

Global Biogeochemical Cycles

Supporting Information for

Are land-use change emissions in Southeast Asia decreasing or increasing?

Masayuki Kondo^{1,2}, Stephen Sitch³, Philippe Ciais⁴, Frédéric Achard⁵, Etsushi Kato⁶, Julia Pongratz^{7,8}, Richard A. Houghton⁹, Josep G. Canadell¹⁰, Prabir K. Patra¹¹, Pierre Friedlingstein¹², Wei Li¹³, Peter Anthoni¹⁴, Almut Arneth¹⁴, Frédéric Chevallier⁴, Raphael Ganzenmüller⁷, Anna Harper¹², Atul K. Jain¹⁵, Charles Koven¹⁶, Sebastian Lienert¹⁷, Danica Lombardozzi¹⁸, Takashi Maki¹⁹, Julia E. M. S. Nabel⁸, Takashi Nakamura²⁰, Yosuke Niwa², Philippe Peylin⁴, Benjamin Poulter²¹, Thomas A. M. Pugh^{22,23,24}, Christian Rödenbeck²⁵, Tazu Saeki², Benjamin Stocker²⁶, Nicolas Viovy⁴, Andy Wiltshire²⁷, Sönke Zaehle²⁵

¹Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Aichi 464-8601 Japan,²Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan, 3College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QF, UK, 4Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre Simon Laplace, 91191 Gif-sur-Yvette, France, ⁵Directorate D – Sustainable Resources, Joint Research Centre of the European Commission, 21027 Ispra (VA), Italy, ⁶Institute of Applied Energy, Tokyo, 105-0003, Japan, 7Department of Geography, Ludwig-Maximilians-Universität München, 80333 Munich, Germany, ⁸Land in the Earth System, Max Planck Institute for Meteorology, 20146 Hamburg, Germany, 9Woods Hole Research Center, Falmouth, MA 02540-1644, USA, 10Global Carbon Project, Commonwealth Scientific and Industrial Research Organisation–Oceans and Atmosphere, Canberra, ACT 2601, Australia, ¹¹Department of Environmental Geochemical Cycle Research, Japan Agency for Marine–Earth Science and Technology, Yokohama 236-0001, Japan, ¹²College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK, ¹³Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China, ¹⁴Institute of Meteorology and Climate Research/Atmospheric Environmental Research, Karlsruhe Institute of Technology, 82467 Garmisch-Partenkirchen, Germany, ¹⁵Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA, ¹⁶Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA, ¹⁷Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland, ¹⁸Climate and Global Dynamics, National Center for Atmospheric Research, Boulder, CO 80305, USA, 19 Meteorological Research Institute, Tsukuba 305-0052, Japan, 20 Japan Meteorological Agency, Tokyo 105-8431, Japan, ²¹National Aeronautics and Space Administration Goddard Space Flight Center, Biospheric Science Laboratory, Greenbelt, MD 20771, USA, ²²Department of Physical Geography and Ecosystem Science, Lund University, 22362, Lund, Sweden, ²³Department of Geography, Earth and Environmental Science, University of Birmingham, Birmingham, B15 2TT, UK, ²⁴Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK, ²⁵Max Planck Institute for Biogeochemistry, 07745 Jena, Germany, ²⁶Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland, ²⁷Met Office Hadley Centre, Fitzroy Road, Exeter EX1 3PB, UK

Contents of this file

Figures S1 to S4 Table S1

Figure S1. Interannual variability of global land CO₂ fluxes reported by the GCB papers. (a) Interannual and (b) decadal variability in the CO₂+climate effect on the net land CO₂ flux, and (c), (d) those of the net LUC flux from Global Carbon Budget (GCB) 2013–2018.

Figure S2. Decadal forest and non-forest area changes in Southeast Asia. Changes in forest and non-forest area estimates for the period 1980–2015 by LUH v1 and v2. Results are shown for (a) primary forest, (b) primary non-forest, (c) primary land (a sum of primary forest and primary non-forest), (d) secondary forest, (e) secondary non-forest, and (f) secondary land (a sum of secondary forest and secondary non-forest).

Figure S3. Temporal pattern of climate variables from CRU-NCEP and CRU-JRA. Decadal mean seasonality, interannual variability, and decadal mean spatial variability of (a) air temperature, (b) precipitation, and (c) short-wave radiation from CRU-NCEP and CRU-JRA.

Figure S4. Temporal variability in the net CO₂ flux by individual TRENDY v2 and v7 models. Interannual variability in the net CO₂ flux estimated by the 10 DGVMs (CLM, ISAM, JSBACH, JULES, LPJ-wsl, LPJ-GUESS, LPX-Bern, O-CN, ORCHIDEE, and VISIT) are shown along with a normalized difference between TRENDY v2 and v7.

Table S1. Forcing data used for TRENDY v2 and v7 sin	ulations.
--	-----------

Forcing	TRENDY v2	TRENDY v7	
Atmospheric CO ₂	Global mean annual CO ₂	Global mean annual CO ₂	
	mixing ratio based on ice core	mixing ratio based on ice core	
	measurements and stationary	measurements and stationary	
	observations from NOAA	observations from NOAA	
Climate	Gridded daily and monthly	Gridded daily and monthly data	
	data from CRU-NCEP	from CRU-JRA55	
Land-use and land-	Gridded annual land-use and	Gridded annual land-use and	
cover change	land-cover data from HYDE	land-cover data from HYDE v	
_	v3.1 or LUH v1	3.2 or LUH v2	