
ar
X

iv
:2

11
0.

11
15

0v
1

 [
cs

.L
G

]
 2

1
O

ct
 2

02
1

TOWARDS STRONG PRUNING FOR LOTTERY TICKETS

WITH NON-ZERO BIASES

Jonas Fischer
Max Planck Institute for Informatics
Saarbrücken, Germany
fischer@mpi-inf.mpg.de

Rebekka Burkholz
CISPA Helmholtz Center for Information Security
Saarbrücken, Germany
burkholz@cispa.de

ABSTRACT

The strong lottery ticket hypothesis holds the promise that pruning randomly ini-
tialized deep neural networks could offer a computationally efficient alternative
to deep learning with stochastic gradient descent. Common parameter initializa-
tion schemes and existence proofs, however, are focused on networks with zero
biases, thus foregoing the potential universal approximation property of pruning.
To fill this gap, we extend multiple initialization schemes and existence proofs
to non-zero biases, including explicit ’looks-linear’ approaches for ReLU activa-
tion functions. These do not only enable truly orthogonal parameter initialization
but also reduce potential pruning errors. In experiments on standard benchmark
data sets, we further highlight the practical benefits of non-zero bias initialization
schemes, and present theoretically inspired extensions for state-of-the-art strong
lottery ticket pruning.

1 INTRODUCTION

Challenging tasks across different domains, from protein structure prediction for drug development
to detection in complex scenes for self driving cars, have recently been solved through deep neural
networks (NNs). This success, however, is due to heavy overparameterization and comes at the
expense of large amounts of computational resources that these models require to be trained and to
be deployed. While training small NNs from scratch commonly fails, the lottery ticket hypothesis
(LTH) conjectured by Frankle & Carbin (2019) bears a potential solution. The LTH states that within
a large, randomly initialized NN there exist a well trainable, much smaller subnetwork, or ’ticket’,
which can be identified by pruning the large NN. Thus, both training and deployment becomes com-
putationally much cheaper at the expense of the pruning algorithm. Even more promising is the
conjecture of existence of ’strong tickets’ by Ramanujan et al. (2020), which are subnetworks of
randomly initialized NNs that do not require any further training. As such, expensive training is ob-
solete, and the existence of these tickets was later proven for networks without biases (Malach et al.,
2020; Pensia et al., 2020; Orseau et al., 2020).

However, most successfully trained NN architectures have non-zero biases. Such bias terms are
important to equip NNs with the universal approximation property (in the standard way).

To enable training by pruning, we therefore generalize common initialization schemes to non-zero
biases and prove the strong lottery ticket hypothesis in this setting.

For the discovery of strong lottery tickets, Ramanujan et al. (2020) proposed edge-popup, the
so far only algorithm capable of retrieving strong lottery tickets. Their proposal is not suited to
recover bias parameters and finds only relatively dense tickets. We here extend their approach in
multiple ways to recover strong tickets that include bias parameters and are much sparser than the
ones obtained by vanilla edge-popup. In particular, we extend the popup scores to bias terms,
and slowly anneal the sparsity of the network to the desired target sparsity. Moreover, from the LTH
proof we conclude that it is necessary to (re)scale the initial parameters of a strong lottery ticket, for
which we propose an efficient optimization to find such a good rescaling factor in each epoch.

1

http://arxiv.org/abs/2110.11150v1

In a synthetic data study, we show that strong lottery tickets found on NNs with non-zero bias
initialization outperform tickets found in zero-initialized bias networks. Furthermore, we show that
on this data, edge-popup with rescaling finds much sparser tickets of higher quality.

Contributions

• We generalize the strong lottery ticket hypothesis to networks with potentially non-zero
initial biases, which enables pruning alone to achieve the universal approximation property.

• We extend standard initialization schemes to non-zero biases and prove the existence of
strong lottery tickets in this setting.

• We enable pruning algorithms for strong lottery tickets, in particular edge-popup, to find
tickets with biases, which are hence capable of universal approximation.

• We extend edge-popup further by an annealing schedule for the target sparsity and an
appropriate parameter rescaling inspired by our theoretical results, which allow to recover
much sparser tickets.

1.1 RELATED WORK

The lottery ticket hypothesis (Frankle & Carbin, 2019) has spurred the development of neural net-
work pruning algorithms that either prune before (Wang et al., 2020; Lee et al., 2019; Tanaka et al.,
2020; Verdenius et al., 2020), during(Frankle & Carbin, 2019; Srinivas & Babu, 2016; You et al.,
2020; Lee et al., 2020), or after training (Savarese et al., 2020; LeCun et al., 1990; Hassibi & Stork,
1992; Dong et al., 2017; Li et al., 2017; Molchanov et al., 2017). Their main objective is to identify
a subnetwork of a randomly initialized neural network that can be trained to achieve a similar per-
formance as the trained full network. Zhou et al. (2019) and Ramanujan et al. (2020) postulated an
even stronger hypothesis, as they realized that the randomly initialized neural network contains so
called ’strong’ lottery tickets that do not require further training after pruning. Malach et al. (2020);
Pensia et al. (2020); Orseau et al. (2020) proved their existence by deriving realistic lower bounds
on the width of the original randomly initialized neural network that contains a lottery ticket with a
given probability.

However, the proposed pruning algorithm for strong lottery tickets, i.e. edge-popup
(Ramanujan et al., 2020), as well as the existence proofs only handle neural network architectures
with zero biases. A reason might be that very large neural networks can compensate for missing
biases in the studied application, i.e. image classification, and state-of-the-art algorithms and proofs
for strong lottery tickets do not cover highly sparse tickets. Another reason might be that most neural
network initialization schemes propose zero biases. Exceptions include a data dependent choice of
biases (Yang et al., 2019) and a random scheme that does not try to prevent exploding or vanishing
gradients in deep neural networks (Hanin & Rolnick, 2019). The recent trend in the search for weak
lottery tickets towards rewinding parameters to values obtained early during training (Frankle et al.,
2020) also results in lottery ticket initialization with non-zero biases.

None of these non-zero bias initialization schemes are designed in support of the existence of strong
lottery tickets. We fill this gap with this work.

1.2 NOTATION

Let f(x) denote a bounded function, without loss of generality f : [−1, 1]
n0 → [−1, 1]

nL , that
is parameterized as a deep neural network with architecture n̄ = [n0, n1, ..., nL], i.e., depth L and
widths nl for layers l = 0, ..., L with ReLU activation function φ(x) := max(x, 0). It maps an input

vector x(0) to neurons x
(l)
i as:

x(l) = φ
(

h(l)
)

, h(l) = W (l)x(l−1) + b(l), W (l) ∈ R
nl−1×nl , b(l) ∈ R

nl ,

where h(l) is the pre-activation, W (l) is the weight matrix, and b(l) is the bias vector of layer l. For

convenience, the parameters of the network are subsumed in a vector θ :=
((

W (l), b(l)
))L

l=1
. We

also write f(x | θ) to emphasize the dependence of f on its parameters θ.

