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Abstract
Estimating mutual information (MI) between two continu-
ous random variables X and Y allows to capture non-linear
dependencies between them, non-parametrically. As such,
MI estimation lies at the core of many data science applica-
tions. Yet, robustly estimating MI for high-dimensional X
and Y is still an open research question.

In this paper, we formulate this problem through the
lens of manifold learning. That is, we leverage the common
assumption that the information of X and Y is captured
by a low-dimensional manifold embedded in the observed
high-dimensional space and transfer it to MI estimation.
As an extension to state-of-the-art kNN estimators, we
propose to determine the k-nearest neighbours via geodesic
distances on this manifold rather than form the ambient
space, which allows us to estimate MI even in the high-
dimensional setting. An empirical evaluation of our method,
G-KSG, against the state-of-the-art shows that it yields
good estimations of the MI in classical benchmark, and
manifold tasks, even for high dimensional datasets, which
none of the existing methods can provide.

1 Introduction

Quantifying the strength of a dependence between two
continuous random variables is an essential task in data
science [31]. Due to its non-parametric nature, and
hence its ability measure complex non-linear dependen-
cies, mutual information is ideal for this task [3], which
is why it is routinely applied for challenging settings
such as gene network inference.

Given two multivariate continuous random vari-
ables X ∈ RdX and Y ∈ RdY , mutual information

I(X;Y ) = h(X) + h(Y )− h(X,Y )

can be expressed as sum of differential entropies

h(X) = −
∫
RdX

fX(x) log fX(x)dx ,

where log refers to the natural logarithm. Although
the differential entropy of a random variable can be
negative, the chain rule does still apply for differential
entropy, and hence I(X;Y ) ≥ 0 with equality if and
only if X is independent of Y [3].
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In an ideal scenario, where we are given an iid
sample (xi,yi)i=1,...,n∼fXY , and an unbiased estima-

tor f̂XY , we could simply estimate I(X;Y ) by indi-

vidually estimating the differential entropies as ĥ(X) =

− 1
n

∑n
i=1 log f̂X(xi). A state-of-the-art approach to es-

timate ĥ(X) builds upon kNN estimation [6, 14]. Sim-
ply put, those methods estimate the log-density locally
around each point, e.g. by enclosing all its kNNs into a
unit ball and computing its volume [12, 14].

This approach, i.e. estimating each of the entropy
terms individually with the same k, was, however,
shown to induce a bias since the volume related cor-
rection terms do not cancel [15]. To correct for this
bias, Kraskov et al. [15] suggested to determine the
distance to the kth neighbour only on the joint space
and retrospectively count the data points falling within
this region in X and Y . Other approaches try to re-
duce this bias by using different geometries that more
tightly enclose the kNNs to better model the local den-
sities [7, 9, 16, 17]. None of these approaches, however,
has been successfully applied to high-dimensional data,
which is exactly the setting we are interested in.

To estimate MI on high-dimensional data, we build
upon the manifold assumption [2], a common assump-
tion in machine learning, which states that such data
often resides on a low-dimensional manifold embedded
in the ambient space. Under this assumption, we pro-
pose G-KSG, which instantiates the KSG estimator
by determining the nearest neighbours via geodesic dis-
tances, i.e. the shortest path between two points on the
manifold they reside on. To estimate geodesic distances,
we make use of and extend a recent proposal for man-
ifold learning, called Geodesic Forests [18], which is an
unsupervised random forest based on sparse linear pro-
jections. As such, our method is well suited to esti-
mate local densities and therewith mutual information
on high-dimensional data implementing the manifold as-
sumption. Our main contributions are, we

• establish a formal connection between manifold
learning and mutual information estimation, for
which we derive identifiability results in Sec. 4,

• propose G-KSG, an instantiation of KSG us-
ing geodesic distances, which we approximate via
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Geodesic Forests [2], as explained in Sec 5,

• derive a locally adjusted dissimilarity measure, as
well as a more efficient, O(n), split criterium for
unsupervised forests in Sec 5, and

• provide an extensive empirical evaluation of G-
KSG in Sec. 6.

In the following section, we first provide more detail
to related work.

2 Related Work

Mutual information estimation is a well studied problem
for discrete, continuous and even discrete-continuous
mixture data [20, 29, 8, 14, 15, 24, 19, 21]. Here,
we focus on continuous data, for which a broad spec-
trum of MI estimators exists. Most common are esti-
mators based on discretization [4, 21, 13], kernel den-
sity estimation [24, 10], and k-nearest neighbour esti-
mation [6, 14, 15], whereas recently, estimators based
on kNN estimation have established as state-of-the-art.

Simply put, kNN-based methods estimate the lo-
cal density around each point i via its k-nearest neigh-
bours [15, 16]. Critical for the performance of these
estimators are assumptions about the shape of the lo-
cal volumes used to calculate the densities. The first
estimators measure the local distances via L2 or L∞-
norm [6, 14]. Other approaches try to estimate the vol-
umes via locally computing an SVD [16] or PCA [17]
transformation, or use a local Gaussian kernel [10]. Al-
ternatively, the KSG [15] estimator avoids estimating
the volumes all along by computing the distance to the
kth neighbour on the joint space, while simply counting
the neighbours falling within this region in X and Y .
Gao et al. [11] proved that the KSG estimator is con-
sistent and proposed a bias corrected alternative, which
focuses on low-dimensional data. Closest to our ap-
proach is a kNN-based estimator, which utilizes a ran-
dom forest to estimate the nearest neighbours, however,
it requires either X or Y to be discrete [23]. Despite
the latter, none of these estimators has been evaluated
on more than 20 dimensions.

