Detecting and Counting Small Subgraphs, and
Evaluating a Parameterized Tutte Polynomial:
Lower Bounds via Toroidal Grids and Cayley Graph

Expanders
Marc Roth &
Merton College, University of Oxford, UK

Johannes Schmitt &
Mathematical Institute, University of Bonn, Germany

Philip Wellnitz =

Max Planck Institute for Informatics, Saarland Informatics Campus (SIC), Saarbriicken, Germany

—— Abstract

Given a graph property @, we consider the problem EDGESUB(®), where the input is a pair of a
graph G and a positive integer k, and the task is to decide whether G contains a k-edge subgraph
that satisfies ®. Specifically, we study the parameterized complexity of EDGESUB(®) and of its
counting problem #EDGESUB(®) with respect to both approximate and exact counting. We obtain
a complete picture for minor-closed properties ®: the decision problem EDGESUB(®) always admits
an FPT (“fixed-parameter tractable”) algorithm and the counting problem #EDGESUB(®) always
admits an FPTRAS (“fixed-parameter tractable randomized approximation scheme”). For exact
counting, we present an exhaustive and explicit criterion on the property ® which, if satisfied, yields
fixed-parameter tractability and otherwise #W]1]-hardness. Additionally, most of our hardness
results come with an almost tight conditional lower bound under the so-called Exponential Time
Hypothesis, ruling out algorithms for #EDGESUB(®) that run in time f(k) - |G|°(k/ 198 k) for any
computable function f.

As a main technical result, we gain a complete understanding of the coefficients of toroidal grids
and selected Cayley graph expanders in the homomorphism basis of #EDGESUB(®). This allows
us to establish hardness of exact counting using the Complexity Monotonicity framework due to
Curticapean, Dell and Marx (STOC’17). This approach does not only apply to #EDGESUB(®)
but also to the more general problem of computing weighted linear combinations of subgraph
counts. As a special case of such a linear combination, we introduce a parameterized variant of
the Tutte Polynomial Tg of a graph G, to which many known combinatorial interpretations of
values of the (classical) Tutte Polynomial can be extended. As an example, T&(2,1) corresponds
to the number of k-forests in the graph G. Our techniques allow us to completely understand the
parameterized complexity of computing the evaluation of TE at every pair of rational coordinates
(z,y). In particular, our results give a new proof for the #W/[1]-hardness of the problem of counting
k-forests in a graph.
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1 Extended Abstract

Be it searching for cliques in social networks or understanding protein-protein interaction
networks, many interesting real-life problems boil down to finding (or counting) small
patterns in large graphs. Hence, to no surprise, finding (and counting) small patterns in large
graphs are among the most well-studied computational problems in the fields of database
theory [12, 40, 32, 13, 27], molecular biology and bioinformatics [38, 1, 56, 59], and network
science [60, 52, 53]. In fact, already in the 1970s, the relevance of finding patterns became
apparent in the context of finding cliques, finding Hamiltonian paths, or finding specific
subgraphs in general [19, 18, 62, 12]. However, with the advent of motif counting for the
frequency analysis of small structures in complex networks [52, 53], it became evident that
detecting the existence of a pattern graph is not enough; we also need to count all of the
occurrences of the pattern.

In this work, our patterns are (not necessarily induced) edge subgraphs that satisfy a
certain graph property: for instance, given a graph, we want to count all occurrences of edge
subgraphs that are are planar or connected.

From a classical point of view, often the problem of finding patterns is already NP-
hard: prime examples include the aforementioned problems of finding (maximum) cliques
or Hamiltonian paths. However, for the task of network motif counting, the patterns are
(almost) always much smaller than the network itself (see [52, 53, 1]). This motivates a
parameterized view: can we obtain fast algorithms to compute the number of occurrences
of “small” patterns? If we cannot, can we at least obtain fast (randomized) algorithms to
compute an estimate of this number? And if we cannot even do this, can we at least obtain
fast algorithms to detect an occurrence? In this work, we completely answer all of the above
questions for patterns that are specified by minor-closed graph properties (such as planarity)
or selected other graph properties (such as connectivity).

As it turns out, the techniques we develop for answering the above questions are quite
powerful: they easily generalize to a parameterized version of the Tutte polynomial. Spe-
cifically, our techniques allow us to completely understand at which rational points we can
evaluate said parameterized Tutte polynomial in reasonable time, and at which rational
points this is not feasible. This dichotomy turns out to be similar, but not equal, to the
complexity landscape of the classical Tutte polynomial due to Jaeger et al. [42].