The supremum norm of any function g is defined with respect to the same domain ‖g‖
∞

:=
supx∈[−1,1]n0 ‖g‖2.

2

Assume furthermore that a ticket fǫ can be obtained by pruning a large mother network f , which
we indicate by writing fǫ ⊂ f0. The sparsity level ρ of fǫ is then defined as the fraction of non-zero

weights that remain after pruning, i.e., ρ =
(

∑

l

∥

∥

∥W
(l)
ǫ

∥

∥

∥

0

)

/
(

∑

l

∥

∥

∥W
(l)
0

∥

∥

∥

0

)

, where ‖·‖0 denotes

the l0-norm, which counts the number of non-zero elements in a vector or matrix. Another important
quantity that influences the existence probability of lottery tickets is the in-degree of a node i in layer
l of the target f , which we define as the number of non-zero connections of a neuron to the previous

layer plus 1 if the bias is non-zero, i.e., k
(l)
i :=

∥

∥

∥W
(l)
i,:

∥

∥

∥

0
+
∥

∥

∥b
(l)
i

∥

∥

∥

0
, where W

(l)
i,: is the i-th row

of W (l). The maximum degree of all neurons in layer l is denoted as kl,max. In the formulation of
theorems, we make use of the universal constant C that can attain different values.

2 MOTIVATION: NEURAL NETWORKS WITH ZERO BIASES ARE NOT

UNIVERSAL FUNCTION APPROXIMATORS

Why do we need to initialize non-zero biases? With potentially non-zero biases, neural networks
have the universal approximation property (Scarselli & Tsoi, 1998). Thus, for a given ǫ > 0 and
arbitrary continuous function g, if it is large enough, a neural network can approximate g up to error
ǫ. Standard neural networks and also weak lottery tickets are able to learn non-zero biases even from
zero initialization. If we rely on pruning alone to learn a model with high performance, however,
non-zero biases need to be available from the start, as the following Lemma clarifies.

Lemma 1. Neural networks with ReLU activation function without biases are not universal function
approximators.

Proof. We can prove this statement easily with a counterexample. Let us try to approximate the
constant function g(x) = 0.5 on the domain [−1, 1] with a neural network without biases. Note that
an univariate ReLU network without biases represents a function f(x) = w+φ(x)+w−φ(−x) with
two parameters w+, w− ∈ R. The minimum mean squared error with respect to g(x) that f can

achieve is
∫ 1

−1
(g(x) − f(x))2dx = 1/16 for w+ = 3/4 and w− = 3/4. Thus for any ǫ < 1/16,

f(x) fails to approximate g(x) up to error ǫ.

Note that a neural ReLU network with non-zero biases can represent the function g(x) = 0.5 per-
fectly. For instance, a network of depth L = 1 with one neuron in the intermediary layer is sufficient,
as 0.5 = φ(0.5).

3 INITIALIZATION OF NON-ZERO BIASES

Common initialization schemes (e.g. He et al. (2015); Glorot & Bengio (2010);
Burkholz & Dubatovka (2019)) set all biases to zero, while network weights are drawn ran-
domly to obtain parameter diversity. Proofs of the strong lottery ticket hypothesis have focused
on this setting, thereby foregoing the universal approximation property of deep neural networks
(Scarselli & Tsoi, 1998), since pruning alone can only recover the zero-initialized biases.

The only option to circumvent this issue would be to concatenate the input with a constant and create
an extra neuron in each layer that can equip the neurons in the next layer with a non-zero bias. This
construction, however, is not well trainable with SGD and would create neurons with high degrees
that are more difficult to find in randomly initialized neural networks. Instead, we propose a more
natural approach that is amenable to training with SGD, that is, the initialization of non-zero biases,
which become subject to pruning in addition to the network weights.

How should these biases be initialized? A good approach has to fulfill two essential criteria. a) The
randomly initialized neural network needs to be trainable by SGD. This property is also critical for
most pruning algorithms, as they are inspired by SGD and define pruning scores based on gradients.
b) The randomly initialized neural network should contain lottery tickets with high probability.

Before we can answer how to initialize biases, we first have to face a different issue pertain-
ing strong lottery tickets. Standard initialization approaches, like He (He et al., 2015) or Glorot
(Glorot & Bengio, 2010) initialization, achieve trainability by ensuring that the output of a deep

3

neural network is contained within a reasonable range, thus rendering the computations of gradi-
ents numerically feasible. Network weights are commonly initialized according to a distribution
with variance σ2 that is inverse proportional to the number of neurons n in a layer, σ2 ∝ 1/n. In
consequence, after pruning a high percentage of these weights, the network output is heavily down-
scaled, which needs to be compensated by up-scaling the output, as also discovered experimentally
by Ramanujan et al. (2020) and mentioned by Malach et al. (2020).

3.1 OUTPUT SCALING

For ReLU networks with zero biases, the appropriate output scaling after or during pruning is
straight forward to compute, as networks of depth L are L-homogeneous in the network pa-
rameters. Multiplying each parameter with the same scalar σ leads to a scaling factor of σL:
f(x | σθ) = σLf(x | θ). This holds no longer true for non-zero biases.
The following observation helps us to develop a notion that is similar to homogeneity for networks
with non-zero biases.

Lemma 2. Let h (θ0,σ) denote a transformation of the parameters θ0 of the deep neural network

f0, where each weight is multiplied by a scalar σl, i.e., h
(l)
ij (w

(l)
0,ij) = σlw

(l)
0,ij , and each bias is

transformed to h
(l)
i (b

(l)
0,i) =

∏l
m=1 σmb

(l)
0,i. Then, we have f (x | h(θ0,σ)) =

∏L
l=1 σlf(x | θ0).

Lemma 2 suggests that if we scale each weight by a factor σw,l, scaling the corresponding biases

by a factor σb,l =
∏l

m=1 σw,m would result in the same network f without scaling of parameters.

We only have to correct the output by dividing it with a factor
∏L

l=1 σw,l. From this observation,
we directly derive our initialization proposal, as it suggests an equivalence (irrespective of scaling)
between initialising parameters in θi ∈ U [0, 1] and our more realistic setting. Concretely, we pro-

pose to replace b
(l)
i = 0 by b

(l)
i ∼ U([−∏l

k=1 σw,k,
∏l

k=1 σw,k]) or b
(l)
i ∼ N

(

0,
∏l

m=1 σw,m

)

,

respectively, when the weights are w
(l)
ij ∼ U ([−σw,l, σw,l]) or w

(l)
ij ∼ N (0, σw,l).

