SUPPORTING INFORMATION

First-principles study of optical absorption energies, ligand field and spin-Hamiltonian parameters of Cr³⁺ ions in emerald

Mihail Atanasov^{*2,3},Emiliana-Laura Andreici Eftimie¹, Nicolae M. Avram^{*1,4}, Mikhail G. Brik^{4,5,6,7} and Frank Neese²

 ¹⁾Department of Physics, West University of Timisoara, Bd. V. Parvan, No. 4,300223, Timisoara, Romania
 ²⁾ Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
 ³⁾ Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Akad. Georgi Bontchev Street, Bl.11, 1113 Sofia, Bulgaria
 ⁴⁾ Academy of Romanian Scientists, Ilfov 3, 050044-Bucharest, Romania
 ⁵⁾CQUPT-BUL Innovation Institute &College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing, 400065, People's Republic of China
 ⁶⁾ Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu, 50411, Estonia
 ⁷⁾Faculty of Science and Technology, Jan Długosz University, Armii Krajowej 13/15, PL-42200, Częstochowa, Poland

E-mail: <u>*nicolae.avram@e-uvt.ro</u>; <u>*mihail.atanasov@kofo.mpg.de</u>; <u>*neese@kofo.mpg.de</u>

Contents

1 CAS(3,5) results of SA-CASSCF/MR-methods and SS-CASSCF/CASP2 in emerald	S2
2 QC expansion	S3
3 Energies deviations ΔE in CAS (3,5) for CASSCF/MR-PT methods using SA and SS pro	tocol
from experimental values. Contributions from orbital relaxation and dynamical correlation	on to
d-d transitions energies in emerald	S 3
4 AILFT	S6
4.1 Ligand field one-electron matrix V _{LF}	S6
4.2 AILFT energy levels	S7
5.State specific multiplet calculations	S9
6. Vibronic analysis and calculation of vibronic landshapes	S14
7. Generation of embedded host environment based on the Gelle-Lepettit method	S20
8. Angular Overlap Model Calculations	S23

§1. CAS(3,5) results of SA-CASSCF/MR-methods and SS-CASSCF / CASP2 in emerald.

Table S1. Electronic transitions states energies (in cm⁻¹) of Cr^{3+} : Be₃Si₆Al₂O₁₈ from SA-CASSCF/ MR-methods and SS-CASSCF/CASPT2 calculations with a minimal active space.

		Exp.			STATE	- AVERAG	E		STATE - S	SPECIFIC
Energy le	vels	[1] - ^a [2] b[3]	CASSCF (3,5)	SC- NEVPT2	HQD- NEVPT2	DCD- CAS2(3)	CASPT2 (3,5)	SORCI (3,5)	CASSCF (3,5)	CASPT2 (3,5)
$\frac{4}{4}$	4 1	0	0	(3,3)	(3,3)	(3,3)	0	0	0	0
$^{2}A_{2g}(^{2}\Gamma)$	$^{\circ}A_{2}$	U 17686	10102	0	0	0	0 16750	0	0	0
$-E_g(-U)$	-E 2 A	14000	19102	17268	17261	17220	10/30	10003	19903	14211
${}^{2}T_{1g}({}^{2}G){}$	$-A_2$ 2E	- 815140	20452	17000	17201	17220	1/4/2	17629	-	-
	4 A	15700	14522	1/909	16022	16724	1/202	17028	15560	13200
${}^{4}T_{2g}({}^{4}F)\{$	$^{\circ}A_{1}$	15/00	14332	10955	10925	10/34	14208	1/0//	15508	14033
	'Е 2Е	10000	15255	1/002	1/040	1/491	13433	1//21	28080	15527
$^{2}T_{2g}(^{2}G)$ {	~Е 2 л	} 21037	20972	24407	24379	24207	25220	23438	20000	20033
	⁻ A ₁ 4E	22000	28520	25925	25819	25727	24039	24/9/	29384	21425
${}^{4}T_{1g}({}^{4}F)\{$	'E 4 A	22800	22894	25095	24/14	24458	25202	24003	24228	21052
24 (20)	$^{4}A_{2}$	24000	24/18	26599	25996	25709	25070	24938	-	-
$^{2}A_{1g}(^{2}G)$	$^{2}A_{1}$	°28902	309/1	31228	31252	31059	28461	31289	32406	25415
$^{2}T_{2g}(^{2}H)\{$	$^{2}A_{1}$	30/00	33123	33192	331/5	32954	30668	32831	34512	27230
	² E	31650	34120	33876	33795	33603	31739	33496	35299	29804
${}^{2}T_{1g}({}^{2}P)\{$	$^{2}A_{2}$	30700	34415	34255	34363	34156	31802	33990	-	-
	² E	31650	35432	35177	34783	34591	32226	34466	-	-
${}^{2}\text{E}_{g}({}^{2}\text{H})$	^{2}E	-	37363	36515	36541	36368	34535	35910	-	-
$^{2}T_{1g}(^{2}H)\{$	² E	36300	40750	40029	39891	39648	37435	38847	42167	33395
c .	$^{2}A_{2}$	~37400	41208	40350	40201	39962	37306	38890	-	-
${}^{4}T_{1g}({}^{4}P)\{$	${}^{4}A_{2}$	^a 37730	34526	35973	36553	36363	34658	36599	34442	31645
	⁴ E	^a 41320	38603	39856	40207	40052	38250	39792	39608	35081
$^{2}T_{2g}(^{2}D)$ {	² E	39900	47895	46744	45568	45164	44044	43319	48918	43123
-80070	$^{2}A_{1}$	~39900	47838	46652	45661	45315	43397	43501	-	-
${}^{2}A_{2g}({}^{2}F)$	${}^{2}A_{2}$	41800	47915	48336	47309	46988	45399	45597	-	-
Spii RMS er	1-allov rors (c	$m^{-1}) \rightarrow$	1803	1664	1345	1246	1890	1154	1522	3993
Spin RMS err	-forbic rors (c	lden m ⁻¹) →	5172	4059	3673	3466	2305	2738	6253	2179
T RMS er	OTAI rors(c	$m^{-1}) \rightarrow$	4378	3472	3118	2939	2180	2347	5030	2991

S40

§2. QC expansion

Table S2. Results for SA-CASSCF(3,5)/NEVPT2 multiplets energies (in cm⁻¹) using the embedded clusters $[CrO_6Be_3]^{3-}$, $[Cr(OSi)_6Be_3]^{21}$ and $[Cr(O_2Si)_6Be_3]^9$ in

Energy le	evels	Exp.	Ab-initio	[CrO.19-	$[CrO_{6}Be_{3}]^{3-}$ $[Cr(OSi)_{6}Be_{3}]^{19}$ $[Cr$		[Cr(O,Si),Be,19]
O _h	D ₃	[1] ^a [2]	methods				
4Λ (4E)	4 A	Δ	SA-CASSCF	0	0	0	0
$A_{2g}(\Gamma)$	${}^{4}A_{2}$ 0	U	SC-NEVPT2	0	0	0	0
${}^{2}E({}^{2}G)$	$2\mathbf{E}$	14686	SA-CASSCF	19111	19119	19147	19113
$L_g(\mathbf{U})$	Г	14000	SC-NEVPT2	16714	16713	16733	16685
	2 A .	_	SA-CASSCF	19704	19712	19780	19748
${}^{2}T_{1}$ (² G)	Λ_2	-	SC-NEVPT2	17304	17304	17360	17319
	² E ^a 1	a15170	SA-CASSCF	20461	20478	20454	20420
	Г	13140	SC-NEVPT2	17947	17955	17913	17864
	4 A .	15700	SA-CASSCF	14510	14510	14299	14298
$4T_{2}(4F)$	A_1 15	13700	SC-NEVPT2	16923	16937	16596	16592
12g(1)(² g('F){ ⁴ E	16800	SA-CASSCF	15212	15232	14923	14948
	⁺E	10000	SC-NEVPT2	17648	17681	17234	17270
	$2\mathbf{E}$		SA-CASSCF	26978	26996	26993	26964
${}^{2}T_{2}({}^{2}G)$	L	321037	SC-NEVPT2	24539	24552	24524	24484
	2 \Lambda	,21007	SA-CASSCF	28526	28555	28374	28339
	\mathbf{A}_{1}		SC-NEVPT2	25994	26016	25776	25717
	$4\mathbf{E}$	22800	SA-CASSCF	22868	22891	22577	22606
4T. (4F))	Г	22000	SC-NEVPT2	25082	25119	24680	24715
1 [g(1) (4 A -	24000	SA-CASSCF	24691	24707	24224	24220
	A_2	24000	SC-NEVPT2	26596	26629	26004	25975
		•25520	SA-CASSCF	34498	34494	34337	34312
4T (4D)	$^{-}A_2$	" 3 // 3 0	SC-NEVPT2	35948	35964	35566	35528
	4	8/1270	SA-CASSCF	38570	38623	37993	38021
	.E	*41320	SC-NEVPT2	39833	39907	38972	39015
DMG	nnoncl	am-1)	SA-CASSCF	3873	3878	3940	3918
	errors($(m^{-}) \rightarrow$	SC-NEVPT2	2435	2443	2407	2382

comparison to [CrO₆]⁹⁻.

§3. Energies deviations △E in CAS (3,5) for CASSCF/MR-PT methods using SA and SS protocol from experimental values. Contributions from orbital relaxation and dynamical correlation to d-d transitions energies in emerald.

Figure S1. CASSCF (3,5)

Figure S2. NEVPT2 (3,5)

Figure S5. CASPT2 (3,5)

§4. AILFT

4.1 Ligand field one-electron matrix V_{LF}

Ligand field one-electron matrix V_{LF} (DCD-CAS2(3)) (a.u.):

d_{xy}	d_{yz}	d_{z2}	d_{xz}	d_{x2-y2}
$\left(\begin{array}{c} -2.025962\\ 0.036677\\ 0.000004\\ 0.000023\\ 0.000004\end{array}\right)$	$\begin{array}{c} 0.036677 \\ -2.014520 \\ -0.000003 \\ -0.000008 \\ 0.000037 \end{array}$	$\begin{array}{c} 0.000004\\ -0.000003\\ -2.064440\\ -0.000002\\ -0.000002\end{array}$	$\begin{array}{c} 0.000023\\ -0.000008\\ -0.000002\\ -2.014564\\ -0.036694\end{array}$	$\begin{array}{c} 0.000004\\ 0.000037\\ -0.000002\\ -0.036694\\ -2.025905 \end{array}$
		(S1)		

Eigenvalues (cm⁻¹) and corresponding orbitals: 0-d_{z2}; 1552.8-d_{xy}; 1553.5-d_{x2-y2}; 17847.9-d_{xz}; 17825.5-d_{yz};

d_{xy}	d_{yz}	d _{z2}	d_{xz}	d _{x2-y2}	
$\begin{pmatrix} -2.028932\\ 0.031960\\ -0.000005\\ 0.000015\\ 0.000018 \end{pmatrix}$	$\begin{array}{c} 0.031960 \\ -2.019272 \\ -0.000003 \\ -0.000016 \\ 0.000037 \end{array}$	$\begin{array}{c} -0.000005\\ -0.000003\\ -2.062160\\ -0.000002\\ 0.000003\end{array}$	$\begin{array}{c} 0.000015\\ -0.000016\\ -0.000002\\ -2.019300\\ -0.031980\end{array}$	0.000018 0.000037 0.000003 -0.031980 -2.028865/	(S2)

Ligand field one-electron matrix V_{LF} (CASPT2) (a.u.):

Eigenvalues (cm⁻¹) and corresponding orbitals: 0-d_{z2}; 1258.0-d_{xy}; 1261.1-d_{x2-y2}; 15443.3-d_{xz}; 15457.4-d_{yz};

4.2 AILFT energy levels

Figure S6. Comparison between energy levels obtained by AI and AILFT methods CAS (3,5).