Parameterized Counting and Hardness

By now, counting complexity theory is a well established subfield of theoretical computer
science. Already in the 1970s, Valiant started a formal study of counting problems when
investigating the complexity of the permanent [63, 64]: counting the number of perfect
matchings in a graph is #P-complete, and hence harder than any problem in the polynomial-
time hierarchy PH by Toda’s Theorem [61]. In contrast, detecting a perfect matching in a
graph is much easier and can be done in polynomial time [33]. Hence, counting problems
can be much harder than their decision problem counterparts.
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As an attempt to overcome the hardness of counting problems in general, the focus
shifted to a multivariate or parameterized view on these problems. Consider for example the
following problem: given a query ¢ of size k and a database B of size n, we want to count
the number of answers to ¢ in B. If we make the very reasonable assumption that k is much

smaller than n, then we may consider an algorithm running in time O(2* - n) as tractable.

Note that in particular, such an algorithm may even outperform an algorithm running in
time O(n?). Also consider [39] for a more detailed and formal discussion.
Formally, given a problem P and a parameterization k that maps each instance I of P to
a parameter k(I), we say that P is fized-parameter tractable (FPT) with respect to , if
there is an algorithm that solves each instance I of size n in time f(x(I)) - n®®, for some
computable function f. This notion was introduced by Downey and Fellows in the early
1990s [29, 30] and has itself spawned a rich body of literature (see [35, 31, 23]). In the context
of the problems of detecting and counting small patterns in large networks, we parameterize
by the size of the pattern: given a pattern of size k and a network of size n, we aim for
algorithms that run in time f(k) - n©(), for some computable function f. However, for some
patterns, even this goal is too ambitious: it is widely believed that even finding a clique of
size k is not fixed-parameter tractable; in particular, an FPT algorithm for finding a clique
of size k would also imply a breakthrough result for the Satisfiability Problem and thereby
refute the widely believed Exponential Time Hypothesis [15, 16]. If a problem P is at least
as hard as finding a clique (or counting all cliques) of size k, we say that P is W[1]-hard (or
#W)/1]-hard, respectively).

For such a (#)W/[1]-hard problem, the hope is to (significantly) improve upon the naive

brute-force algorithm, which runs in time n©®) for the problems considered in this work.

However, in view of the aforementioned reduction from the Satisfiability Problem to the
problem of finding cliques of size k [14, 15], we can see that for finding cliques this, too,
would require a breakthrough for the Satisfiability Problem, which, again, is believed to
be unlikely [41]. In our paper, via suitable reductions from the problem of finding cliques,
we establish that exact algorithms significantly faster than the brute-force algorithms are
unlikely for the problems we study.

Parameterized Detection and Counting of Edge Subgraphs

Vertex-induced subgraphs as patterns are notoriously hard to detect or to count. The long
line of research on this problem [47, 17, 43, 44, 51, 45, 21, 57, 28, 58] showed that this holds
even if the patterns are significantly smaller than the host graphs, as witnessed by W[1] and
#W/1]-hardness results and almost tight conditional lower bounds. In case of exact counting,
it is in fact an open question whether there are non-trivial instances of induced subgraph
counting that admit efficient algorithms; recent work [58] supports the conjecture that no
such instances exist.

In search for fast algorithms, in this work, we hence consider a related, but different
version of network-motif counting: for a computable graph property ®, in the problem
#EDGESUB(®) we are given a graph G and a positive integer k, and the task is to compute
the number of (not necessarily induced) edge subgraphs! with k edges in G that satisfy ®.
Similarly, we write EDGESUB(®) for the corresponding decision problem. Then, in contrast to
the case of counting vertex-induced subgraphs, for (#)EDGESUB(®), we identify non-trivial

! Recall that an edge subgraph G of a graph G may have fewer edges than the subgraph of G that is
induced by the vertices of G”.
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properties ® for which (#)EDGESUB(®) is fixed-parameter tractable; we discuss this in more
detail later. First, however, let us take a detour to elaborate more on what is known already
for (#)EDGESUB(®).