As a general remark, note that the scaling factor of the output
∏L

m=1 σw,m quickly approaches zero
for increasing depth, which could render one-shot pruning numerically infeasible. For that reason,
we propose a computationally cheap rescaling procedure that allows us to find significantly sparser
strong lottery tickets. This is also helpful for maintaining the trainability of the pruned network
(Hayou et al., 2021), which we discuss next in the context of initializations with non-zero biases.

3.2 TRAINABILITY

The question remains whether the large original network is still trainable with such an initializa-
tion. A common criterion to prevent initial vanishing or exploding gradients, in particular in mean
field analyses Schoenholz et al. (2017), is to ensure that the squared signal norm of the input can
propagate through the initial network. To bound the second moment of the squared output, we gen-
eralize Cor. 3 for normal distributions in Burkholz & Dubatovka (2019) to symmetric weight and
bias distributions.

Lemma 3. Assume that the weights and biases of a fully-connected deep neural network f are
drawn independently from distributions that are symmetric around the origin 0 with variances σ2

w,l

or σ2
b,l, respectively. Then, for every input x0, the second moment of the output is

E

(

‖f(x0)‖22
)

=
∥

∥

∥x(0)
∥

∥

∥

2

2
ΠL

l=1

nlσ
2
w,l

2
+ σ2

b,L

nL

2
+

L−1
∑

l=1

σ2
b,l

nl

2
ΠL

k=l+1

nkσ
2
w,k

2
.

For σ2
w,l ≈ 2/nl (as usually realized by He initialization He et al. (2015)) and our choice σb,l =

∏l
m=1 σw,m, this implies that E

(

‖f(x0)‖22
)

≈
∥

∥x(0)
∥

∥

2

2
+ 1, which prevents initial signal and

gradient explosions even for high depth L.

’Looks linear‘ and orthogonal initialization The above lemma assumes that the weights and
biases are drawn independently at random. This does not hold for orthogonal weight initializa-
tion, whose benefits have been highlighted in numerous works in general (Pennington et al., 2017;

4

2018; Saxe et al., 2014) and in particular for lottery ticket pruning (Lee et al., 2020). The marginal

distribution of each weight entry is still normally distributed as w
(l)
ij ∼ N (0, 1/nl) so that our lot-

tery ticket existence proof still applies approximately to this setting. However, the main advantage
of orthogonal weight initialization for trainability is usually induced by (approximate) dynamical
isometry. For ReLU activation functions, this is not achievable simply by initializing the whole ma-

trix W (l) as orthogonal Pennington et al. (2017; 2018); Burkholz & Dubatovka (2019). The solution
is in fact based on the same insight that enables all current lottery ticket existence proofs for ReLUs,
i.e., that the identity can be represented by x = φ(x) − φ(−x).

As dynamical isometry can be achieved by a Jacobian that is similar to the identity,
Burkholz & Dubatovka (2019); Balduzzi et al. (2017) could ensure perfect dynamical isometry for
ReLUs by a ’looks linear‘ initialization of the weight matrix and zero biases so that the full sig-

nal is always preserved at initialization. Effectively, each neural network layer computes x̃(l) =

φ
(

W
(l)
0 x̃(l−1)

)

− φ
(

−W
(l)
0 x̃(l−1)

)

, where the matrix W
(l)
0 ∈ R

nl/2 × R
nl−1/2 is orthogonal.

Extending this idea by non-zero biases corresponds, effectively, to x̃(l) = φ
(

W
(l)
0 x̃(l−1) + bl

)

−
φ
(

−W
(l)
0 x̃(l−1) − bl

)

, where the matrix W
(l)
0 ∈ R

nl/2 × R
nl−1/2. Concretely, we define

W (l) =

[

W
(l)
0 −W

(l)
0

−W
(l)
0 W

(l)
0

]

,

b(l) =
[

b
(l)
0 −b

(l)
0

]

for orthogonal, non-zero bias initialization with b
(l)
0 ∼ N

(

0, σ2
b,lI
)

independently from the

weights. Note that each entry of the weight matrix is again distributed as w
(l)
ij ∼ N (0, 2/nl) as

in case of He initialization.

How should we choose the variance σ2
b,l of the biases? Similarly to Lemma 3, we can derive the

variance of the output signal as

E

(

‖f(x0)‖22
)

=
∥

∥

∥x(0)
∥

∥

∥

2

2
+

L
∑

l=1

σ2
b,l

nl

2
.

Initially, the additional
∑L

l=1 σ
2
b,l

nl

2 is easier to control than in Lemma 3, exactly because the

weights do not scale the biases randomly. Note that we could improve this further and initialize
the bias also dependent on the weights and make them cancel out to achieve again perfect dynamical

isometry at initialization and E

(

‖f(x0)‖22
)

=
∥

∥x(0)
∥

∥

2

2
. However, this would depend on a carefully

chosen dependence between weights and biases that gets destroyed during training and/or pruning.

For that reason, we still assume a situation similar to Lemma 3 and initialize σb,l =
∏l

m=1 σw,m.
This case is also supported (at least approximately) by our lottery ticket existence proof and respects
the scaling of parameters as outlined in Lemma 2.

With the trainability of randomly initialized networks, we have fulfilled the first criterion of a good
initialization proposal for non-zero biases. The second criterion, the existence of lottery tickets, is
discussed in the next section.

4 EXISTENCE OF LOTTERY TICKETS WITH NON-ZERO BIASES

Proofs of the existence of lottery tickets have derived sufficient conditions under which pruning
algorithms should have a good chance to find a winning ticket. This approach can therefore also
inform the design of promising planting experiments.

The first proof of the strong lottery ticket hypothesis (Malach et al., 2020) has shown that a weight-
bounded deep neural target network of depth L and width n with ReLU activation functions is
contained up to error ǫ with high probability in a larger deep neural network of double the depth
of the target network, i.e., 2L. Their strong requirement on the width of the large network to be

5

of polynomial order O(n5L2/ǫ2) or, under additional sparsity assumptions, O(n2L2/ǫ2), was sub-
sequently improved to a logarithmic dependency of the form O(n2 log(nL)/ǫ) for weights that
follow an unusual hyperbolic distribution (Pensia et al., 2020) and O(n log(nL/ǫ)) for uniformly
distributed weights (Orseau et al., 2020). The resulting winning tickets, however, have a less sparse
representation than the target network, which allows them to gain flexibility in their representation.
In fact, the improvement is achieved by the insight that many different parametrizations exist that
can compute almost the same function as the target network. They all have in common that two
neural network layers are needed to approximate a neuron φ(wTx), which explains the 2L depth
requirement.

So far, all of these works assume that the target network has zero biases. This limits significantly
the class of functions that we can hope to learn by pruning alone and does therefore not apply to the
general setting, in which we want to plant lottery tickets.

