometry (PCR) [1][2][3]. 

The PCR diagnostic is used to measure the poloidal rotation velocity of the plasma as well as 

turbulence poloidal correlation length and decorrelation time. It utilizes plasma probing 

(normally to the magnetic surface) in the presence of the cut-off. As the probing microwaves 

are scattered by turbulent density perturbations, the scattering signal is measured by two 

receiver antennas shifted in poloidal direction. The cross-correlation function (CCF) of the 

two signals is assumed to correspond to the two-point CCF of the density perturbations 

between the two turning points corresponding to the probing waves. 

The standard experimental setup (Fig. 1a) involves receivers shifted poloidally in opposite 

directions. At the first glance such a configuration, possessing inversion symmetry, would 

provide information on the fluctuations with the opposite sign of poloidal wavenumber, but in 

the case of statistically homogeneous turbulence they would not correlate with each other. 

Therefore, one would expect a configuration possessing translational symmetry (Fig. 1b) to be 

superior. This conclusion was in fact achieved within the study of nonlinear scattering regime 

of PCR [4]. 

Thus, the goal of this work was the 

linear theoretical analysis of the 

PCR diagnostic as well as validation 

of the results with numerical 

modelling. In particular, it involved 

the comparison of the two 

aforementioned configurations. 

Theoretical analysis 

In this work, the perturbation theory approach is applied to the Helmholtz equation. Slab 

geometry of the model presented on the Fig. 1. In case of O-mode probing, Helmholtz 

equation takes the form: 

Here, ω stands for the probing frequency, n(x,y) is the electron density and nc=meω
2
/4πe

2
  is 

the critical density corresponding to the O-mode cut-off. We separate the density profile into 

   
Fig. 1. Illustration of the different probing configurations. The 

vertical line at x=L(ky) designates the turning point. 
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Fig. 2. Illustration of the scattering 

off the same turbulence for 

different antenna positions. ki and 

ks correspond to wave vector of the 

probing and scattered waves 

respectively. 

 

background density, uniform along the poloidal direction, and density perturbation:  

n(x,y)=n0(x)+δn(x,y). A linear background density profile n0(x) = nc x/L is assumed, which 

means the solution E
0
 to the unperturbed equation (1) is given by the Airy function. 

Repeating the principles of derivation in [5][6], we will rely on the reciprocity theorem [7] to 

obtain the linear scattering signal: 
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Assuming a Gaussian antenna pattern (with beam waist ρ), one arrives to the following: 
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(3) 

Here q and κ represent poloidal and radial wavenumbers of the turbulence, while ye and yr are 

poloidal positions of emitter and receiver antennas, and α is the Airy scale.  

From this formula it can already be concluded that there is no dependence on the sign of yr-ye, 

meaning that there is no selection of turbulence with opposite signs of poloidal wavenumber 

for the three antenna configuration. The only term in (3) that depends on probing direction is 

the last exponential term, but it is proportional to (yr-ye)
2
, ignoring the sign of antenna shift.  

This result suggests that there is no principal difference 

between the two configurations. A qualitative illustration of 

this fact is given in Fig. 2. As it can be seen from the picture, 

for both receiving antennae, the scattering signal 

corresponding to the specific wavenumber q will be received. 

Moreover, the same poloidal harmonics will participate in the 

scattering, leading to the same amplitude of the received 

signal when combined with antenna pattern. In this case, the 

attenuation of the harmonic marked “ray 2” in the emitter will 

be reproduced by attenuation of the scattered wave “ray 1*” 

by the receiver. Thus, even though the scattering off positive q 

is somewhat unexpected for the pair e1-r1, it still happens just 

as effectively as for e1-r2. 

Using formula (3), the expression for the CCF can be obtained 

for the Gaussian turbulence spectrum: 
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(4) 

Here, lcx and lcy correspond to fluctuation correlation lengths and V is its poloidal velocity. 