If the property @ is satisfied by at most a single graph for each value of the parameter k,
the decision problem EDGESUB(®) becomes the subgraph isomorphism problem. Hence,
naturally there is a vast body of known techniques and results for special properties ®: for
FPT algorithms, think of the Colour-Coding technique by Alon, Yuster and Zwick [3], the
“Divide and Colour”-technique [16], narrow sieving [7], representative sets [36], or “extensor-
coding” [9] to name but a few. For hardness results, apart from the aforementioned example
of detecting a clique, Lin quite recently established that detecting a k-biclique is also W[1]-
hard [48]. However, a complete understanding of the parameterized decision version of
the subgraph isomorphism is one of the major open problems of parameterized complexity
theory [31, Chapter 33.1], that is still to be solved.

In the setting of parameterized counting, the situation is much better understood: Flum
and Grohe [34] proved #EDGESUB(®) to be #W/[1]-hard when ® is the property of being
a cycle, or the property of being a path. Curticapean [20] established the same result for
the property of being a matching. In [22], Curticapean and Marx established a complete
classification in case ® does not hold on two different graphs with the same number of
edges, which is essentially the parameterized subgraph counting problem. In particular, they
identified a bound on the matching number as the tractability criterion. In a later work,
together with Dell [21], they presented what is now called the framework of Complexity
Monotonicity, which can be considered to be one of the most powerful tools in the field of
parameterized counting problems. Note that this does not classify the decision version, as
#W][1]-hardness for a counting problem does not imply W[1]-hardness for the corresponding
decision problem.

In contrast to the parameterized subgraph detection/counting problems, the problem
(#)EDGESUB(®) allows to search for more general patterns. For example, while the (para-
meterized) complexity of counting all subgraphs of a graph G isomorphic to a fized connected
graph H with k edges is fully understood [22], the case of counting all connected k-edge
subgraphs of a graph G remained open so far. As one of our main results, we completely
understand the problem #EDGESUB(®) for the property ® = connectivity. In what follows,
we present our results, followed by an exposition of the most important techniques. Due to
the space constraints, we have to defer the proofs to the full version.

Main Results

In a first part, we present our results on (#)EDGESUB(®); we continue with a definition and
our results for a parameterized Tutte polynomial in a second part.

Our main results on (#)EDGESUB(®) can be categorized in roughly three categories: (1)
exact algorithms and hardness results for the counting problem; (2) approximation algorithms
for the counting problem; and (3) algorithms for the decision problem. For minor-closed
properties ®, we obtain exhaustive results for all three categories, for other (classes of)
properties that we study, we obtain partial criteria. For an overview over our results on
#EDGESUB(®), also consider Table 1; we go into more detail in the following.

Complete Classification for Minor-Closed Properties

Let us start with the case where the graph property ® is closed under taking minors, that is,
if ® holds for a graph, then & still holds after removing vertices or edges, or after contracting
edges. For minor-closed properties ®, we obtain a complete picture of the complexity of
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Table 1 An overview of the complexity of (#)EDGESUB(®) for different classes and examples
of properties ®, with respect to exact counting, approximate counting and decision. See further
below for the definition of the matching and star criterion. All run-time lower bounds rely on
the Exponential Time Hypothesis, and the absence of FPTRASes relies on the assumption that
WI1] does not coincide with FPT under randomised parameterized reductions. We write “mixed”
whenever the respective classes contain both tractable properties and hard properties. The known
results about the clique problem are added for completeness; note that W[1]-hardness of decision

immediately rules out an FPTRAS for approximate counting under the previous assumptions.

Property &

Exact Counting

Apx. Counting

Decision

Minor-closed
(e.g. ® = planarity)

#W/1]-hard
not in f(k) - |G|°/ leek)
(Main Theorem 1)

#WI/1]-hard

FPTRAS
(Main Theorem 1)

FPT

(Main Theorem 1)

® = connectivity not in f(k) - |G|o(k/ 105 ) FPTRAS FPT
(Main Theorem 2) (follows from [26]) (easy)
. s #WI[1]-hard
® = Hamiltonicity not in f(k) - |G|o(k/log &) unknown unknown
(Main Theorem 2)
. .. #W]/1]-hard
® = Eulerianity not in f(k) - |G|O(k/log k) unknown unknown
(Main Theorem 2)
#WI[1]-hard
® = claw-f k
claw-freeness not in f(k) - |G|°0:/ 105 ) unknown unknown
(Main Theorem 2)
Bounded matching FPT FPTRAS FPT
number (Proposition 1.2) (by exact counting) (by exact counting)
Bounded treewidth mixed FPTRAS FPT
(Main Theorem 3) (follows from [55])
Matching crit. and mixed™ FPTRAS FPT
star crit. (Main Theorem 3) (Main Theorem 4)
Matching crit. or mixed? mixed? FPT
star crit. (Main Theorem 4)
=0 #W]/1]-hard no FPTRAS FPT
(see full version) (full version) (full version) (full version)
® = CLIQUE #W/1]-hard no FPTRAS W(1]-hard
([34)) (implicitly by [30]) ([30)