To extend the existence proofs, the first question that we have to answer is: How does the error
propagate through a network with non-zero biases? Similarly to Lemma 1 in (Pensia et al., 2020),
we can deduce from the answer how close each parameter θǫ needs to be to the target one in order
to guarantee an ǫ approximation of the entire network.

Lemma 4 (Approximation propagation). Assume ǫ > 0 and let the target network f and its approx-
imation fǫ have the same architecture. If every parameter θ of f and corresponding θǫ of fǫ in layer
l fulfils |θǫ − θ| ≤ ǫl for

ǫl := ǫ

(

L
√

nlkl,max

(

1 + sup
x∈[−1,1]n0

∥

∥

∥x
(l)
∥

∥

∥

1

)

L
∏

k=l+1

(∥

∥

∥W
(l)
∥

∥

∥

∞

+ ǫ/L
)

)−1

,

then it follows that ‖f − fǫ‖∞ ≤ ǫ.

The proof is provided in the supplement. Note that large weights in every layer could imply that

ǫl is exponential in L. However, if we assume bounded weights so that
∥

∥W (l)
∥

∥

∞
≤ 1, we re-

ceive a moderate scaling of ǫl = Cǫ/L, where C depends on the maximum degree of the neurons

kl,max ≤ nl−1 + 1 and the size of the biases via supx∈[−1,1]n0

∥

∥x(l)
∥

∥

1
. As we expect each out-

put component of the target network f to be in [0, 1], reasonable choices of biases lead usually to

supx∈[−1,1]n0

∥

∥x(l)
∥

∥

1
≤ nl−1 and thus ǫl = ǫ/(L(nl + 1)(nl−1 + 1)e). Otherwise, we could

rescale all parameters and thus the output to ensure desirable scaling. However, this would come at
the expense that we would also have to adapt the allowed error ǫ accordingly.

Next, we extend the proof of the existence of lottery tickets in (Orseau et al., 2020) to non-zero
biases. In addition, we generalize it to domains [−1, 1]n0 (instead of balls with radius 1) and present
sharper width estimates based on the in-degrees of neurons instead of the full target network width
nl. The big advantage of our initialization scheme is that we can directly transfer an approach that
would assume uniformly distributed parameters in θi ∼ U([−1, 1]).

Theorem 5 (Existence of lottery ticket). Assume that ǫ, δ ∈ (0, 1) and a target network f with
depth L and architecture n̄ are given. Each weight and bias of a larger deep neural network f0
with depth 2L and architecture n̄0 is initialized independently, uniformly at random according to

w
(l)
ij ∼ U([−σw,l, σw,l]) and b

(l)
i ∼ U([−∏l

k=1 σw,k,
∏l

k=1 σw,k]). Then, with probability at least

1− δ, f0 contains an approximation fǫ ⊂ f0 so that ‖f − λfǫ‖∞ ≤ ǫ if for l = 1, ..., L

n2l−1,0 = Cnl−1 log

(

kl−1,maxnl

min {ǫl, δ/L}

)

and n2l,0 = nl,

where ǫl is defined in Eq. (B.3) and the output is scaled by λ =
∏2L

l=1 σ
−1
w,l.

A similar statement holds also for normal distributions, i.e., w
(l)
ij ∼ N

(

0, σ2
w,l

)

and b
(l)
i ∼

N
(

0,
∏l

k=1 σ
2
w,k

)

. Note that, essentially, we receive the same scaling as in case of zero biases.

Only the maximum degree kl−1,max is modified by +1. The reason is that we can treat each bias as
an additional weight in the construction of a ticket. We provide the full proof in the appendix and
restrict ourselves in the following to the description of the main idea.

6

Proof Idea. Layer 2l − 1 and 2l of the large network serve the representation of the neu-

rons in Layer l of the target network, e.g, neuron φ
(

∑

j wjx
(l−1)
j + b

)

. By using the identity

x = φ(x) − φ(−x) for ReLUs, we can express the preactivation also as
∑

j φ
(

wjx
(l−1)
j

)

−
φ
(

−wjx
(l−1)
j

)

+ sign(b)φ(|b|). Note that the neurons φ
(

wjx
(l−1)
j

)

, φ
(

−wjx
(l−1)
j

)

, and φ(|b|)
all have degree 1 so that they exist with high probability in the wide Layer 2l−1. The width needs to
be only of order log(1/ǫ) according to results by Luecker (Lueker, 1998) on the subset sum problem,
which can be applied to finding lottery tickets (Orseau et al., 2020). Accordingly, with probability
at least 1− δ, for each parameter θ (i.e., wj , −wj , or |b|) exists a subset S of n uniformly distributed
parameters Xi ∼ U([−1, 1]) so that |θ −∑i∈S Xi| < ǫl for n ≥ C log 1/min{ǫl, δ}. Repeating
this argument in combination with union bounds over ki parameters per neuron, all neurons in a
layer, and all layers, leads to the desired results.

5 PARAMETER RESCALING DURING PRUNING

According to Sec. 3.1 and our existence proof, we expect that the output of a pruned network usually
does not match the right target range. The lottery ticket fǫ needs to be rescaled by a scaling factor

λ > 0 (and usually λ > 1) . In the existence proof, λ =
∏L

m=1 σw,m but this factor can be vanishing
small for very deep networks. Furthermore, in many applications we do not know the exact size the
of the network parameters and the output might also not be restricted to [−1, 1]. For these reasons,
we propose to learn an appropriate output scaling factor λ > 0 that successively adapts the lottery
ticket fǫ after each pruning epoch. For regression minimizing the mean squared error with respect
to N data samples with targets yi,s, this scalar can be easily computed as

λmse =

(

N
∑

s=1

nL
∑

i=1

yi,sx
(L)
i,s

)

/

(

N
∑

s=1

nL
∑

i=1

x
(L)
i,s x

(L)
i,s

)

.

In case of a different loss L, we only have to solve a one-dimensional optimization problem of the
form

min
λ>0

L(y, λx(L))

which can, for instance, be achieved with stochastic gradient descent. To distribute the scaling factor
on the different layers, we use again the parameter transformation in Lemma 2

w
(l)
ij = w

(l)
ij λ

1/L, b
(l)
i = b

(l)
i λl/L,

which ensures that the overall output of the neural network is scaled by λ. As we show next, this
parameter rescaling allows us to obtain much sparser lottery tickets than pure pruning.

