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Figure 1 — Map of ecoregions® included in this study (n=220). The number of species
per ecoregion is colour-coded (see Supplementary Tab. 7). Points indicate location of
sampling aggregated to 1°; number of measurements are colour-coded from white=few,
yellow= medium to red=many measurements. This map was created using the Geodata
product of the Missions Database “ArcWorld Supplement” (GMI) available in the Ar-
cGIS©software by Esri (and R). ArcGIS©and ArcMap’™ are the intellectual property of
Esri and are used herein under license. Copyright ©Esri. All rights reserved. For more
information about Esri®software, please visit www.esri.com.
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1 Method robustness

The robustness of our model outputs was tested in four ways. First, we calculated how
much variation can be explained by random noise, instead of real data on climate or soil
variables (Supplementary Fig. 1). Second, we tested the method robustness for over-
sampled regions by reducing the number of species traits (Supplementary Fig. 2). Third,
we tested the ridge regression results by comparison to results from other models: partial
least squares (with and without PCA) and random forest (17). Fourth, we tested a differ-
ent aggregation scale (grids of 1° % 1° in order to compare the signal-to-noise ratio with
the ecoregion scale. Finally, we compared results of the analysis with and without our se-
lection criteria (Supplementary Fig. 3), and of the ecoregion and grid scale aggregation.
In all of these tests, the procedures we used in the main analysis performed as well as, or

better than, the tested alternatives.

1.1 Independent effect of random noise

To estimate how much of the trait variation (r?, ecoregion aggregation) is explained by
random environmental variables (noise), we performed the ridge regression’ + hierarchi-
cal partitioning? as described above (methods ,ridge regression® and “hierarchical parti-
tioning”) and paired soil or climate with noise. The noise data set comprised randomly
sampled values for a variable set as large as the soil variable set (n=107). We performed
ridge regression’ analysis with noise data, together with soil or climate. Then we calcu-
lated the independent effect of noise from soil or climate data. The independent effect of
randomized data (noise) is always O or even negative, due to large differences between
r?_total and r?_noise, and model variability. Overall, noise never has an independent

effect greater than zero, and the joint effect can be as large as 9%.
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(a) Climate and noise (b) Noise and soil

Seedlen | 38% 3% 0% Seedlen | 0% 1% 31%
Dispersal len | 25% 3‘% 0% Dispersallen | 0% 1;/., 21%
Seed mass | 57% 1‘% 0% Seedmass | 0% 2;/., 46%
Height | 49% 2‘% 0% Height | 0% 4;/» 38%
Leaf fmass | 71% 1;/a 0% Leaffmass | 0% 4';/3 53%
Leaf area | 58% 2;/0 0% Leafarea | 0% 5“% 45%
Conduit dens | 73% 5% 0% Conduit dens | 0% 5% 51%
Stemdens | 31% s;/a 0% Stemdens | 0% 4;/5 35%
LeafC | 18% 4;/,, 0% LeafC | 0% 3;/., 22%
Leaf N:P | 46% 4;/9 0% Leaf NP | 0% 5;/0 39%
Leaf P | 23% 7;/., 0% LeafP | 0% a;/a 32%
Leaf Narea | 29% s‘% 0% LeafNarea | 0% 7;/» 30%
SLA | 23% 9:’/» 0% SLA | 0% 5';/3 23%

LeafN | 12% 9;/0 0% LeafN | 0% a;/a 3%
Vessel len | 35% 5:% 0% Vessellen | 0% 5"7/° 37%
Leaf di5N | 40% s«;/a 0% Leafdi5N | 0% s;/u 35%

SeedsU | 8% 4;/,, 0% SeedsU | 0% s;/u 1%

100 50 0 50 100 100 50 0 50 100
% of trait variance explained by climate and/or noise % of trait variance explained by noise and/or soil

variable Independent_climate Joint Independent_noise variable Independent_noise Joint Independent_soil

Figure 1 — Proportion variance in each trait explained by noise, climate or soil variables
(ecoregion median trait, blue=size, red=economics, yellow=other). (Left) Variance of
each trait explained by noise and climate variables (sorted according to trait groups: size,
economics, other). Total bar length=total r* explained by climate and noise. Purple frac-
tion=explained by the independent climate effect, gray bars=fraction that is explained by
climate and noise joint effect, and thus symmetric. Trait with the highest joint effect are
Leaf N and SLA for which the joint effect explains 9%. (Right) Variance of each trait ex-
plained by noise and soil (sorted according to traitgroups: size, economics, other). Total
bar length=total r? explained by noise and soil. Purple fraction=explained by the indepen-
dent soil effect, gray bars=fraction that is explained by soil and noise joint effect, and thus
symmetric, purple bars=fraction that is explained by noise alone (max=1%). Trait with
the highest joint effect is Leaf P for which the joint effect explains 8%. Values represent
the mean of 50 model runs, 220 ecoregions.