JrV\/'e assume that the minor-closed property ® does not have bounded matching number, is not trivially true and
that each forbidden minor has a vertex of degree at least 3.

i<I> = true and ® = false always yield fixed-parameter tractability of exact counting. ®(H) = 1 < H is a matching
yields #W/[1]-hardness of exact counting [20]; note that the latter property is of bounded treewidth and satisfies the
matching criterion.

*@ = true always yields fixed-parameter tractability of exact counting. ®(H) =1 < (H is a matching or a star)
yields #W][1]-hardness by Theorem 1.4; note that the latter property satisfies the matching criterion and the star
criterion.

§<I> = true always yields an FPTRAS for approximate counting. ® = ¥ (from the full version) does not allow for an

FPTRAS while satisfying the matching criterion.
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#EDGESUB(®) and EDGESUB(®). In what follows, we say that a property ® has bounded
matching number if there is a constant bound on the size of a largest matching in graphs
satisfying ®.

» Main Theorem 1. Let ® denote a minor-closed graph property.

1. Exact Counting: If ® is either trivially true or of bounded matching number, then the
(exact) counting version #EDGESUB(®) is fized-parameter tractable. Otherwise, the
problem #EDGESUB(®) is #W([1]-hard. If, additionally, each forbidden minor of ® has a
vertex of degree at least 3, and the Exponential Time Hypothesis holds, then #EDGESUB(®)
cannot be solved in time f(k) - |G|°*/1°85)  for any function f.

2. Approximate Counting: The problem #EDGESUB(®) always has a fized-parameter tractable
randomised approzimation scheme (FPTRAS).?

3. Decision: The problem EDGESUB(®) is always fized-parameter tractable.

Consider for example the property ® of being planar: planar graphs do not have bounded
matching number. Additionally, by Kuratowski’s Theorem, the forbidden minors of planar
graphs are the 3-biclique K3 3 and the 5-clique K5. Since both K33 and K5 contain a vertex
of degree at least 3, we conclude that computing the number of planar subgraphs with & edges
in a graph G is #W/[1]-hard and, assuming ETH, cannot be solved in time f(k) - |G|°(*/1°gk)
for any function f. In sharp contrast, approximating the number of planar subgraphs with k
edges in a graph, as well as deciding whether there is such a planar subgraph can be done
efficiently. We obtain Main Theorem 1 as a combination of our (more general) results for
each of the three settings that we study; we discuss these results next.

Results for Exact Counting

Let us return to the case of arbitrary graph properties ®. Without any further assumptions
on @, the naive algorithm for #EDGESUB(®) on the input (k, G) proceeds by enumerating
the k-edge subsets of G and counting the number of cases where the corresponding subgraph
satisfies ®. This leads to a running time of the form f(k) - |[V(G)|***°(). However, at
least the linear constant in the exponent can be substantially improved using the currently
fastest known algorithm for counting subgraphs with & edges due to Curticapean, Dell and
Marx [21]. In the full version, we show that it easily extends to the case of # EDGESUB(®):

» Proposition 1.1. Let ® denote a computable graph property. Then #EDGESUB(®) can be
solved in time f(k) - |V(G)|O174+0(k) “where f is some computable function.

On the other hand, it was shown by Curticapean and Marx [22] that for the property ® of
being a matching, the problem #EDGESUB(®) cannot be solved in time f(k)-|V (G)|(*/logk)
for any function f, unless ETH fails. In other words, asymptotically and up to a factor of
1/logk, the exponent of |V (G)| in the running time of #EDGESUB(®) cannot be improved
without posing any restriction on ®.

The goal is hence to identify properties ® for which the algorithm in Proposition 1.1
can be (significantly) improved. In the best possible outcome, we hope to identify the
properties for which the exponent of |V(G)| does not depend on k; those cases are precisely
the fixed-parameter tractable ones. An easy consequence of known results for subgraph
counting (see for instance [22]) establishes the following tractability criterion; we include the
proof only for the sake of completeness in the full version:

2 The formal definition is given in the full version; intuitively an FPTRAS is the parameterized equivalent
of a fully polynomial-time randomised approximation scheme (FPRAS).
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» Proposition 1.2. Let ® denote a computable graph property satisfying that there is M > 0
such that for all k either the graphs with k edges satisfying ® or the graphs with k edges
satisfying ~® have matching number bounded by M. Then #EDGESUB(®) is fized-parameter
tractable.