To efficiently estimate MI in a high-dimensional set-
ting, we build upon the manifold assumption [2], based
on which embedding techniques were developed that
successfully capture the most relevant information in
few dimensions by focussing on preserving local Eu-
clidean distances and estimating geodesics that resemble
data location on the manifold [22, 30, 26].

In particular, we suggest a novel approach which
estimates mutual information considering geodesic dis-
tances, combining ideas from manifold learning and MI
estimation. We leverage recent advances of Madhyasta

et al. [18] in approximating geodesic distances based on
tree estimates on sparse linear projections of the origi-
nal space [1, 5], which is suitable for kNN estimation on
high-dimensional data.

3 Preliminaries

Next, we first briefly introduce the line of kNN based
MI estimators more formally, and then shortly discuss
the KSG [15] estimator and its limitations.

To estimate the differential entropy ĥ(X) of a
random variable X, kNN based estimators [6, 14]
estimate the log-density locally around each point xi,
e.g. by computing the volume Vxi

of a ball enclosing all
its kNNs [12, 14]. That is,

(3.1) log f̂X(xi) = ψ(k)− ψ(n)− log Vx ,

where ψ(k) and ψ(n) are the correction terms, with
ψ being the digamma function.1 A straight-forward
approach to estimate I(X;Y ) would be to estimate
each of the involved entropy terms individually using
Eq. (3.1) based on the same k. Kraskov et al. [15]
showed that this will, however, induce a bias. Instead,
they compute the distance to the kth neighbour only
on the joint space and retrospectively count the data
points falling within this region in X and Y .

KSG Estimator Let Z = (X,Y ) be the joint
space spanned by X and Y . For any two data points
zi and zj , we define the distance between them as the
maximum distance from their projections in X resp. Y ,

d(zi, zj)max = max{d(xi,xj), d(yi,yj)} ,

where the distances measured on the subspaces, i.e.
d(xi,xj) and d(yi,yj), can be instantiated with any
norm. Furthermore, it is possible to use different norms
for the—potentially completely different—subspaces X
and Y [15]. In practice, both d(xi,xj) and d(yi,yj) are
instantiated with the L∞-norm, and hence d(zi, zj)max

reduces to the L∞-norm over the joint space (X,Y ).
Next, let 1

2ρi,k be the distance to the k-th neighbour
on the Z space using the maximum norm as defined
above. We define the number of data points xj with
a distance smaller than 1

2ρi,k to point the xi in the X
subspace as nx,i, i.e.

nx,i =

∣∣∣∣{xj : d(xi,xj) <
1

2
ρi,k, i 6= j

}∣∣∣∣ ,
and similarly, we define ny,i as the number of data
points with a smaller distance to point yi than 1

2ρi,k

1The digamma function is defined as ψ(x) = Γ(x)−1dΓ(x)/dx.

It satisfies the recursion ψ(x + 1) = ψ(x) + 1
x

with ψ(1) = −C,
where C = 0.577215 . . . is the Euler-Mascheroni constant.
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Figure 1: Example calculation for 1
2ρi,k, where k = 2,

and we use the L∞-norm as distance measure for X and
Y . In this case, nx,i = 1 and ny,i = 6.

on the Y subspace. As an example consider the two-
dimensional plot in Figure 1. In this example nx,i = 1,
that is, except xi itself, there exists only one further
point with a distance < 1

2ρi,k to xi for k = 2. On the
other hand, there exist 6 data points, which fulfill this
criterium for the Y subspace. In general, it holds that
nx,i + 1 ≥ k, as well as ny,i + 1 ≥ k.

To compute the entropies for the subspaces X and
Y , we consider the volumes related to ρi,k computed on
Z and determine the corresponding k retrospectively,
i.e. we define hKSG(X) as

hKSG(X) = − 1

n

n∑
i=1

ψ(nx,i + 1)− ψ(n)− log Vxi
,

where log Vxi
is computed as log cdX −dXρi,k, with cdX

being the volume of a dX -dimensional unit ball. By
adding up the individual entropy terms, we arrive at
the KSG estimator, defined as

IKSG(X;Y ) = ψ(k)+ψ(n)

− 1

n

n∑
i=1

ψ(nx,i+1)+ψ(ny,i+1) ,

where we can see that all volume terms cancel out.
Although, it was shown that the KSG estimator is

consistent [11], its bias increases with the number of
dimensions d as O(n−1/d) [11], which is problematic
for the high-dimensional setting where d > n. In
practice, we observe that the more dimensions we
consider, the larger nx,i and ny,i become on average.
This phenomenon occurs naturally, since we consider
the maximum norm in the joint space. In extreme
cases, ψ(nx,i+1)+ψ(ny,i+1) is on average larger than
ψ(k)+ψ(n) and hence the estimate can be negative.

To address the limitations of KSG in high-
dimensional data, we leverage insights from manifold

learning and mutual information estimation. In the next
section, we will formally define the assumed data gen-
erative model and provide identifiability results.