1.2 Bias test

We reduced the number of species traits in order to account for oversampling in certain
ecoregions. Our approach was to reduce the number of species in those ecoregions which
exceeded our selection criteria (>20 species and >1% of species richness accoding to
Kier’). This allowed us to keep all 220 ecoregions, while changing the data distribution
among species. Species trait values were deleted randomly, and only then aggregated to
ecoregions (repetitions n=3; termed as bias1, bias2, bias3). This data was then analysed

as described in the methods by ridge regression (n=50) and hierarchical partitioning.
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(a) Bias test run 1 (b) Bias test run 2 (c) Bias test run 3

50 o 50 50 [ E)
9% of trait variance explained by noise andior soil 9% of trait variance explained by noise and/or soil

variable [[1] Independent ciimate | Joint | Independent soil variable [[1] Independent_climate | Joint || Independent_soil variable [[1] Independent climate | Joint || Independent_soil

Figure 2 — Bias test results run with the minimum number of species information (trait
values per ecoregion above minimum selection criterion). Trait values of species above
the selection criterion were randomly deleted. Everything else remained as explained in
the methods or as in Figure 3b.

1.3 Comparison to other Models

We compared the model outputs of alternative models of partial least squares and random
forest to those of the ridge regression’. We modelled all 17 plant traits from soil variables
only, climate variables only and soil with climate variables. We thus ran a 10-fold cross-
validated partial least squares model (PLS) with 10 repetitions, in addition to a 10-fold
cross-validated random forest with 2 repetitions. Afterwards we subjected the r* of soil
only, climate only and soil with climate to hierarchical partitioning?>. We find similar

explained variances ( 17).

1.4 Selection criterion
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Figure 3 — Comparison of explained variance by ridge regression models from climate
and soil variables, with focus on the level of aggregation and selection criteria. Due
to the missing information of an estimate of species richness (equivalent of Kier® species
richness) for grid level, all grids entered the analysis, independent of the number of obser-
vations. Ecoregions were selected based on the selection criterion as in the main analysis
(details see methods). (a): Distance between the data on ecoregions with and without se-
lection criterion (N, seiection=422, Nserectea=220), positive values mean a higher explained
variance for models with the selection criterion. (b): Distance between data on ecoregions
versus grid scale (without selection criterion, n=1,542). Bars colored according to size
(blue), economics (red) and other traits (yellow).
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Figure 4 — Covariance of plant functional traits from observed trait values only
(N5ced.mass=89, nHeight:277a Nreaf. fresh.mass=»> NLeafarea™ 244, NSeed.length=s nLeafC:74a
nLeafN:2629 nLeaf.N:P.ratio:147a nDelta.15N:88’ nStem.Density:889 nLeaf.N.per.Area:156a
ngr =212, nr.,rp=201; species per ecoregion aggregation; see Methods). Traits were
analysed by cluster analysis (hierarchical clustering) based on absolute pairwise Pearson
correlation coefficient. Green shades indicate high absolute correlation and yellow shades
indicate low absolute correlation. On the left, the distance tree of traits derived from hi-
erarchical clustering is illustrated. Two resulting groups are: 1. size-related traits (blue)
consisting of conduit density, leaf area, leaf fresh mass, height, seed mass; 2. a mixture
of economics (red) and one other trait (yellow) comprising specific leaf area (SLA), leaf

N content per area, leaf N, P and C concentrations, leaf N/P ratio, stem specific density
(stem dens) and Delta 15N.



w2 Trait PCA

1751 We computed PCAs based on traits of single species per ecoregion (n=36,197). The
1752 variance explained by each component is shown in (Supplementary Fig. 5). The first
1753 two axes each explain more than 10% of variation (left, PC3=9.36%) and together almost
1754 50% of the overall variation of the 17 plant traits (right). The trait loadings onto the first
175 5 principle components (PCs) are presented in Supplementary Fig. 6. Size traits load
1756 most onto PC1, economics traits onto PC2 and PC3. Overall the loadings decrease with