Examples of properties satisfying the tractability criterion of Proposition 1.2 include, among
others, the property of being a star, or the complement thereof. We conjecture that all
remaining properties induce #W/[1]-hardness and rule out any algorithm running in time
f(k) - |G|/ 18 k) for any function f, unless ETH fails.?> For the case of minor-closed graph
properties, we have seen above that this conjecture holds.

Further, the techniques we develop to prove hardness of #EDGESUB(®) for minor-closed
properties ¢ in Main Theorem 1 can also be applied directly to show hardness for other
specific properties ®. Below, we record several natural examples of such properties which
are covered by our methods.

» Main Theorem 2. Consider the following graph properties.

O (H) =1 if and only if H is connected.

Oy (H) =1 if and only if H is Hamiltonian.

Op(H) =1 if and only if H is Eulerian.

Sop(H) =1 if and only if H is claw-free.
For ® € {®¢, Py, Pr, Por}, the problem #EDGESUB(®) is #W[1]-hard. Further, unless
ETH fails, the problem #EDGESUB(®) cannot be solved in time f(k) - |G|°*/198F) for any
function f.

Results for Approximate Counting and Decision

Our results on exact counting indicate that we have to relax the problem if we aim for
tractability results for a larger variety of properties. One approach is to only ask for
an approximate count of the number of k-edge subgraphs satisfying ®. Tractability of
approximation in the parameterized setting is given by the notion of a fixed-parameter tractable
randomized approzimation scheme (FPTRAS) as introduced by Arvind and Raman [5]. While
we give the formal definition in full version, it suffices for now to think of an FPTRAS as a
fixed-parameter tractable algorithm that can compute an arbitrarily good approximation of
the answer with high probability. Readers familiar with the classical notions of approximate
counting algorithms should think of an FPTRAS as an FPRAS in which we additionally
allow a factor of f(k) in the running time, for any computable function f.

For the statement of our results, we say that a property ® satisfies the matching criterion
if it is true for all but finitely many matchings, and we say that it satisfies the star criterion
if it is true for all but finitely many stars. Furthermore, we say that ® has bounded treewidth
if there is a constant upper bound on the treewidth of graphs that satisfy ®.

» Main Theorem 3. Let ® denote a computable graph property. If ® satisfies the matching
criterion and the star criterion, or if ® has bounded treewidth, then #EDGESUB(®) admits
an FPTRAS.

For example, the property of being planar satisfies both, the star and the matching
criterion. Moreover, we can show that every minor-closed graph property ® has either
bounded treewidth or satisfies matching and star criterion, and thus always admits an

3 Note that it does not matter whether we choose |G| or |V (G)| for the size of the large graph since we
care about the asymptotic behaviour of the exponent.
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FPTRAS. Additionally, if not only exact but also approximate counting is intractable, we ask
whether we can at least obtain an efficient algorithm for the decision version EDGESUB(®).
Again, we obtain a tractability criterion; observe the subtle difference in the tractability
criterion compared to Main Theorem 3.

» Main Theorem 4. Let ® denote a computable graph property. If ® satisfies the matching
criterion or the star criterion, or if ® has bounded treewidth, then EDGESUB(®) is fired-
parameter tractable.

As an easy corollary, we can conclude that for monotone, that is, subgraph-closed
properties ®, the problem EDGESUB(®) is always fixed-parameter tractable.*

For many previously studied problems, the complexity analysis of approximate counting
and decision were related: often an algorithm solving one setting can be used to solve the
other setting [51, 26]. However, in our results Main Theorems 3 and 4 we see an asymmetry
between the two settings: it suffices for ® to satisfy only one of the star and the matching
criterion to induce tractability of the decision version, but we require satisfaction of both
for approximate counting. One might expect that this reflects a shortcoming of our proof
methods (and that in fact it suffices to check one of the criteria to have tractability of
approximate counting). Interestingly, this is not the case:

» Proposition 1.3. There is a computable graph property ¥ (see full version) that satisfies
the matching criterion, but not the star criterion, such that EDGESUB(W) is fized-parameter
tractable, but #EDGESUB(Y) does not admit an FPTRAS unless W[1] coincides with FPT
(the class of all fixed-parameter tractable decision problems) under randomised parameterized
reductions.