6 EXPERIMENTS

We compare edge-popupwith annealing of target sparsities against edge-popup-scaled for
networks initialized with and without biases. On two synthetic benchmarks, which represent simple
yet challenging tasks which are common in machine learning, we evaluate these methods for both
He as well as ‘looks-linear’ orthogonal initialization with and without non-zero bias extensions. All
experiments are carried out on commodity hardware. Edge-popup training was conducted in the
default way suggested by the original authors by SGD with momentum of 0.9 and weight decay
0.0005, combined with cosine annealing of the learning rate starting from 0.1. We train for e = 10
epochs and ea = 5 annealing epochs in case of the shifted ReLU example and ea = 20 annealing
epochs in case of the ellipse and sparsity levels 0.01, 0.05. In case of higher sparsity levels, ea = 10
annealing epochs are sufficient. During annealing, we slowly reduce the sparsity over time by ρi/ea ,
where ρ is the desired network sparsity, and i is the current epoch. We used a batch size of 32 in all
experiments and report mean based on 5 repetitions.

6.1 A SHIFTED RELU

First, we consider data of a regression problem that follows a shifted ReLU function φb(x) =
max(0, x + b) with b = 0.5. We thus draw N = 104 iid samples xi ∼ U [−1, 1] with targets

7

Figure 1: Strong lottery ticket pruning with edge-popup. Shown are the results for discovered
tickets of different target sparsities, methods, and initialization schemes. Top: Shifted ReLU data,
lower is better. Bottom: Ellipse data, higher is better.

8

yi = φ(xi + 0.5) + ni with independent Gaussian noise ni ∼ N (0, 0.012). For a network of
depth 5, where each layer is of width 100, we retrieve strong lottery tickets at target sparsities
{0.002, 0.01, 0.05, 0.1, 0.2}. We report the mean squared error (MSE) of the strong tickets on the
test set as mean across 5 repetitions in Fig. 1 (top).

We observe that consistently, the non-zero bias initialized networks enable the recovery of strong
tickets with orders of magnitude smaller errors than in networks with zero-initialized bias. Further-
more, edge-popup-scaled with proper rescaling of parameters consistently outperforms the
vanilla (unscaled) algorithm for extreme sparsities. At lower sparsity levels, rescaled edge-popup
allows to retrieve well performing tickets that match the low error of their denser counterparts,
whereas vanilla edge-popup fails to find good tickets.

6.2 THE ONION SLICE

Next, we consider a classification problem, where points are arranged in elliptic rings, and each
point is labeled by the ring it appears in. N = 104 inputs are again sampled iid from uniform
distributions x1, x2 ∼ U [−1, 1] and one of four labels is assigned as target based on the value
y = 0.5(x1 − 0.3)2 +1.2(x2 + 0.5)2. Class boundaries are defined as (0.2, 0.5, 0.7), while noise is
introduced by flipping a label to a neighboring class with probability 0.01.

For networks of depth 5 and width 100, we retrieve strong lottery tickets at target sparsities
{0.01, 0.05, 0.1, 0.2, 0.5}. We report the accuracy of tickets on the test set as mean across 5 repeti-
tions in Fig. 1 (bottom). Tickets pruned from networks initialized with non-zero biases outperform
their zero-bias counterparts. An exception to this rule is given by the unscaled edge-popup for
sparsity 0.01, where both initialization approaches (with non-zero and zero biases) show unsatis-
factory performance. In contrast, the rescaled edge-popup with non-zero bias He initialization is
still able to retrieve extremely sparse tickets with more than 10 accuracy points margin to all other
approaches.

7 DISCUSSION

We have transferred the strong lottery ticket hypothesis to neural networks with potentially non-zero
initial biases and proven the existence of strong lottery tickets under realistic conditions with respect
to the network width and initialization scheme. This generalization equips training by pruning for
strong lottery tickets with the universal approximation property.

Along with the proof, we have extended standard initialization schemes to non-zero biases and
formally shown that our proposal defines well trainable neural networks, while they support the ex-
istence of strong lottery tickets. These initialization schemes include the ’looks-linear’ approach
(Burkholz & Dubatovka, 2019; Balduzzi et al., 2017) that ensures initial dynamical isometry of
ReLU networks, which often leads to favorable training properties.

Based on our theoretical insights, we have derived a parameter rescaling strategy that enables prun-
ing algorithms to find sparser strong lottery tickets. We have extended the edge-popup algorithm
(Ramanujan et al., 2020) for strong lottery ticket pruning accordingly and demonstrated the utility
of our innovations in experiments. With the development of pruning algorithms that can find highly
sparse strong lottery tickets, we anticipate that the importance of non-zero bias initializations for
lottery ticket pruning will become more apparent.

REFERENCES

David Balduzzi, Marcus Frean, Lennox Leary, J. P. Lewis, Kurt Wan-Duo Ma, and Brian
McWilliams. The shattered gradients problem: If resnets are the answer, then what is the ques-
tion? In International Conference on Machine Learning, 2017.

Rebekka Burkholz and Alina Dubatovka. Initialization of ReLUs for dynamical isometry. In Ad-
vances in Neural Information Processing Systems, volume 32, 2019.

Xin Dong, Shangyu Chen, and Sinno Jialin Pan. Learning to prune deep neural networks via layer-
wise optimal brain surgeon. In Advances in Neural Information Processing Systems, 2017.

9

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2019.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode con-
nectivity and the lottery ticket hypothesis. In International Conference on Machine Learning,
2020.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In International Conference on Artificial Intelligence and Statistics, volume 9, pp.
249–256, May 2010.

Boris Hanin and David Rolnick. Deep relu networks have surprisingly few activation patterns. In
Advances in Neural Information Processing Systems, 2019.

Babak Hassibi and David G. Stork. Second order derivatives for network pruning: Optimal brain
surgeon. In International Conference on Neural Information Processing Systems, 1992.

Soufiane Hayou, Jean-Francois Ton, Arnaud Doucet, and Yee Whye Teh. Robust pruning at initial-
ization. In International Conference on Learning Representations, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in neural
information processing systems, pp. 598–605, 1990.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H. S. Torr. Snip: single-shot network pruning
based on connection sensitivity. In International Conference on Learning Representations, 2019.

Namhoon Lee, Thalaiyasingam Ajanthan, Stephen Gould, and Philip H. S. Torr. A signal propa-
gation perspective for pruning neural networks at initialization. In International Conference on
Learning Representations, 2020.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. In International Conference on Learning Representations, 2017.

George S. Lueker. Exponentially small bounds on the expected optimum of the partition and subset
sum problems. Random Structures & Algorithms, 12(1):51–62, 1998.

Eran Malach, Gilad Yehudai, Shai Shalev-Schwartz, and Ohad Shamir. Proving the lottery ticket
hypothesis: Pruning is all you need. In International Conference on Machine Learning, 2020.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. In International Conference on Learning Repre-
sentations, 2017.

Laurent Orseau, Marcus Hutter, and Omar Rivasplata. Logarithmic pruning is all you need. Ad-
vances in Neural Information Processing Systems, 33, 2020.