From this figure it can be seen that recalculated energy levels by AILFT CASSCF (3,5) method (second column in Figure S6), are close with those of AI CASSCF (3,5) (first column in Figure S6), highlighted by correspondent RMS errors. This means that AILFT extractions from CASSCF calculations are more successful than those based on NEVPT2, where deviations are large as 2127 cm⁻¹. One can also see that multistate method DCD-CAS2(3) has, compared to NEVPT2 and CASPT2 methods, an AILFT fit with smaller value of RMS error between ab initio and LFEs. These finding are in agreement with observations reported in [4] for other octahedral 3d³ complexes (Cr³⁺ with ligands F–, Cl–, Br–, I–, CN–, NH3).

§5. State specific multiplet calculations

Ab Initio calculation of energies and wave functions of individual ligand field multiples is a rarely used practice. The reason is, that one normally assumes that ligand field theory is at work, such that one is doing this in one step taking state averaging over all states of the d^n configuration of transition metal in complexes. However, for Cr^{3+} in emerald it turned out that state averaging is not the best option. Since nicely resolved d-d absorption spectra are available it was worth trying to attempt state specific calculations to allow a comparison and to test the theory. The first step toward this goal is doing a standard state average CASSCF calculation.

emeraldic.inp

 $!DKH \ DKH \ def2-TZVPP \ AutoAux \ TightSCF \ Grid5 \ FinalGrid6 \ SOMF(1X) \ RI-JK \ Conv \ PAtom$

```
%rel method DKH # relativistic method
```

order 2 # order of DKH treatment (1-5). maximum value is 2 or SOC picturechange true # include the DKH correction to SOC

end

%method SpecialGridAtoms 24 SpecialGridIntAcc 7 %pointcharges "SD.pc"

%cassef nel 3 norb 5 mult 4,2 nroots 10,40 actorbs dorbs switchstep nr trafostep ri

end

end

* xyz -9 4

0.000000000000 0.0000000000000 0.0000000000000 cr 0.702755007287 1.571706375966 0.961746349055 0 0 -1.712515152519 -0.177249499037 0.961746349055 1.009760145234 -1.394456876930 0.961746349055 0 -1.010725439782 -1.394795408710 -0.959773945048 0 0 1.713290976916 -0.177916202748 -0.959773945048 -0.702565537133 1.572711611457 -0.959773945048 0 be> 0.000232417861 2.704985823138 0.001557569383 be> -2.342702648644-1.352291631798 0.001557569383 2.342470230785 0.001557569383 he> 2.000000000000 -1.352694191341 3.0000000000000 0.000000000000 -4.629229868599 al> al> 3.000000000000 0.000000000000 4.631409611309 si> 4.000000000000 -1.574984830215 1.752292586031 -2.330284349944 4.000000000000 1.554235642388 3.605402553803 -2.323365402895 si> 4.000000000000 -0.730037479258 -2.240123166558 -2.330284349944 si> si> 4.000000000000 2.305022309475 0.487830580526 -2.330284349944 4.000000000000 -3.148708826676 -2.323365402895 si> 2.345252381270 4.000000000000 -3.899488023656 -0.456693727127 -2.323365402895 si> si> 4.000000000000 -1.554496391215 3.605328612928 2.325350975521 si> 4.000000000000 3.899554363395 -0.456430941581 2.325350975521 si> 4.000000000000 -2.345057972178 -3.148897671348 2.325350975521 si> 4.000000000000 -2.304735328998 0.487837513378 2.332290888944 4 0000000000000 0.729887984995 -2.239878100601 2.332290888944 si> si> 4.000000000000 1.574847344003 1.752040587223 2.332290888944 0>-2.000000000000 -2.825143473877 0.743914796652 -2.313398407606 -1.766650776435 -3.472966305326 -2.366707499729 0>-2.000000000000 0.768322624787 -2.818603416039 -2.313398407606 0>2.056820849090 0> -2.00000000000 2.074688619387 -2.313398407606 -2.124351658682 3.266447604671 -2.366707499729 0> -2.000000000000 -2.000000000000 3.891002435117 0.206518700654 -2.366707499729 0>0> -2.000000000000 1.767548685558 -3.471638502476 2.369030913635 -3.890301478680 0.205077187119 2.369030913635 0> 2.122752793122 2.369030913635 0>3.266561315357 2.074994127948 0> -2.000000000000 -2.057820773724 2.314911453248 -2.000000000000 -0.768087240644 -2.819622130455 2.314911453248 0>2.825908014369 0.744628002507 2.314911453248 -2.000000000000 0>-2.000000000000 0 670545225333 1 499643257013 3.672945844596 0>

NewECP "SDD" end NewECP "SDD" end

0>	-2.000000000000	0.963456544521	-1.330530828031	3.672945844596	NewECP "SDD" end
0>	-2.000000000000	-1.634001769853	-0.169112428983	3.672945844596	NewECP "SDD" end
0>	-2.000000000000	-0.670227854094	1.499988292156	-3.670835011013	NewECP "SDD" end
0>	-2.000000000000	1.634141893435	-0.169559798109	-3.670835011013	NewECP "SDD" end
0>	-2.000000000000	-0.963914039339	-1.330428494048	-3.670835011013	NewECP "SDD" end
0>	-2.000000000000	-0.677911034098	3.862314123155	0.966954580683	NewECP "SDD" end
0>	-2.000000000000	3.683817665097	-1.344068884543	0.966954580683	NewECP "SDD" end
0>	-2.000000000000	-3.005906630998	-2.518245238613	0.966954580683	NewECP "SDD" end
0>	-2.000000000000	0.677978375661	3.862231424575	-0.964693524869	NewECP "SDD" end
0>	-2.000000000000	3.005801341147	-2.518262208826	-0.964693524869	NewECP "SDD" end
0>	-2.000000000000	-3.683779716806	-1.343969215749	-0.964693524869	NewECP "SDD" end

The CASSCF method yields many particle state energies with orbital degeneracies which are strictly fulfilled; this allows to count degenerate levels and assign symmetry. In D_3 symmetry there are two non-degenerate representations A₁ and A₂ which can be identified using one AOM calculation with ligand field parameters as input for the AOMX program package (see Section 8). These parameters can be taken from the AILFT section of the ORCA output. This allows one to identify the states in the D₃ point group as listed below

_____ LOWEST ROOT (ROOT 0, MULT 4) = -1584.516853273 Eh -43116.896 eV STATE ROOT MULT DE/a.u. DE/eV DE/cm**-1 0: 0 4 0.000000 0.000 00000.0 ${}^{4}A_{2}(1)$ 1: 1 4 0.066211 1.802 14531.7 ${}^{4}A_{1}(1)$ 2: 2 4 0.069412 1.889 15234.1 ⁴E(1) 3: 3 4 0.069417 1.889 15235.3 ⁴E(1) 4: 0 2 0.087036 2.368 19102.1 ²E(1) 5: 1 2 0.087037 2.368 19102.4 ²E(1) 6: 2 2 0.089731 2.442 19693.8 ²A₂(1) 7: 3 2 0.093189 2.536 20452.5 ²E(2) 8: 4 2 0.093189 2.536 20452.5 ²E(2) 9: 4 4 0.104308 2.838 22893.0 ⁴E(2) 10: 5 4 0.104322 2.839 22895.9 ⁴E(2) 11: 6 4 0.112626 3.065 24718.5 ⁴A₂(2) 12: 5 2 0.122895 3.344 26972.2 ²E(3) 13: 6 2 0.122895 3.344 26972.4 ²E(3) 14: 7 2 0.129948 3.536 28520.3 ²A₁(1) 15: 8 2 0.141112 3.840 30970.6 16: 9 2 0.150919 4.107 33122.8

SA-CASSCF TRANSITION ENERGIES

17:	10	2	0.155461	4.230 34119.7
18:	11	2	0.155468	4.231 34121.3
19:	12	2	0.156802	4.267 34414.1
20:	13	2	0.156809	4.267 34415.5
21:	7	4	0.157311	$4.281 \ \ 34525.8 \ \ ^4A_2(3)$
22:	14	2	0.161442	4.393 35432.4
23:	15	2	0.170240	4.632 37363.3
24:	16	2	0.170243	4.633 37364.1
25:	8	4	0.175887	4.786 38602.8 ⁴ E(3)
26:	9	4	0.175892	4.786 38603.9 ⁴ E(3)

To compute the energy of each state separately we need reading the emerald.gbw file and use of the command "weights[0]=..." Here it is of crucial importance the weight with equal weights states which belong to the same degenerate manifold, otherwise symmetry will break down. Explicitly we have the following relevant part of inputs:

State specific calculations on the S=3/2 states

```
{}^{4}A_{2}(1) ground state:
%casscf
               nel 3
            norb 5
                 mult 4
            nroots 1
                 switchstep nr
                 trafostep ri
                 nevpt2 sc
 end
<sup>4</sup>A<sub>1</sub> excited state:
%casscf
               nel 3
            norb 5
                 mult 4
            nroots 2
            actorbs locorbs
            weights[0]=0,1
                 switchstep nr
                 trafostep ri
                 nevpt2 sc
 end
<sup>4</sup>E(1) excited state:
%casscf
               nel 3
            norb 5
                 mult 4
            nroots 4
            actorbs locorbs
```

```
weights[0]=0,0,1,1
                 orbstep superci
                 switchstep diis
                 trafostep ri
                 shiftup 1
                 shiftdn 1
                 nevpt2 sc
 end
<sup>4</sup>E(2) excited state:
%casscf
               nel 3
            norb 5
                 mult 4
            nroots 6
            actorbs locorbs
            weights[0]=0,0,0,0,1,1
                 switchstep nr
                 trafostep ri
                 nevpt2 sc
 end
<sup>4</sup>E(3) excited state:
%casscf
                     3
                nel
            norb 5
                 mult 4
            nroots 10
            actorbs locorbs
            weights[0]=0,0,0,0,0,0,0,0,1,1
                 switchstep nr
                 trafostep ri
                 nevpt2 sc
 end
<sup>4</sup>A<sub>2</sub>(3) excited state:
%casscf
               nel
                    3
            norb 5
                 mult 4
            nroots 8
            actorbs locorbs
            weights[0]=0,0,0,0,0,0,0,1
                 switchstep nr
                 trafostep ri
                 nevpt2 sc
 end
```

Please, notice that the calculation for ${}^{4}A_{2}(2)$ did not converge! State specific calculations on the lowest S=1/2 states:

```
S12
```

²E(1) excited state (emitting):

%casscf nel 3 norb 5 mult 2 nroots 2 actorbs locorbs weights[0]=1,1 switchstep nr trafostep ri nevpt2 sc end $^{2}E(2)$ state: %casscf nel 3 norb 5 mult 2 nroots 5 actorbs locorbs weights[0]=0,0,0,1,1 switchstep nr trafostep ri nevpt2 sc end ²E(3) %casscf nel 3 norb 5 mult 2 nroots 7 actorbs locorbs weights[0]=0,0,0,0,0,1,1 switchstep nr trafostep ri nevpt2 sc end ${}^{2}A_{2}(1)$ excited state: %casscf nel 3 norb 5 mult 2 nroots 3 actorbs locorbs weights[0]=0,0,1 orbstep superci switchstep diis shiftup 0.5 shiftdn 0.5 trafostep ri

```
nevpt2 sc
maxiter 200
 end
{}^{2}A_{1}(1) excited state:
%casscf
               nel
                     3
           norb 5
                 mult 2
           nroots 8
           actorbs locorbs
           weights[0]=0,0,0,0,0,0,0,1
                 orbstep superci
                 switchstep diis
                shiftup 2
                shiftdn 2
                 trafostep ri
                 nevpt2 sc
 end
```

§6. Vibronic analysis and calculation of vibronic landscapes of d-d transitions

State specific energies have been computed taking a scan along the Q_{α} stretching mode with increments of the Cr-O distance $R_0 \pm \delta R$: $R_0 - 0.05$, $R_0 - 0.025$, $R_0 + 0.025$, Ro+0.05 Å around the reference distance R_0 . Total energies for each state have been fitted using a $(1/2)K_{\alpha}Q_{\alpha}^2 + V_{\alpha}Q_{\alpha} + E_{FC}$ a dependence on the $Q_{\alpha} = \sqrt{6}\delta R$.