Dichotomy for Evaluating a parameterized Tutte Polynomial

As a final part of the presentation of our main results, let us discuss our results on a
parameterized Tutte polynomial.

The classical Tutte polynomial (as well as its specializations like the chromatic, flow
or reliability polynomial) have received widespread attention, both from a combinatorial
as well as a complexity theoretic perspective [42, 2, 65, 6, 37, 25, 10, 8]. The classical
Tutte polynomial is of special interest from a complexity theoretic perspective, as the Tutte
polynomial encodes a plethora of properties of a graph: prominent examples include the
chromatic number, the number of acyclic orientations, and the number of spanning trees; we
refer the reader to the work of Jaeger et al. [42] for a comprehensive overview. Formally, the
Tutte polynomial is a bivariate graph polynomial defined as follows (see [42]):

Te(z,y) = Z (z — DRORE@) | (y _ )A+H#A-#V ()
ACE(G)

)

where k(S) is the number of connected components of the graph (V(G),S). In the afore-
mentioned work, Jaeger et al. [42] also classified the complexity of evaluating the Tutte
Polynomial in every pair of (complex) coordinates, that is, for every pair (a, b), the complexity
of computing the function G — Tg(a,b) is fully understood.

4 Every graph property has either bounded treewidth or unbounded matching number. In the latter case,
if the property is additionally monotone, it must satisfy the matching criterion.
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In this work, we consider the following parameterized version of the Tutte Polynomial by
restricting to edge-subsets A in G of size k:

Th(z,y)i= Y (o —1)FOFEE) () )OH—#V(E),

Ae(F©)

We observe that the parameterized Tutte polynomial can be seen as a weighted version of
counting small k-edge subgraph patterns by assigning to each k-edge subset A of G the
weight

(& — DHA—KEQ) | (y _ 1)RAHR—#V(S)

Moreover, we point out that T2 (x,y) is related to a generalization of the bases generating
function for matroids [4]. By establishing a so-called deletion-contraction recurrence, we
show that T%(z,y) has similar expressive power as its classical counterpart Tg(z,y):

» Main Theorem 5. For any graph G and positive integer k, the following graph invariants

are encoded in TE(x,y):

1. TE(2,1) is the number of k-forests in G. In other words TE(2,1) corresponds to the
problem #EDGESUB(®) for the property ® of being a forest.

2. For each positive integer c, the values of Tck;’(l —¢,0) determine® the numbers of pairs
(A, o), where A is a k-edge subset of G, and o is a proper c-colouring of (V(G), A).

3. From TE(2,0) we can compute the numbers of pairs (A, 1), where A is a k-edge subset of
G, and 1] is an acyclic orientation of (V(G), A).

4. TE(2,0) also determines the number of k-edge subsets A of G, such that (V(G), A) has
even Betti Number (we give a formal definition of the Betti number in the full version).

5. TE(0,2) determines the number of k-edge subsets A of G, such that (V(G), A) has an

even number of components.

Note that, while #EDGESUB(®) only allows us to count the number of subgraphs with &
edges that satisfy @, the parameterized Tutte polynomial allows us to count more intricate
objects, such as tuples of an edge-subset and a colouring (or acyclic orientation) on the
induced graph. From a complexity theoretic point of view, we obtain a similar result as [42],
albeit only for rational coordinates: for each fized pair (z,y) of coordinates, we consider

the problem receiving as input a graph G and a positive integer k and computing 7, g(x, Y).

Following the paradigm of this work, we choose k as a parameter, that is, we consider inputs
in which k is significantly smaller than |G|.

» Main Theorem 6. Let (z,y) denote a pair of rational numbers. The problem of computing
TE(z,y) is solvable in polynomial-time if x =y =1 or (x — 1)(y — 1) = 1, fized-parameter
tractable, but #P-hard, if vt =1 and y # 1, and #W/1]-hard otherwise.

The class #P is the counting version of NP [63, 64] and, in particular, the #P-hard cases
in the above classification are not polynomial-time tractable unless the polynomial-time
hierarchy collapses to P [61]. Consider Figure 1 for a depiction of the classification. Note
that Main Theorem 6 yields #W/1]-hardness for each of the aforementioned problems from
Main Theorem 5. Note further, that the tractable cases are similar, but not equal to the
classical counterpart [42].