1757 increasing PCs.
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Figure 5 — Variance of the trait PCA axes (17 traits, n=36,197 single ecoregion species).
(Left) Red lines refer to 10% of variance, and (right) 50% of variance.
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Figure 6 — Absolute loadings of the first 5 trait PCA axes (17 traits, n=36,197 single
ecoregion species), trait bars colored according to trait group (blue=size, red=economics,
yellow=other)

3 Woody and non-woody subset

Diaz and colleagues (2016)* depict the global distribution of 6 traits to include two data-
rich hotspots of species with similar trait correlations: one set of woody and one set of
non-woody species, and thus we look in closer detail at these two groups. The distri-
butions of resulting ecoregions are shown in Supplementary Fig. 7. As we retain our
quality control criteria of at least 20 species per ecoregion representing at least 1% of
estimated species richness®, dividing our analysis into these two plant groups results in
a decreased total number of species (Nyoody=14,534, Nponwoody=13,042) and ecoregions
(Nwoody=86, Nponwoody=84) in comparison to our main analysis ( Ngpecies=36,197, ecore-
gIoNS Necoregions=220). Which ecoregions are selected also differs between non-woody

(7a) and woody species (7b) The trait-trait relationships are shown in 8a, 8b in the form

of correlations and as PCAs (8c, 8d). Also in these subgroups (woody and non-woody),
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we recover similar trait clustering, mostly into groups of size and economics traits (Sup-
plementary Fig. 8); for woody traits, there are additional clusters of hydraulic and seed
traits. The size traits again load primarily onto the first axis, and economics traits pri-
marily onto the second axis of the PCA. Latitudinal gradients of these PCs are shown
in Supplementary Fig. 9. The ridge regression plus hierarchical partitioning are shown
in Supplementary Fig. 9. Woody species traits appear to be more influenced by climate
in comparison to non-woody species traits, which appear to be influenced more by soil
variables. All analyses were carried out exactly as in the original study. Please note all
negative values from hierarchical partitioning® were removed by replacement with zeros.

Negative values can result from model instabilities that shift average 7%, . . . . to be-

2

or 7y,

ing smaller than r%, .
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(a) Non-woody species (b) Woody species
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Figure 7 — Results of subsetting the total plant data into a woody and a non-woody subset;
(a) non-woody and and (b) woody species: Geographic distribution of selected ecore-
gions® (Nwoody=86 and Ny,opn—woody =84, from selection criterion (>1% of estimated Kier’
species richness and >20 species) with number of species for woody and non-woody
subsets. These maps were created using the Geodata product of the Missions Database
“ArcWorld Supplement” (GMI) available in the ArcGIS©software by Esri (and R). Ar-
cGIS©and ArcMap’™ are the intellectual property of Esri and are used herein under li-
cense. Copyright ©FEsri. All rights reserved. For more information about Esri®software,
please visit www.esri.com.

12


www.esri.com

(a) Non-woody species (b) Woody species
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Figure 8 — Trait groups for woody and non-woody plants derived from covariance of
plant functional traits (a, non-woody and and b, woody species; species median aggre-
gation; Nyoedy=14,534. Npon—woody=13,042; gap-filled, see Methods) from Pearson cor-
relations coefficients (absolute) with trait groups from hierarchical clustering and (c+d)
Principal Components Analysis (PCA). Trait row box colored according to the trait group
(blue=size, red=economics, yellow=other).
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Figure 9 — Latitudinal gradients of the first two principal components of the PCA on the
17 ecoregion species median plant traits; woody (top, Nyeeay=14,534) and non-woody
species (bottom, Ny,en—woody=13,042). The analysis of woody species is shown at the top,
and of non-woody species at the bottom; on the left, PC1 (most influenced by size traits)
and on the right, PC2 (most influenced by economics traits) are regressed against abso-
lute latitude. Colors are according to density of species (unique species per ecoregion?%?).
Mean estimates aggregated at 1° absolute latitude are indicated as black dots. Lines re-
fer to the linear models for PC1 (explaining 21% for woody and 22% for non-woody
of trait variation) scores binned to absolute latitudes against latitude (r2woody:84% or
12 0n—woody=46%; compared t0 12,0 woody=23% OF 1201 —wooay=4% without bins); and
PC2 (explains trait variation by 18% for woody and 14% for non-woody) scores binned
to absolute latitudes against latitude (1%,000y=3% OF 12,00 —woody=57%; compared to
rQwOOdy=O% or r2mn_woody=12% without bins). The density of points indicates that the
species richness’ hotspot in our data for woody plants is situated closer to the equator
(top), for non-woody plants more in the temperate regions (bottom), and this reproduces
the data basis (Figure 3a and Figure 3b) and the general finding of a shift from tree to
herbaceous species richness from low to high latitudes Moles2009. The second PC, rep-
resenting mainly economics traits, shows strong non-linear effects. This can be seen for
both subsets with species-level aggregation, yet only for woody plants with latitudinal
bins(b,d).