In this way we obtain the following energy expressions (in cm⁻¹):

- $E[^{4}A_{2}(1)] = 149382Q_{\alpha}^{2} 25518Q_{\alpha}$
- $E[{}^{4}A_{1}(1)] = 157939Q_{\alpha}^{2} 39165Q_{\alpha} + 15542$
- $E[^{4}A_{2}(3)] = 169208Q_{\alpha}^{2} 54161Q_{\alpha} + 32932$
- $E[^{4}E(1)] = 157491Q_{\alpha}^{2} 39295Q_{\alpha} + 15876$
- $E[^{4}E(2)] = 155641Q_{\alpha}^{2} 40388Q_{\alpha} + 23069$
- $E[^{4}E(3)] = 166482Q_{\alpha}^{2} 51343Q_{\alpha} + 36808$
- $E[^{2}E(1)] = 148711Q_{\alpha}^{2} 23970Q_{\alpha} + 14234$
- $E[^{2}E(2)] = 148395Q_{\alpha}^{2} 23962Q_{\alpha} + 15357$ $E[^{2}E(3)] = 148339Q_{\alpha}^{2} 25919Q_{\alpha} + 21416$
- $E[^{2}A(1)] = 147639Q_{a}^{2}-25947Q_{a}+22753$

It is well known, that force field parameters derived from Hartree-Fock, and from post-Hartree-Fock methods are systematically overestimated compared to values extracted from experimental IR and Raman spectra. The same, though to lesser extent, is also valid for gradients. In the calculations we have used the following scaling factors based on a spectroscopic calibration, adjusting the force field constant K_{α} and the gradient V_{α} using the following relations:

 $K_{\alpha}^{eff} = 0.21 K_{\alpha}^{NEVPT2}$ $V_{\alpha}^{eff} = 0.87 V_{\alpha}^{NEVPT2}$

The adjustment holds true for the here considered case of Cr^{3+} in emerald and was chosen in such a way to reproduce the shape of the ${}^{4}A_{2} \rightarrow {}^{4}T_{2}$ in the non-polarized with a $hv_{\alpha 1} = 370 \text{ cm}^{-1}$ and a Hunag-Rhys factor S=3.0.

Figure 6 has been constructed using the following MatLab script:

```
clear all
clc
% potential energy diagrams
Qalfa1=[-0.72:0.01:0.72];
% ground state 4A2
deltaEFC=0;
Kalfa=61545;
Valfa=0;
Qalfamin1=Valfa/Kalfa
dRmin1=Qalfamin1/sqrt(6)
Ealfa4A21=deltaEFC+(1/2)*Kalfa*Qalfa1.^2-Valfa*Qalfa1;
% 4A2(4T1(2)), units cm-1
deltaEFC=32930;
Kalfa=69714;
Valfa=24920;
Qalfamin2=Valfa/Kalfa
dRmin2=Qalfamin2/sqrt(6)
Qalfa2=[-0.33:0.01:1.05];
Ealfa4A23=deltaEFC+(1/2)*Kalfa*Qalfa2.^2-Valfa*Qalfa2;
% 4A1(4T2), units cm-1
deltaEFC=15537;
Kalfa=65071;
Valfa=11873;
Qalfamin3=Valfa/Kalfa
dRmin3=Qalfamin3/sqrt(6)
Qalfa3=[-0.58:0.01:0.90];
Ealfa4A1=deltaEFC+(1/2) *Kalfa*Qalfa3.^2-Valfa*Qalfa3;
```

% 4E(4T2)

deltaEFC=15875;
Kalfa=64886;
Valfa=11987;

Qalfamin4=Valfa/Kalfa
dRmin4=Qalfamin4/sqrt(6)
Qalfa4=[-0.58:0.01:0.90];
Ealfa4E1=deltaEFC+(1/2)*Kalfa*Qalfa4.^2-Valfa*Qalfa4;

% 4E(4T11)

```
deltaEFC=23076;
Kalfa=64124;
Valfa=12937;
Qalfamin5=Valfa/Kalfa
dRmin5=Qalfamin5/sqrt(6)
Qalfa5=[-0.52:0.01:0.92];
Ealfa4E12=deltaEFC+(1/2)*Kalfa*Qalfa5.^2-Valfa*Qalfa5;
```

% 4E(4T12)

```
deltaEFC=36806;
Kalfa=68590;
Valfa=22468;
Qalfamin6=Valfa/Kalfa
dRmin6=Qalfamin6/sqrt(6)
Qalfa6=[-0.39:0.01:1.05];
Ealfa4E13=deltaEFC+(1/2)*Kalfa*Qalfa6.^2-Valfa*Qalfa6;
```

% 2E(2E)

```
deltaEFC=14233;
Kalfa=61269;
Valfa=-1347;
Qalfamin7=Valfa/Kalfa
dRmin7=Qalfamin7/sqrt(6)
Qalfa7=[-0.72:0.01:0.72];
Ealfa2E1=deltaEFC+(1/2)*Kalfa*Qalfa7.^2-Valfa*Qalfa7;
```

% 2E(2T1)

```
deltaEFC=15377;
Kalfa=61139;
Valfa=-1353;
Qalfamin8=Valfa/Kalfa
dRmin8=Qalfamin8/sqrt(6)
Qalfa8=[-0.72:0.01:0.72];
Ealfa2E2=deltaEFC+(1/2)*Kalfa*Qalfa8.^2-Valfa*Qalfa8;
```

% 2E(2T2)

```
deltaEFC=21415;
Kalfa=61116;
Valfa=-349;
Qalfamin9=Valfa/Kalfa
dRmin9=Qalfamin9/sqrt(6)
Qalfa9=[-0.72:0.01:0.72];
Ealfa2E3=deltaEFC+(1/2)*Kalfa*Qalfa9.^2-Valfa*Qalfa9;
```

% 2A1(2T2)

deltaEFC=22752;

```
Kalfa=60827;
Valfa=-373;
Qalfamin10=Valfa/Kalfa
dRmin10=Qalfamin10/sqrt(6)
Qalfa10=[-0.72:0.01:0.72];
Ealfa2A1=deltaEFC+(1/2)*Kalfa*Qalfa10.^2-Valfa*Qalfa10;
plot(Qalfa2,Ealfa4A23,'-',Qalfa1,Ealfa4A21,'-',Qalfa3,Ealfa4A1,'-',
Qalfa4,Ealfa4E1,'-',Qalfa5,Ealfa4E12,'-',Qalfa6,Ealfa4E13,'-',
Qalfa7,Ealfa2E1,'-',Qalfa8,Ealfa2E2,'-',Qalfa9,Ealfa2E3,'-
',Qalfa10,Ealfa2A1,'-')
XMIN=-0.72;
XMAX=1.05;
YMIN=0;
YMAX=45000;
axis([XMIN XMAX YMIN YMAX])
```

The spectrum (Figure 7) was simulated using the following MatLab script:

```
clear all
clc
format long
\% Qalfa progression
8
                                  3
                                                        5
                                           4
          1
                  2
% 4A2 -> 4A1(4T2) 4A2(4T1(2)) 4E(4T2) 4E(4T1(1)) 4E(4T1(2))
      [2.92 11.62 2.99 3.55 9.68];
S4=
ndim4=max(size(S4));
E4zpt= [14454 28476 14768 21771 33126];
homega4=[370 383 370 368 380];
fosc4=[16.3 0.0 18.2 8.5 4.8];
       [0.04 0.04 0.0 0.0];
S2=
ndim22=max(size(S2));
E2zpt= [14218 15362 21414 22751];
homega2=[359 359 359 358];
fosc2=[4.3 1.6 0.7 0.2];
ndim22=max(size(S2));
% 4A2 to S=3/2 d-d transitions
isum=0.0;
esum=0.0;
I(40) = zeros;
E(40) = zeros;
for i=1:ndim4
factor=exp(-S4(i));
huangrhys=S4(i);
for j=1:8
isum=isum+1;
esum=esum+1;
 I4(isum)=factor*huangrhys^(j-1)/factorial(j-1);
E4 (esum) = E4zpt(i) + (j-1) * homega4(i);
end
end
% x=[min(E4)-1000:1:max(E4)+1000];
x = [12000:10:30000];
ndim2=max(size(x));
% result=[E' I']
```

```
% disp(result)
% ndim=max(size(result));
% spin-allowed transitions
% zspectrum
ndim=8;
b=E4(1:8);
c=I4(1:8);
f=fosc4(1);
y(8,ndim2)=zeros;
for i=1:8
for j=1:ndim2
y(i,j) = (x(j)-b(i))/1000;
y(i,j) = f^{*}c(i) * exp(-y(i,j) * y(i,j));
     end
end
envelope1(ndim2)=zeros;
for j=1:ndim2
for i=1:8
envelope1(j)=envelope1(j)+y(i,j);
end
end
% xy spectrum 4E(1)
b=E4(17:24);
c=I4(17:24);
f = fosc4(3);
v(8,ndim2)=zeros;
for i=1:8
for j=1:ndim2
y(i,j) = (x(j)-b(i))/1000;
y(i,j)=f*c(i)*exp(-y(i,j)*y(i,j));
     end
end
envelope2(ndim2)=zeros;
for j=1:ndim2
for i=1:8
envelope2(j)=envelope2(j)+y(i,j);
end
end
% xy spectrum 4E(2)
b=E4(25:32);
c=I4(25:32);
f=fosc4(4);
y(8,ndim2)=zeros;
for i=1:8
for j=1:ndim2
y(i,j)=(x(j)-b(i))/1000;
y(i,j) = f^{*}c(i) * exp(-y(i,j) * y(i,j));
     end
end
envelope3(ndim2)=zeros;
for j=1:ndim2
for i=1:8
envelope3(j)=envelope3(j)+y(i,j);
end
end
```

```
% xy spectrum 4E(2)
b=E4(33:40);
c=I4(33:40);
f=fosc4(5);
y(8,ndim2)=zeros;
for i=1:8
for j=1:ndim2
y(i,j) = (x(j)-b(i))/1000;
y(i,j) = f^{*}c(i) * exp(-y(i,j) * y(i,j));
     end
end
envelope4(ndim2)=zeros;
for j=1:ndim2
for i=1:8
envelope4(j)=envelope4(j)+y(i,j);
end
end
envelope4z=envelope1;
envelope4xy=envelope2+envelope3+envelope4;
8
% plot(x,envelope4z,'-',x,envelope4xy,'-')
% spin-forbidden transitions
% 4A2 to S=1/2 d-d transitions
isum=0.0;
esum=0.0;
I2(32)=zeros;
E2(32)=zeros;
for i=1:ndim22
factor=exp(-S2(i));
huangrhys=S2(i);
for j=1:8
isum=isum+1;
esum=esum+1;
 I2(isum)=factor*huangrhys^(j-1)/factorial(j-1);
 E2 (esum) = E2zpt(i) + (j-1) * homega2(i);
end
end
% xy spectrum 2E(1)
b=E2(1:8);
c=I2(1:8);
f=fosc2(1);
y(8,ndim2)=zeros;
for i=1:8
 for j=1:ndim2
y(i,j) = (x(j)-b(i))/50;
y(i,j) = f^{*}c(i) * exp(-y(i,j) * y(i,j));
     end
end
envelope5(ndim2)=zeros;
for j=1:ndim2
for i=1:8
envelope5(j)=envelope5(j)+y(i,j);
```