4 Mutual Information & Manifold Learning

The classical objective of MI estimation is to estimate
I(X;Y ) given an iid sample of the joint distribution
PX,Y . Especially for high-dimensional and possibly
noisy X and Y , estimating mutual information is
challenging [17, 16, 10]. Here, we view this problem from
a manifold learning perspective [2], where we assume
that shared information between X and Y is encoded in
an intrinsic low-dimensional space (X̃, Ỹ ), whereas the
majority of the dimensions of X and Y are independent
of each other, or correspond to noise dimensions, i.e.
I(X;Y ) is upper-bounded by I(X̃; Ỹ ).

To rigorously define the problem setting, we write
down our assumptions about the data generative pro-
cess as a structural causal model [25]. Simply put, we
assume that our observed variables X and Y are both
generated from a shared variable Z̃ and individual vari-
ables EX and EY that are independent of Z̃ and in-
dependent of each other (see Figure 2). Further, we
assume that the information that X contains about Z̃
is first passed through X̃. Accordingly, the informa-
tion that Y has about Z̃ is processed through the path
Z̃ → Ỹ → Y . We chose this model to reason about the
shared information of X and Y in terms of I(X̃; Ỹ ),
which is assumed to be low-dimensional.

We formally define the generative model below.

Model 1. Given multi-dimensional random vectors
Z̃,EX ,EY , which are are pairwise independent. We
generate X and Y according to

X̃ = fX̃

(
Z̃
)

Ỹ = fỸ

(
Z̃
)

X = fX

(
X̃,EX

)
Y = fY

(
Ỹ ,EY

)
,

where we require that

1. fX̃ and fỸ preserve some information about Z̃,

s.t. I(X̃, Ỹ ) > 0,

2. fX , as well as fY are required to be homeomor-
phisms (smooth and uniquely invertible maps), and

3. for all sub-spaces X̃ ′ or Ỹ ′ containing only a
proper subset of rows of X̃ resp. Ỹ , it holds that
I(X̃ ′; Ỹ ) < I(X̃; Ỹ ), resp. I(X̃; Ỹ ′) < I(X̃; Ỹ ).

Conditions 1-3 in Model 1 are very light require-
ments. If Cond. 1 would be violated, our estimator
could still detect that there is no shared information
between X and Y , but there would be little point
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Figure 2: [Generative Model] We are interested in
estimating I(X̃; Ỹ ), from X and Y . The random
vector X is generated as a function of two unobserved
variables (denoted as shaded nodes) X̃ and EX , where
X̃ ⊥⊥EX ; Y is generated accordingly. Further, X̃ and
Ỹ are generated from a shared latent factor Z̃.

of modeling the generative process from a manifold
learning perspective. Similarly, Cond. 3 requires that
all variables in the low-dimensional representation are
contributing to the shared information about X and
Y . Any subsets of variables not fulfilling this require-
ment would be modeled within the individual factor.
Last, Cond. 2 assures that I(X̃; Ỹ ) can be recovered
from I(X;Y ), as shown in Proposition 4.1. This is
a standard assumption in manifold learning: the low-
dimensional manifold can be modeled as a homeomor-
phism of the ambient space, or a subspace of it [2].

In the following we will show that for a data gen-
erative process as defined in Model 1, we can compute
I(X̃; Ỹ ) given only I(X;Y ). For arbitrary functions f
and g, where the transformed variables f(X) and g(Y )
are differentiable almost everywhere, the data process-
ing inequality states that I(f(X); g(Y )) ≤ I(X;Y ) [3].
Applied to our scenario, I(X;Y ) would at most pro-
vide a lower bound for I(X̃; Ỹ ). When requiring the f
and g are homeomorphisms, as stated in Condition 2 in
Model 1, we can make a stronger statement.

Proposition 4.1. Given a data generative process as
defined in Model 1, then I(X̃; Ỹ ) = I(X;Y ).

Proof. Due to Condition 2 in Model 1, we know that
fX and fY are homeomorphisms. Kraskov et al. [15]
showed for any transformations Xt = f(X), Y t =
g(Y ), where f and g are homeomorphisms, it holds
that I(X;Y ) = I(Xt;Y t). As an immediate con-
sequence, we can derive that in our case I(X;Y ) =

I(X̃,EX ; Ỹ ,EY ). Hence, we can derive that

I(X;Y ) = h(X̃,EX)− h
(
X̃,EX | Ỹ ,EY

)
= h(X̃,EX)− h

(
X̃,EX | Ỹ

)
= h(X̃) + h(EX)−

(
h(X̃ | Ỹ ) + h(EX)

)
= h(X̃)− h(X̃ | Ỹ ) = I(X̃; Ỹ ) .

In Line 2, we can omit EY since EY ⊥⊥EX , EY ⊥⊥ Z̃
by definition. Due to the Markov chain structure,
EY ⊥⊥ X̃, as well. Similarly, in Line 3 we can exploit
that X̃ ⊥⊥EX and Ỹ ⊥⊥EX .