Jeffrey Pennington, Samuel S. Schoenholz, and Surya Ganguli. Resurrecting the sigmoid in deep
learning through dynamical isometry: theory and practice. In Advances in Neural Information
Processing Systems, 2017.

Jeffrey Pennington, Samuel S. Schoenholz, and Surya Ganguli. The emergence of spectral uni-
versality in deep networks. In International Conference on Artificial Intelligence and Statistics,
2018.

Ankit Pensia, Shashank Rajput, Alliot Nagle, Harit Vishwakarma, and Dimitris Papailiopoulos. Op-
timal lottery tickets via subset sum: Logarithmic over-parameterization is sufficient. In Advances
in Neural Information Processing Systems, volume 33, pp. 2599–2610, 2020.

Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi, Ali Farhadi, and Mohammad Raste-
gari. What’s hidden in a randomly weighted neural network? In Computer Vision and Pattern
Recognition, pp. 11893–11902, 2020.

10

Pedro Savarese, Hugo Silva, and Michael Maire. Winning the lottery with continuous sparsification.
In Advances in Neural Information Processing Systems, volume 33, pp. 11380–11390, 2020.

Andrew M. Saxe, James L. McClelland, and Surya Ganguli. Exact solutions to the nonlinear dy-
namics of learning in deep linear neural networks. In International Conference on Learning
Representations, 2014.

Franco Scarselli and Ah Chung Tsoi. Universal approximation using feedforward neural networks:
A survey of some existing methods, and some new results. Neural Netw., 11(1):15–37, January
1998.

Samuel S. Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep information
propagation. In International Conference on Learning Representations, 2017.

Suraj Srinivas and R. Venkatesh Babu. Generalized dropout. CoRR, abs/1611.06791, 2016.

Hidenori Tanaka, Daniel Kunin, Daniel L. Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. In Advances in Neural Information
Processing Systems, 2020.

Stijn Verdenius, Maarten Stol, and Patrick Forré. Pruning via iterative ranking of sensitivity statis-
tics, 2020.

Chaoqi Wang, Guodong Zhang, and Roger B. Grosse. Picking winning tickets before training by
preserving gradient flow. In International Conference on Learning Representations, 2020.

Greg Yang, Jeffrey Pennington, Vinay Rao, Jascha Sohl-Dickstein, and Samuel S. Schoenholz. A
mean field theory of batch normalization. In International Conference on Learning Representa-
tions, 2019.

Haoran You, Chaojian Li, Pengfei Xu, Yonggan Fu, Yue Wang, Xiaohan Chen, Richard G. Baraniuk,
Zhangyang Wang, and Yingyan Lin. Drawing early-bird tickets: Toward more efficient training
of deep networks. In International Conference on Learning Representations, 2020.

Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski. Deconstructing lottery tickets: Zeros,
signs, and the supermask. In Advances in Neural Information Processing Systems, 2019.

A APPENDIX

B THEORY

In the following section, we present the proofs of the theorems and lemmas of the main manuscript.

B.1 SCALING RELATIONSHIP: PROOF OF LEMMA 2

Statement. Let h (θ0,σ) denote a transformation of the parameters θ0 of the deep neural network

f0, where each weight is multiplied by a scalar σl, i.e., h
(l)
ij (w

(l)
0,ij) = σlw

(l)
0,ij , and each bias is

transformed to h
(l)
i (b

(l)
0,i) =

∏l
m=1 σmb

(l)
0,i. Then, we have f (x | h(θ0,σ)) =

∏L
l=1 σlf(x | θ0).

Proof. Let the activation function φ of a neuron either be a ReLU φ(x) = max(x, 0) or the identity

φ(x) = x. A neuron x
(l)
i in the original network becomes g

(

x
(l)
i

)

after parameter transformation.

We prove the statement by induction over the depth L of a deep neural network.

First, assume that L = 1 so that we have x
(1)
i = φ

(

∑

j w
(1)
ij xj + b

(1)
i

)

After transformation by

w
(1)
ij 7→ σ1w

(1)
ij and b

(1)
i 7→ σ1b

(1)
i , we receive g

(

x
(1)
i

)

= φ
(

∑

j w
(1)
ij σ1xj + σ1b

(1)
i

)

= σ1x
(1)
i

because of the homogeneity of φ(·). This proves our claim for L = 1.

11

Next, our induction hypothesis is that g
(

x
(L−1)
i

)

=
∏L−1

m=1 σmx
(L−1)
i . It follows that

g
(

x
(L)
i

)

= φ





∑

j

w
(L)
ij σLg

(

x
(L−1)
j

)

+ b
(L)
i

L
∏

m=1

σm



 (def. of transformation)

= φ





∑

j

w
(L)
ij σL

L−1
∏

m=1

σmx
(L−1)
j + b

(L)
i

L
∏

m=1

σm



 (induction hypothesis)

=
L
∏

m=1

σmx
(L)
i (homogeneity of φ),

which was to be shown.

B.2 TRAINING OF f0 IS FEASIBLE: PROOF OF LEMMA 3

Statement. Assume that the weights and biases of a fully-connected deep neural network f are
drawn independently from distributions that are symmetric around the origin 0 with variances σ2

w,l

or σ2
b,l, respectively. Then, for every input x0, the second moment of the output is

E

(

‖f(x0)‖22
)

=
∥

∥

∥x(0)
∥

∥

∥

2

2
ΠL

l=1

nlσ
2
w,l

2
+ σ2

b,L

nL

2
+

L−1
∑

l=1

σ2
b,l

nl

2
ΠL

k=l+1

nkσ
2
w,k

2
.

Proof. First, let us focus on the distribution of a neuron x
(l)
i given all neurons of the previous layer

with x
(l)
i = φ

(

h
(l)
i

)

. Since we assume that the weights and biases are distributed independently

with zero mean, it follows that also the preactivation h
(l)
i =

∑

j w
(l)
ij x

(l−1)
j + b

(l)
i has zero mean

and variance V

(

h
(l)
i | x(l−1)

)

=
∑

j

(

x
(l−1)
j

)2

V

(

w
(l)
ij

)

+ V

(

b
(l)
i

)

= σ2
w,l

∥

∥x(l−1)
∥

∥

2
+ σ2

b,l,

where V is the variance operator. It is furthermore symmetric around zero so that a neuron x
(l)
i =

φ
(

h
(l)
i

)

∼ 0.5δ0 + 0.5phl,+
is projected to zero with probability 0.5 and otherwise follows the

distribution of the positive preactivation phl,+
, where δ0 denotes the delta distribution at 0 and hl,+

the random variable hl conditional on hl > 0. In consequence, the squared neuron value (x
(l)
i)2 ∼

0.5δ0+0.5ph2
l

has expectation E

(

(

x
(l)
i

)2
)

= 0.5 E

(

(

h
(l)
i

)2
)

= 0.5 σ2
w,l

∥

∥x(l−1)
∥

∥

2
+0.5 σ2

b,l.