end end

```
% xy spectrum 2E(2)
b=E2(9:16);
c=I2(9:16);
f=fosc2(2);
y(8,ndim2)=zeros;
for i=1:8
for j=1:ndim2
y(i,j) = (x(j)-b(i))/50;
y(i,j)=f*c(i)*exp(-y(i,j)*y(i,j));
     end
end
envelope6(ndim2)=zeros;
for j=1:ndim2
for i=1:8
envelope6(j)=envelope6(j)+y(i,j);
end
end
% xy spectrum 2E(3)
b=E2(17:24);
c=I2(17:24);
f=fosc2(3);
y(8,ndim2)=zeros;
for i=1:8
for j=1:ndim2
y(i,j) = (x(j)-b(i))/50;
y(i,j) = f^{*}c(i) * exp(-y(i,j) * y(i,j));
     end
end
envelope7(ndim2)=zeros;
for j=1:ndim2
for i=1:8
envelope7(j)=envelope7(j)+y(i,j);
end
end
    spin
8
           allowed
                      allowed
                                 allowed forbidden forbidden forbidden
envelopexy=envelope2+envelope3+envelope4+envelope5+envelope6+envelope7;
plot(x,envelope4z,'-',x,envelopexy,'-')
axis([12000 30000 0 14])
```

§7. Generation of embedded host environment based on the Gelle-Lepettit method

7. 1 Gellé -Lepetit method

The Gellé -Lepetit method ⁵ allows to calculate the Madelung potential and design the embedded cluster around an impurity ion in a supercell of a given crystal. It works by the cancel out of given number of successive multipolar

moments of the crystal supercell. This method was applied to obtain the QC, BR and PC of emerald crystal using the 1x1x2 optimized supercell, the Env 15 softwer and the following files:

S 1.1. The input file

```
&envin

prefix='SD',

nfi_in='SD_0.cell',

ncel = 0,

nch = 116,

sortie='orca',

a = 9.25524107, b= 9.25524107, c= 18.51489404,

alpha= 90.0, beta=90.0,gamma=120.000000,

atom0='Ctr',

pos0 = 3.33333333333-01, -3.333333333-01, 1.249444485904E-01,

nmag=1,

atommag='Cr',

posmag= 3.33333333333-01,-3.33333333333-01,1.249444485904E-01,

dsys=2.0, dpseud=5.2,

&end
```

S 1.2. The cell file

```
BE -4.979021040594E-01 4.145567827934E-03 1.250285738022E-01
                                                                 2.0
BE -4.999970259207E-01 -1.837319650455E-05 -3.749795366598E-01
                                                                  2.0
BE -4.145567827933E-03 4.979523281127E-01 1.250285738022E-01
                                                                  2.0
BE 1.837319650452E-05 -4.999786527242E-01 -3.749795366598E-01
                                                                 2.0
BE -4.979523281127E-01 4.979021040594E-01 1.250285738022E-01
                                                                 2.0
BE 4.999786527242E-01 4.999970259207E-01 -3.749795366598E-01
                                                                  2.0
BE 4.993976517886E-01 -2.529378483096E-05 -1.253486194027E-01
                                                                  2.0
BE -4.994590019109E-01 -4.717867745963E-05 3.753128133843E-01
                                                                  2.0
BE 2.529378483100E-05 4.994229455734E-01 -1.253486194027E-01
                                                                 2.0
BE 4.717867745997E-05 -4.994118232335E-01 3.753128133843E-01
                                                                 2.0
BE -4.994229455734E-01 -4.993976517886E-01 -1.253486194027E-01
                                                                  2.0
BE 4.994118232335E-01 4.994590019109E-01 3.753128133843E-01
                                                                 2.0
CR 3.3333333333333E-01 -3.333333333333E-01 1.249444485904E-01
                                                                  30
AL 3.3333333333338-01 -3.333333333338-01 -3.750209816237E-01
                                                                  3.0
AL -3.33333333333332E-01 3.3333333333332E-01 1.250040383774E-01
                                                                  3.0
AL -3.33333333333332E-01 3.33333333333332E-01 -3.749879007554E-01
                                                                  3.0
AL -3.33333333333332E-01 3.33333333333332E-01 -1.252771096651E-01
                                                                  30
AL -3.33333333333332E-01 3.3333333333332E-01 3.752811073035E-01
                                                                  3.0
AL
     3.333333333333E-01 -3.33333333333E-01 -1.250829001267E-01
                                                                  3.0
AL 3.3333333333333E-01 -3.3333333333332E-01 3.750895264560E-01
                                                                 3.0
SI 2.724707118510E-01 -1.147141555955E-01 -9.155398550900E-04
                                                                 40
    2.726586925066E-01 -1.171441659495E-01 -4.998941293865E-01
SI
                                                                 4.0
SI -2.738280847363E-01 1.164831801927E-01 -5.418435739343E-04
                                                                 4.0
SI -2.724469808798E-01 1.171094031002E-01 -4.997977394021E-01
                                                                 40
SI 1.147141555955E-01 3.871848674465E-01 -9.155398550900E-04
                                                                 4.0
SI 1.171441659495E-01 3.898028584560E-01 -4.998941293865E-01
                                                                 4.0
SI -3.871848674465E-01 -2.724707118510E-01 -9.155398550900E-04
                                                                 40
SI -3.898028584560E-01 -2.726586925066E-01 -4.998941293865E-01
                                                                 40
SI 3.903112649290E-01 2.738280847363E-01 -5.418435739343E-04
                                                                 4.0
SI
    3.895563839800E-01 2.724469808798E-01 -4.997977394021E-01
                                                                 4.0
SL -1 164831801927E-01 -3 903112649290E-01 -5 418435739343E-04
                                                                 40
SI -1.171094031002E-01 -3.895563839800E-01 -4.997977394021E-01
                                                                 4.0
    3.895060586149E-01 1.171102086506E-01 -2.501981143837E-01
SI
                                                                 4.0
SI 3.902784793311E-01 1.164739551960E-01 2.505379826661E-01
                                                                 40
SI -2.723958499643E-01 -3.895060586149E-01 -2.501981143837E-01
                                                                 4.0
SI -2.738045241351E-01 -3.902784793311E-01 2.505379826661E-01
                                                                 4.0
SI -1.171102086506E-01 2.723958499643E-01 -2.501981143837E-01
                                                                 4.0
SI -1.164739551960E-01 2.738045241351E-01 2.505379826661E-01
                                                                 4.0
SI 1.171659346214E-01 -2.726538822764E-01 -2.501089446355E-01
                                                                 40
   1.147455954205E-01 -2.724698468959E-01 2.509128113531E-01
SI
                                                                 4.0
SI
    2.726538822764E-01 3.898198168978E-01 -2.501089446355E-01
                                                                 4.0
SI 2.724698468959E-01 3.872154423165E-01 2.509128113531E-01
                                                                 4.0
SI -3.898198168978E-01 -1.171659346214E-01 -2.501089446355E-01
                                                                 4.0
SI -3.872154423165E-01 -1.147455954205E-01 2.509128113531E-01
                                                                 4.0
    7.449144605487E-02 -2.405211840111E-01 -3.520466741145E-06
0
                                                                 -2.0
    7.343120249905E-02 -2.381410348506E-01 -4.998745476272E-01
0
                                                                 -2.0
    -7.419455050833E-02 2.333731379296E-01 -2.882774974361E-03
                                                                 -2.0
0
  -7.323336798673E-02 2.380610629926E-01 -4.998081063218E-01
                                                                 -2.0
```