Formula (4) can be further simplified in the case of Δy=0, resulting in the expression: 
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Fig. 3. Antenna setup used for  

numerical modelling 
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(5) 

Here Θ is a factor with a value 0.7-0.9 for relevant parameters. This formula, aside from the 

factor Θ, goes in line with the traditional interpretation of the PCR measurements [8]. 

Numerical verification 

To confirm analytically obtained conclusions, numerical 

modelling was performed. The data used for the task was 

a realistic turbulence produced with gyrokinetic full-f 

global ELMFIRE code [9] for the FT-2 tokamak. The 

ELMFIRE results were previously extensively 

benchmarked both directly [10] and indirectly [11] against 

experimental measurements and are expected to give a 

realistic turbulence data for the computation of the PCR 

CCF. The parameters of the ohmic discharge used for 

ELMFIRE modelling as well as the computation details can be found in [10], [11]. 

To obtain the PCR signals, the main approach used in this paper is the fast synthetic 

diagnostics of the ELMFIRE data within the linear approximation [12]. The method consists 

of computing the unperturbed field E
0
 and integrating it with the density perturbations as 

prescribed by the reciprocity theorem (formula (3)). E
0
 was computed using full-wave 

modelling with the full-wave code CUWA [13]. The field then was integrated with the 

density fluctuations provided by ELMFIRE. The geometry of the CUWA computation is 

given in Fig. 3. 

The resulting synthetic CCF, cross-phase and spectra are presented on fig. 3-5 respectively:  

 
  

Fig. 4. The PCR CCF. Blue and red 

– two antenna configurations. 

Fig. 5. Cross-phase. Blue and red – 

two antenna configurations.  

Fig.6. Power spectra. Blue and red 

– two antenna configurations. 

In agreement with formula (5), both configurations produce qualitatively similar results. 

Larger value of  for the 4 antenna case (  ) results in a larger shift of the CCF 

maximum and its lower value. Accordingly, cross-phase changes roughly twice as fast in case 

of four antenna configuration. Finally, the coincidence of the spectra for the two 

configurations also is in agreement with formula (5). 

Next, we performed a number of computations to test out the limits of obtained theoretical 

results. The computations were performed for X-mode probing, as it is used in actual FT-2 

experiment.  

The first limiting factor of the model is the use of slab geometry, which was implemented in 

computation by aligning antennas radially (Fig. 3). The result of a computation with 

horizontally aligned antennas is presented on Fig. 7. While the results for O-mode are not 
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shown in this work, they also demonstrate strong decay of correlation, which leads us to a 

conclusion that antenna misalignment can be a serious issue in experiment. 

   
Fig.7. The PCR CCF for horizontal 

probing. 

Fig. 8. The PCR CCF for raw 

ELMFIRE data. 
Fig.9. The PCR CCF for density 

perturbations decreased tenfold.  

To tackle the limitation of the linear model, full-wave modelling with CUWA was performed 

for raw ELMFIRE data and the resulting CCF is presented on Fig. 8. Once again, we observe 

a strong decay of correlation. While the nonlinear scattering theory predicts that the four 

antenna configuration should be preferable [4], in our case both are at the noise level, 

although the four antenna configuration results in a marginally better CCF. 

To confirm that this effect was caused specifically by nonlinear effects, the amplitude of 

density perturbations was decreased tenfold and another set of full-wave computations was 

performed. The resulting correlation function is shown in Fig. 9 and has the same behavior as 

the linear CCF in Fig. 4. Thus the nonlinear effects are capable of distorting correlation 

between the scattering signals and obstructing measurements. 

Conclusions 

Theoretical analysis of the PCR diagnostics in the linear approximation and slab geometry 

was performed. Analytical expression for PCR CCF was obtained. The equivalence of the 

three and four antenna configurations was confirmed. Theoretical results were verified with 

both linear and full-wave modelling. The computations have also demonstrated decorrelation 

of signals in the nonlinear scattering regime. Geometrical effects were also shown to play a 

significant role in PCR measurements for the geometry of a small tokamak like the FT-2. 
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