14



1782

1783

1784

1785

1786

1787

1788

1789

4 Independent data

Because our dataset lacked data points from high latitudes, we next determined whether a
publicly available, independent data set from the tundra would support different relation-

ship of size and economics traits with latitudinal gradients.
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Figure 10 — Latitudinal trait gradients of data used in this study (gray), wth the addition
of data from the tundra trait team! (red). Points circled in white (black, orange) refer to
binned trait values (absolute latitudinal degree median) of the data used in this study and
the tundra data, respectively.

5 Independent and joint effect of latitude and climate or
soil

The analysis was conducted in the same way as the original analysis (see Methods), only

replacing one of the variable types (climate or soil) with latitude. Latitude was represented
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1790 by the median, maximum and minimum of the ecoregion. The comparison of latitude and
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Leaf Narea | 26% 10‘%
SLA | 23% 10‘%
Leaf N = 19% 1;A
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ecoregions demanded an aggregation to ecoregions, also for latitude.

(b)

28% 4%
19'% 4%
AB‘% 2%
32‘% 10%
43‘% 13%
30‘% 20%
53‘% 2%
23‘% 1%
5‘.’/a 20%
38'% 6%
25‘% 15%
1 1.% 25%
13‘% 16%
4“% 8%
12‘% 30%
34‘% 7%
13'% 0%

'
0 50 100
% of trait variance explained by latitude and/or soil

variable Independent_latitude Joint Independent_soil

Figure 11 — Latitude (gray) and soil (peach) or climate (purple) explain traits. (a) Ridge
regression (RR) and hierarchical partitioning result of climate versus latitude. (a) RR and
hierarchical partitioning result of latitude versus soil. Traits are ordered according to trait

groups (economics, size, other).
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(a) Non-woody species (b) Woody species

Seedlen | 0% 13% 9% Seedlen | 0% 12% 0%
Dispersallen | 0% 5;/., 8% Dispersallen | 0% a;A, 6%
Seed mass | 0% 15% 1% Seedmass | 7% sé% 0%
Height | 17% 45% 5% Height | 0% 1"% 0%
Leaf fmass | 23% zé% 13% Leaf fmass | 37% 39‘% 0%
Leaf area | 12% 41‘% 0% Leafarea | 15% 22‘% 0%
Conduitdens | 11% 44% 0% Conduit dens | 43% 55% 0%
Stemdens | 12% 46‘% 2% Stemdens | 0% 15% 7%
LeafC | 8% 15;% 3% LeafC | 19% 1:;% 0%
Leaf NP | 7% 34% 0% Leaf NP | 25% 34% 0%
LeafP | 0% 25% 2% LeafP | 17% 41;% 0%
LeafNarea | 5% 31‘% 4% LeafNarea | 2% zé% 9%
SLA | 1% 25% 10% SLA | 25% 35‘% 0%
LeafN | 0% 8;/0 3% LeafN | 0% 1éva 0%
Vessellen | 6% 32‘% 0% Vessellen | 0% 28‘% 1%
Leaf di5N | 15% 25% 16% Leaf di5N | 25% Aé% 2%
SeedsU | 0% 9;/,, 0% SeedsU | 1% 1:;% 0%

100 50 0 50 100 100 50 0 100

% of trait variance explained by climate and/or soil % of trait variance explained by climate and/or soil

variable Independent_climate Joint Independent_soil variable Independent_climate Joint Independent_soil

Figure 12 — Trait variation explained by climate and soil variables for (a) non-woody
and and (b) woody species (ecoregion® median trait; sorted according to trait group, rep-
etitions n=50). Total bar=total r* explained by climate (purple) and soil (peach). Red
fraction=explained by the independent soil effect, blue fraction=explained by the inde-
pendent climate effect. Gray bars=fraction that is explained by climate and soil joint
effect. Variance explained for total, woody and non-woody subset by climate and soil.
Bars are split into the independent and joint (gray) effect by climate (blue) and soil (red)
to explain each trait. Traits are ordered according to trait groups (economics, size, other).