~		• •
0	2.405211840111E-01 3.150126300660E-01 -3.520466741145E-06	-2.0
0	2 381410348506F_01 3 115722373497F_01 _4 998745476272F_01	-2.0
õ	2.15010(2000(0E 01 7.440144(05407E 02 2.5004((741145E 0(2.0
0	-3.150126300660E-01 -/.44914460548/E-02 -3.520466/41145E-06	-2.0
0	-3.115722373497E-01 -7.343120249905E-02 -4.998745476272E-01	-2.0
Ó	3 075676884370E 01 7 410455050833E 02 2 882774074361E 03	2.0
0	5.075070804579E-01 7.419455050655E-02 -2.882774974501E-05	-2.0
0	3.112944309793E-01 7.323336798673E-02 -4.998081063218E-01	-2.0
0	-2 333731379296E-01 -3 075676884379E-01 -2 882774974361E-03	-2.0
~	2.33575157722702 01 3.0720700015772 01 2.0027715715012 05	2.0
0	-2.380610629926E-01 -3.112944309/93E-01 -4.998081063218E-01	-2.0
0	3.112386789310E-01 2.380566202389E-01 -2.502141053059E-01	-2.0
ò	2 077475242619E 01 2 225297070026E 01 2 529071610670E 01	2.0
0	5.0//4/5542018E-01 2.55558/9/0050E-01 2.5289/10100/0E-01	-2.0
0	-7.318205869210E-02 -3.112386789310E-01 -2.502141053059E-01	-2.0
\cap	_7 /20873725827E_02 _3 077/753/2618E_01 _2 528971610670E_01	-2.0
~	2 20055(202200E 01 7 2102050(0210E 01 2.520)/10100/0E 01	2.0
0	-2.380566202389E-01 /.318205869210E-02 -2.502141053059E-01	-2.0
0	-2.335387970036E-01 7.420873725827E-02 2.528971610670E-01	-2.0
õ	2 201110644501E 01 7 241041470475E 02 2 501000501124E 01	2.0
U	2.361116044301E-01 -7.341641479473E-02 -2.301096361124E-01	-2.0
0	2.404322031646E-01 -7.445333025681E-02 2.499741381067E-01	-2.0
\cap	7 3/18/1/79/75E-02 3 115302792//8E-01 -2 50109858112/E-01	-2.0
8	7.541641477475E-02 5.115502772446E-01 -2.501076561124E-01	-2.0
0	7.445333025681E-02 3.148855334215E-01 2.499741381067E-01	-2.0
0	-3 115302792448E-01 -2 381118644501E-01 -2 501098581124E-01	-2.0
õ	2 149955224215E 01 2 404222021(4(E 01 2 4007412910(7E 01	2.0
U	-3.148855554215E-01 -2.404522051040E-01 2.499/4158100/E-01	-2.0
0	-4.994266827362E-01 1.464404351639E-01 -1.771798108566E-01	-2.0
\cap	A 076682160208E 01 1 450535584614E 01 3 232024042502E 01	2.0
0	-4.9/0082100208E-01 1.4393333364014E-01 3.232024042392E-01	-2.0
0	4.990626293697E-01 -1.462041156210E-01 -1.770999430880E-01	-2.0
0	4 993327548327E-01 -1 462351407360E-01 3 233223510867E-01	-2.0
~	1.////////////////////////////////////	2.0
0	-1.404404351039E-01 3.541328820998E-01 -1.//1/98108566E-01	-2.0
0	-1.459535584614E-01 3.563782255178E-01 3.232024042592E-01	-2.0
Ó	3 541328820008E 01 A 004266827362E 01 1 771708108566E 01	2.0
0	-5.541528820778E-01 4.77420827502E-01 -1.771758108500E-01	-2.0
0	-3.563782255178E-01 4.976682160208E-01 3.232024042592E-01	-2.0
0	3 547332550092E-01 -4 990626293697E-01 -1 770999430880E-01	-2.0
õ	2 544221044212E 01 4 002227540227E 01 2 2222225100(7E 01	2.0
0	3.544321044313E-01 -4.99332/54832/E-01 3.23322351086/E-01	-2.0
0	1.462041156210E-01 -3.547332550092E-01 -1.770999430880E-01	-2.0
\cap	1 462351407360E 01 3 544321044313E 01 3 233223510867E 01	2.0
0	1.402331407300E-01-3.344321044313E-01-3.233223310807E-01	-2.0
0	3.544879190089E-01 -1.461920935303E-01 -7.331944657865E-02	-2.0
0	3 547018992249E-01 -1 462053759331E-01 4 270859087859E-01	-2.0
ŏ	4 002100074609E 01 2 544070100090E 01 7 221044657065E 02	2.0
U	4.9951996/4006E-01-5.3446/9190069E-01-7.55194405/605E-02	-2.0
0	4.990927248420E-01 -3.547018992249E-01 4.270859087859E-01	-2.0
\mathbf{O}	1 461920935303E-01 -4 993199874608E-01 -7 331944657865E-02	-2.0
~	1.401/20/55505E 01 4.//51//000E 01 4.551/4057005E 02	2.0
0	1.462053759331E-01 -4.990927248420E-01 4.270859087859E-01	-2.0
0	-1.459614955514E-01_4.976321522896E-01 -7.320226388244E-02	-2.0
õ	1 462075257820E 01 4 002705577814E 01 4 271042720778E 01	2.0
0	-1.4039/323/629E-01 4.993/033//614E-01 4.2/1942/30//6E-01	-2.0
0	-4.976321522896E-01 3.564063521590E-01 -7.320226388244E-02	-2.0
0	-4 993705577814E-01 3 542319164357E-01 4 271942730778E-01	-2.0
õ	2 5(40(252)500E 01 1 450(14055514E 01 7 22022(200244E 02	2.0
0	-3.304003321390E-01 1.439014933314E-01 -7.320220388244E-02	-2.0
0	-3.542319164357E-01 1.463975257829E-01 4.271942730778E-01	-2.0
\cap	A 026017162187E 01 1 372444162780E 01 1 768880181065E 01	2.0
8		-2.0
0	4.990832590823E-01 -1.4629/2513166E-01 -3.231152394448E-01	-2.0
0	-4.989782128639E-01 1.485359301106E-01 1.771702176709E-01	-2.0
Ô	4 002441800080E 01 1 462241501254E 01 2 221505025786E 01	2.0
0	-4.992441899080E-01 1.402341391334E-01 -3.231303023780E-01	-2.0
0	1.372444162780E-01 -3.554472999407E-01 1.768889181065E-01	-2.0
0	1 462972513166F-01 -3 546194896010F-01 -3 231152394448F-01	-2.0
ŏ	2 554472000407E 01 4 02(0171(2)197E 01 1 7(00001010(5E 01	2.0
U	5.5544/299940/E-01 4.92091/10218/E-01 1./08889181005E-01	-2.0
0	3.546194896010E-01 -4.990832590823E-01 -3.231152394448E-01	-2.0
\cap	_3 52/858570255E_01 / 989782128639E_01 1 771702176709E_01	-2.0
0	-5.524656576255E-01 4.969762126659E-01 1.771762176769E-01	-2.0
0	-3.545216509566E-01 4.992441899080E-01 -3.231505025786E-01	-2.0
0	-1.485359301106E-01 3.524858570255E-01 1.771702176709E-01	-2.0
Ô	1 462241501254E 01 2 545216500566E 01 2 221505025786E 01	2.0
Š	-1.+023+1371334E-01 3.343210309300E-01 -3.251303023/80E-01	-2.0
0	-3.524837397911E-01 1.485256124869E-01 7.284080042560E-02	-2.0
0	-3 545040316271E-01 1 462414820844E-01 -4 268186581693E-01	-2.0
õ	4 000006477220E 01 2 524027207011E 01 7 204000042560E 02	2.0
U	-4.7077004//220E-01 3.32483/39/911E-01 /.284080042360E-02	-2.0
0	-4.992544862886E-01 3.545040316271E-01 -4.268186581693E-01	-2.0
0	-1 485256124869E-01 4 980006477220E-01 7 284080042560E 02	-20
0		-2.0
Ο	-1.462414820844E-01 4.992544862886E-01 -4.268186581693E-01	-2.0
0	1.371190012884E-01 4.926494803844E-01 7 310650974104E-02	-2.0
õ		2.0
0	1.402401/39202E-01-4.990/99900355E-01-4.26895028345/E-01	-2.0
0	-4.926494803844E-01 -3.555304790960E-01 7.310650974104E-02	-2.0
\mathbf{O}	4 990799900355E-01 -3 546798360383E-01 -4 268950283457E-01	-2.0
č	2 555204700000E 01 1 271100012004E 01 7 2100502007104E 02	2.0
0	5.555504/90900E-01-1.5/1190012884E-01 /.5106509/4104E-02	-2.0
0	3.546/98360383E-01 -1.462401739262E-01 -4.268950283457E-01	-2.0

The calculations generated the xyz and PC files that can be obtained from the authors upon request.

§8. Angular Overlap Model calculations

Angular overlap model calculations were carried out with the aid of the AOMX program package.⁶ Here we include three type of examples of their usage in this report.

8.1. Assignment and labelling of multiplets from ORCA calculations.

Symmetry is available in ORCA for Abelian point groups only. In these point groups there are no degenerate representations. In the D_3 point group the irreducible representations are A_1 , A_2 and E. From the ORCA output E representations can easily be identified from the twofold degeneracy of CASSCF computed state energies, but one cannot descriminate between A_1 and A_2 . To this end, one can repeat the calculation using the AOMX program just taking the set of LF parameters from the AILFT output, but one has to derive the AOM parameters for the Cr-O bond beforehand (see Section 8.2 for an example); for the CASSCF calculation the resulting parameters are (in cm⁻¹):

 e_{σ} =5774, e_{π} =484, B=1064, C=3950.

Input:

no Sp	oin-O:	rbit	coupling
3 D3			
VAR esg = epi = B = C = *	= 5774 = 484 1064 3950	4 4 4 0	
zeta	= 0		
RTP 1.972 1.972 1.972 1.972 1.972 1.972	2 60 2 60 2 60 2 11 2 11 2 11	.81 .81 .81 9.19 9.19 9.19	30.0 150.0 270.0 -30.0 90.0 210.0
AOM			
esg	epi	epi	
esg	epı	ері	
esg	epı	epi	
esg	epı	epı	
esg	epı	ері	
esg	epi	epi	

VEE 0 B C

CTL PLFM

RUN

Output:

Program AOMX, 09-Jun-96 Version Author Heribert Adamsky, Theoretical Chemistry, HHU Duesseldorf, FRG MDET=252, MLIG=150, MVAR=40, MAOP=10, MOCS=10, MEEX=20

no Spin-Orbit coupling

3 electrons

rotation group: D3

esg epi B C * zeta	= 5774 = 484 = 1064 = 3950 = 0				
1 R	= 1.972	THETA	= 60.81	PHI	= 30.0
2 R	= 1.972	THETA	= 60.81	PHI	= 150.0
3 R	= 1.972	THETA	= 60.81	PHI	= 270.0
4 R	= 1.972	THETA	= 119.19	PHI	= -30.0
5 R	= 1.972	THETA	= 119.19	PHI	= 90.0
6 R	= 1.972	THETA	= 119.19	PHI	= 210.0
1 ESIG	= esg	EPIS	= epi	EPIC	= epi
2 ESIG	= esg	EPIS	= epi	EPIC	= epi
3 ESIG	= esg	EPIS	= epi	EPIC	= epi
4 ESIG	= esg	EPIS	= epi	EPIC	= epi
5 ESIG	= esg	EPIS	= epi	EPIC	= epi
6 ESIG	= esg	EPIS	= epi	EPIC	= epi
A	= 0	В	= B	С	= C

CALCULATION NO. 1

esg	=	5774.000000
epi	=	484.000000
В	=	1064.000000
С	=	3950.000000
*		
zeta	=	.000000

AOM matrix

z2	x2y2	Уz	XZ	ху
.000	.000	.000	7489.102	8916.091
.000	.000	.000	10164.975	7489.102
.000	7489.102	10164.975	.000	.000
.000	8916.091	7489.102	.000	.000
2289.868	.000	.000	.000	.000

no.	term	energy	occu	pation				charac	ter
			ху	XZ	Уz	x2y2	z2	C2(X)	
1	4A2	.000	.600	.400	.400	.600	1.000	-1.000	.000
3	$4 \mathrm{E}$	14658.059	.651	.632	.632	.651	.434	.000	.000
4	4A1	14805.891	.500	.500	.500	.500	1.000	1.000	.000
6	2E	18897.157	.616	.531	.531	.616	.706	.000	.000
7	2A2	19597.942	.526	.488	.488	.526	.974	-1.000	.000
9	2E	20453.126	.641	.405	.405	.641	.908	.000	.000
11	$4 \mathrm{E}$	22009.787	.502	.788	.788	.502	.420	.000	.000
12	4A2	25831.751	.796	.204	.204	.796	1.000	-1.000	.000
14	2E	26928.192	.473	.434	.434	.473	1.187	.000	.000

15	2A1	28511.408	.710	.403	.403	.710	.774	1.000	.000
16	2A1	30973.872	.616	.500	.500	.616	.768	1.000	.000
17	2A1	33553.697	.494	.559	.559	.494	.894	1.000	.000
19	2E	33746.218	.665	.712	.712	.665	.246	.000	.000
20	4A2	34545.922	.104	.896	.896	.104	1.000	-1.000	.000
22	2E	35040.446	.544	.456	.456	.544	1.001	.000	.000
23	2A2	35148.832	.697	.583	.583	.697	.441	-1.000	.000
25	2E	37069.375	.572	.573	.573	.572	.709	.000	.000
27	4E	38211.157	.846	.581	.581	.846	.146	.000	.000
29	2E	40703.537	.562	.659	.659	.562	.558	.000	.000
30	2A2	41580.370	.581	.568	.568	.581	.702	-1.000	.000
31	2A1	47702.370	.555	.698	.698	.555	.494	1.000	.000
33	2E	47908.197	.538	.712	.712	.538	.500	.000	.000
34	2A2	48382.162	.313	.766	.766	.313	.842	-1.000	.000
36	2E	49472.777	.608	.654	.654	.608	.475	.000	.000
37	2A2	52721.367	.717	.416	.416	.717	.734	-1.000	.000
39	2E	53687.117	.539	.631	.631	.539	.661	.000	.000
40	2A1	54848.523	.819	.565	.565	.819	.232	1.000	.000
42	2E	57738.351	.695	.734	.734	.695	.142	.000	.000
44	2E	60689.843	.542	.773	.773	.542	.371	.000	.000
45	2A2	61062.004	.668	.679	.679	.668	.306	-1.000	.000
47	2E	79206.128	.540	.751	.751	.540	.418	.000	.000
48	2A1	80830.806	.305	.776	.776	.305	.838	1.000	.000
50	2E	83586.001	.966	.476	.476	.966	.117	.000	.000
Stop	- Pro	gram terminated.							

We obtain the results with assignment and labelling listed in Table S3

8.2. Ligand field parameters from a best fit to energy eigenvalues.

Here we illustrate the derivation of the LF parameters using experimentally reported d-d transitions. We utilize the D_3 symmetry to label the states.