Since all the neurons are independent and identically distributed given the neurons of the previous
layer, we can easily deduce the expected signal norm

E

(

∥

∥

∥x
(l)
∥

∥

∥

2

2

∣

∣

∣

∣

∥

∥

∥x
(l−1)

∥

∥

∥

2

2

)

=

nl
∑

i=1

E

(

(

x
(l)
i

)2
∣

∣

∣

∣

∥

∥

∥x
(l−1)

∥

∥

∥

2

2

)

=
nl

2

(

σ2
w,l

∥

∥

∥x
(l−1)

∥

∥

∥

2

+ σ2
b,l

)

.

This gives us the expected signal norm of an arbitrary layer conditioned on the previous layer. We
can use this relationship to also compute the average squared signal norm of the output layer, which
is

E

(

‖f(x0)‖22
)

= E

(

∥

∥

∥x
(L)
∥

∥

∥

2

2

)

= E

(

E

(

∥

∥

∥x
(L)
∥

∥

∥

2

2

∣

∣

∣

∣

∥

∥

∥x
(1)
∥

∥

∥

2

2

))

,

12

where the first equality is by definition of the network, and the second equality holds by law of total
expectation. By recursively repeating this argument on the inner expectation, we get

E

(

‖f(x0)‖22
)

= E

(

E

(

∥

∥

∥x
(L)
∥

∥

∥

2

2

∣

∣

∣

∣

∥

∥

∥x
(1)
∥

∥

∥

2

2

))

= E

(

E

(

E

(

∥

∥

∥x
(L)
∥

∥

∥

2

2

∣

∣

∣

∣

∥

∥

∥x
(2)
∥

∥

∥

2

2

) ∣

∣

∣

∣

∥

∥

∥x
(1)
∥

∥

∥

2

2

))

= E

(

E

(

. . .E

(

E

(

∥

∥

∥x
(L)
∥

∥

∥

2

2

∣

∣

∣

∣

∥

∥

∥x
(L−1)

∥

∥

∥

2

2

) ∣

∣

∣

∣

∥

∥

∥x
(L−2)

∥

∥

∥

2

2

)

. . .

∣

∣

∣

∣

∥

∥

∥x
(1)
∥

∥

∥

2

2

))

.

Using the derivation further above, which provides a solution to the expected signal norm for a layer
conditioned on the previous layer, we can iteratively resolve the innermost expectation

E

(

‖f(x0)‖22
)

= E

(

E

(

. . .E

(

E

(

∥

∥

∥x
(L)
∥

∥

∥

2

2

∣

∣

∣

∣

∥

∥

∥x
(L−1)

∥

∥

∥

2

2

) ∣

∣

∣

∣

∥

∥

∥x
(L−2)

∥

∥

∥

2

2

)

. . .

∣

∣

∣

∣

∥

∥

∥x
(1)
∥

∥

∥

2

2

))

= E

(

E

(

. . .E

(

nL

2

(

σ2
w,L

∥

∥

∥x
(L−1)

∥

∥

∥

2

2
+ σ2

b,L

) ∣

∣

∣

∣

∥

∥

∥x
(L−2)

∥

∥

∥

2

2

)

. . .

∣

∣

∣

∣

∥

∥

∥x
(1)
∥

∥

∥

2

2

))

= E

(

E

(

. . .
nLσ

2
w,L

2
E

(

∥

∥

∥x
(L−1)

∥

∥

∥

2

2

∣

∣

∣

∣

∥

∥

∥x
(L−2)

∥

∥

∥

2

2

)

+
nLσ

2
b,L

2
. . .

∣

∣

∣

∣

∥

∥

∥x
(1)
∥

∥

∥

2

2

))

.

Repeating this last argument provides the statement that was to be shown.

B.3 ERROR PROPAGATION: PROOF OF LEMMA 4

Statement. Assume ǫ > 0 and let the target network f and its approximation fǫ have the same
architecture. If every parameter θ of f and corresponding θǫ of fǫ in layer l fulfils |θǫ − θ| ≤ ǫl for

ǫl := ǫ

(

L
√
ml

(

1 + sup
x∈[−1,1]n0

∥

∥

∥x
(l−1)

∥

∥

∥

1

)

L
∏

k=l+1

(∥

∥

∥W
(l)
∥

∥

∥

∞

+ ǫ/L
)

)−1

,

then it follows that ‖f − fǫ‖∞ ≤ ǫ.

Proof. Our objective is to bound ‖f − fǫ‖∞ ≤ ǫ. We frequently use the triangle inequality and that
|φ(x) − φ(y)| ≤ |x− y| is Lipschitz continuous with Lipschitz constant 1 to derive
∥

∥

∥x
(l) − x(l)

ǫ

∥

∥

∥

2
≤
∥

∥

∥h
(l) − h(l)

ǫ

∥

∥

∥

2

≤
∥

∥

∥

(

W (l) −W (l)
ǫ

)

x(l−1)
∥

∥

∥

2
+
∥

∥

∥b
(l) − b(l)ǫ

∥

∥

∥

2
+
∥

∥

∥W
(l)
ǫ

(

x(l−1) − x(l−1)
ǫ

)∥

∥

∥

2

≤ ǫl
√
ml sup

x∈[−1,1]n0

∥

∥

∥x
(l−1)

∥

∥

∥

1
+ ǫl

√
ml +

(∥

∥

∥W
(l)
∥

∥

∥

∞

+ ǫl

) ∥

∥

∥

(

x(l−1) − x(l−1)
ǫ

)∥

∥

∥

2

with ǫl ≤ ǫ/L. ml denotes the number of parameters in layer l that are smaller than ǫl and ‖W ‖
∞

=
maxi,j |wi,j |. Note that ml ≤ nlkl,max. The last inequality follows from the fact that all entries of

the matrix
(

W (l) −W
(l)
ǫ

)

and of the vector (b(l) − b
(l)
ǫ) are bounded by ǫl and maximally ml

of these entries are non-zero. Furthermore,

∥

∥

∥W
(l)
ǫ

∥

∥

∥

∞

≤
(∥

∥W (l)
∥

∥

∞
+ ǫl

)

follows again from the

fact that each entry of
(

W (l) −W
(l)
ǫ

)

is bounded by ǫl.