6 Pattern robustness

We tested if the patterns (large joint effect, climate relevant for all traits, soil with ad-
ditional information for economics traits) are reflected in higher or lower levels. We
had three approaches. First, we analysed single variable-trait relationships by using ex-
plained variance from linear models (r?) and their resulting pattern by hierarchical clus-
tering (Supplementary Fig. 13). Second, we conducted a meta-analysis for the first 5
principle components (14), which were explained in a pattern similar to that for the traits
which load on these axes. Third, we reduced the number of variables going into the RDA
by forward selection, which again reveals unique aspects of climate and soil for size or

economics traits (Supplementary Fig. 39).
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7 Pattern robustness

We tested if the patterns (large joint effect, climate relevant for all traits, soil with ad-
ditional information for economics traits) are reflected in higher or lower levels. We
had three approaches. First, we analysed single variable-trait relationships by using ex-
plained variance from linear models (r?) and their resulting pattern by hierarchical clus-
tering (Supplementary Fig. 13). Second, we conducted a meta-analysis for the first 5
principle components (14), which were explained in a pattern similar to that for the traits
which load on these axes. Third, we reduced the number of variables going into the RDA
by forward selection, which again reveals unique aspects of climate and soil for size or

economics traits (Supplementary Fig. 39).

7.1 Single trait-environment relationship patterns

In this analysis we tested the pattern of explained variance of traits from linear models
using one environmental variable only. Variance explained (r?) from linear models were
calculated with 10-fold cross validation (only unseen trait values were predicted) with 10
repetitions that were averaged (mean) for this figure. Hierarchical clustering shows simi-

lar groups of traits, based on their r? pattern.
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Figure 13 — Overview of trait-environment relationships plus the relative similarity of
traits. This figure is based on the explained variance of traits from linear models with one
environmental variable only (ecoregion aggregation). The top bar color indicates vari-
able type: blue=climate, red=soil. Colors within the plot show an increase in explained
variance (r?) from white to turquoise; empty squares indicate zero values for the purpose
of better visualization (zero values entered the analysis). The right bar color indicates
the trait group (blue=size, red=economics, yellow=other). The dendrogram shows the
hierarchical clustering result.
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Figure 14 — Variance explained by ridge regression for first and second PC (ecoregion®
aggregation), with independent effect of climate (blue) and soil (red) and their joint effect
(gray). Ridge regression repetitions n=50, averaged.
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Seed mass 5% 48% 0%

Height | 6% 37% 1%
Leafarea | 10% 47% 0%
Stemdens | 6% 25% 0%
LeafC | 12% 35% 2%
Leaf N:P | 2% 25% 0%
LeafP | 0% 23% 4%
Leaf N area 0% 37% 0%
SLA | 1% 34% 1%
LeafN | 5% 0% 9%
Leaf d15N | 10% 12% 4%
1
100 50 0 50 100

% of trait variance explained by noise and/or soil

variable Independent_climate Joint Independent_soil

Figure 15 — Ridge regression and hierarchical partitioning results with observed data
only. All traits with more than 50 ecoregions were included. No selection criteria
to select for ecoregions (repetitions n=50, Ngeed.mass=89, NHeight=277, NLcaf. fresh.mass=s
Nreafarea™ 244, NSeed.length=» nLeafC=74’ nLeafN=262’ nLeaf.N:P.ratio=147’ Npelta. 15N =88,
NStem. Density=88, NLeaf.N.per.Area=136, Ngra=212, np.,rp=201). Colored according to
size (blue), economics (red) and other traits (yellow).
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7.2 Observed data

We next wanted to learn if the pattern with observed (not gap-filled) data is similar to the
pattern observed from gap-filled data. We used two approaches: First, we clustered the
observed traits into trait groups (Supplementary Fig. 4), second, we retrieved simple trait
variance explained from single environmental variables and show results in a heatmap

F(igure Supplementary Fig. 16). Third, we ran the analysis as for Figure 3.
7.2.1 Trait clusters