5 They are equal up to trivial modifications; in particular, their complexities coincide.
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(z-1D-1)=1 (z-1Dy-1)=1

z-D-1)=1 z-Dy-1)= z=1

(a) Points of the parameterized Tutte polynomial (b) Points of the parameterized Tutte polynomial
that can be computed in polynomial-time (blue) that allow for an FPRAS (blue) and for an FPTRAS
and that are fixed-parameter tractable, but #P- (red); all points on the boundary of the blue area
hard (red). Exact computation at any other point are included. The complexity of approximation is
(vellow) is #W/1]-hard. open for all points outside of the coloured region.

Figure 1 Points of the parameterized Tutte polynomial that can be computed in FPT-time
(a) exactly or (b) approximately. We emphasize that a full classification for exact counting is
established, while the complexity of approximation remains open outside of the coloured area.

Moreover, our proof uses entirely different tools than [42] and illustrates the power and
utility of the method presented in the subsequent discussion of our techniques.

Having fully classified the complexity of exact evaluation of the parameterized Tutte
Polynomial, we also consider the complexity of approximate evaluation. We identify two
regions bounded by the hyperbola (x — 1)(y — 1) = 1 and the lines x = 1 and y = 1 as
efficiently approximable; consider Figure 1b for a depiction.

» Main Theorem 7. Let (z,y) denote a pair of rational numbers. If 0 < (x —1)(y — 1) <1,
then TE(z,y) has an FPTRAS. If additionally x # 1 or y = 1 then TE(z,y) even has a fully
polynomial-time randomized approzimation scheme (FPRAS).

Techniques

Our Main Theorems 3, 4, and 7 are obtained easily: the proof of Main Theorem 3 is a
standard application (see for instance [51]) of the Monte-Carlo approach, in combination with
Ramsey’s theorem, and Arvind and Raman’s algorithm for approximately counting subgraphs
of bounded treewidth [5]. The proof of Main Theorem 4 uses a standard parameterized
Win-Win approach for graphs of bounded treewidth or bounded degree. Finally, the proof
of Main Theorem 7 is an easy consequence of the work of Anari et al. [4] on approximate
counting via log-concave polynomials.

Hence, in this technical discussion, we want to focus on the technique that enables us to
prove the lower bounds for Main Theorems 1 and 2 and, perhaps surprisingly, also for Main
Theorem 6.

As a main component, we use the Complexity Monotonicity framework of Curticapean,
Dell and Marx [20]. Given a property ® and a positive integer k, we write #EdgeSub(®, k — *)
for the function that maps a graph G to the number of k-edge subgraphs of G that satisfy ®.
Using a well-known transformation via Mébius inversion [49, Chapter 5.2], we can show that
there are rational numbers aq, ..., ay and graphs Hi, ..., H; such that for each graph G we
have
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k
#EdgeSub(®, k — G) = Y _a; - #Hom(H; — G) (1)
i=1

where #Hom(H; — G) is the number of graph homomorphisms from H; to G. In other
words, we can express #EdgeSub(®, k — x) as a finite linear combination of homomorphism
counts. Here, we can then apply the Complexity Monotonicity framework [21], which asserts
that computing a finite linear combination of homomorphism counts is precisely as hard as
its hardest term (among the terms with a non-zero coefficient). However, the complexity of
computing the number of homomorphisms from small pattern graphs to large host graphs is
very well-understood [24, 50]. Roughly speaking, the higher the treewidth of the pattern
graph, the harder the problem becomes; we make this formal in the full version.

Instead of our original problem #EDGESUB(®), we can thus consider the problem of
computing linear combinations of graph homomorphism counts. In particular, to obtain
hardness, it suffices to understand for which of the coefficients in equation (1) we have a; # 0,
depending on k and .

Relying on the well-known fact that the Mobius function of the partition lattice alternates
in sign, Curticapean, Dell, and Marx [21] observed that non-trivial cancellations cannot
occur in equation (1) if, for each k, every k-edge graph that satisfies ® must have the same
number of vertices. Consequently, if the matching number is unbounded, those properties
yield #W/[1]-hardness. An example for such a property is the case of ®(H) = 1 if and only
if H is a tree. In contrast, the intractability result for the case of ® = acyclicity (that is,
being a forest) turned out to be much harder to show [11], indicated by connections to
parameterized counting problems in matroid theory.

In later work, the coefficients a; were shown to have even more interesting structure:

the coefficients a; describe topological and algebraic invariants of the set of pattern graphs.