Input:

```
no Spin-Orbit coupling
3 D3
VAR OPT STA
esg = 5917 \ 1000 \ 20000
epi = 412 200 5000
B = 1059 \ 100 \ 2000
C = 3974 \ 400 \ 8000
zeta = 0
RTP
1.972 60.81 30.0
1.972 60.81 150.0
1.972 60.81 270.0
1.972 119.19 -30.0
1.972 119.19 90.0
1.972 119.19 210.0
AOM
esg epi epi
VEE 0 B C
EXP
2E 14686 1 2E 1
4A1 15700 1 4A1 1
```

4E	16800	1	4E	1
2E	21037	1	2E 3	3
2A1	21037	1	2A1	1
4E	22800	1	4E 2	2
4A2	24000	1	4A2	2
2A1	30700	1	2A1	3
2E	31650	1	2E	4
2A2	30700	1	2A2	2
2E	31650	1	2E	5
2E	36300	1	2E	7
2A2	37400	1	2A2	3

CTL PLFM

RUN

OUTPUT:

```
Program AOMX, 09-Jun-96 Version
Author Heribert Adamsky, Theoretical Chemistry, HHU Duesseldorf, FRG
MDET=252, MLIG=150, MVAR=40, MAOP=10, MOCS=10, MEEX=20
```

no Spin-Orbit coupling

3 electrons

rotation group: D3

esg epi B C *	= 5917 = 412 = 1059 = 3974	MIN 1000 MIN 200 MIN 100 MIN 400	MAX 20000 MAX 5000 MAX 2000 MAX 8000	
zeta	= 0			
1 R 2 R 3 R 4 R 5 R 6 R	= 1.972 = 1.972 = 1.972 = 1.972 = 1.972 = 1.972	THETA = 60.81 THETA = 60.81 THETA = 60.81 THETA = 119.19 THETA = 119.19 THETA = 119.19	PHI = 30.0 PHI = 150.0 PHI = 270.0 PHI = -30.0 PHI = 90.0 PHI = 210.0	
1 ESIG 2 ESIG 3 ESIG 4 ESIG 5 ESIG 6 ESIG	= esg = esg = esg = esg = esg	EPIS = epi EPIS = epi EPIS = epi EPIS = epi EPIS = epi EPIS = epi	EPIC = epi EPIC = epi EPIC = epi EPIC = epi EPIC = epi EPIC = epi	
А	= 0	B = B	C = C	
1 2E 2 4A1 3 4E 4 2E 5 2A1 6 4E 7 4A2 8 2A1 9 2E 10 2A2 11 2E 12 2E 13 2A2	<pre>(Eex = (Eex = </pre>	14686.000 Wt = 15700.000 Wt = 16800.000 Wt = 21037.000 Wt = 22800.000 Wt = 24000.000 Wt = 30700.000 Wt = 31650.000 Wt = 31650.000 Wt = 31650.000 Wt = 36300.000 Wt = 37400.000 Wt =	1.000) = 1.000 * 2E , 1 1.000) = 1.000 * 4A1, 1 1.000) = 1.000 * 4E , 1 1.000) = 1.000 * 2E , 3 1.000) = 1.000 * 2A1, 1 1.000) = 1.000 * 4E , 2 1.000) = 1.000 * 4A2, 2 1.000) = 1.000 * 2A1, 3 1.000) = 1.000 * 2E , 4 1.000) = 1.000 * 2A2, 2 1.000) = 1.000 * 2E , 5 1.000) = 1.000 * 2E , 7 1.000) = 1.000 * 2A2, 3	
OPTIMIZATI SIGMA0 = -	ON USING HOGG 1.00000	ARDS POWELL-PROG SCALE = 1.0000	GRAM 00 VSTART = .000000 MAXIT = 30	
STARTING P	ARAMETERS:			
e	sg ep.	i B	с	
5917.000	00 412.0000	0 1059.00000 3	3974.00000	
ITERATION	0	1 FUNCTION	VALUES F= 242688643.36	

CURRENT PARAMETER SET: 5917.000 412.000 1059.00	0 3974.000	
ITERATION 1 1 CURRENT PARAMETER SET: 4908 206 379 559 794 27	6 FUNCTION VALUES	F= 93830018.25
ITERATION 2 3 CURRENT PARAMETER SET:	1 FUNCTION VALUES	F= 10649531.18
111101 3 41.332 552.40	4 FUNCTION VALUES	F= 9342141.97
CURRENT PARAMETER SET: 6230.496 286.567 584.81	8 3347.422	
ITERATION 4 5 CURRENT PARAMETER SET: 6061 806 213 528 664 65	6 FUNCTION VALUES	F= 8344394.95
TTERATION 5 7) FUNCTION VALUES	포- 8300536 96
CURRENT PARAMETER SET: 6046.530 200.918 671.34	5 3155.005	r- 0300330.90
ITERATION 6 8 CURRENT PARAMETER SET	4 FUNCTION VALUES	F= 8286591.06
6084.098 232.521 675.01	2 3158.365	
ITERATION 7 10 CURRENT PARAMETER SET:	2 FUNCTION VALUES	F= 7975487.73
7103.704 988.219 663.64	3152.325	
ITERATION 8 11 CURRENT PARAMETER SET: 7147.382 1036.876 666.48	4 FUNCTION VALUES 3 3156.420	F= 7958489.62
TTERATION 9 12	5 FUNCTION VALUES	F = 7958488 61
CURRENT PARAMETER SET: 7148.759 1037.904 666.47	4 3156.498	r= //30400.01
ITERATION 10 13 CURRENT PARAMETER SET: 7148.764 1037.904 666.47	5 FUNCTION VALUES 0 3156.512	F= 7958488.60
OPTIMUM VALUE OF FUNCTION:	7958488.60	
TOTAL NUMBER OF FUNCTION EVA	LUATIONS: 136	
PARAMETERS.		
	B C	
7148 76418 1037 90444 6	66 46959 3156 51210	
DECIDINI.	3130.31210	
.79585E+07		
NEXT CALCULATION WITH OPTIMI	ZED PARAMETERS	
esg = 7148.764176 epi = 1037.904443 B = 666.469588 C = 3156.512098		
zeta = .000000		
AOM matrix		
xy xz	yz x2y2 z2	
12280.517 8418.145 .0 8418.145 13259.965 .0 .000 .000 13259.9 .000 .000 8418.1 .000 .000 .00	00 .000 .000 00 .000 .000 65 8418.145 .000 45 12280.517 .000 00 .000 4266.475	
energy (exp.) en	ergy(calc.) difference	weight

2E 4A1	14686.000 15700.000	14161.795 16646.159	-524.205 946.159	1.000
4E	16800.000	16685.756	-114.244	1.000
2E	21037.000	21121.543	84.543	1.000
2A1	21037.000	22622.401	1585.401	1.000
4E	22800.000	22403.286	-396.714	1.000
4A2	24000.000	25043.024	1043.024	1.000
2A1	30700.000	30809.670	109.670	1.000
2E	31650.000	30775.083	-874.917	1.000
2A2	30700.000	31590.826	890.826	1.000
2E	31650.000	31412.617	-237.383	1.000
2E	36300.000	35682.891	-617.109	1.000
2A2	37400.000	36399.373	-1000.627	1.000

Sigma, weighted = 782.427

PARTIAL DERIVATIVE MATRIX

	esg	epi	В	C
2E	.373D-01	.609D-01	.626D+01	.306D+01
4A1	.294D+01	404D+01	209D+00	576D-09
4E	.287D+01	354D+01	209D+00	519D-09
2E	.528D+00	945D+00	.810D+01	.410D+01
2A1	.572D+00	586D+00	.945D+01	.407D+01
4E	.318D+01	417D+01	.601D+01	519D-09
4A2	.309D+01	401D+01	.107D+02	.231D-09
2A1	.303D+01	412D+01	.588D+01	.300D+01
2E	.288D+01	347D+01	.652D+01	.300D+01
2A2	.286D+01	348D+01	.794D+01	.300D+01
2E	.295D+01	405D+01	.760D+01	.301D+01
2E	.306D+01	397D+01	.127D+02	.300D+01
2A2	.311D+01	410D+01	.134D+02	.300D+01

WEIGHT VECTOR

2E	2A2	2E	4A1	4E	2E	2A1	4 E	4A2	2A1
.00100	.0010	2E 00100 0	2E .00100	2A2 .00100	.00100	.00100	.00100	.00100	.00100

.00100 .00100 .00100

(ATRANSPOSE.W.A) MATRIX

	esg	epi	В	C
esg	.905D-01	118D+00	.223D+00	.583D-01
epi	118D+00	.154D+00	290D+00	757D-01
В	.223D+00	290D+00	.883D+00	.253D+00
С	.583D-01	757D-01	.253D+00	.968D-01

VALUE OF DET(ATRANSPOSE.W.A): .2812D-06

(ATRANSPOSE.W.A) INVERSE MATRIX

	esg	epi	В	C
esg	.432D+04	.328D+04	152D+02	.498D+01
epi	.328D+04	.251D+04	424D+01	153D+01
В	152D+02	424D+01	.759D+01	140D+02
С	.498D+01	153D+01	140D+02	.427D+02

STANDARD DEVIATIONS OF PARAMETERS:

esg	epi	В	C
65.706	50.115	2.755	6.534

CORRELATION COEFFICIENT MATRIX:

	esg	epi	В	C
esg	1.0000	.9965	0840	.0116
epi	.9965	1.0000	0307	0047
В	0840	0307	1.0000	7769
С	.0116	0047	7769	1.0000

EIGENVECTORS OF CORRELATION COEFFICIENT MATRIX

	esg	epi	В	С
esg	.7065	7024	.0733	.0455
epi	.0381	0808	7038	7048
В	.1627	.1897	.6786	6907
С	6877	6812	.1969	1556

GRADIENT OF SQUARED ERROR:

esg epi B C -.560D-02 .734D-02 .880D-02 -.301D-01

EIGENVALUES OF (APPROXIMATE) HESSIAN MATRIX:

esg epi B C .147D-03 .206D-01 .830D-01 .112D+01

THE HESSIAN IS POSITIVE DEFINITE

EIGENVECTORS OF GAUSS-NEWTON APPROXIMATE HESSIAN

		esg	epi	В	C
esg		.795D+00	.606D+00	215D-02	.452D-03
epi		.950D-01	127D+00	339D+00	.927D+00
В		548D+00	.720D+00	.327D+00	.274D+00
С		.241D+00	314D+00	.882D+00	.255D+00
Stop	-	Program termin	nated.		

The results are listed in Table S1.

Ligand field parameters computed using direct fit to experimental and computed d-d transitions are listed in Tables S1-S4 along with energies recomputed using the best fit values of the ligand field parameters.

Table S1 Experimental (from Ref.41) vs computed energies of d-d transition of emerald along with best fit ligand field parameters, relative statistical parameter errors and standard deviations (σ) between experimental and computed ^a energies of d-d transitions.^b

Term $D_3[O(R_3)]$	Exp.	Computed	Computed-Exp
${}^{4}A_{2}[{}^{4}A_{2}({}^{4}F)]$	0	0	0
${}^{2}E[{}^{2}E({}^{2}G)]$	14686	14162	-534
${}^{4}A_{1}[{}^{4}T_{2}({}^{4}F)]$	15700	16646	946
${}^{4}\mathrm{E}[{}^{4}\mathrm{T}_{2}({}^{4}\mathrm{F})]$	16800	16686	-114
${}^{2}E[{}^{2}T_{2}({}^{2}G)]$	21037	21122	84
$^{2}A_{1}[^{2}T_{2}(^{2}G)]$	21037	22622	1585
${}^{4}E[{}^{4}T_{1}({}^{4}F)]$	22800	22403	-397
${}^{4}A_{2}[{}^{4}T_{1}({}^{4}F)]$	24000	25043	1043

$^{2}A_{1}[^{2}T_{2}(^{2}H)]$	30700	30810	110
$^{2}E[^{2}T_{2}(^{2}H)]$	31650	30775	-875
$^{2}A_{2}[^{2}T_{1}(^{2}P)]$	30700	31591	891
${}^{2}E[{}^{2}T_{1}({}^{2}P)]$	31650	31413	-237
${}^{2}E[{}^{2}T_{1}({}^{2}H)]$	36300	35683	-617
$^{2}A_{2}[^{2}T_{1}(^{2}H)]$	37400	36399	-1001
e _σ		7149±66	
e _π		1038±50	
В		666±3	
С		3156±6	
σ		782	
1			

^a Recomputed using listed best fit ligand field parameter values; ^b all entries are energies are in cm⁻¹.