Instead of using the complete 615,349 trait values spread over 17 traits (species aggre-
gation), we performed this analysis with 96,055 trait values, 6.4 times less than the gap-
filled version. The traits cluster into very similar trait groups (Supplementary Fig. 4).
The correlation coefficients are higher in the gap-filled data, but the pattern remains the
same. With observed data only, the analysis for Figure 3 (ridge regression in combination
with hierarchical partitioning) is hard to reproduce due to data shortage. Yet for the traits
available, Supplementary Fig. 15 tends to reproduce the pattern of joint and independent
effects. All data were included in this analysis. Only those traits were admitted to the

analysis with more than 50 ecoregion values. No selection criterion was applied

7.2.2 Climate and soil: joint and independent effects
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Figure 16 — Overview of trait-environment relationships plus the relative similarity of
traits, from observed trait values only. This figure is based on the explained variance
of observed traits from linear models with one environmental variable only (ecoregion
aggregation, only traits with >50 ecoregions were included, no selection criterion for
ecoregions). The top bar color indicates variable type: blue=climate, red=soil. Colors
within the plot show an increase in explained variance (r*) from white to turquoise; empty
squares indicate zero values. The right bar color indicates the trait group (blue=size,
red=economics, yellow=other). The dendrogram shows the hierarchical clustering result.

7.3 PCA models from ridge regression

Instead of traits, we used the first 5 principle components as response variables. The
analysis was performed as described in the Methods section. In sum we find that PC1 is
best explained, and most by climate, as is the case for size traits; PC2 is explained by both
climate and soil. The third axis is mainly explained by soil variables only. These results
are consistent with our finding of a strong joint effect, and of size traits loading strongly
on the first principle component being better explained by climate, while economics traits
that load mainly on the second principle component are explained by both climate and

soil independently in addition to their strong joint effect.
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Figure 17 — Comparison of results from different models to explain the 17 plant traits,
namely ridge regression’, random forest, PLS and PLS without prior dimensionality re-
duction of soil and climate variables to 20 PCA axes (PLS without PCA): (top) Variance
explained per trait (r?). (second) Soil independet effect (excluding any joint effect), calcu-
lated from hierarchical partitioning?, to explain the 17 traits. (third) Climate independent
effect (excluding any joint effect), calculated from hierarchical partitioning?, to explain
the 17 traits. (bottom) Total joint effect (Fraction explained by both soil and climate
variables) to explain the 17 traits. Please note the different y-axes.

8 Single trait analyses

We investigated relationships to soil and climate variables for individual traits. We present
in Supplementary Figs. 19-35 an individual characterization of each trait in terms of
covariance with other traits, latitudinal gradient, and climate and soil contributions to
explain trait variation.

We provide an overview of trait-environment relationships plus the relative similarity
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of traits (Template: Supplementary Fig. 18). We show in (a) the correlation pattern col-
ored to absolute strength (Pearson correlation coefficient). This traits’ latitudinal gradient
(species per ecoregion® median aggregation n=36,197) is shown in panel(b). Mean esti-
mates aggregated at 1° absolute latitude are indicated as thick dots. The barplots in graph
(c) include r? of three models (climate and soil, climate only soil only) additionally to
the climate and soil subgroups contributions to make up r? (for subgroup attribution see
Supplementary Tab. 3). These barplots are the result of hierarchical partitioning?, i.e., the
independent and joint effects add up to the r? in the respective model. For instance if 50%
of a trait is explained by climate and soil variables (left barplot), then the sum of indepen-
dent (climate or soil) and joint (climate and soil) effects equals 50%. Figure (d) displays a
riverplot including the relative contribution of climate and soil with variable subsets to ex-
plain a trait. The sum of independent effects on the lowest level (subset of climate and soil
variables) were scaled to independent effects on respective higher level (climate or soil).
The joint effect is omitted so that the plot only shows the independent effect without any
joint share. Therefore only variable sets are shown that add information in comparison
to the counterpart. The independent effect is then scaled to the higher-level independent
effect. E.g. if independent effect;=0, independent effect,=0.2 joint effect;g-=.1, then
variable 1 is not shown. With variable set 1 and 2 belonging to soil, then the independent
effect, =0.2 is for this case equal to the independent effect of soil. Figure (e) displays the
variance explained of simple linear models (ecoregion aggregation, 10 fold cross valida-
tion average of 50 repetitions as in Supplementary Fig. 13). Colors refer to the Pearson
correlation coefficients of the same data (blue= negative, white=low, red=positive). For
abbreviations of climate and soil variables see Supplementary Tab. 1 and Supplementary

Tab. 2.
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Figure 19 — Leaf area, size trait.
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Figure 20 — Plant height, size trait.
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Figure 21 — Seed mass, size trait.
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Figure 23 — Leaf fresh mass, size trait.
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Figure 25 — Dispersal unit length (Dispersal U length), size trait.
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Figure 26 — Stem specific density, economics trait.