For example, in [57] it was shown that the coefficient of the k-clique in case of counting
vertex-induced subgraphs with property @ is the reduced Euler characteristic of a simplicial
complex associated with ® and can thus, if non-zero, be used to establish evasiveness of
certain graph properties [46].

In this work, we prove additional insights into said coefficients a;. For any graph H
we give an explicit formula for its coefficient ay in terms of a sum over the fractures on H,
an additional combinatorial structure on a graph H resembling, to some extent, a gadget
construction used for the classification of the subgraph counting problem [22] (see full version
for details). Our most crucial insight is then that we can drastically simplify the expression
of the coefficient ay modulo a prime ¢ if H admits a vertex-transitive action of a group of
order given by a power of /. In this case, we obtain an action of the group on the set of
fractures on H and in the formula for ag all contributions from fractures not fixed by the
group cancel out modulo /.

In particular, we consider graphs H which are Cayley graphs of a finite group of prime
power order and a symmetric set of generators. Since the Cayley graph of a group always
has a natural vertex-transitive action of this group, such Cayley graphs always have the
desired symmetry properties. We exploit this by showing that there is a constant number of
fractures fixed by the group action. This in turn allows us to write (az modulo ¢) as a finite
sum of terms depending on the value of ® on some explicit graphs.

8 For technical reasons, the approach we describe below requires us to consider a coloured version of
#EDGESUB(®), which is, however, shown to be interreducible with the uncoloured one.
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Figure 2 Two isomorphic representations of the toroidal grid ®,: On the left hand side as a grid
with connected endpoints, on the right hand side as a stylized torus.

Specifically, the first set of Cayley graphs we consider are the toroidal grids ®,, which
are depicted in Figure 2. Since the treewidth of ©, diverges with ¢, we thus obtain a
#W/[1]-hardness result whenever the coefficient ag, does not vanish for infinitely many ¢.
Writing M}, for the matching of size k, P» for the path consisting of 2 edges, C for the cycle
of length k, Sy, for a sun (a cycle with dangling edges) of size k, and ®j, for the toroidal grid
of size k, our first main technical result reads as follows:

» Theorem 1.4 (Simplified version). Let ® denote a computable graph property and assume
that infinitely many primes { satisfy the equation”

— 6D (Mygz )+ 4B (Myz +£C¢) + 8B (£2 Py) — B(20Cy) — 2B ((Cs) — 4D (£S¢) + (@) #0 mod €. (2)
Then #EDGESUB(®) is #W/[1]-hard.

As a toy example for an application of Theorem 1.4, let us consider the property ® of
being connected. Observe that among the graphs in (2), only ®; is connected, and thus the
sum is always 1 for ¢ > 2. Thus, indeed the left-hand side of (2) is nonzero, proving that
#EDGESUB(®) is #W[1]-hard.

Using Theorem 1.4, we can prove most of the #W/[1]-hardness results of Main Theorem 1.
However, using the toroidal grid @, we cannot prove (almost) tight conditional lower bounds:
the treewidth of ®, grows only with the square-root of the parameter & (that is the number of
edges of the graph). To address this problem, we consider a second family of 4-regular Cayley
graphs, constructed explicitly by Peyerimhoff and Vdovina [54], which have the additional
property of being expander graphs. In particular, for these graphs, the treewidth grows
linearly in the number of edges. This allows us to obtain almost tight conditional lower
bounds. The variant of Theorem 1.4 for these Cayley graph expanders can be found in the
full version of this paper.

The only drawback of the Cayley graphs from [54] is that the corresponding groups always
have orders given by powers of 2 (in contrast to having arbitrary primes ¢ in Theorem 1.4).
Hence, our criterion for hardness is the nonvanishing of some expression modulo 2. Ultimately,
this is the reason why for the conditional lower bounds in Main Theorem 1 we need to
exclude forbidden minors having a vertex of degree 2 or less.

7 We write + for (disjoint) graph union and £H for the graph consisting of £ disjoint copies of H. Further,
we set ®(H) = 1 if H satisfies ® and ®(H) = 0 otherwise.
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Finally, to obtain Main Theorem 6, we express the parameterized Tutte polynomial at

a rational point (z,y) as a linear combination of (fractures of) toroidal grids; the proof of
Theorem 1.4 then essentially shows that this linear combination always contains a graph
with unbounded treewidth, yielding #W/[1]-hardness.
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