Table S2 Ab-initio computed state-specific NEVPT2 (active space CAS(3,5)) energies of d-d transition of emerald along with best fit ligand field parameters, relative statistical parameter errors and standard deviations (σ) between NEVPT2 and recomputed using best fit ligand field parameters energies of d-d transitions.^a

Term $D_3[O(R_3)]$	NEVPT2	Computed	Computed-NEVPT2
	State spec.CAS(3,5)		
${}^{4}A_{2}[{}^{4}A_{2}({}^{4}F)]$	0	0	0
${}^{2}E[{}^{2}E({}^{2}G)]$	14257	14500	243
${}^{2}E[{}^{2}T_{1}({}^{2}G)]$	15377	15713	336
${}^{4}A_{1}[{}^{4}T_{2}({}^{4}F)]$	15552	15667	115
${}^{4}\mathrm{E}[{}^{4}\mathrm{T}_{2}({}^{4}\mathrm{F})]$	15886	15886	-19
${}^{2}E[{}^{2}T_{2}({}^{2}G)]$	21451	21256	-195
$^{2}A_{1}[^{2}T_{2}(^{2}G)]$	22788	23024	236
${}^{4}E[{}^{4}T_{1}({}^{4}F)]$	23079	21969	-1110
$^{2}A_{1}[^{2}A_{1}(^{2}G)]$	28367	28096	-271
$^{2}A_{1}[^{2}T_{2}(^{2}H)]$	29817	30121	303
$^{2}E[^{2}T_{2}(^{2}H)]$	30586	30353	-233
${}^{2}E[{}^{2}T_{1}({}^{2}H)]$	36149	35711	-438
${}^{4}A_{2}[{}^{4}T_{1}({}^{4}P)]$	32933	33366	433

${}^{4}E[{}^{4}T_{1}({}^{4}P)]$	36811	37333	522
e _o		7297±44	
e _π		1382±32	
В		767±4	
C		3058±7	
σ		428	

^a all entries are energies are in cm⁻¹.

Table S3 Ab-initio computed state-average CASSCF (active space CAS(3,5)) energies of d-d transition of emerald along with best fit ligand field parameters, relative statistical parameter errors and standard deviations (σ) between CASSCF and recomputed using best fit ligand field parameters energies of d-d transitions.^a

Term $D_3[O(R_3)]$	CASSCF	Computed	Computed-CASSCF
	State aver.CAS(3,5)		
${}^{4}A_{2}[{}^{4}A_{2}({}^{4}F)]$	0	0	0
${}^{2}E[{}^{2}E({}^{2}G)]$	19102	18895	-207
$^{2}A_{2}[^{2}T_{1}(^{2}G)]$	19694	19596	-98
${}^{2}E[{}^{2}T_{1}({}^{2}G)]$	20452	20451	-1
${}^{4}A_{1}[{}^{4}T_{2}({}^{4}F)]$	14532	14808	276
${}^{4}E[{}^{4}T_{2}({}^{4}F)]$	15235	14660	-575
${}^{2}E[{}^{2}T_{2}({}^{2}G)]$	26972	26926	-46
$^{2}A_{1}[^{2}T_{2}(^{2}G)]$	28520	28509	-10
${}^{4}E[{}^{4}T_{1}({}^{4}F)]$	22894	22011	-883
${}^{4}A_{2}[{}^{4}T_{1}({}^{4}F)]$	24718	25833	1115
$^{2}A_{1}[^{2}A_{1}(^{2}G)]$	30971	30974	3
$^{2}A_{1}[^{2}T_{2}(^{2}H)]$	33123	33554	430
$^{2}E[^{2}T_{2}(^{2}H)]$	34120	33746	-374
$^{2}A_{2}[^{2}T_{1}(^{2}P)]$	34415	35148	733
${}^{2}E[{}^{2}T_{1}({}^{2}P)]$	35432	35040	-392
² E[² E(² H)]	37363	37068	-294
$^{2}E[^{2}T_{1}(^{2}H)]$	40750	40703	-47
$^{2}A_{2}[^{2}T_{1}(^{2}H)]$	41208	41580	272
${}^{4}A_{2}[{}^{4}T_{1}({}^{4}P)]$	34526	34547	21
${}^{4}E[{}^{4}T_{1}({}^{4}P)]$	38603	38212	-391

e _o	5774±32	
e _π	484±24	
В	1064±3	
С	3950±5	
σ	452	

^a all entries are energies are in cm⁻¹.

Table S4 Ab-initio computed state-average NEVPT2 (active space CAS(3,5)) energies of d-d transition of emerald along with best fit ligand field parameters, relative statistical parameter errors and standard deviations (σ) between CASSCF and recomputed using best fit ligand field parameters energies of d-d transitions.^a

Term D ₃ [O(R ₃)]	NEVPT2	Computed	Computed-NEVPT2
	State-aver.CAS(3,5)		
${}^{4}A_{2}[{}^{4}A_{2}({}^{4}F)]$	0	0	0
${}^{2}E[{}^{2}E({}^{2}G)]$	16674	16659	-15
$^{2}A_{2}[^{2}T_{1}(^{2}G)]$	17268	17026	-242
$^{2}E[^{2}T_{1}(^{2}G)]$	17909	17953	44
${}^{4}A_{1}[{}^{4}T_{2}({}^{4}F)]$	16935	17067	132
${}^{4}E[{}^{4}T_{2}({}^{4}F)]$	17662	17114	-548
$^{2}E[^{2}T_{2}(^{2}G)]$	24467	24442	-25
$^{2}A_{1}[^{2}T_{2}(^{2}G)]$	25925	26152	227
${}^{4}E[{}^{4}T_{1}({}^{4}F)]$	25093	23772	-1321
${}^{4}A_{2}[{}^{4}T_{1}({}^{4}F)]$	26599	27111	512
$^{2}A_{1}[^{2}A_{1}(^{2}G)]$	31228	31420	192
$^{2}A_{1}[^{2}T_{2}(^{2}H)]$	33192	33675	483
$^{2}E[^{2}T_{2}(^{2}H)]$	33876	33744	-132
$^{2}A_{2}[^{2}T_{1}(^{2}P)]$	34255	34778	523
${}^{2}E[{}^{2}T_{1}({}^{2}P)]$	35177	34544	-633
² E[² E(² H)]	36515	36410	-105
${}^{2}E[{}^{2}T_{1}({}^{2}H)]$	40029	39595	-434
$^{2}A_{2}[^{2}T_{1}(^{2}H)]$	40350	40416	66
${}^{4}A_{2}[{}^{4}T_{1}({}^{4}P)]$	35973	36416	443
${}^{4}E[{}^{4}T_{1}({}^{4}P)]$	39856	40130	274
e _o		7363±39	

e _π	1082±29	
В	822±3	
С	3654±6	
σ	452	

^a all entries are energies are in cm⁻¹.

§9. Periodic DFT geometry optimizations

The threshold on the geometry optimization was set to 10^{-7} Ha, a pruned (75,974) p grid was adopted (XLGRID) and the percentage of Hartree-Fock/Kohn-Sham mixing matrices was set to 30 (IPMIX = 30). The values used in the present study for the five tolerances that evaluate Coulomb and exchange integrals were set to 10^{-7} (ITOL1 to ITOL4) and 10^{-14} (ITOL5), respectively. The shrinking factor (Pack-Monkhorst and Gilat net) of the reciprocal space net was set to 8, corresponding to 59 k-points in the irreducible Brillouin zone (IBZ) and for accelerating convergence the Broyden scheme was chosen.

Input files:

d12 input for DFT optimization of undoped crystal(beryl):

```
Beryl-Optimizat Hiss
CRYSTAL
0 0 0
192
9.208 9.188
5
     0.50000 0.00000 0.25000
4
13
     0.33333 0.66667 0.25000
14
     0.38760 0.11590 0.00000
8
     0.31030 0.23690 0.00000
     0.49850 0.14560 0.14530
8
OPTGEOM
ENDOPT
END
13 10
0 0 7 2.0 1.0
  37792.5507720
                     0.00057047888709
  5668.06821650
                     0.00440930165380
  1289.85828410
                     0.02263096741100
  364.865960280
                     0.08802564429500
                     0.25223701612000
  118.576315150
```

	42.0248676050 15.4995016290	0.45960547169000 0.33277886014000
	75.2080265980 23.0314089720	0.01925056019000 0.08790674395200
0 0	3.63487976490 0 2 0.0 1.0 1.95000627000	-0.34246704535000
0	0.96103395000 0 1 0.0 1.0	0.38071016000000
0	0.39881874000 0 1 0.0 1.0	1.000000000000000
0 2	2 5 6.0 1.0 452.523031920	0.00231108124660
	107.081950490 34.1310212550	0.01856864182300 0.08721623703500
-	12.5870374280 4.98119197040	0.26902101523000 0.52128324272000
0 2	2 1 0.0 1.0 1.93791887000 2 1 0.0 1.0	1.0000000000000000
0 2	0.72047185000 2 1 0.0 1.0	1.00000000000000
0 3	0.18328583000 3 1 0.0 1.0 0.57798580000	1.0000000000000000000000000000000000000
4	5 0 6 2.0 1.0	
4' 7(700.2365626 04.82845622	0.00023584389316 0.00182437910190
1 4	5.425347336 4.798334125	0.03690892415900 0.10897561281000
5	.3512452537 0 2 0.0 1.0	0.21694284551000
2	.1542044819 .9336374440 0 1 0 0 1 0	0.44695408857000 0.20866985771000
0	.3017450800 0 1 0.0 1.0	1.0000000000000000
0	.1411145200 2 1 0.0 1.0	1.00000000000000
14 0 (10 0 7 2.0 1.0	1.0000000000000000000000000000000000000
	44773.358078 6717.1992104	0.00055914765868 0.00432060401890
-	1528.8960325 432.54746585 140.61505226	0.02218709646000 0.08648924911600 0.24939889716000
-	49.857636724 18.434974885	0.46017197366000 0.34250236575000
0	0 3 2.0 1.0 86.533886111 26.624606846	0.02130006300700 0.09467613931800