Simply put, Proposition 4.1 shows that, for a data
generative process as defined in Model 1, estimating
I(X;Y ) is equivalent to estimating I(X̃; Ỹ ). If we are
provided only a finite number of iid samples, which is
the case in practice, it allows us to significantly improve
the sample efficiency for estimating I(X;Y ). In partic-
ular, assume that we could recover the low-dimensional
manifold (X̃, Ỹ ) with d̃ dimensions, which preserves
the shared information on the high-dimensional space
(X,Y ) with d � d̃ dimensions. This could generally
lead to a significant improvement of sample complexity
for MI estimators. For the KSG estimator, for example,

the bias would decrease from O
(
n−1/d

)
to O

(
n−1/d̃

)
,

and hence only depend on the relevant dimensions.
In practice, this insight suggests a two-step pro-

cedure. In the first step, we aim to learn the low-
dimensional manifold (X̃, Ỹ ) from (X,Y ), and in the
second step we estimate the mutual information be-
tween X and Y from the distances on the learned man-
ifold (X̃, Ỹ ). In the next section, we propose such an
approach based on Geodesic Forests.

5 Geodesic Mutual Information Estimation

In this section, we explain how to estimate mutual infor-
mation via geodesic distances, where we first introduce
our new estimator and then explain how we compute
the corresponding quantities via Geodesic Forests.

5.1 Geodesic KSG To efficiently estimate mutual
information from data generated according to Model 1,
we propose to first learn the embedded low-dimensional
manifold via Geodesic Forests [18], as described subse-
quently in Sec 5.2, and then compute the local kNN
distances from this representation. In other words, we
aim to approximate the distance between two points via
the length of its shortest path on the manifold, i.e. its
geodesic distance.

More specifically, we approximate d(xi,xj) and
d(yi,yj) in Eq. 3 with geodesic distances dG(xi,xj)



and dG(yi,yj) obtained from the Geodesic Forests. To
compute the distances on the joint space Z = (X,Y ),
we follow the KSG approach [15] and stick to the
maximum between the distances on X and Y . Thus,
we define 1

2ρ
G
i,k as the distance to the kth neighbour on

the joint space Z and obtain nGx,i as

nGx,i =

∣∣∣∣{xj : dG(xi,xj) <
1

2
ρGi,k, i 6= j

}∣∣∣∣ ,
and compute nGy,i accordingly. Finally, we derive our
proposed G-KSG estimator as

IG-KSG(X;Y ) = ψ(k)+ψ(n)

− 1

n

n∑
i=1

ψ(nGx,i+1)+ψ(nGy,i+1) .

Next, we explain how to estimate geodesic distances dG
from Geodesic Forests.

5.2 Geodesic Forests The term Geodesic Forest
(GF) has been introduced by Madhyastha et al. [18] and
describes an unsupervised version of sparse projection
oblique randomer forests [28]. In a nutshell, each node
of a tree in a GF is split based on a sparse linear
projection of each data point onto a one-dimensional
feature. Classical splitting criteria allow to compute
binary splits of the projected samples in this 1D space
efficiently. For a collection of trees, the relative geodesic
similarity of two data points xi,xj is estimated by the
fraction of leafs they occur in together, which has been
proven successful to estimate geodesic distances even in
the presence of many noise dimensions [18].

More formally, given a sample xn = {xi, . . . ,xn} of
a dX -dimensional random vector X, GF builds a set of
T trees. Each tree Ti is trained on a bootstrapped sub-
sample of size m < n, as typical for learning random
forests [1]. To grow a tree, we recursively split each
parent node into its two child nodes until a certain
stopping criterium is met. The two critical features,
in which Geodesic Forests are different from classical
random forests are the node splitting and the stopping
criterium, which we describe in more detail below.

Node Splitting Instead of splitting on a random
feature, GF computes p sparse random projections of
the feature space and splits on that 1D projection,
which minimizes the fast-BIC criterium (see below).
To generate sparse projections, GF samples a random
projection matrix A ∈ {−1, 0, 1}dX×p, where an entry
aij is non-zero with probability λ, i.e. P (aij = 1) =
P (aij = −1) = λ

2 , and zero otherwise. The sparsity
parameter λ is typically set to λ = 1

dX
. Given projection

matrix A, the projected feature matrix is X ′ = ATX,

from which we can extract p one-dimensional features,
which are each evaluated by the splitting criterion.

Fast-Bic To find a cut-point in a one-dimensional
vector, the authors of GF [18] introduce fast-BIC,
which is a regularized version of the classical two-
means criterium [5]. Both criteria induce a hard cluster
assignment to either the left or right cluster.

The general Bayesian Information Coefficient (BIC)
for a model M with parameter vector θM of length |θM |
can be written as BIC (M) = −2 log L̂ + log(n)|θM |,
where log L̂ is the empirical log-likelihood of the data
given model M . In our case, the model consists of five
parameters, the cluster assignment and the parameters
µ̂i and σ̂2

i , for i ∈ {1, 2}, which parameterize the as-
sumed Gaussian distribution for cluster i. Accordingly,
the empirical negative log likelihood is defined as

− log L̂ =

2∑
i=1

ni
2

(
2 logwi − log 2πσ̂2

i

)
,

where wi = ni/n is the probability of a data point
being assigned to cluster i. Given an ordered one-
dimensional sequence x1, . . . , xn, such that xi ≤ xi+1,
we can compute the optimal split point in O(n2) time,
since we need to obtain for each of the potential n − 1
cut-points the variances for both clusters. We can,
however, compute it even faster.