Size o1 04 04 034
w il ® ® - @ ©® @
02 017 008
(©)
<
« climate climate water « soil chemistry

© joint joi i

3 = soil climate energy soil physics
o

B

p3

3

o

B

o

S Climate and Soil Climate Soil

Size 008 o027 026 026 007 o7 02
Y EE KR

o002 006 005
(©

°
-  climate climate water = soil chemistry
- joint joint joint
2 = soi climate energy soil physics
o
3
<
°
: ‘
3
°
S Glimate and Soil Climate Soil

s
5
2
<
<
2}
“ Latitude (abs)
-
Water
erorey
JR O Tt o

Figure 27 — Specific leaf area (SLA), economics trait.
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Figure 28 — Leaf carbon per leaf dry mass (leaf C), economics trait.
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Figure 29 — Leaf nitrogen per leaf dry mass (leaf N), economics trait.
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Figure 30 — Leaf phosphorous per leaf dry mass (leaf P), economics trait.
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Figure 31 — Leaf nitrogen per leaf area (leaf N per Area), economics trait.
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Figure 32 — Leaf nitrogen to phosphorous ratio (leaf N:P ratio), economics trait.
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Figure 33 — Leaf delta 15N (Delta 15 N), other trait.
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Figure 34 — Seeds per reproduction unit (Seeds per Reprod U), other trait.
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Figure 35 — Vessel element length (Vessel el. length), other trait.
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Figure 36 — PC1, referred to as size trait bundle.
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Figure 37 — PC2, referred to as economics trait bundle.
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Figure 38 — PC3, explains 9.36% of 17 plant traits (species median scale).
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8.1 Redundancy analysis (RDA) with forward selection

RDA2
RDA2

RDA1

® Mangroves
® Tropical Subtropical Moist Broadleaf Forests ® Mo

Figure 39 — Redundancy analysis (RDA) of traits (n=220, ecoregional median, only
top soil layer variables included). Environmental variables were selected based on
an RDA model stepwise forward selection with the Akaike criterion. The output
of the RDA is split into two plots: (left) traits, colored according to trait groups
(blue=size traits, red=economics traits, yellow=other traits), and (right) environmental
factors (climate=blue and soil=red variables); points represent ecoregions, colored ac-
cording to biome (red=tropics, green=temperate, yellow=desert, orange=mediterranean,
dark blue=tundra). Climate variable abbreviations: Solar.rad_sd=seasonality of solar ra-
diation, Wind_sd=seasonality of wind speed, Temp_d=diurnal temperature range, Pre-
cipitation_sd=seasonality of precipitation, Solar.rad_min=minimum annual solar radia-
tion, Tem=mean annual temperature, Vapour.pressure_min=minimum annual vapour pres-
sure. Soil variable abbreviations: pH=topsoil pH, Sand=topsoil sand fraction [vol%],
C_content=topsoil carbon content, C_density=topsoil carbon density.

9 The origin of the dip at the latitudinal gradient of PC2

First, we investigated whether only certain biomes (and thus climatic conditions) were
most affected by the apparent deviation from a linear relationship between PC2 and lat-
itude (Figure 2). We find Mediterranean, Desert, Tundra and Montane grassland biomes
to drive the dip (Supplementary Fig. 40). We then investigated environment - PC2 rela-

tionships at the relevant latitudes (Supplementary Fig. 41), and found a combined effect
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of climate and soil causing low water availability and thus possibly a change in PC2 and

economics traits.

9.1 Biomes at the Dip

PC2 was subset to the latitudes which show the strongest deviation (29° to 36°). In Sup-
plementary Fig. 40, a boxplot of each biome and its median (blue line) are compared to
the median of this latitudinal PC2 subset (black dashed line). The Mediterranean biome

shows particularly large (negative) divergence to the mean, both in spread and in median.