0	4.4953057159	-0.32616264859000
0	2.1035045710	1.39808038500000
0	1.3106094922 0 1 0.0 1.0	0.63865786699000
0	0.5422443800	1.000000000000000
0	0.1460762500	1.0000000000000000000000000000000000000
0	2 5 6.0 1.0 394,47503628	0.00262856939590
	93.137683104	0.02055625774900
	29.519608742	0.09207026280100
	10.781663791	0.25565889739000
0	4.1626574778	0.42111707185000
0	2 I 0.0 I.0 1 4499318500	1 000000000000000
0	2 1 0.0 1.0	1.0000000000000000000000000000000000000
	0.4949286700	1.000000000000000
0	2 1 0.0 1.0	
0	0.1346786100	1.0000000000000000
U	3 I U.U I.U 0 307/090300	1 000000000000000
8	8	1.0000000000000000000000000000000000000
0	0 6 2.0 1.0	
	27032.382631	0.00021726302465
	4052.3871392	0.00168386621990
	922.32722710	0.00873956162650
	261.240/0989	0.03523996880800
	85.354641351 31 035035245	0.25588953961000
0	0 2 2.0 1.0	0.23300333901000
•	12.260860728	0.39768730901000
	4.9987076005	0.24627849430000
0	0 1 0.0 1.0	
~	1.0987136000	1.0000000000000000
0	U I U.U I.U 0 3565870100	1 000000000000000
0	2 4 6.0 1.0	1.0000000000000000000000000000000000000
Ũ	63.274954801	0.0060685103418
	14.627049379	0.0419125758240
	4.4501223456	0.1615384108800
	1.5275799647	0.3570695131100
0	2 1 0.0 1.0	1 00000000000000
\cap	0.5489/35000	1.000000000000000
0	0.1858671100	1.00000000000000
0	3 1 0.0 1.0	1.0000000000000000000000000000000000000
	0.4534621300	1.0000000000000
99	0	
EN	ID	
DE	""]" - C C	
л I XI	.SS IGRID	
EN	ID	
BI	POSIZE	
35	5000000	

```
EXCHSIZE
35000000
SHRINK
8 8
MAXCYCLE
300
TOLINTEG
7 7 7 7 14
FMIXING
30
BROYDEN
0.0001 50 2
PPAN
END
```

Input for optimization of doped crystal with Cr³⁺ (emerald) :

```
Emerald-Optimizat Hiss
CRYSTAL
0 0 0
192
9.2378242500 9.2611592600
5
    0.50000 0.00000 0.25000
4
13 0.33333 0.66667 0.25000
14 0.27288 0.88284 0.00000
8
    0.07342 0.76180 0.00000
    0.50101 0.14630 0.64610
8
SUPERCEL
1. 0. 0.
          0.1.0.0.2.
ATOMSUBS
1
13 24
ATOMSYMM
NEIGHBOR
10
OPTGEOM
ENDOPT
END
13 10
0 0 7 2.0 1.0
  37792.5507720
                     0.00057047888709
  5668.06821650
                     0.00440930165380
  1289.85828410
                     0.02263096741100
  364.865960280
                     0.08802564429500
                     0.25223701612000
  118.576315150
  42.0248676050
                     0.45960547169000
  15.4995016290
                     0.33277886014000
0 0 3 2.0 1.0
  75.2080265980
                     0.01925056019000
  23.0314089720
                     0.08790674395200
  3.63487976490
                    -0.34246704535000
0 0 2 0.0 1.0
  1.95000627000
                     1.01062661000000
  0.96103395000
                     0.38071016000000
0 0 1 0.0 1.0
```

0	0.39881874000 0 1 0.0 1.0	1.0000000000000000000000000000000000000
~	0.14940937000	1.0000000000000000000000000000000000000
0	2 5 6.0 1.0 452.523031920	0.00231108124660
	107.081950490	0.01856864182300
	34.1310212550	0.08721623703500
	12.5870374280	0.26902101523000
	4.98119197040	0.52128324272000
0	2 1 0.0 1.0	1
0	1.93/9188/000	1.0000000000000000000000000000000000000
0	0 72047185000	1 0000000000000000000000000000000000000
0	2 1 0.0 1.0	1.0000000000000000000000000000000000000
	0.18328583000	1.000000000000000
0	3 1 0.0 1.0	
	0.57798580000	1.0000000000000000
3	5	
0	0 6 2.0 I.0 6269 2628010	0 00020540968826
	940.31612431	0.00159165540890
	214.22107528	0.00828698297070
	60.759840184	0.03385637424900
	19.915152032	0.11103225876000
~	7.3171509797	0.27449383329000
0	0 2 0.0 1.0	0 22702456411000
	1.2639852314	0.30765411924000
0	0 1 0.0 1.0	
	0.5025516200	1.000000000000000
0	0 1 0.0 1.0	
0	0.1200746200	1.0000000000000000000000000000000000000
0	2 I 0.0 I.0 0 1320350000	1 000000000000000
14	10	1.0000000000000000000000000000000000000
0	0 7 2.0 1.0	
	44773.358078	0.00055914765868
	6717.1992104	0.00432060401890
	1528.8960325	0.02218709646000
	432.54/46585	0.24030880716000
	49.857636724	0.46017197366000
	18.434974885	0.34250236575000
0	0 3 2.0 1.0	
	86.533886111	0.02130006300700
	26.624606846	0.09467613931800
0	4.4953057159	-0.32616264859000
0	0 2 0.0 1.0 2 1035045710	1 39808038500000
	1.3106094922	0.63865786699000
0	0 1 0.0 1.0	
	0.5422443800	1.000000000000000
0	0 1 0.0 1.0	1 0000000000000000000000000000000000000
\cap	U.1460762500	T.000000000000000000000000000000000000
U	2 J 0.0 1.0 394.47503628	0.00262856939590

	93.137683104	0.02055625774900
	29.519608742	0.09207026280100
	4 1626574778	0.23303889739000
0	2 1 0.0 1.0	0.42111/0/103000
0	1.4499318500	1.0000000000000000
0	2 1 0.0 1.0	1 0000000000000000000000000000000000000
0	2 1 0.0 1.0	1.0000000000000000000000000000000000000
	0.1346786100	1.000000000000000
0	3 1 0.0 1.0	1 0000000000000000000000000000000000000
8	8	T.000000000000000000000000000000000000
0	0 6 2 0 1 0	
0	27032.382631	0.00021726302465
	4052.3871392	0.00168386621990
	922.32722710	0.00873956162650
	261.24070989	0.03523996880800
	85.354641351	0.11153519115000
	31.035035245	0.25588953961000
0	0 2 2.0 1.0	
-	12.260860728	0.39768730901000
	4.9987076005	0.24627849430000
0	0 1 0.0 1.0	
-	1.0987136000	1.0000000000000000
0	0 1 0.0 1.0	
-	0.3565870100	1.0000000000000000
0	2 4 6.0 1.0	
	63.274954801	0.0060685103418
	14.627049379	0.0419125758240
	4.4501223456	0.1615384108800
	1.5275799647	0.3570695131100
0	2 1 0.0 1.0	
	0.5489735000	1.0000000000000
0	2 1 0.0 1.0	
	0.1858671100	1.0000000000000
0	3 1 0.0 1.0	
	0.4534621300	1.0000000000000
24	14	
0	0 8 2.0 1.0	
	254477.80704	0.00023386945693
	38131.797054	0.00181426018000
	8675.2930607	0.00943639257210
	2455.0099848	0.03834363936700
	799.16217787	0.12459194837000
	286.90021489	0.29489696029000
	111.25413232	0.41846149607000
	43.864152636	0.21633763420000
0	0 4 2.0 1.0	
	279.32669173	-0.02345090811100
	86.274732376	-0.11080370027000
	13.555756113	0.53028965842000
	5.6978112751	0.51603516947000
0	0 2 2.0 1.0	
	8.5636582615	-0.38109545675000
	1.3988296768	1.19915914360000

0	0 1 0.0 1.0												
	1.5142137900	1	. (00	0	00	00	0(0 C	0	00	0 (0
0	0 1 0.0 1.0												
	0.5047379300	1	. (00	0	00	00	0(00	0	00	0 (0
0	0 1 0.0 1.0	-	_		~	~ ~		~	~ ~	~	~ ~		~
\circ	0.1305/8//00	Τ	• () ()	0	00) ()	00	JÜ	0	υc	00	0
0	2 0 0.0 1.0 1306 4398864	0	ſ	۱N	2	40	7	7	32	6	18	85	Ω
	309.25311441	0	.()1	9	54	- ' 14	04	92 41	0	17	, 0	0
	98.996273963	0	. ()9	0	65	51	79	94	5	53	30	0
	36.756916451	0	.2	25	6	99	92	79	91	5	40	0 (0
	14.566657077	0	• 4	10	9	35	55	04	48	9	10	0 (0
	5.8739937432	0	• 2	23	7	29	93	88	38	4	90	0 (0
0	2 3 6.0 1.0												
	22.890999695 -	• 0	• ()2	8	10	56	02	26	6	13	30	0
	3.0855001822	0	• 5)))	1	34	11	2()1 0 C	4	80	0	0
\circ	1.2132329118	0	• -	18	T	ΤÇ	90	Τ.	96	5	υc	00	0
0	2 I 0.0 I.0 0 4593168100	1	ſ	۱N	Ω	\cap	חו	00	n٨	Ω	٥r	۱N	\cap
0	2 1 0.0 1.0	Ŧ	• (0	0	00	0	00	50	0	00	0	0
Ŭ	0.2296584050	1	. (00	0	00	00	0(00	0	00	0 (
0	3 4 3.0 1.0												
	43.720074476	0	. ()1	3	62	22	96	64	0	26	50	0
	12.391242652	0	. ()7	8	93	35	18	30	1	33	80	0
	4.2639442006	0	• 2	23	8	33	38	4(00	0	00	0 (0
	1.5525221790	0	• 3	39	5	26	58	52	11	2	20	0 (0
0	3 1 0.0 1.0												
	0.8288617700	1	. (00	0	00	00	0(00	0	00	0 (0
0	3 1 0.0 1.0	-	_		~	~ ~		~	~ ~	~	~ ~		~
0	0.3172623600	T	• ()()	0	00) ()	0(JÜ	0	00	00	0
0	4 1 0.0 1.0	1	ſ	۱n	\cap	\cap	חר	01	00	\cap	$\cap \cap$	<u>م</u>	\cap
۵a	0	T	• (00	0	00	00	01	50	0	00	0	0
FN													
DF	ע ידי												
SP	TN												
ΗI	SS												
XL	GRID												
ΕN	ID												
ΒI	POSIZE												
3500000													
ΕX	CHSIZE												
35	00000												
SH	RINK												
8	8												
AT	OMSPIN												
⊥ 1 ⊃	1												
13													
3 2	INDUCK												
л М	XCYCLE												
30	0												
TC	LINTEG												
7	7 7 7 14												
FΜ	IIXING												
30													

BROYDEN 0.0001 50 2 PPAN END

References

(1) Fairbank Jr., W. M.; Klauminzer, G. K.; Schawlow, A. L. Excited-state absorption in ruby, emerald, and MgO: Cr³⁺, *Phys. Rev. B* **1975**, 11, 60-76.

(2) Wood, D. L. Absorption, Fluorescence, and Zeeman Effect in Emerald. *Journal of Chemical Physics* **1965**, 42, 3404-3410.

(3) Chen, Z.; Shen, H.; Zhang, G.; Huang, C. Spectrum properties of hydrothermal emerald laser crystals. *Acta Photon. Sin. (in Chinese)* **2004**, 33, 382-384.

(4) Lang, L.; Atanasov, M.; Neese, F. Improvement of Ab Initio Ligand Field Theory by Means of Multistate Perturbation Theory. *J. Phys. Chem. A* **2020**, 124, 1025-1037.

(5) Gellé, A.; Lepetit, M-B. Fast calculation of the electrostatic potential in ionic crystals by direct summation method. *J. Chem. Phys.*, **2008**, 128, 244716.

(6) H.Adamsky, T.Schönherr and M.Atanasov, AOMX: Angular Overlap Model Computation, in Comprehensive Coordination Chemistry II, A.B.P.Lever (Editor), Volume 2, pp 661-664,2003, Elsevier ; the program is freely distributable from one of the authors (MA) upon request.