Faster Fast-Bic For an ordered sequence, we can
reduce the runtime complexity, to determine the best
split point, to O(n). Hence, even for an unordered se-
quence we obtain a runtime in O(n log n) by sorting,
which is still faster than the original fast-BIC computa-
tion. To achieve this speed-up, we use an elegant trick
developed for segmentation. As derived by Terzi [27,
Ch. 2], we can compute the empirical variance σ̂2

i,j for
an arbitrary segment xi, . . . , xj , with 1 ≤ i ≤ j ≤ n as

σ̂2
i,j =

1

j−i+1

(
(cssj−cssi−1)− 1

j−i+1
(csj−csi−1)

2

)
,

where csi =
∑i

1 xi is the cumulative sum of the
first i entries of the ordered sequence x1, . . . , xn and
cssi =

∑i
1 x

2
i the corresponding sum of squares, with

css0 = cs0 = 0. In other words, after precomputing cs
and css in linear time, we can compute the variance for
an arbitrary segment in constant time.

5.3 Approximate Geodesic Distances To obtain
a dissimilarity measure from a random forest, we can
utilize the proximity score for random forests proposed
by Breiman [1]. That is, let Lij denote the number
of trees for which data points i and j end up in
the same leaf and let T be the number of trees, the
proximity score between two data points i and j is



defined as pF (xi,xj) = Lij/T . Since pF (xi,xj) ∈ [0, 1],
we can compute a dissimilarity between two points
as dF (xi,xj) = 1 − pF (xi,xj). In their empirical
evaluation, Madhyastha et al. [18] demonstrate that
dF robustly recovers geodesic neighbourhoods from
high-dimensional data with many independent or noise
dimensions. As geodesic nearest neighbours, they define
points that lie close on the low-dimensional manifold.

In theory, estimating the geodesic k-nearest neigh-
bours is exactly what we are after, however, dF is not
a proper distance metric. In particular, dF satisfies the
reflexivity property (dF (xi,xi) = 0), the non-negativity
property, and the symmetry property (dF (xi,xj) =
dF (xj ,xi)). Despite those, dF (xi,xj) = 0 does not
imply that xi = xj , since two points could always end
up in the same leaf, especially for small forests. Thus,
the definiteness property is violated. In addition, dF
does not satisfy the triangle inequality, i.e. dF (xi,xk) ≤
dF (xi,xj) + dF (xj ,xk) cannot be guaranteed.

Hence, we propose an adjusted dissimilarity mea-
sure. The key idea of this adjusted measure builds upon
the fact that locally a manifold resembles a Euclidean
space, thus the geodesic distances locally become the
L2-norm. In our context, we assume that two points
are close on the manifold, if dF (xi,xi) = 0. Under this
premise, we propose the distance measure dG, i.e.

dG(xi,xj) =

{
dF (xi,xj) if dF (xi,xj) > 0,
d2(xi,xj)
c(T+ε) otherwise.

In short, for all pairs i, j for which dF (xi,xj) = 0,
we approximate their local geodesic distance via their
Euclidian distance normalized by a constant factor.
The normalization factor ensures that the normalized
Euclidian distances are always smaller than 1

T , i.e. the
smallest non-zero value that dF can attain. It consists
of c, maximum L2-norm between any two pairs i, j, the
number of trees T and a small constant ε > 0.

As a result, dG satisfies reflexivity, non-negativity
and symmetry, and in addition, satisfies definiteness and
locally (for those points, for which dF (xi,xj) = 0) also
satisfies the triangle inequality. We argue that possible
violations of the triangle inequality for data points, for
which dF (xi,xj) > 0, are on average not relevant for
kNN estimation with small k ≤ 10 in a high-dimensional
setting, which is our main use-case.

Marginal Distances Next, we briefly outline how
we can compute the distance between two points i, j on
a subspace S of X given the forest learned on X.

In essence, we can compute dG(si, sj) in a straight
forward manner. To compute the local distances, i.e.
d2(si,sj)
c(T+ε) , we need to set c to refer to the maximum

distance between two points in the subspace S, and
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Figure 3: MI estimates with increasing sample size on
uniform data (no noise), true MI is dashed black line.

recompute dF (si, sj) for each pair i, j. To compute dF
for a subspace S, we first need to recompute all leave
assignments. That is, given a tree Tj , we assign each
point i to that leaf in Tj , to which it would be assigned,
if projected onto (S). After reassigning the leaves, we
can compute dF (si, sj) as above. Based on the above
procedure, we can compute dG(xi,xj) and dG(yi,yj)
for each pair i, j and use these distances to compute
our G-KSG estimator as described in Sec. 5.1.

Next, we will empirically evaluate G-KSG.

6 Experiments

We extensively evaluate G-KSG against KSG, gKNN,
and LNN, which are the state-of-the-art MI estima-
tors [15, 16, 10]. The gKNN estimator uses ellipsoids
computed from principal components to better fit the lo-
cal data distribution, LNN uses KDE with bandwidths
automatically determined from the nearest neighbours.
In particular, we compare on standard synthetic bench-
mark data as well as two simulated manifolds with
known baseline MI for varying sample sizes, dimension-
ality of the data, and neighbourhood size for each esti-
mator. For all our experiments, we train geodesic forests
with original parameters [18], i.e. with λ = 1/d number
of dimensions, T = 300 trees, and

√
2n minimum num-

ber of points to split a node. We use hyperparameters as
suggested by the respective methods, details on which
can be found in the Supplementary Material S.2, and
report the average across MI estimates of 20 repetitions
for all experiments. For reproducability, we make code
and data publicly available.2

6.1 Synthetic Data We first evaluate the perfor-
mance for estimating the MI between two variables gen-
erated from simple distributions, uniform and Gaussian.