Temperate Broadleaf Mixed Forests Desert and Xeric Shrublands
| |
1
| |
1 1
T T T T T T T T T T T T T T
-8 -6 -4 -2 0 2 4 -8 -6 -4 -2 0 2 4
PC2 PC2
Tropical Subtropical Moist Broadleaf Forests Temperate Coniferous Forests
| |
| |
1 1
T T T T T T T T T T T T T T
-8 -6 -4 -2 0 2 4 -8 -6 -4 -2 0 2 4
PC2 PC2
Mediterranean Forests, Woodlands, Scrub Montane Grasslands Shrublands
| |
| |
1 1
T T T T T T T T T T T T T T
-8 -6 -4 -2 0 2 4 -8 -6 -4 -2 0 2 4
PC2 PC2
Tropical Subtropical Grasslands, Savannas, Shrubland Temperate Grasslands, Savannas, Shrubland
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Figure 40 — Boxplots of PC2 values of the latitude subset of the dip (29° to 36°). Biome
median in blue, median of this latitudinal PC2 subset in black (dashed line).
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9.2 Combined effect of climate and soil at the dip

To attribute the effect to environmental variables, we searched qualitatively for PC2-
environment gradients. A pre-study showed the sand fraction and precipitation of the
driest month to be relevant variables for PC2. Supplementary Fig. 41 shows the combined
effect of the high sand fraction and low precipitation, both reducing the water availability.
With a sand fraction above 55%, relative values of PC2 decrease. This dip appears to be
buffered by high minimum precipitation. As a comparison we show the same analysis for

PC1, which lacks this gradient.
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Figure 41 — A combined effect of climate and soil as one possible reason for variation
in economics traits (towards long-lived species). The figure displays a subset of the trait
PC1 and PC2 from latitudes 29° to 36° against the sand fraction on the aggregation lev-
els of unique ecoregion species (n=4,488) and ecoregions (Necoregions=J3). Colors refer
to minimum precipitation (red=low precipitation, green=high precipitation). The subset
degrees refer to the dip of PC2, onto which mainly the economics traits load (Figure 2).
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10 Explained variance of size and economics traits de-
pend on their coefficient of variation.

We evaluated the intrinsic difference of size vs economics trait variation within ecore-
gions, and found economics traits to vary more internally than size traits (Supplementary
Fig. 42).

The coefficient of variation was calculated from the mean of trait standard deviations
per ecoregion (log 10 transformed)) against standard deviation of trait means per ecore-

gion (log 10 transformed)).

mean(sd(traitecoregion))
sd(mean(traitecoregion)

Supplementary Fig. 42 shows a negative relationship between variance explained by all
environmental variable inputs and the coefficient of variation, yet when looking at the size

traits alone the inverse is true. Overall, economics traits vary more than size traits.
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Figure 42 — Explained variance from climate and soil versus coefficient of variation.
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w0 11  Data information

w1 11.1  Climate data

Table 1 — Climate variables used for the analysis (n=21). The data were derived from
WorldClim at the scale of 1km? (worldclim.org).

w2 11,2 Soil data

Table 2 — Soil variables (most with 7 depths) used for the analysis (n=107). The data
were derived from SoilGrids* at the scale of 1km2, hosted at the ISRIC - World Soil

Information (isric.org).

w3 11.3  Trait data

Table 3 — Attribution of soil and climate variables to subgroups for the single trait analyses
(Supplementary Fig. 19 to Supplementary Fig. 38).
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Table 4 — Independent and joint effect of latitude and climate or soil derived from ridge
regression and hierarchical partitioning. Median for all traits, and split into size or eco-
nomics traits. Analysis based on ridge regression and hierarchical partitioning. Unit is %
of explained variance (r?) by ridge regression model.

Table 5 — Table describing the trait information of the data on 17 traits used for this study.
This data has been extracted from a BHPMF gap-filled version of a larger trait set data
(Supplementary Tab. 6,Supplementary Tab. 6). The table includes the original trait name
and ID as used in the TRY data set (try-db.org), the abbreviation as used in this study, trait
units, and the original number of observations in the data prior to gap-filling.

11.4 Trait data for gap-filling

Table 6 — Trait information of the trait data set used for BHPMF gap-filling (for details see
methods). This data set contains observed values of 172 traits and 652,957 individuals.
The table includes trait name and number of individual samples. Traits that entered the
analysis of this study appear in bold and in Supplementary Tab. 5.

11.5 Ecoregion

Table 7 — Ecoregion® information including ecoregions’ name and ID, the number of
species and the number of observations used in this study, an estimate of plant species
richness® , location of the ecoregions’ central point (longitude and latitude) with maxi-
mum and minimum latitude of observation locations included, additionally to the ecore-
gions’ extent as area.
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Table 8 — Table showing for each trait the variance explained (r?) by ridge regression
models for 220 ecoregions as in Table 1. Moreover the independent effects for climate
and soil are listed from hierarchical partitioning that respectively add up with the joint
effect to the variance explained by climate or soil. Mean values including minimum and
maximum values from different cross validation runs in brackets.
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