13

Thus, at the last layer it holds for all x ∈ [−1, 1]n0 that

‖f(x)− fǫ(x)‖2 =
∥

∥

∥x
(L) − x(L)

ǫ

∥

∥

∥

2

≤
L
∑

l=1

ǫl
√
ml

(

1 + sup
x∈[−1,1]n0

∥

∥

∥x
(l−1)

∥

∥

∥

1

)

L
∏

k=l+1

(∥

∥

∥W
(l)
∥

∥

∥

∞

+ ǫ/L
)

≤ L
ǫ

L
= ǫ,

using the definition of ǫl in the last step.

B.4 EXISTENCE OF LOTTERY TICKET: PROOF OF THEOREM 5

Statement. Assume that ǫ, δ ∈ (0, 1) and a target network f with depth L and architecture n̄ are
given. Each weight and bias of a larger deep neural network f0 with depth 2L and architecture n̄0

is initialized independently, uniformly at random according to w
(l)
ij ∼ U([−σw,l, σw,l]) and b

(l)
i ∼

U([−∏l
k=1 σw,k,

∏l
k=1 σw,k]). Then, with probability at least 1− δ, f0 contains an approximation

fǫ ⊂ f0 so that ‖f − λfǫ‖∞ ≤ ǫ if for l = 1, ..., L

n2l−1,0 = Cnl−1 log

(

1

min {ǫl, δl}

)

and n2l,0 = nl,

where ǫl is defined in Eq. (B.3), δl = δ/(Lkl−1,maxnl), and the output is scaled by λ =
∏2L

l=1 σ
−1
w,l.

Proof. Lemma 2 simplifies the above parameter initialization to an equivalent setting, in which each
parameter is distributed as wij , bi ∼ U [−1, 1], while the overall output is scaled by the stated scaling
factor λ. We assume that all parameters are bounded by 1 so that we can find them within the range
[−1, 1]. Otherwise, we would need to increase n2l−1 by a factor that is proportional to the maximum
parameter value θmax, which is integrated into our constant C.

Every layer l of f corresponds in our construction to two layers of f0, i.e., layers 2l− 1 and 2l. The
neurons in layer 2l correspond directly to the output neurons in layer l of f . Thus, we only need
width n2l,0 = nl in f0. Layer 2l − 1 serves the construction of intermediary neurons of in-degree
1. Using the identity φ(x) = φ(x) − φ(−x), we see that all neurons in layer l of f can indeed be
represented by a two-layer neural network consisting of 3nl−1 intermediary neurons of degree 1, as

x
(l)
i = φ





∑

j

w
(l)
ij x

(l−1)
j + b

(l)
i





= φ





∑

j

w
(l)
ij φ

(

x
(l−1)
j

)

−
∑

j

w
(l)
ij φ

(

−x
(l−1)
j

)

+ b
(l)
i φ (1)



 .

According to Lemma 4, we need to approximate each w
(l)
ij and −w

(l)
ij up to error ǫl/2 and b

(l)
i up

to error ǫl to guarantee our overall approximation objective. Since we have to do this for every
parameter, our overall approximation can only be successful with probability 1 − δ if we increase
our success probability for each parameter, 1−δl, accordingly. In total, we have ml,max of such non-
zero parameters in layer l with ml,max ≤ 2nlkl,max. (To be precise, ml,max denotes the number of
parameters that are bigger than ǫl). The successes of finding different parameters are not necessarily
independent but we can identify a sufficient δl with the help of a union bound. Accordingly, 1− δ ≥
1 −∑L

l=1 δlml,max is fulfilled for δl ≤ δ/(2Lnlkl,max). Note that we later integrate the factor 2 in
the constant related to the layer width.

With probability at least 1 − δl, we can approximate each single parameter by solving the subset
sum problem for the corresponding neuron. As outlined in Cor. 2 by Pensia et al. (2020), which is

based on Cor. 3.3 by Lueker (1998), we need C log
(

1
min(δl,ǫl)

)

neurons in layer 2l − 1 per neuron

of the form φ
(

±x
(l−1)
j

)

or φ (1). Since we have to represent 3nl−1 of these neurons, in total we

require layer 2l− 1 of f0 to have width

n2l−1,0 ≥ Cnl−1 log

(

1

min (δl, ǫl)

)

.

14

Next, we briefly explain the main ideas that lead to this result. The main difference of our situations
in comparison with Pensia et al. (2020) is that we additionally create neurons of the form φ (1) to

represent non-zero biases. Let φ(y) be our target neuron, where y is either y = x
(l−1)
j or y = 1

depending on which neuron we want to represent. Note that we can construct multiple candidates
for a neuron φ(y) by pruning neurons in layer 2l − 1. We achieve that by setting all weights that
do not lead to y in the previous layer and the bias term of a neuron to zero or, if y = 1, we set all
weights to zero and keep the non-zero bias term if the bias is positive. Let the index set of the such
pruned neurons corresponding to y be I . This leaves us with neurons of the form w2,iφ (w1,iy) with
sign(y)w1,i ∼ U [0, 1] and w2,i ∼ U [−1, 1] for i ∈ I . For the probability distribution of w1,iw2,i,
Cor. 2 of Pensia et al. (2020) states that it contains a uniform distribution. It follow that the subset
sum problem has a solution. Thus, for any parameter θ ∈ [−1, 1] there exists a subset S ⊂ I so that
with probability at least 1− δl

|θ −
∑

i∈S

w1,iw2,i| ≤ ǫl.

if |I| ≥ C log
(

1
min(δl,ǫl)

)

, which was to be shown.

Note that the same result also holds for normally distributed w1,i, w2,i, as their product contains
a uniform distribution. This follows from the fact that the normal distribution contains a uniform
distribution Pensia et al. (2020). Thus, the product of two normal distributions contains a product of
two uniform distributions and this product of uniform distributions contains a uniform distribution
as stated by Cor. 2 of Pensia et al. (2020).

‘Looks-linear’ initializations are also covered by this proof. When we can construct a parameterw
(l)
ij

by solving a subset sum problem, we can construct −w
(l)
ij in the same way just with the negative

correspondents of the parameters that construct w
(l)
ij .

15

This figure "nonzero_bias_res.png" is available in "png"
 format from:

http://arxiv.org/ps/2110.11150v1

http://arxiv.org/ps/2110.11150v1

	1 Introduction
	1.1 Related work
	1.2 Notation

	2 Motivation: Neural networks with zero biases are not universal function approximators
	3 Initialization of non-zero biases
	3.1 Output scaling
	3.2 Trainability

	4 Existence of lottery tickets with non-zero biases
	5 Parameter rescaling during pruning
	6 Experiments
	6.1 A shifted ReLU
	6.2 The onion slice

	7 Discussion
	A Appendix
	B Theory
	B.1 Scaling relationship: Proof of Lemma 2
	B.2 Training of f0 is feasible: Proof of Lemma 3
	B.3 Error propagation: Proof of Lemma 4
	B.4 Existence of lottery ticket: Proof of Theorem 5