Sample Efficiency To measure how well MI can
be estimated with respect to the sample size, we draw
datasets of size 100 to 2000 of X and Y , where X is

2https://github.com/a-marx/geodesic-mi

https://github.com/a-marx/geodesic-mi


uniformly distributed between 0 and 1 and Y = X +N
with N ∼ Unif (−α/2, α/2) and α = 0.01. The ground
truth MI is given by I(X;Y ) = h(Y ) − h(Z) = α

2 −
logα [3, Ex.8.3]. Note that no independent variables
Z are added to the data yet. We observe that even
without independent variables in the data, G-KSG is
able to more efficiently estimate the MI, with an order
of magnitude lower mean squared error (MSE) than
classical KSG (see Fig. 3). We further see that LNN
greatly underestimates the true mutual information on
this uniform data. While efficient even for as few as
100 samples, gKNN constantly overestimates the true
MI slightly, showing an order of magnitude larger mean
squared error for n ≥ 1000 samples compared to G-
KSG. Note that, despite its complexity, G-KSG is only
a factor 10 slower than classical KSG, regardless of
samples size (see Supplementary Material S.3). For the
rest of the experiments, we will use n = 500 samples,
which is the largest sample size where the original KSG
could keep up with G-KSG.

Uniform For the same data as above, we now add
an increasing number of {0, 2, ..., 20} dimensions each
sampled from a standard normal distribution to the
original data. We report the results in Fig. 5 (top
right), where we can observe that while gKNN, KSG,
and G-KSG yield good estimates of the true MI without
additional dimensions, LNN drastically overestimates
the true MI, exponentially increasing with number of
dimensions. The predicted MI of classical KSG quickly
falls to 0 for as few as 4 dimensions, and is hence useless
for this data. While also decreasing slightly, G-KSG
yields the most stable prediction of MI with respect to
dimensionality, and with the lowest error on 15 or more
dimensions. gKNN underestimates even the original
data without additional dimensions, and overestimates
for higher dimensional data, having numerical issues
already for 10 additional dimensions.

High-Dimensional Data For the same uniform
distribution, we generate data and add {50, 100, .., 600}
independent dimensions, adding half of the dimensions
to X and the other half to Y . As expected, while
KSG immediately estimates a MI of 0, and is therefore
not useful at all, the MI estimate of G-KSG decreases
slightly but then remains stable with increasing number
of (independent) dimensions in the data. Both gKNN
as well as LNN fail to yield any result even for 50
dimensions due to numerical errors. We provide results
on this experiment in the Supplementary Material S.3.
Next, we investigate the behaviour for variables from a
different distribution.

Gaussian We generate synthetic data of Gaussian
distributed random variables X and Y with zero mean,
unit variance and a covariance of 0.9. Consequently,
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Figure 4: [Simulation Data] Shown are samples from
the Sphere with input (X1, X2) corresponding to (longi-
tude, latitude) and output (Y1, Y2, Y3) cartesian coordi-
nates (left), and Helix with input P indicated by color,
and cartesian output coordinates (X,Y, Z) (right).

with correlation ρ between X and Y being 0.9, the true
MI can be calculated as I(X;Y ) = − 1

2 log(1− ρ2). For
varying neighbourhood sizes for density estimation, we
report the results in Fig. 5 (top left) for increasing num-
ber of independent dimensions added to the original
data. We observe that both gKNN as well as LNN
provide a decent estimate on the simple Gaussian data
without additional dimensions, but then greatly overes-
timate the true MI for as few as 5 independent or noise
dimensions. gKNN does not yield meaningful MI esti-
mates beyond 10 additional dimensions. Classical KSG
provides a robust estimate on the simple Gaussian data,
but quickly deteriorates with increasing dimensions, un-
derestimating the true MI capturing almost zero mu-
tual information. While G-KSG also experiences the
same effect, it does so much more slowly and consis-
tently yields the lowest error in terms of the true MI.

6.2 Simulation Study To test our approach for
more complex data, and in particular data distributions
resembling a manifold, we consider two simulated data
sets. The first dataset we study is a sphere, resembling
e.g. a planet (see Fig. 4 left). Data is distributed on the
sphere, for which X is given as longitude and latitude,
and Y is given as the 3D coordinates. The second
dataset is a helix (see Fig. 4 right), for which X specifies
the distance along the helix (1D), and Y is given as
the 3D coordinates, a typical problem from manifold
learning. We give details on how these datasets are
sampled and how to compute a lower bound on the
ground truth MI in the Supplementary Material S.1.

6.3 Helix First, we consider the Helix data, which
resembles a typical manifold learning problem. Varying
the number of independent dimensions for this data, we
see that KSG estimates that the data contains 0 mutual



information, as soon as any independent dimensions
are added, whereas our method maintains a stable MI
estimate even for many independent dimensions (see
Fig. 5 bottom left). For LNN we observe a sharp linear
increase in predicted mutual information as a function
of number of dimensions, first under and then over-
predicting the true MI by a wide margin. For gKNN,
we observe first an overestimation of the MI which then
comes close to the true MI for 2-6 additional dimensions.
However, gKNN is not able to yield an estimate for
more than 2 additional dimensions when using k = 20
respectively more than 6 additional dimensions for k =
30. Increasing the neighbourhood size further does not
make sense, as gKNN would then miss on the locality of
the data when computing the volume, thus estimating
global rather than local density.

6.4 Sphere Next we consider a simulation using the
Sphere data, a simple dataset which, however, shows to
be an astonishingly hard challenge for the state-of-the-
art MI estimators. We show the results in Fig. 5 bottom
right. Overall, we observe similar trends as for Helix

data, giving further evidence that classical MI estimates
are not able to capture manifolds within data with large
number of independent or noise dimensions. As before,
KSG quickly detoriates to estimate 0 mutual informa-
tion in the data. Similarly, LNN show a steep, near
linear dependence between predicted MI and indepen-
dent dimensions, which has little to do with the true
mutual information. Again, gKNN shows to perform
poorly on the original task without added dimensions,
and fails to compute a result due to numerical issues
on data of more than a handful of dimensions. On this
dataset, G-KSG consistently predicts MI close to the
ground truth, regardless of added dimensions. Even for
hundreds of added dimensions, G-KSG remains stable,
whereas all other methods fail to compute meaningful
estimates (see Supplementary Material S.3).

7 Discussion & Conclusion

Mutual information, due to its non-parametric nature
thus capturing non-linear dependencies, lends itself for
measuring complex dependencies between random vari-
ables and is routinely applied for challenging tasks such
as gene network inference. Yet, estimation of mutual
information on high-dimensional data remains an un-
solved problem. In this work, we considered the problem
of estimating mutual information for high-dimensional
data under the common manifold assumption, i.e. the
data has low intrinsic dimensionality.

To tackle this problem, we combined ideas from
classical mutual information estimation and manifold
learning. In particular, we proposed to use geodesic

0 5 10 15 20

0

1

2

3

4

# independent dimension

m
e
a
n

I

0 5 10 15 20

0

5

10

15

# independent dimension

m
e
a
n

I

0 5 10 15 20

0

5

10

15

20

# independent dimension

m
e
a
n

I

G-KSG3 KSG3

gKNN20 LNN3

G-KSG5 KSG5

gKNN30 LNN5

0 5 10 15 20

0

5

10

15

20

# independent dimension

m
e
a
n

I

Figure 5: Mutual information estimates of G-KSG,
KSG, gKNN, and LNN for different number of k
indicated by method subscript for an increasing number
of independent dimensions (n=500). Top-left Gaussian
correlation, top-right uniform linear, bottom-left Helix,
bottom-right Sphere, true MI is the dashed black line.

distances to estimate local densities on the manifold
rather than in the ambient space. We leveraged the
recently proposed Geodesic Forests, which can estimate
relative geodesic distances even for high-dimensional
data with many independent or noise dimensions. To
be able to scale to our setting, we further proposed
a faster algorithm to compute the splitting criterion
for individual nodes. Based on computed geodesic
distances, we then extended the state-of-the-art KSG
MI estimator to operate on these distances, leading to
the G-KSG estimator.

We evaluated G-KSG against state-of-the-art MI
estimators on standard benchmark data and two simu-
lated manifold datasets. The results show that G-KSG
outperforms its competitors, better estimating the true
MI across tasks and settings. Furthermore, it provides
more stable results across data of different dimensional-
ity, whereas the state-of-the-art fails to scale to higher
dimensions, or greatly over- or underestimates the true
MI, rendering these approaches of little use in this set-
ting. At the same time, G-KSG is sample efficient, and
is only slightly slower than classical KSG, independent
of sample size.

In summary, our approach allows to efficiently
and robustly estimate mutual information of high-
dimensional data modeling the manifold assumption.



While thorough empirical evaluation showed that G-
KSG ably estimates the true mutual information across
different datasets and dimensionalities, it would make
for engaging future work to theoretically study consis-
tency and guarantees of the estimator. The estimation
of geodesic distances render this theoretical aspect ex-
tremely challenging. Besides, we would be interested
to study MI estimation for different settings, such as
discrete-continuous mixtures or on time-series.
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Supplementary Material

The Supplementary Material, is split into three sections.
In the first section, we provide the data generating
mechanisms for the Helix and Sphere data, for which
we derive lower bounds on the ground truth mutual
information. Subsequently, we list the hyperparameter
for G-KSG and for the baselines in Section S.2, and
provide additional experiments in Section S.3.

S.1 Data Generation and MI Bounds In the
following, we will first briefly recap the derivation of the
ground truth of the mutual information for the linear
uniform scenario and then explain the data generation,
as well as, the derivation of the lower bounds for the
ground truth for the Helix and Sphere data.

To derive the ground truth value for the
linear uniform example, where X∼Unif (0, 1),
Z∼Unif (−α/2, α/2) and

Y = X + Z ,

we follow Exercise 8.3 in [3]. First, note that

I(X;Y ) = h(Y )− h(Y | X)

= h(Y )− h(Z) = h(Y )− logα .

Thus, it remains to compute the entropy for Y , for
which the density function can be computed as a
convolution ofX and Z. SinceX and Z follow a uniform
distribution, Y is a trapezoid and it can be derived that
h(Y ) = α

2 for α ≤ 1 [3].
Helix For the Helix data, we generate a line as

P ∼ Unif (0, 1), which we then embed as a spiral in a
three-dimensional space. Accordingly, we generate the
X,Y, Z dimensions as

P = 5π + 3πR ,

X =
P cos(P )

8π
+N1 ,

Y =
P sin(P )

8π
+N2 ,

Z =
P

8π
+N3 ,

where N1, N2, N3 ∼ Unif (−α/2, α/2) are noise vari-
ables, R = 1 is the radius and α = 0.01.

To approximate the ground truth value of such a
Helix, we can build upon the derivation for the uniform
linear data to obtain a lower bound. A lower bound
is sufficient in our case, since we do not measure how

close we can estimate the true value, but how much
information we can still recover in a noisy setting.

First, note that I(X;X +Z) = I(X; k sin(X) +Z),
since the sine function is invertible. More generally,
I(P ; {X,Y, Z}) = I(P ; {X ′, Y ′, Z ′}), where X ′ = P +
N1, Y ′ = P +N2 and Z ′ = P +N3. We get that

I(P ; {X ′, Y ′, Z ′}) = h(X ′, Y ′, Z ′)− h(X ′, Y ′, Z ′ | P )

= h(X ′, Y ′, Z ′)− h(N1, N2, N3)

= h(X ′) + h(Y ′ | X ′) + h(Z ′ | X ′, Y ′)
− h(N1, N2, N3) ,

where again, we can rewrite h(X ′, Y ′, Z ′ | P ) as
h(N1, N2, N3) similar to the linear case. Additionally,
all noise terms are independent of each other and thus
h(N1, N2, N3) = h(N1) + h(N2) + h(N3) = 3 logα.
Now, due to the Markov chain structure, we can only
approximate h(Y ′ | X ′) ≥ h(Y ′ | P ). However, we
conjecture that this approximation is quite close due to
the low amount of noise added in the data generation.
Similarly, h(Z ′ | X ′, Y ′) ≥ h(Z ′ | P ). Thus

I(P ; {X ′, Y ′, Z ′}) ≥ h(X ′)+h(Y ′ | P )+h(Z ′ | P )−3 logα

= h(X ′)− logα

=
α

2
− logα .

Sphere We generate samples from a Sphere by
drawing a latitude and longitude as X1, X2 ∼ Unif (0, 1)
and compute the cartesian coordinates as

Y1 = cos(X1) cos(X2)R+N1 ,

Y2 = cos(X1) sin(X2)R+N2 ,

Y3 = sin(X2)R+N3 .

where N1, N2, N3 ∼ Unif (−α/2, α/2), and we use a
radius of R = 1 and α = 0.01 for our experiments.

To derive a lower bound on the mutual information,
we follow a similar procedure as for the Helix data.
First, we can rewrite Y ′3 = X2 +N3 and get that

I(X;Y ) = h(Y1, Y2, Y
′
3)− h(Y1, Y2, Y

′
3 | X1, X2)

= h(Y ′3) + h(Y2 | Y ′3) + h(Y1 | Y2, Y ′3)

− h(Y1, Y2, Y
′
3 | X1, X2) ,

We can similarly decompose the conditional term
to h(Y ′3 | X1, X2) + h(Y2 | X1, X2, Y

′
3) + h(Y1 |

X1, X2, Y
′
3 , Y2). From the linear case, we know that

h(Y ′3)−h(Y ′3 | X1, X2) = α
2 − logα, since X1⊥⊥Y ′3 . Ad-

ditionally, it is clear that h(Y2 | Y ′3) ≥ h(Y2 | X1, X2, Y
′
3)

and h(Y1 | Y ′3 , Y2) ≥ h(Y1 | X1, X2, Y
′
3 , Y2) and thus

I(X;Y ) ≥ α
2 − logα.
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by a factor smaller than 10.

S.2 Hyperparameter For G-KSG, we use projec-
tions with λ = 1/d number of dimensions, T = 300
trees, and

√
2n minimum number of points in a node to

consider it for splitting. These parameters are suggested
by the authors of geodesic forests [18].

In case of LNN, we use the suggested setting, which
is k = 30 neighbours for MI estimation and evaluate
k′ = 3, as well as k′ = 5, for bandwidth prediction for
the kernel density estimation.

For gKNN and KSG we set the neighbourhood size
as specified in the main paper.

S.3 Additional Experiments Next, we supplement
the runtimes for the experiment on linear uniform data
with increasing sample size and provide the results for
the experiments on high-dimensional data.

Time comparison We provide a time comparison
of all methods in Fig. 6 for 10 repetitions. We observe
that G-KSG only takes 10 times longer thank KSG,
independent of number of samples.

High dimensional results We provide the re-
sults for high dimensional data for the uniform lin-
ear data and Sphere across 3 repetitions in Fig. 7.
We varied the number of independent dimensions in
{0, 100, 200, ..., 600}, splitting equally between X and
Y . Both gKNN as well as LNN were not able to com-
pute the MI estimate due to numerical issues even for
as few as 50 dimensions.

0 200 400 600

0

2

4

# independent dimension
m
e
a
n

I

G-KSG3 KSG3

G-KSG5 KSG5

G-KSG10 KSG10

0 200 400 600

0

2

4

# independent dimension

m
e
a
n

I

Figure 7: Mutual information estimates of G-KSG and
KSG k = {3, 5, 10} on linear data with uniform source
(top) and sphere data (bottom) with an increasing
number of noise dimensions up to the high-dimensional
setting (d > n = 500).
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